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Abstract. A generalised random walk scheme for random walks in an arbitrary external potential field is
investigated. From this concept which accounts for the symmetry breaking of homogeneity through the
external field, a generalised master equation is constructed. For long-tailed transfer distance or waiting
time distributions we show that this generalised master equation is the genesis of apparently different
fractional Fokker-Planck equations discussed in literature. On this basis, we introduce a generalisation of
the Kramers-Moyal expansion for broad jump length distributions that combines multiples of both ordinary
and fractional spatial derivatives. However, it is shown that the nature of the drift term is not changed
through the existence of anomalous transport statistics, and thus to first order, an external potential Φ(x)
feeds back on the probability density function W through the classical term ∝ ∂/∂xΦ′(x)W (x, t), i.e., even
for Lévy flights, there exists a linear infinitesimal generator that accounts for the response to an external
field.

PACS. 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.) – 05.40.Fb Random walks
and Lévy flights – 05.60.-k Transport processes – 02.50.Ey Stochastic processes

1 Introduction

Many physical systems show more or less pronounced cor-
relations in their dynamical behaviour, these being ei-
ther non-Markovian memory effects, or non-locality in
space [1–3]. Often, these correlations are governed by long-
tailed or Lévy-type statistics giving rise to the validity
of some superordinate limit theorem [1–4]. The proba-
bility density function (pdf) to find the test particle un-
der consideration at position x at time t of such systems
can be described in terms of a generalised master equa-
tion (GME) of the form [5–12]

∂W (x, t)

∂t
=

∫ ∞

−∞
dx′

∫ t

0

dt′K(x, x′; t − t′)W (x′, t′) (1)

where the kernel K(x, x′; t − t′) governs the transfer from
a site x′ to x and the dependence of the process on its his-
tory (memory), and thus causes, in general, temporal or
spatial non-locality. It is our goal to investigate the gen-
eralisations of the kinetic equation corresponding to the
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master equation (1) for self-similar temporal or spatial
forms of the kernel K. Throughout this paper, we consider
only systems which are homogeneous in time, i.e., the ker-
nel K depends only on the time difference |t − t′|. More-
over, we concentrate on such cases that assume spatial
and temporal decoupling, i.e., jump length and waiting
time of the associated random walk process are assumed
to be independent. The discussion is also restricted to the
one-dimensional case.

Rather than via a master equation, the pdf W (x, t) of
a Markovian system under the influence of the external
force field F (x) = − d

dxΦ(x) is usually described through
the Fokker-Planck equation (FPE) [13]

∂W

∂t
= LFPW (2a)

with the normalised FP-operator

LFP =
∂

∂x

Φ′(x)

mη
+ K

∂2

∂x2
(2b)

where m is the mass of the diffusing particle, η denotes
the friction coefficient, and K = kBT/(mη) is the diffusion
constant. The monovariate FPE for one variable (2a) is of-
ten referred to as Smoluchowski equation, and is discussed
in probabilistic terms in reference [14].
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We note that the FPE

∂W

∂t
=

(

−
∂

∂x
D(1)(x) +

∂2

∂x2
D(2)(x)

)

W (x, t) (3)

with space-dependent coefficients can always be mapped
onto the FPE (2a). Here, D(1)(x) is an external drift
caused through the force F (x), and D(2)(x) is a space-
dependent diffusion coefficient [11,12]. The associated
transformation of variables from equations (3) to (2a) is

x →
∫ x

0
dx′√K/D(2)(x′), and W →

√

D(2)(x)/KW so

that Φ′(x) = −mηD(1)(x) [15]. Due to this general trans-
formation, equation (2a) is sometimes called normalised
FPE [11].

The FPE (2a) for Φ(x) = const. describes Gaussian
diffusion, a hallmark property of which is the linear time
dependence 〈(∆x)2〉 = 2Kt of the mean squared dis-
placement. We are interested in systems whose dynam-
ical evolution is based upon transport processes which
exhibit anomalous diffusion behaviour of the power-law
type [1,2,16]

〈x2(t)〉 ∝ Kγtγ , γ 6= 1, (4)

in the force-free limit. One distinguishes subdiffusion for
0 < γ < 1, and superdiffusion for γ > 1, and for Lévy
flights the mean squared displacement diverges [1–3]. In
equation (4), the generalised diffusion constant Kγ is of
dimension [Kγ ] = cm2 sec−γ .

Instead of modelling the forced transport in systems
whose dynamics is governed by a non-local temporal or
spatial behaviour connected with Lévy-type statistics,
through the GME (1), fractional Fokker-Planck equa-
tions (FFPEs) have been suggested [17–26]. Recently, we
pointed out that such FFPEs can be constructed, as a
natural generalisation of the standard FPE, from a modi-
fied, non-homogeneous random walk scheme [24], or from
the Langevin equation with Gaussian, δ-correlated noise
in combination with broadly distributed multiple trap-
ping [26].

The basic result of these derivations is the FFPE

∂W

∂t
= 0D

1−γ
t

(

∂

∂x

Φ′(x)

mηγ
+ −∞Dµ

xKµ
γ

)

W (x, t) (5)

which describes physical systems governed by a compe-
tition of subdiffusion and Lévy flights, leading to the
time-fractional operator 0D

1−γ
t responsible for the non-

Markovian character of equation (5), and the generalised
Laplacian −∞Dµ

x reminiscent of the Lévy distributed
jump lengths. In what follows, we derive the FFPE (5)
in a formal way from the GME (1). We then establish
the non-homogeneous random walk model and derive the
kernel K from equation (1) for this model, leading to the
FFPE (5).

More specifically, we discuss two important points
which so far have not been dealt with in detail. First,
we address in depth the relation for different types of
externally driven anomalous motion between the FFPE
description and the associated generalised master equa-
tion, which leads to a better understanding of the mean-
ing of the fractional transport equations. The second

important issue concerns the question of deriving a gener-
alisation of the Kramers-Moyal expansion for the case of
broad jump length statistics. It will be shown that both
ordinary and fractional differential operators in the spa-
tial coordinate emerge in growing order of the Kramers-
Moyal index. However, for any Lévy index characterising
the jump length distribution, the lowest order force term
represents the classical first order, local gradient, i.e., the
standard drift term obtains. Moreover, the Pawula the-
orem, in essence, carries over to anomalous statistics so
that either the expansion is terminated after the second
term, or terms of all order have to be carried along to
guarantee positivity.

2 Generalised master and fractional
Fokker-Planck equations

In Fourier-Laplace space, the GME (1) takes on the form

uW (k, u)− W0(k) = K(k, u) ∗ W (k, u) (6)

where k is the wave number, u the Laplace variable, and
the asterisk denotes a Fourier convolution f(x) ∗ g(x) ≡
∫ ∞
−∞ dx′f(x−x′)g(x′). Dividing equation (6) by u, we ob-

tain, after Laplace inversion and differentiation ∂
∂t , the

alternative representation

∂W (x, t)

∂t
=

∂

∂t

∫ ∞

−∞
dx′

∫ t

0

dt′K̃(x, x′, t − t′)W (x, t′) (7)

of the GME (1) which will be more convenient in
the forthcoming derivations. The new kernel is given
through K̃(x, x′;u) = K(x, x′;u)/u, i.e. K̃(x, x′; t) =
∫ t

0 dtK(x, x′; t). Let us now assume that K̃ can be writ-

ten in the product form K̃(x, x′; t) = M(x, x′)Π(t). Then,
the transfer kernel M(x, x′) is responsible for spatial cor-
relations, whereas the memory kernel Π(t) introduces the
non-Markovian behaviour; and M and Π are independent.
We proceed by considering long-tailed forms for the mem-
ory part Π, before dealing with the spatial part M .

If Π(t) follows the broad power-law form

Π(t) =
(t/τ)γ−1

Γ (γ)
(8)

for 0 < γ < 1, the solution W (x, t) of the GME (1) (or
(7)) features a strong dependence on its prehistory, i.e.,
on W (x, t′), t′ < t. The resulting equation

∂W (x, t)

∂t
=

1

Γ (γ)

∂

∂t

∫ t

0

dt′
∫ ∞
−∞ dx′M(x, x′)W (x′, t′)

(t − t′)1−γ

(9)

includes the defining expression

0D
1−γ
t W (x, t) =

1

Γ (γ)

∂

∂t

∫ t

0

dt′
W (x, t)

(t − t′)1−γ
(10)
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of the Riemann-Liouville fractional derivative 0D
1−γ
t [28].

With this definition, the GME (1) for the power-law mem-
ory can be expressed in the form of the fractional master
equation (compare [29])

∂W (x, t)

∂t
= 0D

1−γ
t

∫ ∞

−∞
dx′M(x, x′)W (x′, t). (11)

In this equation, the kernel M describes the transfer of a
particle from the departure site x′ to the arrival site x,
thereby covering the distance |x − x′|. We now consider
special forms of this kernel M .

For the case when the transfer kernel depends only on
the distance |x − x′| from departure to arrival site, and
is given through M(k) = −Kγk2 in Fourier space, the
fractional diffusion equation [27]

∂W

∂t
= 0D

1−γ
t Kγ

∂2

∂x2
W (x, t) (12)

emerges. In the external field Φ(x), the choice (compare
Risken [11]),

M(x, x′) =

(

∂

∂x

Φ′(x)

mηγ
+ Kγ

∂2

∂x2

)

δ(x − x′) (13)

leads to the FFPE

∂W

∂t
= 0D

1−γ
t

(

∂

∂x

Φ′(x)

mηγ
+ Kγ

∂2

∂x2

)

W (x, t) (14)

proposed in reference [23] for subdiffusive systems close to
thermal equilibrium.

Conversely, assuming a Markovian dynamics corre-
sponding to Π = 1 in equation (7), and the transfer kernel
M obeying the fractal form M(k) = −Kµ|k|µ, we find the
fractional diffusion equation for Lévy flights,

∂W

∂t
= Kµ

−∞Dµ
xW (x, t), (15)

which was derived by Compte [30], and which features the
fractional Riesz-Weyl derivative, defined through [31]

F
{

−∞Dµ
xW (x, t)

}

= −|k|µW (k, t). (16)

The corresponding FFPE for Lévy flights in an external
potential,

∂W

∂t
=

(

Φ′(x)

mη
+ Kµ

−∞Dµ
x

)

W (x, t) (17)

which was derived in reference [17] for Lévy flights in a
random environment, is then obtained through the kernel

M(x, x′) =

(

∂

∂x

Φ′(x)

mη
+ Kµ −∞Dµ

x

)

δ(x − x′). (18)

Combining the slowly decaying memory leading to the op-
erator 0D

1−γ
t with the Lévy flight character of M ∝ −|k|µ,

we arrive at the FFPE (5). We now derive the kernel con-
nected with the assumptions (13, 18) and (8) from an
extended random walk scheme which we establish below.
Although our derivations are more general, we will employ
the typical notions from continuous time random walk
theory [9,10,32], these being the waiting time probabil-
ity density function w(t) from which the waiting time is
drawn which elapses between one jump and the next, as
well as the jump length pdf λ(x) through which a value is
assigned to the jump length or transfer distance |x − x′|
covered by a jump event from the departure site x′ to the
arrival site x.

3 From jump statistics to Fokker-Planck

operators

Both standard diffusion and fractional diffusion equations,
as well as their equivalent representation in continuous
time random walk theory, are intimately related to the
homogeneity in space, which manifests itself in the trans-
port kernel obeying the functional form K(x, x′; t − t′) =
K(x − x′; t − t′). In general, an external field will break
this homogeneity. To take this effect into consideration,
we start off from a discrete and local random walk pro-
cess for which we introduce continuum limits in time and
space. The new scheme addresses simultaneously the in-
troduction of a continuous time leading to memory effects,
as well as the continuum limit in space, accounting for
non-local transfer statistics.

3.1 The derivation of the Fokker-Planck equation

Let us at first consider the derivation of the standard
FPE (3) from the discrete local master equation [10]

Wj(t + ∆t) = Aj−1Wj−1(t) + Bj+1Wj+1(t), (19)

where the index j denotes the position, and the transfer
coefficients Aj−1 and Bj+1 are the probabilities to jump
from site j − 1 [j + 1] to site j, respectively. These co-
efficients fulfil the normalisation condition Aj + Bj = 1.
From Taylor expansions in ∆t and ∆x according to

Wj(t + ∆t) ∼ Wj(t) + ∆t
∂Wj(t)

∂t
(20)

Aj−1Wj−1(t) ∼ A(x)W (x, t) − ∆x
∂A(x)W (x, t)

∂x

+
(∆x)2

2

∂2A(x)W (x, t)

∂x2
(21)

one recovers in the continuum limit the FPE (2a) with the
FP-operator (2b), where the coefficients are given by

Φ′(x)

mη
≡ lim

∆x→0,∆t→0

∆x

∆t
[B(x) − A(x)] (22a)

K ≡ lim
∆x→0,∆t→0

(∆x)2

2∆t
· (22b)
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Thereby, we assume that the lattice spacing ∆x and the
time increment ∆t are becoming small quantities going to
zero such that the limit lim∆x→0,∆t→0(∆x)2/∆t is finite.
Furthermore, we assume A(x) + B(x) = 1. Note that the
limit in equation (22a) exists as A(x−∆x)−B(x+∆x) =
O(∆x) under the assumption that the inhomogeneity in
jumping left or right follows the Boltzmann distribution
for the potential Φ(x). We now consider the non-local ana-
logue of the master equation (19), and its continuum limit.

3.2 Non-local jump statistics – Continuous space

Equation (19) for discrete but non-local jumps takes on
the form

Wj(t + ∆t) =
∞
∑

n=1

Aj,nWj−n(t) +
∞
∑

n=1

Bj,nWj+n(t), (23)

so that jumps from all other sites j ∓ n to the site j
are possible. The transition matrix elements underlie the
normalisation condition

∑∞
n=1 (Aj,n + Bj,n) = 1 account-

ing for the long-range jumps. For the continuum limit of
equation (23), we note that the Taylor expansion in orders
of ∆x no longer converges. To find an alternative pro-
cedure to take the continuum limit, we employ the idea
of a direction-dependent, but still site-independent jump
length distribution λ±(x) = λ+(x)Θ(x) + λ−(x)Θ(−x),
introduced in reference [22] to study anomalous diffusion
in a constant force field, where Θ(x) denotes Heaviside’s
jump function. Thus, if λ+(x) 6= λ−(x), the jump is bi-
ased, i.e., there is a preference for either direction.

An explicitly space-dependent force F (x) acting upon
the system, the symmetry of the homogeneous random
walk concept is broken, and each jump is characterised
by a local preference of a certain direction in space: as
the external field is space-dependent, the jump length pdf
shows a direction-preference depending on the position of
the departure position x′. We assume a site-dependent
transfer distribution of the form

Λ(x, x′) ≡ λ(x − x′)
(

A(x′)Θ(x − x′) + B(x′)Θ(x′ − x)
)

,

(24)

i.e., we assume the statistical independence of the local
asymmetry due to the external field which is expressed
through the coefficients A(x′) and B(x′), from the jump
length pdf λ(x) which accounts for the transfer distance
between departure and arrival site. That means that we
assume the functional form Λ(x, x′) = Λ(x−x′||x′) for the
transfer function Λ(x, x′) on which we impose the normal-
isation condition

∫ ∞

−∞
dδΛ(x, δ) = 1 (25)

which is equivalent to requiring A(x) + B(x) = 1. Then,
the continuum version of equation (23) is given through

W (x, t + ∆t) =

∫ ∞

−∞
dx′Λ(x, x′)W (x′, t). (26)

In Fourier space, the corresponding equation reads

W (k, t + ∆t) = λC(k)W (k, t)

+ iλS(k)
{

[A(k) − B(k)] ∗W (k, t)
}

(27)

where the Fourier convolution denoted by ∗ is to be taken
within the braces {·} [33]. The indices C and S denote the
Fourier cosine and sine transformation according to the
definitions

fC ≡ 2

∫ ∞

0

dxf(x) cos(x), fS ≡ 2

∫ ∞

0

dxf(x) sin(x)

(28)

where we introduce the factor 2 for sake of the normalisa-
tion (25) of the transfer function Λ(x, x′).

3.3 Memory effects – Continuous time

To include also the memory effects governed by the wait-
ing time pdf w(t) which account for a distribution of wait-
ing times, we consider the continuous time master equa-
tion for a discrete space [9,10,32]:

Wj(t) =

∫ t

0

dτ
(

Aj−1Wj−1(τ)

+ Bj+1Wj+1(τ)
)

w(t − τ) + Ψ(t)δj,m (29)

with the initial concentration Wj(0) = δj,m at the site m,
where δj,m denotes the Kronecker symbol. The explicit
occurrence of the initial value is due to the possibility
of staying at the initial site according to the cumulative
probability

Ψ(t) = 1 −

∫ t

0

dt′w(t′). (30)

Proceeding along the same steps as introduced in
Section 3.2, the continuous space version of equation (29)
is given through

W (x, t) =

∫ ∞

−∞
dx′

∫ t

0

dτw(t− τ)Λ(x′ ||x−x′)W (x′, τ)

+ Ψ(t)W0(x), (31)

which can be rewritten in Fourier-Laplace space in the
form

uW (k, u)− W0(k) = uw(u)
{

Λ(k) ∗ W (k, u)
}

− w(u)W0(k), (32)

from which it is easy to verify that equation (31) is equiv-
alent to the GME (1) with the kernel

K(x, x′;u) =
uΛ(x, x′) − δ(x)

1 − w(u)
w(u). (33)

Equation (31), or the GME (1) with the kernel (33) are
general expressions which have been derived from the gen-
eralised, non-homogeneous random walk scheme. In the
following subsections, we show how the FFPE (5) emerges
from this concept.
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3.4 Subdiffusion in an external field

Subdiffusion is described by the combination of a broad
waiting time distribution of the one-sided Lévy type
w(t) = L+

γ whose asymptotic behaviour follows

w(t) ∼ τγ/t1+γ , 0 < γ < 1, (34)

and whose long-time limit reads [4]

w(u) ∼ 1 − (uτ)γ (35)

in Laplace space, with a narrow (for instance, Gaussian)
jump length distribution leading to

λC ∼ 1 − σ2|k|2 (36)

and

λS(k) ∼ σk, (37)

compare Section 5, equation (61a) et seq., so that we ob-
tain from equation (32), in the diffusion limit (k → 0,
u → 0) and after some manipulations, the algebraic
relation

W (k, u) −
W0(k)

u
= u−γLFP(k)W (k, u), (38)

with the Fourier space equivalent of the FP-operator from
equation (2b), LFP(k). Fourier-Laplace inversion leads to
the FFPE

W (x, t) − W0(x) = 0D
−γ
t LFPW (x, t). (39)

In the last step, we employed the property

L
{

0D
−γ
t W (x, t)

}

= u−γW (x, u) (40)

of the Riemann-Liouville operator defined in equa-
tion (10). Applying the differential operator ∂

∂t on equa-
tion (39), we retrieve the FFPE

∂W

∂t
= 0D

1−γ
t LFPW (x, t) (41a)

with the FP-operator

LFP =

(

∂

∂x

Φ′(x)

mηγ
+

∂2

∂x2
Kγ

)

(41b)

and the coefficients [34]

Φ′(x)

mηγ
≡

σ

τγ
[B(x) − A(x)] (42a)

Kγ ≡
σ2

τγ
· (42b)

3.5 Interplay between fractal time and Lévy flights
in an external field

In Section 3.4 we showed the generalisation of the FPE (3)
to subdiffusion. We now show how Lévy-type jump length
statistics come into play. Therefore (compare Sect. 5),
we assume a broad jump length statistics of the form
λC(k) ∼ 1−σµ|k|µ and λS(k) ∼ 2

µσk with the Lévy index

µ ∈ (1, 2]. Combining these transfer statistics with the re-
sults (32) et seq., we arrive at the FFPE (5), involving the
coefficients

Φ′(x)

mηγ
≡

2σ

µτγ
[B(x) − A(x)] (43a)

Kµ
γ ≡

σµ

τγ
· (43b)

The FFPE (5) is the general version of an FFPE which
can be derived from our modified CTRW scheme in the
long time limit. Note that whereas the diffusion term now
includes the Riesz-Weyl operator −∞Dµ

x generalising the
second-order derivative, the first order derivative in the
drift term is not changed, see Section 5. Note that for
µ < 2, the mean squared displacement diverges. This is
unphysical for a massive particle in direct space, it might
however be meaningful for certain processes such as diffu-
sion in energy space, as encountered in the modelling of
single molecule spectroscopy.

4 Physical properties and solutions

of fractional Fokker-Planck equations

4.1 Subdiffusion in an external field: Fractional
Fokker-Planck equation close to thermal equilibrium

Let us consider the (normalised) FFPE (41a) which de-
scribes subdiffusion in the external potential field Φ(x).
It can be shown that equation (41a) relaxes towards the
Boltzmann equilibrium

Wst(x) ∝ exp

(

−
Φ(x)

kBT

)

(44)

where kBT denotes the Boltzmann temperature and
Wst ≡ limt→∞ W (x, t) is the stationary solution fulfill-

ing the classical stationarity condition ∂W
∂t

!
= 0. In ther-

mal equilibrium, one can derive the generalised Einstein-
Stokes relation [23,35,40]

Kγ =
kBT

mηγ
(45)

for the generalised diffusion and friction constants, Kγ and
ηγ . One can show further that equation (41a) fulfils the
second Einstein relation for the constant force F [23],

〈x(t)〉F =
1

2

F 〈x2(t)〉0
kBT

, (46)
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connecting the first moment in presence of the force with
the second moment in absence of F :

〈x2(t)〉0 =
2Kγ

Γ (1 + γ)
tγ . (47)

4.2 Lévy flights and subdiffusion in competition

The general FFPE (5) which we derived from our ran-
dom walk formalism, involves a fractional operator in both
space and time. The time-fractional Riemann-Liouville
operator 0D

1−γ
t accounts for the non-Markovian nature of

the transport process, whereas the space-fractional Riesz
derivative −∞Dµ

x emanates due to the assumption of long-
range jumps typical for Lévy flights. Equation (5) can be
solved by the separation ansatz [3]

Wn(x, t) = Tn(t)ϕn(x) (48)

for a given mode n corresponding to the eigenvalue λn,γ .
A single mode then relaxes according to the Mittag-Leffler
pattern of the temporal eigensolution

Tn(t) = Eγ

(

− λn,γtγ
)

≡
∞
∑

l=0

(−λn,γtγ)l

Γ (1 + γl)
(49)

which has the power-law asymptotic behaviour Tn(t) ∼
1/[tγλn,γΓ (1−γ)]. For γ = 1, E1(−λn,1t) = exp

(

−λn,1t
)

,
and we recover the exponential relaxation of the modes
typical for the Brownian FPE (3).

The spatial eigensolution for a given mode is governed
by the ordinary (fractional) differential eigenequation

LFFPϕn(x) = −λn,γϕn(x). (50)

Thus, for the stationary solution of a Lévy flight in the
harmonic potential Φ(x) = 1

2ω2x2, we find the Lévy stable
law [19]

Wst(k) = exp

(

−
η1mKµ

1 |k|
µ

ω2µ

)

(51)

in Fourier space, with the corresponding asymptotic
behaviour

Wst(x) ∼
η1mKµ

1

ω2µ|x|1+µ
· (52)

Thus, for µ < 2, the FFPE (5) describes systems off
thermal equilibrium, and the spatial solution for a given
mode n is governed by a stable law, whereas its relaxation
follows the non-exponential, slow Mittag-Leffler pattern.
Consequently, for µ < 2 in equation (5), no generalisa-
tion of the Einstein relations like equations (45) and (46)
can be found, furthermore the mean square displacement
diverges:

〈x2(t)〉 = ∞, (53)

Levy flight Gaussian

Subdiffusion
Non-Markovian
Levy flight

1

21
0

µ

γ

Fig. 1. “Phase diagram” of the diffusion properties of the
fractional Fokker-Planck equation (5). The parameter space is
spanned by the waiting time index γ and the Lévy index µ of
the jump length distribution. If γ > 1, a characteristic waiting
time T exists, and the resulting motion locks on the Poissonian
limit. In the same way, for µ > 2, the jump length variance Σ2

exists, see reference [18]. Compare also to Table 1.

a typical feature of Lévy flights [2–4,9,32]. Only lower-
order fractional moments 〈|x|β(t)〉 with β < µ can be cal-
culated [4,19]. For the force-free case, these are

〈|x|β(t)〉 ∝ tβγ/µ (54)

which can be obtained through a cutoff-parameter
[2,17–19] which is equivalent to the calculation of the time-
broadening of a given percentage of the total probabil-
ity [19], or through scaling relations [17,18]. We summarise
the diffusion properties in the “phase diagram” drawn in
Figure 1.

The properties of the FFPE (5) in respect to the exis-
tence or divergence of the characteristic waiting time

T ≡

∫ ∞

0

dtw(t)t (55)

or the jump length variance

Σ2 ≡

∫ ∞

−∞
dxλ(x)x2 (56)

are summarised in Table 1.

4.3 Comparison to results in literature

The general result of our derivation, the FFPE (5), is
equivalent to several FFPEs discussed in literature. For
µ = 2, it was used for the description of subdiffusive sys-
tems close to thermal equilibrium in reference [23]. For the
Markovian case γ = 1 the Lévy flight in different potential
types was solved and discussed in reference [19].
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Table 1. Summary of the physical properties of the fractional
Fokker-Planck equation (5), characterised through the exis-
tence/divergence of the characteristic waiting time T and the
jump length variance Σ2.

Σ2 < ∞ Σ2 = ∞

〈x2(t)〉 = 2K1t 〈|x|β(t)〉 ∝ tβ/µ, β < µ

T < ∞ K1 = kBT
mη1

./.

Tn(t) = e−λnt Tn(t) = e−λnt

〈x2(t)〉 =
2Kγ

Γ (1+γ) t
γ 〈|x|β(t)〉 ∝ tβγ/µ, β < µ

T = ∞ Kγ = kBT
mηγ

./.

Tn(t) = Eγ (−λntγ) Tn(t) = Eγ (−λntγ)

The Riemann-Liouville operator 0D
1−γ
t describes

physical systems which were prepared at t0 = 0. On
the other hand, systems are often prepared at a very re-
mote time, so that one can assume t0 = −∞. Then the
Riemann-Liouville operator is replaced by the so-called
Weyl fractional operator −∞D1−γ

t , compare [28]. In this
case, the FFPE (5) is equivalent to the equations derived
in references [17,18] from a generalised Langevin equation
approach. The FFPE proposed by Zaslavsky and cowork-
ers [21] is of a different type which is briefly discussed in
the following Section 5.

It is interesting to note that a Fourier space equation
which is equivalent to equation (5) for γ = 1 was derived
in reference [36].

5 Generalised Kramers-Moyal expansion

The FPE (3) is a special case of the Kramers-Moyal (KM)
expansion which foots on an expansion of the distribution
function

P (x, t + τ |x′, t) =

∫

dyδ(y − x)P (y, t + τ |x′, t) (57)

where P denotes the transition probability from x′ to x
during time τ . With the formal expansion

δ(y − x) =
∞
∑

n=0

(y − x′)

n!

(

−
∂

∂x

)n

δ(x′ − x) (58)

one can derive the KM-expansion [11,12]

∂W

∂t
=

∞
∑

n=1

(

−
∂

∂x

)n

D(n)(x)W (x, t). (59)

D(1)(x) and D(2)(x) are the drift and diffusion coefficients,
respectively. The sum in equation (59), according to the
Pawula theorem, stops either after the first or the second
term, or it includes an infinite number of terms [37]. For
a Gaussian, δ-correlated noise in the underlying Langevin
equation, all terms of order 3 and higher vanish; conse-
quently in this case, the KM-expansion is equivalent to the

FPE [11]. For the following, note that the KM-expansion
can be obtained from the master equation (19) by taking
along all orders in the Taylor expansions (20) and (21).

Here we want to investigate the analogue to the KM-
expansion (59) in our generalised random walk model.
Therefore, we first calculate the higher order expansion
terms for the cosine and sine transforms of the jump length
distributions λ from which we will infer the generalised
KM-expansion. To this end, we start off from the sym-
metric and centred stable law p(x) = Lµ(x) of Lévy index
µ ∈ (1, 2], the characteristic function of which is given
by [4]

p(k) = e−σµ|k|µ . (60)

In x space, an exact representation can be given in terms
of Fox’s H-functions [38]:

p(x) =
1

√

4πµ2σ2
H1,1

1,2





|x|

2σ

∣

∣

∣

∣

∣

∣

(

1 − 1
µ , 1

µ

)

;
(

0, 1
2

)

;
(

1
2 , 1

2

)



 (61a)

=
1

√

πµ2σ2

∞
∑

n=0

Γ ([1 + 2n]/µ)

Γ (1/2 + n)

(−1)n

n!

(

|x|

2σ

)2n

(61b)

=
∞
∑

n=1

(−1)1+n Γ (1 + µn)

n!
sin(

nπµ

2
)

(

2σ

|x|

)1+µn

(61c)

where the series expansions are valid for small |x| and large
|x|, respectively. In the limit µ → 2, the usual Gaussian is

recovered: p(x) = 1√
4πσ2

exp
(

− x2

4σ2

)

, as it should [4,38].

For the calculations, according to equation (27), we need
the one-sided Fourier cosine and sine transforms of the
function p(x). The cosine transform is given by

pC(k) = e−σµ|k|µ (62a)

∼ 1 − σµ|k|µ +
1

2
σ2µ|k|2µ + . . . (62b)

The sine transform results in [38,39]

pS(k) =
2

µ
H2,1

2,3









σ2|k|2

∣

∣

∣

∣

∣

∣

∣

∣

(

1

2
, 1

)

; (0, 1)
(

1

2
, 1

)

,
(

0, 2
µ

)

; (0, 1)









(63a)

= 2σk
∞
∑

n=1

(−1)n+1 sin
(µnπ

2

)

2n! sin
(π

2
[1 + µn]

) (σ|k|)
µn

−2σk
∞
∑

n=0

Γ

(

−
2n + 1

µ

)

πµ
(σ|k|)

2n
. (63b)

For µ = 2, the coefficients of the first sum vanish iden-
tically to zero, and only the uneven terms in powers of
|k| of the second sum remain, adding up to the standard
KM-expansion, together with the even terms from pC.
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In the general case 0 < µ < 2, if

λC(k) ≡ pC(k), λS(k) ≡ pS(k). (64)

denote the Fourier sine and cosine transforms of the jump
length pdf, one obtains the generalisation of the KM-
expansion from the fractional kinetic equation (compare
Eq. (27))

∂W

∂t
= 0D

1−γ
t

(

λC(k)W (k, t)

+ iλS(k)
{

[

A(k) − B(k)
]

∗W (k, t)
})

(65)

where the Fourier convolution, denoted by the asterisk, is
to be taken within the braces {·} only. The result is the
generalised KM-expansion

∂W

∂t
= 0D

1−γ
t

[ ∞
∑

n=1

−∞Dnµ
x D(n)(x)

+
∞
∑

n=1

(−1)n ∂

∂x
−∞Dnµ

x D̄(n)(x)

+
∞
∑

n=0

(−1)1+n

(

∂

∂x

)1+2n

D̃(n)(x)

]

W (x, t) (66)

with the coefficients

D(n)(x) =
σnµ

τγ
[A(x) + B(x)] (67a)

D̄(n)(x) =
(

1 − δ2,µ

)σ1+nµ

τγ

×
[

A(x) − B(x)
] sin

(

nµπ
2

)

2n! sin
(

π
2 [1 + nµ]

)(67b)

D̃(n)(x) =
σ1+2n

τγ
[A(x) − B(x)]

Γ
(

− 1+2n
µ

)

πµ
(67c)

where we made use of the Kronecker symbol δ2,µ, and
redefined the Riesz-Weyl fractional operator such that no
imaginary coefficients occur, compare references [28,31].
Overall, the pdf W (x, t) as defined through the generalised
KM-expansion (66) is real valued as can be checked by
explicitly inserting the defining integrals for the occurring
Riesz-Weyl fractional derivatives, following Oldham and
Spanier [28] and Samko et al. [31].

Note that in the full KM-expansion (66) no limit has to
be taken, as the full Taylor expansion has to be included
through the consideration of all terms in the series expan-
sions (62b) and (63b). This fact leads to an understanding
of the Pawula theorem: if not terminated after the second
lowest derivative −∞Dµ

x , it is impossible to properly de-
fine the limits, as only two small parameters exist which
account for well-defined limits for (∆x)2/∆t, or σµ/τγ .

Let us now discuss the generalised KM-expansion in
more detail. At first it is apparent that both integer order
and fractional order derivatives occur in equation (66).
If the constraint A(x) + B(x) = 1 is imposed, the KM-
coefficients D(n) will be constants, the lowest correspond-
ing to the generalised diffusion constant Kµ

γ . Higher order

diffusive terms all contain a multiple of the fractional op-
erator order µ. At the same time, the drift terms are char-
acterised through the difference A(x) − B(x) ∝ −Φ′(x).
These terms come in both integer order and fractional
order derivatives. However, and this is a crucial point,
the lowest order derivative of these terms for any in-
dex µ ≷ 1, i.e., the drift term, is always given through
∝ ∂/∂xΦ′(x)W . Consequently, in the Markovian case
γ = 1, the typical response of the stochastic system to
a linear force f0 in terms of the linearly growing drift

〈x(t)〉 = f0t (68)

is preserved 1. For γ < 1, this relation is modified to
〈x(t)〉 = f0,γtγ , where [f0,γ ] = sec−γ .

If we do not impose the constraint A(x)+B(x) = 1, the
coefficients D(n) will be position dependent, i.e., the corre-
sponding FFPE is the fractional extension of equation (3).
Also, the normalisation condition of the transfer function
has to be replaced by:

∫

dδ
∫

dxΛ(x, δ)/
∫

dx[A(x)+B(x)].

It is still clear that the coefficients D(n) describe the dif-
fusive part of the transport process, as they involve the
sum of the asymmetry functions A(x) and B(x). Thus,
for 0 < µ < 1, the situation occurs that the diffusion
term ∝ −∞Dµ

xD(1)W is of lower order than the drift term
∝ ∂/∂xΦ′(x)W . However, the drift is still the lowest or-
der term containing the external potential, i.e., the dif-
ference of the asymmetry functions. Also in this case, the
drift character is thus securely connected to the first or-
der derivative ∂/∂x. Note that for µ = 1, i.e., the Cauchy
propagator in the force-free case, both drift and diffusion
term are of the same order.

The fundamental result of our extended Kramers-
Moyal expansion (66) is accordingly that the lowest order
force term involves an integer-order derivative ∂

∂x . This is
in accordance to the derivation of Fogedby [17,18], com-
pare also reference [19]. Quintessentially, it mirrors the
additivity of the overall drift and the diffusive contribu-
tion. In the non-Markovian case, this additivity is under-
lined by the fact that both drift and diffusion terms are
under the fractional time operator which can be under-
stood from the derivation of these equations from the fun-
damental Chapman-Kolmogorov equation in phase space,
see reference [40].

The observation for the drift preservation is different
from the alternative derivation by Zaslavsky et al. [21]
in the context of Hamiltonian chaotic systems, who as-
sume an expansion of the form P (x, y; t + τ) = δ(x −
y) + A(y; τ)δ(α)(x − y) + 1

2B(y; τ)δ(2α)(x − y) . . . , 0 <
α ≤ 1, a generalisation of equation (58) which leads to

an FFPE of the form ∂βW (x,t)
∂tβ = ∂α

∂(−x)α [AW (x, t)] +
∂2α

∂(−x)2α [BW (x, t)] where the generalised drift term con-

tains an αth order derivative. (Note that the fractional

operators ∂β

∂tβ and ∂α

∂(−x)α are defined in a slightly different

way to our definition of the Riemann-Liouville and Riesz

1 Note that for 0 < µ ≤ 1, the first moment 〈x(t)〉 exists
whereas the mean of the absolute value of x, 〈|x(t)|〉, diverges.
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fractional operators, which is irrelevant for the compari-
son.) This is a fundamentally different result and might
be understood in the light of the recent derivation of an
FFPE from a broadly distributed subordination process
in reference [41].

6 Conclusions

Fokker-Planck equations belong to the fundamental equa-
tions in the physics of stochastic processes. We have
demonstrated how apparently different approaches for the
description of anomalous diffusion, with or without an
external potential field, can be understood from a gen-
eralised master equation. To account for the broken sym-
metry of homogeneity, paramount for the standard CTRW
scheme, we introduced a site-dependent jump length dis-
tribution. Fractional operators in space and time were
shown to arise from slowly decaying transfer kernels. More
specific, a diverging characteristic waiting time T leads to
a fractional operator 0D

1−γ
t , whereas a diverging jump

length variance Σ2 gives rise to the fractional Riesz-Weyl
operator −∞Dµ

x in space. By this representation through
the fractional operators, it is clear, that the FFPEs are
convolution integral equations.

We derived the generalised Kramers-Moyal expansion
for processes that involve Lévy stable jump length distri-
butions leading to Σ2 → ∞. In this case, it was shown that
the KM-expansion leads to mixed integer and fractional
orders in the belonging spatial derivatives, but that the
drift term is always associated with a first order deriva-
tive. Accordingly, the classical definition of a drift also
applies to Lévy flight systems. From the associated ran-
dom walk approach it is obvious that an analogous version
of the Pawula theorem holds for these kind of processes.

It should finally be stressed once more that the gen-
eralised FPEs we derived in this work are linear frac-
tional differential equations. Thus, the result from our
probabilistic approach is fundamentally different from
the non-linear generalisations of the FPE found in the
theory of generalised thermostatistics, see for example
references [42]. The equilibrium distributions reached by
the processes associated with the FFPEs discussed herein,
are of the Boltzmann type in the case µ = 2, only. For Lévy
flights, it has been shown that the stationary distribution
reached is Lévy stable, and thus far off the Boltzmann
equilibrium state, see the discussions in references [19,23].
This sets the presented approach apart from the one pur-
sued in the recent reference [41].
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