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The fractional Fokker—Planck equation:
dispersive transport in an external force field

Ralf Metzler! and Joseph Klafter?

School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel

Abstract. The fractional Fokker—Planck equation which has recently been established,
is presented as a model for dispersive transport under the influence of an external force
field. Special attention is paid to the subexponential, Mittag-Leffler pattern of the
mode-relaxation, and the explicit solution of the dispersive analogue of the Ornstein—
Uhlenbeck process. © 2000 Elsevier Science B.V. All rights reserved.
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I INTRODUCTION

Brownian motion in the presence of an external force field F(z) = —V'(z) is
usually described in terms of the Fokker-Planck equation (FPE) [1-6]
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which defines the probability density function (pdf) W (z, ) to find the test particle
at a certain position z at a given time ¢t. In Eq. (1), m denotes the mass of
the particle, K; the diffusion constant associated with the transport process, and
the friction coefficient 7; is a measure for the interaction of the particle with its
environment. The FPE (1) fulfils the following properties [5-8]:

W(z,1) @)

(i.) In the force—free case, i.e. V(z) = const, the corresponding diffusion process
is governed by Fick’s second law, leading to the linear time dependence

(z?) = 2Kyt (2)

of the mean square displacement; this hallmark of Gaussian diffusion is a
consequence of the central limit theorem.
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(ii.) The stationary solution Wy (z) = limy,e W(z,t) is given by the Gibbs-
Boltzmann distribution

Wa(z) = N exp{-8V(z)} ®)

with the normalisation constant N, and the Boltzmann factor § = (kgT)~!.

(iii.) The diffusion and friction coefficients are connected by the Einstein-Stokes-
Smoluchowski relation

kgT
K, = —B_v (4)
mn
an outcome of the fluctuation—-dissipation theorem.
(iv.) From linear response, one recovers the generalised Einstein relation
1 F{z?)
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between the first moment in presence of the constant force F, (z)r, and the
second moment in its absence, (z?) given by Eq. (2).

(v.) The temporal relaxation of single modes is exponential, as is discussed in
section III.

In a variety of systems one finds that Eq. (2) is violated. Instead, diffusion in
such systems is-characterised by the power-law time dependence

(¥ xt®, a#l (6)

of the mean square displacement [8-12]. This form is connected with broad, Lévy-
type transport statistics, ruled by the paramount generalised central limit theorem
[8,13,14]. According to the value of the anomalous diffusion exponent ¢, one distin-
guishes subdiffusion (0 < @ < 1) and superdiffusion (o > 1). In what follows, the
first case is considered which is also referred to as dispersive transport [15]. Experi-
mental evidence for such slow diffusion has been found for transport on percolation
clusters [16], a bead immersed in a polymeric network [17], or for charge carrier
transport in amorphous semiconductors [18,19], just to mention a few [8-12].

II THE FRACTIONAL FOKKER-PLANCK
EQUATION

As a model for subdiffusion in an external potential field V(z), the fractional
Fokker-Planck equation (FFPE)
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has recently been suggested [20]. Here, K, denotes the generalised diffusion co-
efficient of dimension [K,| = cmZsec™®, and 1, is the generalised friction coeffi-
cient with [n,] = sec®=2. Note that both K, and 7, are time-independent. The
FFPE (7) can be derived from a generalised master equation which follows from
a non-homogeneous random walk model, in the diffusion limit [21]. In an al-
ternative phase space derivation, the FFPE (7) corresponds to the high~friction
limit of the velocity—averaged fractional Klein-Kramers equation resulting from a
Chapman-Kolmogorov equation with broad waiting time statistics [22]. In the lat-
ter derivation, the non-integer dimensions of K, and 7, follow naturally from the
introduction of a non—Markovian integral kernel.

The fractional Riemann-Liouville operator (D} ™ = & (D; * featuring in Eq. (7)
is defined through the convolution integral [23]

1 8 pt, , Wzt
thl aW(:L', t) = mb; b dt,(?.—_(—t-l)l_—)a-' (8)

Its fundamental property is the fractional “differintegration” (differentiation or
integration) of a power,

W(z,t) (7

Fl+q) .-
Dl = ———— 1P 9
for any real p, q. Thus, the fractional derivative of a constant,
1
DPl = ————t7P 1

reproduces an inverse power-law. Of course, for integer-valued p, the I'-function
diverges, and one recovers the standard result d"1/d¢™ = 0. For the derivation of
fractional equations, the generalised integration theorem [23]

L{oD;*W (z,1)} = u W (z,u) (11)
of the Laplace transformation is useful. Note that due to the convolution nature of

the fractional operator, Eq. (8), the FFPE (7) is non-Markovian and it incorporates

memory effects [26].
Comparing to its Brownian analogue, Eq. (1), which corresponds to the limit
o = 1, the FFPE (7) fulfils the following properties [20,21]:

(i.) The force-free limit is described by the fractional diffusion equation which was
originally established by Schneider and Wyss [25], and is characterised by the
mean square displacement

2Ko .
(I2) = mt N (12)

in agreement with Eq. (6).
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(ii.) The stationary limit distribution defined by % = 0 is given by the Gibbs-
Boltzmann form (3). This means that the FFPE (7) describes systems close to
thermal equilibrium: irrespectively of a different dynamical evolution, systems
governed by both the FPE (1) and the FFPE (7) tend to the same limit
distribution.

(iii.) A generalisation of the Einstein-Stokes—Smoluchowski relation,

_ ksT

Kq ;
Ma

(13)

holds for the generalised coefficients K, and 7.

(iv.) For a constant force F, the generalised Einstein relation (5) is equally valid
for the fractional case.

(v.) The relaxation of modes is subexponential, as is shown now.

IIT SEPARATION ANSATZ AND MITTAG-LEFFLER
RELAXATION OF MODES

A standard method of solution for the FPE is the separation of variables [5].
Consider the separation ansatz

Wa (iL', t) =T (t)(pn (.’E) (14)

for a given eigenvalue A, ,. Introducing this ansatz into the FFPE (7), one obtains
the two eigenequations

Tl _ oDl Ti ) (19
d V'(z) d? _
az e Kaw on(z) = ’\n,aﬂon(:@ﬁ)

The spatial eigenequation (16) has the same structure as the one encountered for
the standard FPE. The temporal eigenequation (15) is but the fractional relaxation
equation [24], the solution of which is given in terms of the Mittag—Leffler function
271,

Tn(t) = Ba(=Anot®) = i (= n.at?) (17)
n = Ly n,a —j=0 F(1+a]) ‘
As can be seen from the series expansion, the exponential form FEi(—M,it) =
exp{—An,1t} can be recovered in the Brownian limit o = 1. For the case a = 1/2,
another simple representation can be found in terms of the complementary er-
ror function: Eyja(—Ann2t'?) = exp{A2, yt}erfe(An1/2t"/?). A very interesting
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FIGURE 1. Mittag-Leffler relaxation on a double-logarithmic scale. The full line represents
the Mittag-Leffler function for index 1/2. The dashed lines demonstrate the initial stretched
exponential behaviour, and the final inverse power-law pattern.

property of the Mittag—Leffler function lies in the observation that it interpolates
between an initial stretched exponential behaviour

; Anot®
Ea(—Anat®) ~ exp {—_F_(ifb—-lj-a_)} y Anat® 1 (18)

and a long—-time inverse power-law pattern

1

Anat®’

Ea(_’\n,ata) ~ /\n,ata > L (19)

This behaviour is portrayed in Fig. 1.

A Subdiffusive Ornstein—Uhlenbeck process

In order to demonstrate the usefulness of the separation of variables method, it is
worth while considering the subdiffusive generalisation of the Ornstein—Uhlenbeck
process [6]. This process describes dispersive motion, for 0 < & < 1, in the parabolic
potential V(z) = %mmzz:2 which exerts a restoring force on the test particle. From
the corresponding FFPE

oW 8. @ '

written in reduced variables { = t/7, T = w?/n, and % = z/mw?/[kpT], and the
separation ansatz, Eq. (14), one infers the solution [28]
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W) = || oo i o B () Ho (& (VD Ha(/VD) exp(~2/2). (21)

Here, the initial condition Wy(z) = lim;,o W(z,t) = 6(z ~ z’) was assumed, and
H,(z) denote the Hermite polynomials. The solution (21) corresponds to the result
by Weiss [29] in respect to the spatial part, and the exponential decay of the modes
is replaced by the Mittag-Lefler pattern. This solution (21) is plotted, for a = 1/2
in Fig. 2a. From the initially asymmetric distribution, the centred, stationary
solution is approached. Fig. 2b depicts the Brownian counterpart, demonstrating
the considerably faster relaxation towards the thermal equilibrium state given by
the Gibbs—Boltzmann distribution

Wa(s) = || o Hold VB HolE VD) exp{~7/2)

mwx
= - 22
V 2nksT <P { k5T } (22)

0) from Eq. (21). The slow relaxation dynamics of the sin-
E,(—nt*), is mirrored in the temporal evolution of the first

the first term (n
gle modes, T,(2)
moment,

(2)(#) = (@) (0) Ba(=t/7]%), (23)

which describes the Mittag-Lefller decay of the initial asymmetry, i.e. the equi-
libration towards the potential minimum. Equation (23) can be easily obtained
from the FFPE (20) by integration, leading to the fractional relaxation equation
L(z) = oD}“"‘;—j(z) for (z). In the same manner, the slightly more complicated,
inhomogeneous fractional differential equation

d(z?) l-a 2 l-a/,.2 2!

7 = oD{ [—2(1‘ >+ 2] = _20Dt- (.’L‘ ) + m (24)
for the second moment (z?) is obtained. Laplace transformation and rearrangement
of terms leads to the final result

(@)(8) = (2" + [(€2)(0) — (z%)un] Bal—20t/7]%). (25)
Thus, the initial deviation from the thermal equilibrium value (z2)y, = Emﬂu%,

(22)(0) — (%), relaxes according to a Mittag-Leffler pattern, with the character-
istic time 2“/“1.‘ According to Eq. (25) and the properties of the Mittag—Leffler
function, one finds the initially potential-independent subdiffusion behaviour

@) ~ ()0) =2 [)(0) - @] (s +OE/), (20
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FIGURE 2. Pdf W(z,t), Eq. (21), in the case of the subdiffusive Ornstein-Uhlenbeck process,
for the anomalous diffusion exponent a = 1/2 (a), and the Brownian case (a = 1) (b). The initial
value is chosen to be Wy(z) = §(z —1). The maximum clearly shifts towards the origin, acquiring
an inversion symmetric shape. (a) The curves are drawn for the times ¢ = 0.02, 0.2, and 40, taking
along the first 101 terms in the sum (21). (b) The curves are drawn for the times ¢ = 0.04, 0.4,
and 4. The centred curve represents the stationary state. Comparison to the subdiffusive solution
demonstrates that the curve for ¢ = 40 has almost reached stationarity. The small wiggles visible
in the left flanks for the two shorter times are due to numerical inaccuracy due to the truncation
in the summation.
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FIGURE 3. Mean square displacement for the subdiffusive (a = 1/2, full line) and Brownian
Ornstein-Uhlenbeck (dashed line) processes. The Brownian case shows the typical proportionality
to ¢ for small times, and approaches the saturation value much faster than its subdiffusive analogue
which starts off with the t/2 behaviour and approaches the thermal equilibrium value by a
power—law, Eq. (27).

or (z%)(t) ~ 21‘—1((1% for (z)(0) = 0. This turns over to the final approach

2V (1)~ (2 _ 2y T
(@)t) ~ @ (1= 22 + @O (21
of the equilibrium value. This slow power-law approximation is shown in Fig. 3.
Note from Eq. (27) that the initial value (x2)(0) decays slowly with the power-law
x t7e.

IV CONCLUSIONS

The FFPE has been presented as a model equation for dispersive transport in
an external force field. It has been shown that this equation is close to thermal
equilibrium and fulfils the generalised Einstein-Stokes and the generalised Einstein
relations. Being an alternative approach to asymmetric continuous time random
walk models, generalised Langevin equations, or the generalised master equation,
the subdiffusive FFPE offers a similar advantage as does the ordinary FPE in
respect to equivalent Brownian models: a relatively straightforward calculation of
its solution, the pdf W(z,t), or the related moments of the transport process, as
was exemplified for the subdiffusive Ornstein—Uhlenbeck process. Therefore, the
FFPE constitutes a framework for the description of transport dynamics in complex
systems whose temporal evolution is governed by slowly decaying memory effects
leading to a phenomenologically subdiffusive behaviour. In this context it is worth



mentioning that a generalised master equation of the type related to the FFPE,
has been used recently in the modelling of non-Markovian dynamical processes in
protein folding [30].

The fractional Riemann-Liouville operator which leads to the slow diffusion, has
been shown to give rise to the Mittag-Leffler relaxation pattern of single modes.
This relaxational behaviour which has been derived via the method of separation
of variables, interestingly interpolates between an initial stretched exponential and
a final inverse power—law relaxation patterns.
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