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Kramers’ escape problem with anomalous kinetics:
non-exponential decay of the survival probability
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Abstract

Systems where multiple trapping or other manifestations of disorder lead to a non-local temporal evolution which results
in the macroscopic observation of anomalous kinetics, are shown to exhibit a non-exponential, Mittag–Leffler decay in
Kramers-type escape problems. The detailed behaviour of the survival probability is studied, and it is demonstrated that the
associated escape rate is time dependent, exhibiting a turnover from a self-similar to a logarithmic pattern. Comparisons to
experiment, and to local models are drawn. q 2000 Elsevier Science B.V. All rights reserved.

w xTraditionally, reaction rate problems 1,2 are for-
w xmulated through the Smoluchowski 3 and Onsager

w x4 models in terms of diffusion in the presence of
absorbing bodies, or in terms of the Kramers model

w xdating back to the seminal paper of 1940 5 . Kramers
considered a point particle in phase space diffusing

Ž .in the potential V x . Being initially caught in a
potential hole, the particle can only escape over a
potential barrier. Kramers promoted this model for
the study of the dependence of the escape rate on
temperature and viscosity. Alternative approaches for
calculating rate reactions include the consideration of
Markovian first passage time problems by Pontrya-

w xgin, Andronow and Witt 6 , as well as first passage
time problems for the master equation considered by

w x w xLandau and Teller 7 , Montroll and Shuler 8 ,
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w xWeiss 9 , and, more recently, by Bar–Haim and
w xKlafter 10 .

Here, we focus on the Kramers approach, and in
what follows we study a possible extension to sys-
tem whose dynamics is non-Markovian and includes
memory. Extensions of the Kramers model are con-

w xsidered necessary 8,11–13 although there are re-
w xfined versions of the original formulation 14,15 .

Such non-Markovian dynamics has been taken into
consideration through generalised Langevin equa-

w xtions in the well-known Grote–Hynes 11 and
w xHanggi et al. 12 models.¨

On the level of the Kramers equation, these gen-
eralised models lead to a formulation which is local
in time, and contains time-dependent coefficients.
The associated Kramers survival probability still de-
cays exponentially, with a frequency-dependent rate
w x11,12,16 . In contrast, dynamical descriptions which
are related to the generalised master equation are
non-local in time, and they exhibit memory on the
macroscopic level of the probability density function
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Ž . w xpdf 17 . In systems where the memory decays
slowly in a long-tailed, self-similar power law fash-
ion, it has been demonstrated that fractional kinetic
equations are a tailor-made approach for the descrip-
tion of the pdf. Within fractional dynamics, the
standard kinetic equations of the Smoluchowski,
Rayleigh, and Klein–Kramers type have been gener-
alised, and thus there exists a complete theory of
anomalous transport in the presence and absence of
external force fields, and in phase space, in full

w xanalogy to the Brownian case 18–21 . The major
advantage of the fractional formulation, due to its
operator character, lies in the fact that fractional
equations can, in essence, be treated with the same
mathematical tools known from standard partial dif-

w xferential equations 22 .
Fractional dynamics emerges for systems whose

temporal evolution is governed by broadly dis-
tributed waiting times between individual transitions.
Thus, the fractional Klein–Kramers equation and its
overdamped counterpart, the fractional Fokker–
Planck equation, can be derived for multiple trapping
systems with broadly distributed waiting time statis-
tics where Brownian motion patterns, described by a
Langevin equation with Gaussian white noise, are
regularly interrupted by an immobilisation of the test
particle. In such systems, there exists no characteris-

w xtic scale for the trapping times 19–21 . This kind of
trapping mechanisms has been explored in amor-

w xphous semiconductors 23 , in the motion of excess
w xelectrons in liquids 24 , it occurs in the motion of a

w xbead in a polymeric solution 25 , and in the tracer
w xdispersion in porous systems 26 . Multiple trapping

systems with a scale-free waiting time distribution
are close to thermal equilibrium, and their mean

² 2Ž .:squared displacement shows subdiffusion, x t
a w xA t with 0-a-1, in the force free limit 19–21 .

Here we develop a model which combines the
classical Kramers idea of the escape over a potential
barrier with fractional dynamics. The result of this
apparently simple generalisation leads to the
Mittag–Leffler relaxation of the survival probability
which shows a transition from a stretched exponen-
tial behaviour to an inverse power-law pattern. This
Mittag–Leffler pattern replaces the exponential ki-
netics traditionally found in the Markovian case.
Thereby, the Arrhenius activation of the associated
fractional Kramers rate is preserved.

In the standard overdamped version of the
Kramers problem, the escape of a particle subject to
a Gaussian white noise over a potential barrier is
considered in the limit of low diffusivity, i.e., where
the barrier height DV is large in comparison to the

w xdiffusion constant K 27 , compare Fig. 1. Then, the
probability current over the potential barrier top near
x is small, and the time change of the pdf ismax

equally small. In this quasi-stationary situation, the
probability current is approximately position inde-
pendent. The temporal decay of the probability to
find the particle within the potential well is then

w xgiven by an exponential function 5,27

p t seyr K t , 1Ž . Ž .
w xwhere the Kramers rate is defined through 5,27

1
XX XX< <r s V x V x( Ž . Ž .K min max2p mh

=exp ybDV , 2Ž . Ž .
Ž . Ž . Ž .with DVsV x yV x . In Eq. 2 , the expo-max min

nential function contains the Boltzmann factor b'
Ž .y1k T so that the inverse Kramers rate follows anB

Arrhenius activation ry1 A eE ) r T with E) 'K

DVrk .B

In a similar fashion, the Kramers rate in the low
w xviscosity limit is given through 5

r shbDVexp ybDV . 3Ž . Ž .K

According to Kramers’ treatment, the proportionality
of the Kramers rate to h in the low viscosity limit

Fig. 1. Potential well in the Kramers rate model. Initially the
particle is assumed to be caught in the potential hole. The x axis
corresponds to a reaction coordinate.
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turns over to the inverse proportionality in the high
viscosity. The interpolating behaviour for arbitrary h

w xwas studied by Mel’nikov 2 .
Let us now derive the fractional counterpart to the

Ž .exponential decay pattern 1 . To this end, we note
that the solution W of the fractional Klein–Kramersa

and Fokker–Planck equations can be expressed in
w xterms of its Brownian analogue, W 19,21 . For the1

fractional Fokker–Planck equation, this connection
w xis given through the scaling relation 19

h ha aay1 aW x ,u s u W x , u 4Ž . Ž .a 1 ž /h h

Ž . ` yut Ž .in Laplace space, W x,u sH d te W x,t . Ina 0 a

Ž .Eq. 4 , h and h are the Brownian and fractionala

friction constants, the latter being a rescaled version
of the former: h 'hrq , where h is the classicala

friction occurring in the Langevin equation. The
scale factor q emerges from the competition be-
tween the characteristic time scale of the Langevin
dominated motion events and the internal waiting

w xtime scale involved in the trapping dynamics 21 .
Moreover, the generalised friction constant h satis-a

fies the generalised Einstein–Stokes relation K sa

Ž .k Tr mh , together with the generalised diffusionB a

w xconstant K 19 .a

Ž .The transformation 4 affects all kinetic pro-
cesses associated with the fractional Fokker–Planck
equation, such as the relaxation of single modes, or

Ž .the Kramers escape. Application of relation 4 to the
Ž . Ž .y1Laplace transform p u s r qu of the survivalK

Ž .probability, Eq. 1 , produces

1
p u s , 5Ž . Ž .a Ža . 1yauqr uK

with the generalised, fractional Kramers rate
h

Ža .r s r . 6Ž .K K
ha

The fraction hrh sq is thus the rescaling of thea

classical Kramers rate according to the parameters
classifying the multiple trapping system with broadly
distributed waiting times. Consequently, the Arrhe-
nius activation nature of the Kramers rate is pre-
served in systems controlled by fractional dynamics.

Similarly in the underdamped case, one finds the
fractional Kramers rate

r Ža .sh )bDVexp ybDV , 7Ž . Ž .K

where h ) 'qh replaces the classical friction h.
Ž . Ž .Thus, according to Eqs. 6 and 7 , our fractional

Kramers model leads to the turnover in the friction
dependence from r Ža .Ah ) to r Ža .A1rh .K K a

This seemingly complicated turnover can be rec-
onciled with the standard picture. Indeed, on combin-
ing the elementary constant q with the other con-

Ž . Ž .stants in expressions 6 and 7 , the traditional
turnover r Ža .Ah to r Ža .A1rh is recovered for theK K

fractional Kramers rate. This observation is due to
the linearity of the fractional operator.

The difference between the fractional and the
classical escape models lies in the temporal relax-
ation of the survival probability for which one finds

Ž .via Laplace inversion of Eq. 5
Ž .a ap t sE yr t 8Ž . Ž .Ž .a a K

for both the underdamped and the overdamped cases,
in terms of the Mittag–Leffler function E which isa

w xdefined through 28
nŽ .a a` yr tŽ .KŽ .a aE yr t s . 9Ž .Ž . Ýa K

G 1qa nŽ .ns0

The Mittag–Leffler function interpolates between the
initial stretched exponential behaviour

Ž .a ar tKŽ .a aE yr t ;exp y 10aŽ .Ž .a K ž /G 1qaŽ .
and the final inverse-power law pattern

y1Ž . Ž .a a a aE yr t ; r G 1ya t . 10bŽ . Ž .Ž . Ž .a K K

In the Brownian limit a™1, the Mittag–Leffler
function reduces to the exponential function, and
for as1r2, it can be expressed in terms of the
complementary error function, E yz1r2 sŽ .1r2

e zerfc z1r2 .Ž .
Note that the Mittag–Leffler function is an entire

function which decays completely monotonically for
0-a-1. It is the exact relaxation function for the
underlying multiscale process, and leads to the
Cole–Cole behaviour for the complex susceptibility,
which is often used to describe experimental results.
It can be decomposed into single Debye processes,
the relaxation time distribution of which is given by

w xa one-sided Levy distribution 29 . Due to the funda-´
Ž .mental relation 4 , the Mittag–Leffler function is

universal for fractional dynamics in the sense that for
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a given anomalous exponent a , all formerly expo-
nential patterns like mode relaxation, moment equili-
bration, or the survival are replaced by the Mittag–
Leffler function.

Often one defines non-exponential relaxations in
Ž .terms of a time dependent rate coefficient k t

Ž .through p t sexp yk t t . For the fractionalŽ .Ž .
Kramers model one therefore obtains the rate coeffi-

Ža . aŽ .cient k t s ln E yr t rt which leads to twoŽ .a K

limiting cases, the short time self-similar behaviour

r Ža .
K a Ža .k t ; , t <r , 11aŽ . Ž .K1yat G 1qaŽ .

and the long time logarithmic pattern

a 1raŽ .ak t ; ln t r G 1ya ,Ž . Ž .ž /Kt

t a
4r Ža . . 11bŽ .K

It is interesting to note that the latter, up to some
Ž .constants, is given by k t ; ln trt which is in this

sense universal, i.e., the functional form is indepen-
dent of the waiting time index a .

Let us compare our result to the generalised
w xLangevin models of Refs. 11,12 . The Klein–

Kramers equation corresponding to this stochastic
w xequation was derived by Wang and Tokuyama 16 ,

and it contains time-dependent coefficients in an
overall local equation. We find from their result the

Ž .long-time exponential-type behaviour p t ;

exp yf t for the case 0-b-1, which clearlyŽ .Ž .
Ž .differs from our inverse power-law result, Eq. 11b .

Note that, at the same time, both models correspond
² 2Ž .: bto subdiffusion x t A t . In the generalised

Langevin equation this behaviour emerges from the
time-dependent friction and is basically equivalent to

w xfractional Brownian motion 16 ; in our fractional
equation approach it stems solely from the memory
character brought about through the broadly dis-
tributed multiple trapping mechanism. Thus, the
power-law memory entering on the Langevin level
leads to an exponential-type Kramers decay, whereas
the same memory entering on the Klein–Kramers-
level gives rise to the power-law long-time be-
haviour of the relaxation function.

Reactions in proteins can, as an approximation, be
formulated within the Kramers reaction theory of

w xbarrier crossing 30 . The related survival dynamics,

as well as the protein dynamics itself, is however
w xnon-exponential 30–32 . Here, we propose that our

fractional Kramers model can be applied to the
ligand rebinding to proteins. In Fig. 2, we have
reproduced the Mittag–Leffler fit to the experimental
data from Iben et al. obtained from ligand CO re-
binding to myoglobin after photodissociation, as in-

w xvestigated by Glockle and Nonnenmacher 33 . These¨
authors assume that the fractional parameter a fea-

Ž .tures a linear temperature dependence, a T s
0.41Tr120K which might take the change of the
protein-solvent system into account. From the data
analysis they find a remarkable agreement with the
Mittag–Leffler behaviour, and the Arrhenius activa-
tion tst eEt r T for the characteristic time which ism

related to the fractional Kramers rate through r Ža .'K

tya . Thus, selecting out the temperature dependence
of a , one exactly finds the Arrhenius dependence as
predicted by the fractional Fokker–Planck model.
The insert in Fig. 2 shows this Arrhenius activation

w xof t as found in Ref. 33 . Note that our model does
not account for the non-Arrhenius activation found

w xfor the glassy protein behaviour by Austin et al. 31 .
Due to the finiteness of experimental data win-

dows, certain data sets allow for stretched exponen-
tial fits instead of an asymptotical power-law de-
scription like the Mittag–Leffler pattern. However,
there exist cases when the stretched exponential fit

w xleads to questionable parameters 34 . Moreover, an
inappropriate fit function might lead to deviations

Fig. 2. Mittag–Leffler model for the rebinding of CO to Mb, after
w xa photo dissociation. Data from Austin et al. 31 . The temperature

dependence of t follows the Arrhenius law shown in the insert,0

with the parameters t s3.4=10y10 s and E s1470 K.m t
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w xfrom the predicted friction dependence 30,35 , or
from the Arrhenius activation. In order to investigate
the effects of a ‘forced’ exponential fit to data
following the Mittag–Leffler pattern, we have pro-
duced surrogate data according to the fractional the-
ory. The ‘forced’ exponential fit data then indeed
reveal seeming deviations from the Arrhenius law.
Such deviations might become pronounced for cer-
tain combinations of the number of data points, and
the covered range. This is also the case if truncated
data are fitted with an inappropriate function.

It might be questioned whether the low diffusivity
condition applied to the Brownian case is equally
sufficient for carrying along only the first order
contribution to the survival in the fractional dynam-
ics case. Let us assume that for the Brownian case,
such higher order contributions are given through

Ž . yl i tthe sum p t sÝ a e so that the ratio of succes-i i
Ž .sive terms is found to be f s a ra =i iq1 i

exp y l yl t where a )a and l -Ž .Ž .iq1 i i iq1 i

l . Conversely, the fractional analogue is giveniq1

through the sum of Mittag–Leffler contributions
Ž . ap t sÝ a E yql t . Thus, the ratio of succes-Ž .a i i a i

sive contributions turns over from f Ža . si
Ž . aa ra exp yq l y l t rG 1q a forŽ . Ž .Ž .iq1 i iq1 i

short times to the time independent ratio f Ža .si
Ž . Ž .a l r a l , instead of the exponential decayiq1 i i i 1q

in the Brownian case. Thus, for certain potential
types higher order contributions might lead to a
modification in the prefactor of the resulting power
law decay, and a somewhat earlier inset of this
self-similar regime. The general features of our re-
sults, the turnover from the stretched exponential to
the inverse power law decay, remain unchanged,
however. In this sense, the condition for the Brown-
ian system carries over to the fractional dynamics
system.

Concluding, we have demonstrated that the classi-
cal Kramers theory for reaction rates leads to the
ubiquitous Mittag–Leffler relaxation pattern for sys-
tems where the underlying dynamics is fractional.
Due to its close relation to self-similar dynamics and
generalised limit theorems, the fractional approach is
expected to be the appropriate physical model in a
variety of complex systems in physics, chemistry and
biological physics exhibiting an escape dynamics in
which no characteristic time scale of the escape
dynamics exists.
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