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Abstract
Multiple loop formation in polymer macromolecules is an important feature of
the chromatin organization and DNA compactification in the nuclei. We
analyse the size and shape characteristics of complex polymer structures,
containing in general f1 loops (petals) and f2 linear chains (branches). Within
the frames of continuous model of Gaussian macromolecule, we apply the
path integration method and obtain the estimates for gyration radius Rg and
asphericity Â of typical conformation as functions of parameters f1, f2. In
particular, our results qualitatively reveal the extent of anisotropy of star-like
topologies as compared to the rosette structures of the same total molecular
weight.

Keywords: polymers, path integration, conformational properties

(Some figures may appear in colour only in the online journal)

1. Introduction

Loop formation in macromolecules plays an important role in a number of biochemical
processes: stabilization of globular proteins [1–4], transcriptional regularization of genes [5–
7] as well as DNA compactification in the nucleus [8–10]. The localization of chromatin
fibres to semi-compact regions known as chromosome territories is maintained among others
by the topological constraints introduced by multiple loops in chromatin organization [11].
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Numerous analytical and numerical studies have been conducted to analyse the cyclization
probability and loop size distributions in long flexible macromolecules [12–19]. The con-
formational properties of isolated loops (ring polymers) [20–32] and multiple loops [10, 33]
have been intensively studied as well.

Interlocking and entanglements are ubiquitous features of flexible polymers of high
molecular weight. In particular, DNA can exist in the form of catenated (bonded) rings of
various complexities [34–36]. The segments of different DNA molecules can intercross
through the transient breaks introduced by special enzymes (topoisomerases) [37–39].
Numerous studies [40–47] reveal the advantage of linking in stabilization of peptide and
protein oligomers.

In this respect, it is worthwhile studying the conformational properties of generalized
complex polymer structures containing f1 loops and f2 linear chains of the same length S (see
figure 1). The properties of so-called ‘rosette’ (figure 1(a)) and ‘ring-linear’ (figure 1(b))
structures have been considered recently in numerical simulations in [11, 48]. However, only
the shape properties of very simple structures of two bonded rings ( = =f f2, 02 1 ) and rings
with two connected linear branches ( = =f f1, 22 1 ) with excluded volume effects
were analysed [48]. In particular, a subtle difference in the conformational properties of two
connected polymer rings compared with that of one isolated ring were found. On the
other hand, the properties of ‘star’ polymers (figure 1(c)) have been intensively studied
[49–57].

In general, the statistics of polymers is known to be characterized by a set of universal
properties, which are independent of the details of the microscopic chemical structure
[58, 59]. In particular, the asymptotic number of possible conformations of the structure
shown in figure 1(b) obeys the scaling law [49]

 μ γ ν σ σ∼ = − + +γ+ −
+( ) S d f f, 1 . (1)f f

f f S
f f f f

1
1 2 2 1f f

1 2
1 2 1 2

1 2 1 2

Here, ν is the universal critical (Flory) exponent, governing the scaling of the size measure
(e.g. the averaged gyration radius Rg) of macromolecule according to

∼ +
ν( )( )R f f S , (2)f fg

2
1 2

2

1 2

Figure 1. Schematic presentation of polymer systems of complex topologies.
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σi is the set of so-called vertex exponents (with σ = 02 ), d is the spatial dimension and μ is a
non-universal fugacity. For an idealized Gaussian (phantom) macromolecule without any
interactions between monomers, one finds ν = 1 2, σ = 0i . In the limiting cases ( =f 01 ) and
( =f 02 ), we obtain the corresponding critical exponents, governing the scaling of the number
of possible conformations of f2-branch star and f1-petal rosette polymers: γ = 1star ,
γ = − df1 2rosette 1 . Therefore, additional topological constraints in rosette polymers lead to
a considerable reduction of the number of allowed conformations, as compared with star
polymers of the same molecular weight.

To compare the size measures of macromolecules of different topologies but of the same
total molecular weight, one can consider the universal size ratios. In particular, in the idea-
lized Gaussian case, the ratio of the gyration radii of the individual ring and open linear
structures reads [60]

=
R

R

1

2
, (3)

g ring
2

g linear
2

whereas comparing the size of f-branch star and a linear chain of the same total length one has
[60]

= −R

R

f

f

3 2
. (4)

fg star
2

g linear
2 2

Taking into account the excluded volume effect leads to an increase of this values
[51, 61–66].

The overall shape of a typical polymer conformation is of great importance affecting, in
particular, the mobility and folding dynamics of proteins [67, 68]. The shape of DNA may be
relevant for the accessibility for enzymes depending on the spatial distance between DNA-
segments [69]. Already in 1934 it was realized [70] that the shape of a typical flexible
polymer coil in a solvent is anisotropic and resembles that of a prolate ellipsoid. It is con-
venient to characterize the asymmetry of polymer configurations in terms of rotationally
invariant universal quantities [71, 72] constructed as combinations of the components of the
gyration tensor, such as the asphericity Â. This quantity takes on a maximum value of unity
for a completely stretched, rod-like configuration, and equals zero for the spherical form thus
obeying the inequality ⩽ ⩽A0 ˆ 1. In the Gaussian case, for the individual linear and circular
polymer chains one has correspondingly [72]

= +
+

A
d

d
ˆ 2( 2)

5 4
, (5)linear

= +
+

A
d

d
ˆ 2

5 2
, (6)ring

whereas the asphericity of f-branch star polymer reads [73]:

= + −
− + −

A
d f

d f f
ˆ 2

(2 )(15 14)

5 (3 2) 4(15 14)
. (7)star 2

Note that equation (5) gives the asphericity of a trajectory of a diffusive randomly walking
particle. The influence of excluded volume effects on the shape parameters of single linear
and ring polymers, as well as star polymers, have been analysed so far both analytically
[22, 71, 74] and numerically [75–79].
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In this paper, we study the universal size and shape characteristics of complex polymer
structures (figure 1), applying the path integration method. Special attention is paid to the
analytical study of statistical properties of rosette (figure 1(a)) and ring-linear (figure 1(b))
structures.

The layout of the paper is as follows. In section 2, we briefly describe the presentation of
complex polymer system within the frames of continuous chain model. Our results are given
in section 3. We finish by giving conclusions in section 4.

2. The model

We consider a system consisting of f1 closed polymer loops (petals) and f2 linear chains
(branches) all bonded together at one ‘branching’ point (see figure 1(b)). Within the Edwards’
continuous chain model [80], each of the individual branches or petals is presented as a path
of length Si, parameterized by ⃗r s( )i , where s is varying from 0 to Si ( = … +i f f1, 2, , 1 2). For
simplicity we take = … = =+S S Sf f1 1 2

. The weight of the individual ith path is given by

∫= − ⃗
W

r s

s
sexp

1

2

d ( )

d
d (8)i

S i

0

2⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

and the partition function of the system can thus be written as





∏ ∏

∏

∫

∫

δ δ

δ
=

⃗ ⃗ − ⃗ ⃗

⃗ ⃗

= =

+

=

+

( ) ( )

( )

r r S r r W

r r W

( ) (0) (0)

(0)
. (9)f f

j

f
j j i

f f
i i

i

f f
i i

1 1

1

1 2

1 1 2

1 2

Here, ∫ ⃗r denotes functional path integrations over +f f1 2 trajectories. The products of δ-
functions describe the fact that f1 trajectories are closed and that the starting point of all
trajectories is fixed (the branching point). Note, that (9) is normalized in such a way that the
partition function of the system consisting of +f f1 2 open linear Gaussian chains (star-like
structure) is unity.

Exploiting the Fourier transform of the δ-functions

∫δ π⃗ − ⃗ = ⃗− − ⃗ ⃗ − ⃗( ) ( )r S r q( ) (0) (2 ) d e (10)j j
d

j
q r S ri ( ) (0)j j j

and rewriting in the exponent

∫ ∫ ∫−
⃗

− ⃗
⃗

= −
⃗

+ ⃗ +
r s

s
s q

r s

s
s s

r s

s
q q

1

2

d ( )

d
d i

d ( )

d
d

1

2
d

d ( )

d
i

S j
j

S j S j
j

0

2

0 0

2
2

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞

⎠
⎟⎟

we evaluate the expression of partition function (9), giving the asymptotic number of possible
conformations of polymer system

 ∫∏π π= ⃗ =−

=

− −( )q S(2 ) d e 2 . (11)f f
f d

j

f

j
df

1

2
q j S

1 2
1

1 2

2 1

Comparing this relation with equation (1), we recover the estimate for the critical exponent
γ = − df1 2f f 11 2

.

The average of any observable 〈 … 〉( ) over an ensemble of conformations is then given
by
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∏ ∏

∏

∫

∫

δ δ

δ
… =

⃗ ⃗ − ⃗ ⃗ …

⃗ ⃗

= =

+

=

+

( ) ( )

( )

r r S r r W

r r W
( )

1 ( ) (0) (0) ( )

(0)
. (12)

f f

j

f
j j i

f f
i i

i

f f
i i

1 1

1
1 2

1 1 2

1 2

3. Size ratios and asphericity

The size and shape characteristics of a typical polymer conformation can be characterized
[79] in terms of the gyration tensor Q. Within the framework of a continuous polymer model
the components of this tensor can be presented as

∫ ∫∑=
+

⃗ − ⃗ ⃗ − ⃗αβ
α α β β

=

+

( )( )
( )

Q
S f f

s s r s r s r s r s
1

2
d d ( ) ( ) ( ) ( ) , (13)

i j

f f
S S

i j i j
2

1 2
2

, 1
0

1
0

2 2 1 2 1

1 2

where αr s( )i 1 is αth component of ⃗r s( )i 1 (α = … d1, 2, , ).
For the averaged radius of gyration one has

∫ ∫∑=
+

⃗ − ⃗

=
=

+

( )
( )

R
S f f

s s r s r s

Q

1

2
d d ( ) ( )

Tr . (14)

f f
i j

f f
S s

i jg
2

2
1 2

2
, 1

0
1

0
2 2 1

2

1 2

1 2
1

Here and below, 〈 … 〉( ) denotes averaging over an ensemble of path conformations according
to (12).

The spread in the eigenvalues λi of the gyration tensor (13) describes the distribution of
monomers inside the polymer coil and thus measures the asymmetry of the molecule. For a
symmetric (spherical) configuration all the eigenvalues λi are equal, whereas for a completely
stretched rod-like conformation all λi are zero except one. Let λ ≡ dQTr be the mean
eigenvalue of the gyration tensor. Then one may characterize the extent of asphericity of a
macromolecule by the quantity Â defined as [71]:

∑
λ λ

λ
=

−

−
=

−=

( )
A

d d

d

d

Q

Q
ˆ 1

( 1) 1

Tr ˆ

(Tr )
, (15)

i

d i

1

2

2

2

2

with λ≡ −Q Q Iˆ (here I is the unity matrix). This universal quantity equals zero when
λ λ=i and takes a maximum value of one in the case of a rod-like configuration. The
asphericity (15) can be rewritten in terms of the averaged components of the gyration tensor
(13) as follows [71]:

=
+ −

+ −

αα αα αβ αβ αα ββ

αα αα ββ
A

Q Q d Q Q Q Q

Q d Q Q
ˆ

( 1)
. (16)

2

Below, we give detailed evaluation of the expressions for the averaged radius of gyration
(14) and asphericity (16) of the model (9) within the framework of path integration approach.
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3.1. Radius of gyration

The radius of gyration (14) can be calculated from the identity

ξ ξ⃗ − ⃗ = − ∂
∂

⃗ ⃗ ≡
=

⃗ ⃗ − ⃗( ) ( )( )r s r s
k

k k( ) ( ) 2d , e , (17)i j

k

kr s r s
2 1

2

2
0

i ( ) ( )i j2 1

and evaluating ξ〈 ⃗ 〉k( ) in the path integration approach. In calculation of the contributions into
ξ〈 ⃗ 〉k( ) it is convenient to use the diagrammatic presentation as given in figure 2. According to
the general rules of diagram calculations [59], each segment between any two restriction
points sa and sb is oriented and bears a wave vector ⃗qab given by a sum of incoming and
outgoing wave vectors injected at restriction points and end points. At these points, the flow
of wave vectors is conserved. A factor, − ⃗ −( )q s sexp ( ) 2ab b a

2 , is associated with each
segment. An integration is made over all independent segment areas and over wave vectors
injected at the end points.

The analytic expressions, corresponding to the diagrams (1)–(5) in figure 2 then read

∫ξ
π

⃗ =

=

− − − − −

−
− − +

( )k
S

q
2

e d e e

e , (18)
( )

s s S kq s s

s s S s s

S

(1)

( )
1

( )

( )

d

k q

k

2 2
2 2 1

1
2

2 1 2 1

2
2

2 1 2 1

⎜ ⎟⎛
⎝

⎞
⎠

∫ ∫ξ
π

⃗ =

=

− + − − − −

−
+ − −

( )k
S

q q
2

e d d e e e e

e , (19)

d
s s S S q ks q ks

S s s s s
S

(2)

( )
1 2

( )

k q q

k

2
2 2 1

1
2

2
2
2

2 1 1 2 2

2
2

1 2 1
2

2
2

⎜ ⎟⎛
⎝

⎞
⎠

ξ ⃗ = − −( )k e , (20)s s

(3)

( )k2
2 2 1

ξ ⃗ = − +( )k e , (21)s s

(4)

( )k2
2 2 1

∫ξ
π

⃗ = =− + − − −
+ −( )k

S
q

2
e d e e e . (22)s s S kq s

S s s s
S

(5)

( )
1

( )
d

k q k2 2
2 2 1

1
2

2 1 1
2

2
1 2 1

2

⎜ ⎟⎛
⎝

⎞
⎠

Taking the derivatives with respect to k according to (17) in the expressions above and taking
into account the combinatorial factors, we find for the radius of gyration

Figure 2. Diagrammatic presentation of contributions into ξ〈 ⃗ 〉k( ) . The solid line on a
diagram is a schematic presentation of a polymer path of length S, and wavy lines
denote so-called restriction points s1 and s2. With • we denote the position of the
starting branching point.
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∫ ∫

∫ ∫

∫ ∫ ∫ ∫

∫ ∫

=
+

− − +

+
− − + − −

+ − +
−

+

+
− + −

=
+

− + − +

( )
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( )
( )

( )

( )
( ) ( )

( )

( )

R
Sd

f f S
f s s

s s S s s

S

f f
s s

s s S s s s s

S

f s s s s
f f

s s s s

f f s
s s S s s s

S

Sd

f f
f f f f f f

d d
( )

1

2
d d

( ) ( )

d d ( )
1

2
d d ( )

d
( ) 1

1

12
2 1 2 3 2 8 . (23)

f f

S s

S S

S s S S

S S

g
2

1 2
2 2

1
0

2
0

1
2 1 2 1

1 1

0
2

0
1

2 1 1 2 1
2

2
2

2
0

2
0

1 2 1
2 2

0
2

0
1 2 1

1 2
0

2
0

2 1 2 1
2

1 2
2 1 1 2 2 1 2

1 2

2

2

⎛
⎝⎜

⎞

⎠
⎟⎟

⎡⎣ ⎤⎦

The case =f 02 corresponds to the rosette structure (figure 1(a)) with

= −( )R
Sd

f
f

12
2 1 , (24)g rosette

2

1
1

at =f 11 , one recovers the gyration radius of individual ring polymer. The case =f 01
corresponds to star structure (figure 1(c)) with

= −( )R
Sd

f
f

6
3 2 , (25)g star

2

2
2

at =f 12 , one receives the gyration radius of linear polymer chain.
For the size ratio of rosette and star polymers of the same total molecular weight (cor-

responding to = =f f f1 2 ) we obtain

≡ = −
−

g
R

R

f

f

1

2

2 1

3 2
. (26)

g rosette
2

g star
2

Note that by putting f = 1 in above relation, one restores the size ratio of the ring and open
linear chain of the same molecular weight (3). The quantity (26) decreases with the increasing
branching parameter f and in the limit → ∞f reaches the asymptotic value 1 3 (see figure 3).

Figure 3. Size ratio (26) of rosette and star polymers of the same total molecular weight
as function of branching parameter f. The line is a guide for the eyes.
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3.2. Asphericity

The products of the components of the gyration tensor (13) which appear in (16) can be
calculated using the identity

ζ

⃗ − ⃗ ⃗ − ⃗ ⃗ − ⃗ ⃗ − ⃗

= ⃗ ⃗

α α β β α α β β

α β α β
⃗ = ⃗ =

( )

( ) ( )( ) ( )r s r s r s r s r s r s r s r s

k k k k
k k

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

d

d

d

d

d

d

d

d
, (27)

i j i j l m l m

k k

2 1 2 1 4 3 4 3

1 1 2 2
1 2

01 2

with

ζ ⃗ ⃗ = − ⃗ ⃗ − ⃗ − ⃗ ⃗ − ⃗( ) ( )k k, e e . (28)( )k r s r s k r s r s
1 2

( ) ( ) ( ) ( )i j l m1 2 1 2 4 3

Again, we will use the diagrammatic presentation of contributions into ζ〈 ⃗ ⃗ 〉k k( , )1 2 (see
figure 4). Applying the same rules of diagram calculation, as introduced in the previous
subsection and evaluating the corresponding expressions, we find

Figure 4. Diagrammatic presentation of contributions into ζ〈 ⃗ ⃗ 〉k k( , )1 2 . The wavy lines
denote restriction points s1, s2, s3, s4. With • we denote the position of the starting
branching point.
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= +
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+

+
− −

+
− − −

+ +
−
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− −
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+
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− −
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− −
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αβ αβ αβ αβ αβ αβ αβ αβ

αβ αβ αβ αβ

αβ αβ αβ αβ αβ αβ
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( )

( )

( )

( )
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( )

( )
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( )( )

Q Q f D
f f

D D

f f f
D

f f f f
D

f D
f f

D D

f f f
D

f f f f
D

f f f
D D

f f f
D D

f f f f
D

f f f f
D

f f D D D
f f f f

D

1

2

1 2

6

1 2 3

24

1

2

1 2

6

1 2 3

24

1

2

1

2

1 2

6

1 2

4

1 2

6
. (29)

1
(1) 1 1 (2) (3)

1 1 1 (4) 1 1 1 1 (5)

2
(6) 2 2 (7) (8)

2 2 2 (9) 2 2 2 2 (10)

1 1 2 (11) (12)

1 2 2 (13) (14)

1 2 2 2 (15) 1 1 2 2 (16)

1 2
(17) (18) (19) 1 1 1 2 (20)

Here, αβ αβD n( ) denotes contribution of nth diagram on figure 4 (see appendix for details).
The resulting expression for the asphericity thus reads

= + − + −

+ + − × − + +

+ − − + + + −

+ − + + −
−

(
)( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

A d f f f f

f f f f d f f f f

f f f f f f f f

f f f f f f

ˆ (2 ) 8 15 14 8 7

4 62 28 41 5 4 3 2 2 1

4 72 238 24 113 196 2 8 7

16 15 14 8 62 34 41 . (30)

f f 2
2

2 1
2

1

1 2 1 2 2
2

2
2

1
2

1
2

1 2 2
2

2 1
2

1 1
2

1

2
2

2 1 2 1 2

1

1 2

⎡⎣
⎤⎦ ⎡

⎣⎢

⎤⎦
The case =f 02 corresponds to the rosette structure (figure 1(a)) with

=
+ −

− + −

( )
( ) ( )

A
d f

d f f
ˆ

(2 ) 8 7

5 2 1 2 8 7
, (31)rosette

1

1
2

1

at =f 11 , one restores the expression of the asphericity of an individual ring polymer (6). Note
that, for the system of two bonded rings ( =f 22 ), we restore expression (6) in accordance with
the numerical results of [48]. The case =f 01 corresponds to star structure (figure 1(c)) with

=
+ −

− + −

( )
( ) ( )

A
d f

d f f
ˆ 2

(2 ) 15 14

5 3 2 4 15 14
. (32)star

2

2
2

2

Again, at =f 12 , 2 one restores an expression of asphericity of an individual linear
polymer (5).

To compare the degree of asphericity of rosette and star polymer structures of the same
molecular weight (at = =f f f1 2 ), we plot the above given quantities as functions of f at fixed
d = 3 (see figure 5(a)). At small f, the star polymers are more anisotropic and extended in
space than rosette structures, whereas both Âstar and Ârosette gradually tend to zero with
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increasing f. Really, in the asymptotic limit → ∞f both the rosette and star structures can be
treated as soft colloidal particles with highly symmetrical shape. The total asphericity of the
system consisting of f1 closed polymer loops and f2 linear branches (equation (30)) is plotted
as a function of f1, f2 at fixed d = 3 in figure 5(b). The value of this quantity is the result of the
competition between two effects: decreasing asymmetry with an increasing number of closed
loops and increasing degree of anisotropy with an increasing number of linear branches.

4. Conclusions

In this paper, we analysed the conformational properties of polymer systems of
complex topologies (see figure 1). While the properties of so-called star polymers (figure 1(c))
have been intensively studied, much less is known about the details of rosette (figure 1(a))
and ring-linear (figure 1(b)) structures. Multiple loop formation in polymer macromolecules
plays an important role in various biochemical processes such as DNA compactification
[8–10], which makes the rosette-like structures interesting objects to study. Note that
another possible interpretation of the structures (figures 1 (a) and (b)) is the following: they
can be treated as projections of long flexible bulk polymer onto the two-dimensional
plane [42].

Restricting ourselves to the idealized Gaussian case, when any interactions between
monomers are neglected, we develop the continuous chain representation of the complex
polymer model considering each of the individual branches or petals as a path of length Si,
parameterized by ⃗r s( )i , where s is varying from 0 to Si ( = … +i f f1, 2, , 1 2). The size and
shape characteristics of a typical polymer conformation have been studied on the basis of the
gyration tensor Q with the the components given by (13). Working within the framework of
the path integration method and making use of appropriate diagram technique, we obtained
the expressions for the gyration radius 〈 〉R f fg

2
1 2

and asphericity Â, measuring the extent of
anisotropy of a typical conformation of complex polymer structures, as functions of para-
meters f1, f2. In particular, our analytical results quantitatively confirm the compactification

Figure 5. (a): Asphericity of rosette structure (31) (open circles) and star-like structure
(32) (filled squares) of the same total molecular weight as functions of branching
parameter f in space dimension d = 3. Lines are guides to the eyes. (b): Asphericity of
the system consisting of f1 polymer loops and f2 linear branches (30) as function of f1, f2
in space dimension d = 3.
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(decrease of the effective size) of multiple loop polymer structures as compared with struc-
tures containing linear segments (equation (26)). A decrease of the anisotropy of rosette
polymers as compared with star-like structures of the same total molecular weight is revealed
as well (equations (31) and (32)).
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Appendix

Here, we evaluate the analytical expressions corresponding to diagram (11) on figure 4. Note
that, in the diagram calculations, one should take into account the possible permutations of
positions of restriction points s1, s2, s3, s4 (see figure 6).

Figure 6.Diagram (11) on figure 4 with various permutations of restriction points s1, s2,
s3, s4.
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The resulting expressions read:
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Taking derivatives over the components of k1, k2 in expressions above according to (27) and
integrating over …s s, ,1 4, one finally obtains the contributions αβ αβD (11) in (29):

= = =αα αα αα ββ αβ αβD S D S D S
59

45
,

11

9
,

2

45
. (33)(11) 6 (11) 6 (11) 6
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