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We study the parameter sensitivity of hetero-polymeric DNA within the purview of DNA breath-
ing dynamics. The degree of correlation between the mean bubble size and the model parameters is
estimated for this purpose for three different DNA sequences. The analysis leads us to a better un-
derstanding of the sequence dependent nature of the breathing dynamics of hetero-polymeric DNA.
Out of the 14 model parameters for DNA stability in the statistical Poland-Scheraga approach, the
hydrogen bond interaction εhb(AT) for an AT base pair and the ring factor ξ turn out to be the most
sensitive parameters. In addition, the stacking interaction εst (TA-TA) for an TA-TA nearest neighbor
pair of base-pairs is found to be the most sensitive one among all stacking interactions. Moreover,
we also establish that the nature of stacking interaction has a deciding effect on the DNA breathing
dynamics, not the number of times a particular stacking interaction appears in a sequence. We show
that the sensitivity analysis can be used as an effective measure to guide a stochastic optimization
technique to find the kinetic rate constants related to the dynamics as opposed to the case where
the rate constants are measured using the conventional unbiased way of optimization. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4869112]

I. INTRODUCTION

Hydrogen bonding between the complementary base
pairs (AT and GC) is the origin for the Watson Crick double he-
lical DNA structure.1 The secondary interaction via the near-
est neighboring stacking interaction also has a major contribu-
tion towards the DNA structure. The base pair stacking com-
pensates the repulsive electrostatic force of phosphate groups
of the two complementary bases which come closer due to
hydrogen bonding, henceforth giving stability to the helical
conformation. Although this double helix is the most stable
form of DNA, it is not a static one.2–6 The hydrogen bonds
can intermittently open up and rejoin, even at room tempera-
ture and normal salt concentration, without damaging the core
of the nucleotide. This transient denatured zone in a DNA
polymer is commonly known as a bubble. As the total en-
ergy needed to open up a base pair depends on the nature
of that base pair (hydrogen bond interaction) as well as its
neighborhood (stacking interaction), the probability of bub-
ble formation becomes a function of the DNA sequence, i.e.,
it is connected to the stability profile of a genome. It is also
important to mention that in most natural DNA, the open-
ing probability is much higher due to torsional stress.7, 8 The
breathing dynamics of bubble plays a crucial role in the func-
tioning of DNA.9–17 Fundamental biological processes like
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replication and transcription largely rely on the local denatu-
ration. A recent study on the interaction between the nucleoid-
associated protein Fis and DNA in E. coli suggests that Fis-
DNA interaction is controlled by DNA breathing dynamics
and can be regulated experimentally via different nucleotide
modifications.15 The physical properties of the DNA direct
the biological functioning of the living system. DNA breath-
ing is thus a good problem to study, both with respect to its
physical and biological perspective.

Many experimental techniques, such as, circular
dichroism,18 UV spectroscopy,18 calorimetry,19 and fluores-
cence resonant energy transfer (FRET) measurements20 can
map out the melting profile of DNA. Using single molecule
florescence correlation spectroscopy, breathing dynamics has
been monitored and multistep relaxation kinetics with char-
acteristic time scale has been accounted from the study.21, 22

Experimental studies have also been performed to explore
correlations between the dynamics of hetero-polymeric DNA
with the biological activities of nucleic acid enzymes.17 The-
oretical models of the dynamics have also been established
based on the DNA free energy landscape.23–27 Another way
of studying breathing dynamics is by carrying out a stochastic
simulation28, 29 using the Gillespie Algorithm.30, 31

Sequence sensitivity is one of the pivotal motivations for
studying DNA breathing dynamics. From the time series data
of the dynamics, information about DNA sequence and its
stability parameters can be estimated. Single DNA manipula-
tion techniques can produce stability parameters and can ac-
count for the strong dependence on salt concentration of the

0021-9606/2014/140(12)/125101/10/$30.00 © 2014 AIP Publishing LLC140, 125101-1
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breathing dynamics.32 In one of our previous communications
we showed that the conjunction of breathing dynamics of
hetero-polymeric DNA with one of the stochastic optimiza-
tion techniques, namely, Simulated Annealing, can provide
data regarding the stability parameters, as well as the activa-
tion energy and critical exponent with good accuracy.33 How-
ever, the dependence of the breathing dynamics on the in-
dividual parameters had not been discussed in earlier work.
We here ask whether can we quantify the relative influence
of the system parameters on the breathing dynamics? To an-
swer this question we quantify the sensitivity of the stability
parameters as well as the activation energy and the critical
exponent with respect to the breathing dynamics of a hetero-
polymeric DNA using the approach of sensitivity analysis
(SENSA).

SENSA is used to understand the relative importance of
input parameters with respect to the system output. Generally
SENSA is of two types, local and global.34, 35 Local SENSA is
based on gradient calculation and can account for the local ef-
fect of that particular input parameter on the output, for which
the calculation is performed. It generally fails to provide ac-
curate results when all the input parameters come into consid-
eration simultaneously. The global SENSA follows a statisti-
cal formulation. The fundamental theory regarding the global
strategy is how the variance of the output is guided by the
perturbation on individual input parameters. Global SENSA
is thus a sampling based technique. There are various ways
to calculate the global SENSA and the success of these tech-
niques is system specific. One of the two most popular meth-
ods is the measure of correlations between the input and out-
put parameters which is essentially used for systems whose
output varies monotonically with the input. But for those sys-
tems which do not follow a monotonic trend, the decomposi-
tion of the variance represents the best choice for determining
sensitivity index. The most reliable variance based method is
eFAST proposed by Saltelli et al.36 eFast is actually based on
the Fourier Amplitude Sensitivity Test (FAST), developed by
Cukier et al.37, 38 and Schaibly et al.39 In the variance based
sensitivity test the partitioning of variance (of output) is done
for determining what fraction of the variance in the output
occurs due to the variation of each input parameters. This is
known as the partial variance of output. The sensitivity of a
particular input parameter is estimated using the ratio of the
partial variance of the output (for that particular input) to the
total output variance.

SENSA has a wide range of application in different
fields like economics,40 environmental science,41 systems
biology,42 or chemical kinetics.34 Biologists use SENSA to
understand the robustness of the model output with respect to
the variation in model inputs. This study also helps to analyze
the dynamical behavior of the biological model. In chemistry,
there is also a long history of applying SENSA in chemical
kinetics. The SENSA of rate constants on the reaction kinet-
ics is an important way to understand a kinetic scheme.43, 44 It
also has profound implications on parameter optimization.44

We use the correlation coefficient as a measure of the
index of sensitivity for the parameters associated with the
breathing dynamics as the breathing dynamics is monotoni-
cally related to these parameters. In this communication the

Pearson correlation coefficient (CC), the rank correlation co-
efficient (RCC), and the partial rank correlation coefficient
(PRCC)45, 46 are calculated for three different DNA sequences
and their performance compared. We also discuss the rele-
vance of the SENSA on the parameter optimization and how
these results can dramatically influence an optimization pro-
cess. Specifically, we study how the DNA breathing param-
eters, as described by the Poland-Scheraga model, respond
when subjected to a SENSA test. In other words, the grada-
tion of these model parameters on the basis of sensitivity will
give us a picture as to which of the model parameters play
a more important role in controlling the breathing dynamics.
We also pursue the important question whether the sensitiv-
ity order is dependent on the nature of the sequence. In an
earlier work, stochastic optimization (Simulated Annealing)
was demonstrated to extract reliably the interaction energies
in DNA breathing.33 In the present work we show that tak-
ing the sensitivity of individual parameters into consideration,
an optimization procedure becomes more efficient in the de-
termination of interaction energies of DNA breathing data.
The Genetic Algorithm (GA), which has a completely dif-
ferent philosophy of operation as that of Simulated Anneal-
ing, is used as the stochastic optimizer in this work. One of
the reasons of using Genetic Algorithm over Simulated An-
nealing is that the Genetic Algorithm, because of the rela-
tively large search space it can sample and exploit, requires a
smaller number of optimization steps to converge than that of
Simulated Annealing.44

II. BREATHING DYNAMICS IN DNA

The stability of the double helical DNA hetero-polymer
can be explained by considering the two types of Watson-
Crick hydrogen bond interaction between the complementary
bases A and T, and G and C as well as the ten types of stacking
interactions between the nearest neighbor base pairs. In num-
bers, the net free energy released due to opening of a base
pair, whose nearest neighbor base pair to one side is already
denatured, is quite low, due to the fact that enthalpy cost and
entropy gain almost cancel. Thus the free energy involved to
break the strongest interaction, a GC base pair stacked with
a CG downstream of the DNA sequence, is around ∼3.9 kBT
(at 37 ◦C), whereas the denaturation of an AT base pair with
a downstream TA is marginally unstable with free energy
change ∼0.1kBT (at 37 ◦C).47 The unzipping of DNA double
helix is an entropy driven process as it is basically a transfor-
mation from an ordered to disordered conformation. The high
binding enthalpy is compensated by the entropy gain. But for
a bubble initiation the activation energy is very high, of the
order of 7–12 kBT (for weakest and strongest, respectively) as
breaking of two stacking interactions along with the disrup-
tion of a hydrogen bond is concerned. Thus it is justified to
assume that bubble events are rare and two bubbles are well
separated below the melting temperature.

A bubble formation event may be denoted by the posi-
tion of the left zipper fork (xL) and the size of the bubble (m)
in terms of the right zipper fork xR = xL + m + 1. One can vi-
sualize the breathing dynamics as a random walk of a bubble
on a triangular lattice of xL and m with forbidden horizontal
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transition. The Master equation depicting this process,

∂P (xL,m, t)

∂t
= WP (xL,m, t), (2.1)

where P(xL, m, t) is the probability of the occurrence of a bub-
ble of size m at the left zipper fork xL at a time t and W matrix
includes all the allowed transition rates from the state (xL, m)
in the triangular lattice. The transfer rates are defined in terms
of the Boltzmann factor of hydrogen bonding interaction and
stacking interaction,

uhb(x) = exp

(
εhb(x)

kBT

)
, ust (x) = exp

(
εst(x)

kBT

)
. (2.2)

In Eq. (2.2), uhb(x) is the Boltzmann factor for hydrogen bond
at base pair position x and ust(x) is the Boltzmann factor for
nearest neighbor stacking interaction between the base pairs
at x − 1 and x, respectively. At t → ∞, P(xL, m, t) from
Eq. (2.1) equilibrates to a probability distribution obtained
from the statistical mechanical Poland-Scheraga model5, 6 of
the DNA double helix. The equilibrium probability of a bub-
ble of size m and left zipper fork position xL can be written as

Peq(xL,m) = Z(xL,m)

Z(0) + ∑M
m=1

∑M−m
xL=0 Z(xL,m)

, (2.3)

where Z(xL,m) is the bubble partition function,

Z(xL,m) = ξ ′

(1 + m)c

xL+m∏
x=xL+1

uhb(x)
xL+m+1∏
x=xL+1

ust(x). (2.4)

Equation (2.4) is for bubble size m > 0. If m = 0, Z(0) = 1.
Moreover, ξ ′ = 2cξ , where ξ is the ring factor which con-
tributes to the cooperativity factor. The cooperativity factor
is the free energy cost for bubble activation. The ring factor
is the key element for the formation of a small constrained
loop in DNA double helix.47 Finally, c is the critical exponent
and is related to the entropy factor during bubble formation.49

The term (1 + m)−c accounts for the loss of entropy during
the formation of a polymer loop. From the probability expres-
sion one may write the equilibrium mean bubble size 〈m〉, for
a sequence of base pair of length M as

〈m〉 =
∑M

m=1 m
∑M−m

xL=0 Z(xL,m)

Z(0) + ∑M
m=1

∑M−m
xL=0 Z(xL,m)

. (2.5)

III. SENSITIVITY ANALYSIS OF THE DNA
STABILITY PARAMETERS

Sensitivity analysis is an efficient tool to understand the
degree of susceptibility of the system with respect to different
input parameters. The biological functions of DNA are actu-
ally affected by the bubble dynamics as intermittent bubble
opening of base pair helps in binding of RNA polymerase, or
single-stranded DNA binding proteins, etc. Thus it is relevant
to study the effect of the stability parameters on the breathing
dynamics. To this end we use SENSA as a tool to measure
the different weights of the DNA breathing model parame-
ters (hydrogen bond interaction εhb and stacking interaction
εst) on the process. As mentioned in Sec. II, the equilibrium

probability distribution for bubble formation also involves the
ring factor ξ and the critical exponent factor c, which should
have significant effect on bubble formation. This leads us to
consider all 14 model parameters in the SENSA, namely, two
hydrogen bond interactions, ten nearest neighbor stacking in-
teractions, as well as the ring factor and critical exponent.

In order to quantify the effect of all 14 parameters on
the breathing dynamics of hetero-polymeric DNA, we con-
sider the mean bubble size 〈m〉 as the measure for the breath-
ing dynamics, which can be quantitatively determined via ex-
periment. The breathing dynamics of hetero-polymeric DNA
is sensitive to the DNA sequence,28 which leads us to con-
sider three different DNA sequences, the promoter sequence
of the T7 phage,28 as well as the L42B1250 and AdMLP14 se-
quences, for the present study to get a complete picture of sen-
sitivity of the breathing parameters. The promoter sequence of
T7 phage is used as the first sequence and is represented as

5′−aTGACCAGTTGAAGGACTGGAAGTAATACGACTC
AGTATAGGGACAATGCTTAAGGTCGCTCTCTAGGAg−3′.

(3.1)

First, to start the SENSA test, we generate scatter plots
of the mean bubble size vs all the parameters for the promoter
sequence of T7 phage, which gives a first hand qualitative pic-
ture of sensitivity. To generate a scatter plot for a particular in-
put parameter against an output, all the input parameters of the
system under consideration are perturbed simultaneously and
the output is calculated using the set of perturbed parameters.
If the output thus generated using the perturbed set of parame-
ters is plotted (typically known as input vs output scatter plot)
against the values of one specific parameter and falls in a nar-
row region around a virtual straight line, the corresponding
input parameter seems to be more important with respect to
that output parameter and is considered to have higher degree
of sensitivity. Points dispersed in a circular region in the scat-
ter plot denote less or no correlation between the input and
the output. Fig. 1 represents the set of the scatter plots gen-
erated using the above mentioned procedure for the promoter
sequence of T7 phage. The input data have been picked up by
a random process with the mean situated at the reported value
(of that model parameter)47, 48 and the width of the perturba-
tion being ±5% of the reported value. For most of the input
parameters, plots appear as a dispersed set of points. Only in
the scatter plots for the ring factor (ξ ) and εhb(AT), the dis-
tribution of points falls in a narrow strip (or follow a definite
direction) and hence could be considered to be more sensitive
parameters related to DNA breathing dynamics.

As the expression for calculating 〈m〉 (see Eq. (2.5)) is
monotonic with respect to all the 14 model parameters, we
use the measured correlation coefficient using different tech-
niques as the measure of sensitivity index of these model
parameters. To this end, we estimate the Pearson correla-
tion coefficient (CC), the Spearman or rank correlation co-
efficient (RCC), and the partial rank correlation coefficient
(PRCC) (for detail, see Appendix A) for the T7 phage DNA.
The results are shown in Table I. The set of input parame-
ters is chosen in a similar manner as used for generating the
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FIG. 1. Scatter plots of the mean bubble size versus the parameters associated with the breathing dynamics of hetero-polymeric DNA, for the promoter sequence
of the T7 phage.

scatter plots, while calculating correlation coefficients (see
Appendix A for discussion of the implementation). Specif-
ically, the correlation coefficients are computed from a set
of 100 000 data points for the generation of input and output
data. The first set of CC, RCC, and PRCC in Table I, desig-
nated as “All parameters,” are calculated by varying all the 14

model parameters simultaneously. The values of coefficients
obtained from the raw data (CC) and rank transformed data
(RCC) are very close, as the mean bubble size shows a linear
dependence on the input parameters. However, the PRCC is
much higher in magnitude than the CC and the RCC, which
signifies that the effect of a particular input on the output is
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TABLE I. CC, RCC, and PRCC values for the promoter sequence of the T7 phage (the importance of the numbers in bold is discussed in Sec. III).

All parameters Excluding c and ξ Excluding c, ξ , and εhb

Parameter CC RCC PRCC CC RCC PRCC CC RCC PRCC

εst (AT-AT) 0.135 0.128 0.589 0.168 0.160 0.711 0.249 0.239 0.818
εst (TA-TA) 0.358 0.346 0.890 0.436 0.420 0.938 0.676 0.679 0.969
εst (AA-TT) 0.207 0.199 0.752 0.257 0.245 0.843 0.395 0.382 0.913
εst(GA-TC) 0.063 0.062 0.328 0.075 0.071 0.422 0.124 0.118 0.550
εst(CA-TG) 0.134 0.129 0.594 0.168 0.160 0.709 0.256 0.246 0.819
εst(AG-CT) 0.251 0.242 0.807 0.310 0.297 0.882 0.471 0.459 0.937
εst(AC-GT) 0.054 0.051 0.301 0.073 0.070 0.403 0.112 0.108 0.529
εst(GG-CC) 0.030 0.030 0.158 0.035 0.032 0.209 0.052 0.050 0.295
εst(CG-CG) 0.012 0.011 0.038 0.010 0.010 0.063 0.014 0.013 0.084
εst (GC-GC) 0.002 0.002 0.022 0.000 0.001 0.031 0.009 0.008 0.034
εhb(AT) 0.624 0.622 0.961 0.760 0.768 0.980
εhb(GC) 0.079 0.076 0.390 0.096 0.091 0.502
ξ 0.556 0.550 0.951
c −0.101 −0.096 −0.467

not independent of the other input parameters. Hence, PRCC
gives a clearer picture of the parameter sensitivity. The set
of correlation coefficients for all the stability factors (only εhb

and εst) and for the stacking interactions (only εst) are also cal-
culated and are presented in Table I under the column heading
of “Excluding c and ξ” and “Excluding c, ξ , and εhb,” respec-
tively. These are calculated by perturbing all the parameters
except the excluded parameters which are kept fixed at the
corresponding literature values. This is done to check how
the parameter sensitivity order changes with the gradual de-
crease in the set of parameter variation. Results show that an
increase in the values of different correlation coefficients oc-
curs (as calculated by adopting CC, RCC, and PRCC), but the
relative order of the sensitivity remains the same, which is a
signature of the linear dependence of the input parameters.

It is further evident from Fig. 1 and Table I that the hy-
drogen bond interaction energy for an AT base pair εhb(AT)
and the ring factor ξ are highly sensitive among the set of
model parameters controlling the breathing dynamics. How-
ever, it is also interesting to analyze the sensitivity of different
stacking interactions on the breathing dynamics. The parame-
ter εst (TA-TA) shows the highest degree of correlation among
all the stacking energies, which is actually the weakest inter-
action in DNA double helix. Frequent bubble events in the
weaker TATA motif, a key element in this T7 promoter se-
quence, also justify the SENSA due to the effected greater
probability of bubble formation. The order of sensitivity of the
parameters for stacking interaction, as found out by the cal-
culation of correlation coefficients, for the sequence T7 phage

promoter is thus as follows:

εst (TA-TA) > εst (AG-CT) > εst (AA-TT) > εst (AT-AT)

≈ εst (CA-TG) > εst (GA-TC) > εst (AC-GT) > εst (GG-CC)

> εst (CG-CG) > εst (GC-GC). (3.2)

Equation (3.2) shows that sensitivity of the stacking inter-
action energies involved with AT base pair is higher com-
pared to the stacking interaction energies between the two
neighboring GC bases. One of the reasons may be the pres-
ence of fewer numbers of εst (CG-CG) and εst (GC-GC) in the
promoter sequence of T7 phage (both appear only twice).
However, another stacking interaction between two neigh-
boring GC (εst (GG-CC)) appears relatively frequently in the
sequence. Thus one cannot generalize the effectivity of a
particular stacking interaction energy on the breathing dy-
namics from the point of view of the number of appear-
ance of that particular stacking interaction, and thus we are
led to conclude that both the number of occurrences and
the nature of the stacking interaction affect the sensitivity
order. To check how the relative sensitivity order of these
model breathing parameters, mainly the stacking interac-
tions, gets altered due to the sequence of hetero-polymeric
DNA, we performed the above mentioned calculation for
the correlation coefficients (CC, RCC, PRCC) on two other
different DNA sequences. These two other DNA hetero-
polymeric chains are L42B18 and AdMLP with the following
sequences:

5′−cCGCCAGCGGCGTTAATACTTAAGTATTATGGCCGCTGCGCc−3′ (3.3)

and

5′−gCCACGTGACCAGGGGTCCCCGCCGGGGGGGTATAAAAGGGGCGGACC
TCTGTTCGTCCTCACTGTCTTCCGGATCGCTGTCCAg−3′. (3.4)
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TABLE II. CC, RCC, and PRCC values of the L42B18 sequence (the importance of the numbers in bold is discussed in Sec. III).

All parameters Excluding c and ξ Excluding c, ξ , and εhb

Parameter CC RCC PRCC CC RCC PRCC CC RCC PRCC

εst (AT-AT) 0.170 0.163 0.681 0.202 0.192 0.772 0.300 0.287 0.876
εst (TA-TA) 0.404 0.393 0.912 0.476 0.461 0.946 0.715 0.716 0.976
εst (AA-TT) 0.333 0.323 0.873 0.389 0.374 0.920 0.578 0.566 0.963
εst (GA-TC) 0.006 0.006 0.003 0.005 0.006 0.004 0.002 0.002 0.000
εst (CA-TG) 0.093 0.087 0.441 0.105 0.100 0.536 0.158 0.151 0.689
εst (AG-CT) 0.096 0.091 0.456 0.114 0.108 0.555 0.167 0.158 0.705
εst (AC-GT) 0.040 0.039 0.237 0.052 0.050 0.303 0.074 0.069 0.421
εst (GG-CC) 0.023 0.021 0.122 0.027 0.025 0.160 0.033 0.032 0.243
εst (CG-CG) 0.016 0.015 0.089 0.018 0.017 0.114 0.024 0.023 0.171
εst (GC-GC) 0.008 0.008 0.065 0.012 0.011 0.085 0.025 0.024 0.126
εhb(AT) 0.633 0.633 0.963 0.742 0.748 0.978
εhb(GC) 0.039 0.037 0.241 0.056 0.053 0.303
ξ 0.508 0.500 0.943
c −0.108 −0.104 −0.514

The list of correlators: CC, RCC, and PRCC obtained
by varying all the model parameters, for the two sequences
(3.3) and (3.4) are listed in Tables II and III. The correla-
tion coefficients related to ξ and c should be independent of
the sequence as indeed observed. In the case of the hydrogen
bond energies, εhb(AT) has a much higher correlation coeffi-
cient compared to εhb(GC) for all three sequences. However, in
AdMLP the value of CC (also RCC and PRCC) for εhb(GC) is
higher than the other two sequences, as in AdMLP the GC:AT
number ratio is much higher than in the other two sequences.
The stacking interactions in hierarchical order of sensitivity
for the L42B12 and AdMLP DNA sequences are

εst (TA-TA) > εst (AA-TT) > εst (AT-AT) > εst (AG-CT)

> εst (CA-TG) > εst (AC-GT) > εst (GG-CC)

> εst (CG-CG) > εst (GC-GC) > εst (GA-TC)

(3.5)

and

εst (TA-TA) > εst (CA-TG) ∼ εst (AG-CT) > εst (AA-TT)

> εst (AT-AT) > εst (GG-CC) > εst (GA-TC)

> εst (AC-GT) > εst (CG-CG) > εst (GC-GC).

(3.6)

By comparing the relative sensitivity order of the three an-
alyzed sequences, the sensitivity of stacking interaction be-
tween two neighboring GC bases (εst (GG-CC), εst (CG-CG), and
εst (GC-GC)) are found to be very low for T7 and L42B18,
but in AdMLP the correlation coefficient value (see in
Table III) of εst (GG-CC) is relatively high. This happens as the
AdMLP sequence has higher GC content and the εst (GG-CC)
stacking interaction appears 24 times in this sequence. But
εst (TA-TA) still shows the highest correlation value among all
stacking interaction energies for all three sequences though
it appears only twice in the AdMLP sequence. This is a

TABLE III. CC, RCC, and PRCC values of the AdMLP sequence (the importance of the numbers in bold is discussed in Sec. III).

All parameters Excluding c and ξ Excluding c, ξ , and εhb

Parameter CC RCC PRCC CC RCC PRCC CC RCC PRCC

εst (AT-AT) 0.128 0.123 0.575 0.160 0.152 0.699 0.265 0.258 0.797
εst (TA-TA) 0.242 0.233 0.792 0.306 0.294 0.877 0.482 0.476 0.927
εst (AA-TT) 0.196 0.187 0.730 0.253 0.241 0.833 0.405 0.397 0.898
εst (GA-TC) 0.096 0.092 0.466 0.122 0.115 0.589 0.198 0.191 0.702
εst (CA-TG) 0.219 0.210 0.768 0.281 0.270 0.861 0.453 0.446 0.918
εst (AG-CT) 0.216 0.208 0.756 0.273 0.261 0.850 0.437 0.430 0.911
εst (AC-GT) 0.096 0.091 0.455 0.122 0.116 0.584 0.195 0.188 0.695
εst (GG-CC) 0.113 0.108 0.523 0.146 0.139 0.651 0.235 0.228 0.759
εst (CG-CG) 0.042 0.040 0.225 0.051 0.048 0.313 0.083 0.080 0.404
εst (GC-GC) 0.027 0.023 0.034 0.065 0.056 0.047 0.015 0.015 0.069
εhb(AT) 0.587 0.583 0.956 0.748 0.756 0.978
εhb(GC) 0.176 0.169 0.674 0.211 0.201 0.787
ξ 0.612 0.609 0.960
c −0.098 −0.093 −0.465
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TABLE IV. List of the number of occurrence of different stacking interac-
tions in the three studied DNA sequences (the importance of the numbers in
bold is discussed in Sec. III).

Stacking interaction εst T7 L42B18 AdMLP

(AT-AT) 1.729409 4 3 2
(TA-TA) 0.579800 6 5 2
(AA-TT) 1.499484 7 5 5
(GA-TC) 1.819371 11 0 12
(CA-TG) 0.939677 7 3 8
(AG-CT) 1.455363 14 4 9
(AC-GT) 2.199241 9 3 11
(GG-CC) 1.829370 7 6 24
(CG-CG) 1.299554 2 5 7
(GC-GC) 2.559130 2 7 4

signature of the fact that the TA-TA stacking interaction has an
overriding influence on the breathing process even in a situa-
tion where its numbers are low. A table containing the number
of appearance of each stacking interaction in all the three se-
quences is given for reference (see Table IV). Our objective to
perform the SENSA for the sequences L42B12 and AdMLP
along with the T7 phage promoter sequence is to figure out
how the sensitivity order of the stacking interaction parame-
ters changes with the variation of DNA sequences. For this
purpose a pictorial presentation of the free energy of stacking
interactions versus their correlation coefficients (CC, RCC,
and PRCC) is given for all three DNA sequences in Fig. 2: we

see that the general trend of the sensitivity order remains more
or less unchanged in these three different DNA sequences.
One may thus group out the stacking interactions such that
εst (AT-AT), εst (TA-TA), εst (AA-TT), εst (CA-TG), and εst (AG-CT)
are more sensitive towards bubble opening than the other five
stacking interactions. This results together lead us to conclude
that the nature of the stacking interaction is predominant over
the number of appearance of that particular stacking interac-
tion in calculating the sensitivity for a hetero-polymeric DNA
sequence.

IV. DISCUSSION AND CONCLUSION

Sensitivity analysis can help in a rigorous study of a sys-
tem. We quantified the sensitivity of bubble formation with
respect to the stability parameters (as given by the Poland-
Scheraga model), which leads us to a better understanding of
the sequence dependent nature of the breathing dynamics of
hetero-polymeric DNA. The general trend of this parameter
SENSA as evaluated from our calculations is that it does not
significantly depend on the nature of the DNA sequence. We
showed that the number of occurrences of a particular interac-
tion (hydrogen bond interaction or stacking interaction) is not
the major factor in the degree of sensitivity. Rather, the spe-
cific nature of a particular interaction is the major player, even
in a situation where its number of occurrences in a DNA se-
quence is smaller. Generally, the SENSA also shows that the
bubble opening free energy ξ and the hydrogen bonding free
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FIG. 2. Correlation coefficients: (a) CC, (b) RCC, and (c) PRCC versus the free energy of stacking interactions. The red, green, and blue lines are for the
promoter sequence of the T7 phage, the L42B12, and the AdMLP sequences, respectively. The stacking interactions show similar trends for all the three DNA
sequences.
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FIG. 3. Cost profile obtained for different cases of optimization. The solid
line represents unconstrained optimization, the dashed and dotted lines are
obtained by keeping the cumulative probability for mutation of the sensitive
parameters at 20% and 60%, respectively. The close-dotted line is generated
by keeping this cumulative probability at 60% up to 200 GA steps, and then
at 20% for the rest of the optimization.

energy εhb(AT) are always highly sensitive parameters. These
results will help in a better understanding of the relative prob-
ability of bubble opening and how it varies with the change in
DNA sequences.

The sensitivity data, as revealed and discussed in
Sec. III, has its own role in grading the different interaction
types in order of importance, but the information can be used
for other important studies as well, like an optimization prob-
lem to find out the correct values of the breathing dynamics
parameters. The SENSA data if used properly can have a sig-
nificant influence during parameter optimization of the sys-
tem. All parameters may not equally affect or influence the
output. If one exploits the parameters having higher sensitiv-
ity more than the other parameters during optimization, the
convergence may occur faster than a simulation in which all
parameters are searched with equal weights.

We optimized all parameters associated with the breath-
ing dynamics taking the equilibrium distribution function
generated by mimicking the experimental scenario,21 as the
objective during optimization (see Appendix B). We used the
GA51 as the optimizer and the promoter sequence of T7 Phage
for this study. Fig. 3 represents the cost profile versus the
number of GA steps for different runs with different extent
of constraints in searching the sensitive parameters. The cost
function (see Appendix B) is a measure of how close we are
to obtaining our solution. When the cost tends to zero the
actual solution is found out. The solid line is the profile for
the normal optimization, during which no additional condi-
tion is imposed on the optimizer. But the other lines represent
cost profiles, for which the optimization was biased to sam-
ple the sensitive parameters more by allowing it to mutate or
get sampled more than the others. In GA, mutation occurs
with a probability (mutation probability) which is set initially.
Generally there is no bias in the choice of variables for mu-
tation. We incorporated a condition in the choice of variable
selected to undergo mutation. The more sensitive parameters
have a higher probability to be selected for mutation. In Fig. 3

the dashed line represents the profile where, the cumulative
probability for ξ and εhb(AT) (the most sensitive parameters)
to be chosen for mutation is 20% and the rest is the cumula-
tive probability for the other parameters. The cost profile with
60% of such a cumulative probability for the sensitive param-
eters is denoted by the dotted line. The dashed line (20%)
falls at a greater rate than the solid one, but the gain in the ini-
tial convergence is much more prominent for the dotted line
(60%). In spite of this gain, the plateau region in the opti-
mization profile starts at a higher cost in the case of the dotted
line than for the solid line. The probable reason may be the
incomplete search of the other relatively less sensitive param-
eters. Thus we designed the optimization scheme such that
initially the search would be highly biased towards the sen-
sitive parameters and after certain steps of optimization, the
cumulative probability to be picked up for mutation, of those
higher sensitive parameters would be decreased. The close-
dotted line in Fig. 3 was generated by keeping this cumulative
probability 60% initially (up to 200 GA steps) and then it is
decreased to 20%. This strategy of gradual reduction in sam-
pling importance (kept high initially and decreased later) of
the more sensitive parameters is the ideal strategy to handle
the present problem in a more computationally cost-efficient
way.
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APPENDIX A: CORRELATION COEFFICIENT

A simple way to examine a given parameter’s sensitivity
is to obtain the degree of correlation of various input param-
eters to the output. The correlation coefficient is a quantity
to measure how strong the output of a system is linearly as-
sociated with the particular input parameter. It also accounts
for the direction (positive or negative) of this linear associa-
tion. Thus it may be used as sensitivity index for a system in
which the output varies linearly with the input variables, as
it actually accounts for the perturbation on the output when
input parameters are varied. The correlation coefficient of a
particular parameter is fundamentally the measure of covari-
ance between the output and that of input parameter, which is
then normalised by dividing with the product of the standard
deviation of input and output,

rxj y =
∑N

i=1(xij − x̄j )(yi − ȳ)√∑N
i=1(xij − x̄j )2

∑N
i=1(yi − ȳ)2

. (A1)

Here rxj y is the correlation coefficient of the input parameter
xj and output y, x̄j and ȳ are the mean of input and output,
respectively, and N is the number of sampling. The value of
rxj y varies from −1 to +1. The “+” or “−” sign denotes the
direction of the linear dependence, i.e., whether the output
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data increases or decreases with the increase in input parame-
ter. For higher magnitudes of rxj y the effect of that particular
input parameter will be larger on the output parameter. Then
that particular input parameter is said to be highly sensitive
with respect to that output. A very low value of the correla-
tion coefficient means that the output will differ only a little
even when the perturbation on input is very high which sig-
nifies the lesser sensitivity of that input. If rxj y is calculated
from the raw data of input and output using Eq. (A1), it is
known as Pearson correlation coefficient (CC).

The parameter dependence may not always be linear. The
Pearson correlation coefficient is inadequate to show the ac-
tual picture of sensitivity of the system in that case. If one
uses rank transformed data instead of the raw data of both the
input and output parameters to calculate the correlation coef-
ficient (known as rank correlation coefficient (RCC)), it will
account for the nonlinear, yet monotonic trend of parameter
dependence. The formal name of RCC is Spearman correla-
tion coefficient.

The partial rank correlation coefficient (PRCC) accounts
for the dependence of a particular input with the output after
deducting the effect of other inputs. PRCC of a set of inputs
xj and output y may be calculated as the RCC of xj − x̃j and
y − ỹ, where x̃j and ỹ account for the effect of other input
parameters on that particular input xj and output y. These can
be measured following the regression model35

x̃j = c0 +
k∑

l 
=j

clxl, ỹ = b0 +
k∑

l 
=j

blxl. (A2)

The PRCC can also be expressed in terms of the rank corre-
lation matrix (C). The matrix element Cij represents the RCC
between the ith and jth components. If Pij is the co-factor of
Cij , then PRCC (Pij ) will be52

Pij = − Pij√
PiiPjj

. (A3)

Thus the PRCC of input parameters xj with respect to some
output parameter y of a system can be written as

Pxj y = − Pxj y√
Pxj xj

Pyy

. (A4)

The correlation coefficient may give the picture of sensitivity
properly only if the change of output with the input is mono-
tonic. For non-monotonic relation one may perform variance
based sensitive test.

The implementation of the correlation coefficient estima-
tion is as follows. We generate the set of data points of in-
put parameters by randomly perturbing it within the range of
±5% of the reported literature value.47, 48 The output data are
calculated using the perturbed input variables. To estimate the
CC, these sets of input and output data are put into the expres-
sion (A1). For the RCC calculation both the input and output
data are arranged in an increasing or decreasing order and a
rank is set for each data. Then the correlation coefficient is
calculated with that of rank transformed data. For PRCC cal-
culation we used the second procedure with Eq. (A4) among
the two above mentioned techniques. The RCC between the
different input parameters as well as the RCC between the in-

puts and the output are calculated. These RCC values could
then be arranged in matrix C. The PRCC is calculated with
the co-factors of this matrix by using Eq. (A4).

APPENDIX B: GENETIC ALGORITHM

Mimicking the experimental scenario of Ref. 21, one
arrives at the equilibrium probability distribution for fluo-
rophore tagged base pairs (xT) using Eq. (2.3). Fluorescence
signals appear if the base pairs in the δ neighbourhood of the
fluorophore are open. The time dynamics of the occurrence
of fluorescence is thus related to the breathing dynamics, as
local denaturation of all base pairs in xT ± δ is necessary for
appearing fluoresce signal (in our calculation we take δ = 0).

To obtain the DNA stability parameters of DNA by opti-
mization, the objective function may be defined as33

cost =
M∑
i=1

(Pe(xi) − P (xi))
2, (B1)

where Pe(xi) is the equilibrium probability of the tagged base
pair at the ith position in the sequence for the experimental
value of the input parameters and likewise P(xi) is the equi-
librium probability for the set of input parameters obtained
in a step, during optimization. The cost is actually the differ-
ence in these probabilities (Pe(xi) − P(xi)) and in the course
of optimization it decreases. We reach our solution when
cost → 0.

We apply the Genetic Algorithm (GA) to optimize the
parameters involved in the breathing dynamics. In GA the cost
function is replaced by the fitness function,

f = exp(−cost), (B2)

such that a decrease in cost leads to an increase in the fitness
function. At the end of the simulation f approaches 1. The
progress towards achieving f → 1 in the GA occurs by re-
peated use of three operations, namely, selection, crossover,
and mutation. These operators closely mimic similar biolog-
ical processes in conventional genetics. Since GA mimics
these natural processes, it is sometimes referred to as a nat-
ural algorithm for optimization.
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