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Generalized Huber kinetics for nonlinear rate processes in disordered systems:
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This paper deals with one-variable nonlinear rate processes occurring in disordered systems. A general
stochastic approach is introduced for these processes based on the following assumptions. The total rate
coefficient is made up of the additive contributions of a large number of individual reaction channels. These
contributions are random functions of time and their stochastic properties are characterized by a functional
random point process. Exact analytical expressions for the time dependence of the average concentration are
derived by using a characteristic functional technique. These expressions are valid for systems with both
dynamic and static disorder and are nonlinear analogs of the general kinetic law derived byPhyseRev.

B 31, 6070(1985; Phys. Rev. B53, 6544(1996 ] for linear rate processes in systems with static disorder. For
independent rate processes with static disorder and a self-similar distribution of reaction channels we derive a
nonlinear analog of the stretched exponential. A closed analytic expression of the nonlinear stretched expo-
nential is given in terms of Fox'bl functions. As expected, when the reaction order of the process is one, the
nonlinear kinetic law reduces to a stretched exponential with a scaling exponent characterizing the self-similar
distribution of the individual reaction channels. For nonlinear processes the tail of the averaged kinetic curve
is self-similar and obeys a scaling law with a negative power law. Surprisingly, the scaling exponent of the tail
depends only on the reaction order of the process and is independent of the scaling exponent that characterizes
the self-similar distribution of the individual channels. We examine the possibilities of experimental evaluation
of the statistical distribution of the total rate coefficient: The moments of different orders of the rate coefficient
can be evaluated from the time derivatives of the survival func{i8®063-651X98)10906-§

PACS numbsgs): 05.40:+j, 64.60.Ak, 87.10+e

. INTRODUCTION p(k)dk~constxk~**Adk with 1>8>0, (2

In recent years the relaxation and reaction processes ot¢hich is consistent with the general ideas of self-similarity
curring in disordered systems have been studied from bothf disordered systems reported in the literature, Huber's
the experimental and theoretical points of vigly. In this ~ equation(1) leads to a stretched exponential kinetic law
field most papers focus on the experimental and theoretical B B
study of processes with linear kinetics described by stretched (1) =exp{— (A1)} )

exponential survival functions. There are relatively few at-pore recently it has been shown that Huber's equatioris
tempts to extend the research to the case of nonlinear preyxact for a Poissonian distribution of independent channels
ces§e$2]. For nonlinear kinetics in rand.om media exact thg-[4]_ Moreover, this equation also holds beyond the range of
oretical results are scarce; most studies rely on numericgljidity of the Poissonian distribution: It emerges as a uni-
simulations. For linear processes in disordered systems a thgarsal scaling law for a uniform random distribution of reac-
oretical model was suggested by Huber in 1985 Based  tjon channels characterized by nonintermittent fluctuations
on a careful study of different linear rate processes, he pros). This result is consistent with the idea that Huber's equa-
posed the kinetic law tion (1) and the stretched exponential relaxation k@ de-
rived from it can be generated by a central limit behavior of
* the Levy type that expresses the contribution of a large num-
<|(t)>:ex’)[ - fo pl1=-exp—kOldky, (D) per of v)\//e)gl)(ly connegted relaxation channés§]. ’
Huber's law(1) has been extended for systems with dy-
namical disordef4,5,9. By assuming that each individual
relaxation rate attached to a reaction channel is a random
function obeying Poissonian statistics, it has been shown that

where(l(t)) is the average relaxatiofsurviva) function of
the process ang(k) is the average density of relaxation
channels with an individual relaxation rate betwéeandk
+dk. In particular, if the distribution of individual rates is

self-similar and obeys a scaling relation with a negative <I(t)>=exp{—ﬂR[k(t’)]D[k(t’)]

power law
t
X 1—ex%—j k(t’)dt’) ] 4
0
*Present address: Department of Chemical Physics, University of
Tel Aviv, P.O. Box 39040, 69978 Tel Aviv, Israel. where, due to dynamical disorder, the relaxation rate corre-

1063-651X/98/5(®)/649719)/$15.00 57 6497 © 1998 The American Physical Society



6498 MARCEL OVIDIU VLAD, RALF METZLER, AND JOHN ROSS 57

sponding to an individual relaxation channek:k(t'), t by studies of chemical kinetics, the results presented in this

=t'=0, is a random function of timeR[k(t')]D[k(t')] is  paper are also of interest for the study of nonlinear physical

an average density of channels characterized by differemirocesses in disordered media.

random functionk=k(t"), t=t'=0; D[k(t')] is a suitable

inte,gration measure over the space_of functibﬁi(t’), t Il. NONLINEAR RATE PROCESSES

=t 20;. and[J stands for th'e operation of path integration. WITH DYNAMICAL DISORDER

Just as in the case of E), it has been shown that E()

emerges as a universal scaling law for a uniform random In analogy to similar approaches developed in the litera-

distribution of reaction channels characterized by noninterture in the case of linear kinetics, we assume that the chemi-

mittent fluctuations. cal reaction(5) is the result of the contribution of a large
The theoretical studies of Huber’s relaxation equation andhumber of different reaction channels. Each channel is char-

of its generalizations have been motivated mainly by theacterized by a different rate coefficief(t), u=1,2,...,

analysis of physical relaxation processes occurring in disorwhich is a random function of time. The total rate coefficient

dered systems. However, these equations can be also applietithe procesdV(t) is the sum of the individual ratds,(t),

to chemical reactions in disordered systems provided the kiu=1,2,...,

netics of the process is of first order. Such kinetic systems

are important, but the kinetics of most chemical reactions are

nonlinear. The purpose of this paper is to present a simple W(t)=§ Ku(t)- (6)

approach for the time evolution of a chemical process of the

type Formally, the stochastic properties of an ensembl&l ak-

»X— (products, (5)  action channels can be described by generalizing the formal-
ism of random point processes suggested by Ramakrishnan
occurring in a disordered system and for which the kinetic id10]. We introduce a set of grand canonical functional prob-
nonlinear. Although our present research is mainly motivatedbility densities

Qo Qulki() IDLk1(1)],QnlK1(1), ... Kn(D)IDLKe (1) ] -~ Dlkn(D) ]+, (7)

with the normalization condition

o1

and the characteristic functional

o1
GztkT1=Qo+ = 7 [+ [Julkatt). k(120 201Dk Dk, ©
N=1 N!

whereZ[k(t)] is a suitable test functional. L[ o

For a given realization of the total rate coefficiaf(t) X(Co)” fOW(t )dt’ | +dz, (11)
the differential kinetic equation attached to the chemical pro-
cess(5) is where T'(x)=[52*"! exp(-2dz x>0, is the complete

gamma function. In Eq.10) we have made use of the equal-
de(t)/dt=—-W(t)[c(t)]" with c(t=0)=co, (10 ity

. . . 1 0

wherec(t) is the concentration of the substarXet timet. 1+v) 2= f 2% laxd — (14 v)zldz 12

The solution of the differential equatid®) for a given real- (1+y) I'(a) Jo L-(1+y)zjdz (12

ization of the total rate coefficie'/(t"), t=t"=0, can be ) )

expressed as The macroscopic observable is the average value of the
survival functionl(t) of speciesX, which can be expressed

[t W(t)] ¢ —1v—1) as t_he ratio between the average va(lu_(et))_ of the concen-

—:{1“,}_ 1)(00)%1] W(t’)dt’] tration c(t) of the substanc& and the initial concentration

Co 0 c(t=0)=c, for t=0,

1 * . ’
S ex"( LD )= (e[| T mweoowie)
i : a3
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where

1(0)=—— f:z”“‘”-lexq—z)
|

PIW(t")]DIW(t')]  with ﬂP[W(t')]D[W(t')Fl v—1

s X BIY(t') =~ 2(v—1)(co)" 0(1) 102

is the probability density functional of the total rate coeffi- (16)
cientW(t'), t=t'=0. From Eqgs.(11)—(14) we notice that

the average survival functiofl(t)) can be expressed in

terms of the characteristic functional where 4(t) is the usual Heaviside step function.

In principle, there are two different ways of computing
> the average survival function from E¢L7). The first ap-
proach is a generalization of the “random rate approach”
t used in the literature for chemical processes with linear ki-
=ﬂex+f W(t')@(t')dt'}P[W(t')]D[W(t')] netics. We assume that the stochastic properties of the total
0 rate coefficient are known and are expressed in terms of the
(15  cumulants({Wy(t1))), ((W(t1)W(t,))),... . We represent

o . ) , , the characteristic functiona[2)(t’)] in Eq. (16) by a cu-
of the probability density functionaP[W(t')ID[W(t')]. o i8R STa T BEC I[f)( )1in Eq y
We have ’

t
%[@(t'>]=<ex+ fowa')@(t')dt'

1 = o1 to(t
<|(t)>=(—1 JO zlf<V—1>-1exp{mE_l H[—5,“1—2(1/—1)(c0)v—1]mjo---JO<<W(t;)---W(t;n)>>o|t1---olt;n dz
r
v—1

7

The expressiornl7) for the average survival function is similar to the virial expansion in equilibrium statistical mechanics.
Similar expansions have been suggested for reactions with linear kinetics occurring in disordered systems.

The second method for evaluating the average survival fun¢tigh) is a generalization of the random channel approach
suggested in the literature for linear processes. We try to evaluate the dynamical averag¢lis) Egterms of the grand
canonical probability functional&) or in terms of the corresponding characteristic functigf& w(t)]] defined by Eq(9).

We notice thatB[2)(t')] can be expressed as a grand canonical average

|

=Qo+m§1 %ﬂﬂ eXp(iug1 fotku(t')@(t’)dt’>

XQu[W1(), ... Wn(t) JZ[ W1 () ] -~ Z[wWin(t) I D Wy (1) ]- - "D Win(1) ]

t
BY(")]= < eXP( i JOW(I’)@(t’)dt’

=g

Z[k(t)]zexp(if(:k(t’)@(t’)dt’”. (18
By combining Egs(16) and(18) we arrive at

dz (19

Z[k(t)]zexp( —Z(v—l)(co)”lfotk(t’)dt’)

I | e e 26
1ﬂ(v—l i

In particular, if the different reaction channels are statistically independent, the grand canonical probability density functionals
defined by Eq(7) obey Poissonian statistics and are given by

Qo=eXF{—ﬂlp[k(t)]D[k(t)]), (20
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The corresponding characteristic functiogpZ[ k(t)]]is ex- p(k)dk. The average functional density of channels
ponential, RIk(t")]D[k(t")] can be expressed in terms of the density
function p(k)dk by a relationship similar to Eq24):

g[Z[km]]:exp( -[] {1—Z[k<t>]}R[k<t>]D[k<t>]), ]
(22 Rk(t)]D[k(t)]= fo dk’'P(k")A[k(t)—k']D[k(t)].
(25)
and Eq.(19) leads to
For static disorder the expressidi$), (17), and(19) for the

1 o average kinetic curvél(t)) turn into a simpler form. We
(()=——77 f M=~ lexpg —z) have
=
v—1 1 .
()= ——— | M texp—2)
0
Xexp{ —ﬂR[k(t)]D[k(t)] F( v—l)
t XB[iy=—2z(v—1)(co)" t]dz
X 1—exp( —z(v—l)(co)V*J k(t’)dt’) }dz. °
0
1 B |
_ ZUr=1)-1gy —
(23) 1 fo p{mz—l m!
Equation(23) is the nonlinear analog of the Huber equation r rv—1
(4.
Il. STATIC DISORDER AND GENERALIZED X[ = Sy —2(v— 1)(C0)V1]m<<wm>>tm] dz
HUBER KINETICS

For illustration, in the following we consider a particular
case of systems with static disorder. For such systems, a
fluctuation, once it occurs, is frozen and lasts forever. By,
using the random rate approach, it follows that the total rate
coefficient W is a random variable selected from a given
probability distributionP(W)dW. In terms of this probabil- ((t))= 1 J'oozl/(vfl)fl exp —2)
ity distribution the probability density functional 1 0
PIW(t")]D[W(t')] can be expressed as the average of the F(
delta functionalA[ W(t) — W' ]D[W(t')]. We have

(26)

v—1
X {2 (k) =ex — z(v—1)(co)” " *kt]}dz,
PIW(E ) IDIW(t')] = f:dW’P(W'> 27

where
XA[W(t")—W']D[W(t")].

(24) Z@(y)zfo expiWy)P(W)dW (28)
Similarly, in terms of the random channel approach, theis the Fourier transform of the probability distribution

individual channels with a rate coefficient betwdemandk  P(W)dW, ((W)),{(W?)),... are thecumulants of this distri-
+dk are distributed according to an average density functiopution, and

* 1 ) )
AR =@+ 2 7 f f @n(Kg, -+ k) Z(Ky) - Z (k) dky - dky (29)
N=1 . 0 0
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is the characteristic functional attached to the set of “static”scribes the statistical properties of the individual channels

grand canonical distributions and the Fourier transformg(y) of the probability distribu-
tion P(W)dW of the total rate coefficieriiV:

@, ..., On(Ky, Ky, - . )dkidks ... B _

B B(y)=C[Z(k)=expiky)]. (3D
with @+ 2 % fx'"fm(IBN(kl’---:kN)dkl'"de:]-v Equation(31) can be derived in the same way as ELf).

N=1 - JO 0

(30) IV. NONLINEAR ANALOGS OF THE STRETCHED
EXPONENTIAL

which describe the fluctuations of the individual values of

the rate coefficients for a system with static disorder. Systems with static disorder for which the different reac-
The random-rate and random-channel description of théion channels are independent deserve special attention. In

process are related to each other by means of a relationshipis case the grand canonical probability distributions

between the characteristic function8[-Z(k)], which de-  ®,...,®y(K1,Kz, .. .)dk;dk,,... arePoissonian,

|
®o=exp( - foxmk)dk),

@n(Ky, .. ky)dky--dky= exp{ - f:P(k)dk) p(ky)dky - -p(ky)dky, (32

and the characteristic functiond[ Z(k)] is exponential,

(1(t)y= + f:z”(”—l)—lexq—z—[z(v— 1)
i

aZ(K)] =exp{ f [:Z(k)—l]p(k)dk}. (33) v—1
0 X(Co)” 10t]Adz. (36)
By combining Egs(27) and(33) we arrive at Equation(36) is the nonlinear analog of the stretched expo-

nential law(3). It is easy to check that, in the limit—1,
Eqg. (36) reduces to Eqg.(l). A simple way of proving

1 0
<I(t)>:—1j ZV/r-h-1 this is to expand in Eq.(36) the exponential term
F( ) B exp{—[z(v—1)(co)” 2Qt]P} in a Taylor series, integrate the
v—1 resulting equation term by term, and pass to the limit

" —1. By collecting the different terms of the resulting equa-
Xexp[ —7— f p(k){1—exd —z(v—1) tion we arrive at Eq(3).
0 By following a common approach in the theory of statis-
tical fractals[13], the integral in Eq(36) can be expressed in
X(Co)"lkt]}kodZ- (34) terms of the FoxH functions. We can rewrite Eq36) by
substitutingu=z(cy) "~ 1Qt, resulting in

Equation(34) is the nonlinear analog of Huber’s relaxation ()= ((co)* tat)~ M1
equation(1) for systems with static disorder. As expected, in 1
the limit v— 1, Eq.(34) reduces to Eq(4). 1 Gy
Following Huber, we assume a self-similar distribution of
individual rates of the typ€2), y fw exr{— :{1 LU 1-1
0 (Co)” ot
~ — 10 BKk—(1+p)
p(K)dk~[T'(1-pB)] "0~k dk, (39 xexp{—[(v—1)ulfidu, (37)

where() is a constant with the physical dimension of a ratewhich can be viewed as a Laplace transform frorto the
coefficient for the nonlinear chemical proceSs In EqQ.(35)  1/(c,)”~ 10t space:
the proportionality constant was determined from the condi-
tion that in the limitv—1, Egs.(34) and (35) lead to the [(co)r tQty~ve-b
stretched exponentigp). (I(t)y= M r—1)] LD

By inserting Eq.(35) into Eq. (34) and carrying out the
integral overk we arrive at xexp[—[(v—1)ul?};1h(ce)* " 10t). (39
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To evaluate this transform we express the original function

in terms of a Fox function as

D= lexpl —[(v—1)u]?}

2—vy 1

(V— 1)(1/—2)/(11—1)
- Bv-1)' B

B

ol

from which we can calculate the Laplace transfqi8]

Hg;i(v—l)u
(39

(V_ 1)(2— v)/(v—1)
<I(t)>: BF[l/(V—l)] [(CO

)V—].Qt](z— v)I(v—1)

|

(0,1
2—v l
B(v=1)" B

XHTY (v=1)(co)* 1Ot (

(40

This exact analytical representation of the nonlinear
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(0,2)
HI [(co>”=1ﬂt]< 2-v 1)
Bv—1)' B
S g S{F Leep] 277 S
P R Ty e
X[(CO)V1Qt]S] (42)
s=—1-pu

By evaluating the first residues we obtain

1 e
<|(t)>=m[(v—l)(%) ot b
1 (14 (r-1)
| B(v—l))_[(CO) o] lr( B(v—1)>

14+2(v—1)

+[<co>”1m]2r( =T

|

+ @{[(Co)”_lﬂt]_3}], (43

stretched exponential la{86) can be used to investigate the

asymptotic behavior of the process for long times. We mak

use of a formula given by Braaksnhad],

H%‘(z)~2 Reg x(s)z°] as |z|—. (41

In Eq. (41) the residues have to be taken in the poists

=(aj—1-v)/A;, where j=1,..n. The meaning of the
symbols are given in the Appendix.
In our case Eq(41) is given by

s}

_ v—1 -1(v-1)
iy L= Do 0

[-(v=1)(cp)" "] ™"

here O is the Landau symbol. The asymptotic expansion
43) is reminiscent of the standard geometric series expan-
sion for 1/(1+x). This analogy is also reflected in the iden-
(1-ed)

tity
M (1,0

An alternative expression of the asymptotic behavior of
the survival function for long times can be derived by ex-
pressing the exponential in E§36) as a product of two
exponentials, expanding expg) in a McLaurin series, and
integrating the resulting expression term by term. We obtain

1,

(1+y) = 1,

“ra ™ (44)

BT (1(v—1)) Mm=0 m!

As expected, both asymptotic expansions lead to the same

result. For long times the average survival function has a

long tail of the negative power law type:

T B(v—1))

<|(t)>"‘ m [(V_l)(co)v_lﬂt]_ll(V_l)

as (v—1)(cg)” 10t— oo, (46)

It is interesting to compare the asymptotic |&#6) with the
integral kinetic law for a system without disorder for whic

p(k)=48(k—1Q). (47)
In this case the general relati¢B4) reduces to

{())=[1+(v— 1)(CO)V—1Qt]—l/(V—1)

r(m+ﬂ(y_1) as (v—1)(cy)’ 1Qt—oo. (45
|
~[(v=1)(co)" tt]~ V7Y
as (v—1)(Co)" *Qt—os, (49

that is, for nonlinear kinetics the shape of the tail of the
kinetic curve and the corresponding scaling exponents are
identical for ordered and disordered systems. The only factor
in which the influence of disorder shows up is in the propor-
tionality coefficients of the tail; for disordered systems this
h proportionality coefficient depends both on the reaction order
and on the scaling exponei expressing the self-similar
properties of the statistical distribution of the individual
channels. In contrast, for a linear process with static disorder
the scaling exponerg is the main parameter determining the
shape of the tail of the kinetic curve. The independencg of
of the scaling exponent of the tail for a reaction order differ-
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ent from one is an unexpected nonlinear effect for which we To express the average density of channglk)dk in
do not have a simple physical explanation. terms of the probability distributiof®(W)dW we express
Eqg. (49 in the form

V. RATE STATISTICS AND EXPERIMENTAL DATA

For linear rate processes occurring in disordered systemJ0 exp(ikW) P(W)dW= exp{ fo [expliky)— 1]P(k)dk]'
an important issue is the spectral kinetic analy$. Given (52)

an experimental kinetic curv@(t)), it is possible to evalu-
ate the statistical properties of the total rate coefficMAt  Since the total rate coefficieMW is a non-negative random
expressed by the distributioR(W)dW or the statistical variable, in Eq.(52) we can formally replace the Fourier
properties of the contributiok of an individual reaction transformation by a Laplace transformation. We introduce
channel, expressed by the average density of stft@glk.  the Laplace variabler= —ik and take the logarithm of the
The spectral kinetic analysis can be easily extended to norresulting equation
linear kinetics provided the value of the reaction order of the
process is known. o

We start our study of the nonlinear kinetic spectral analy- - In{ fo exp(— UW)P(W)dW}
sis by establishing the relationships between the probability
distribution P(W)dW of the total rate coefficient and the o
average density of statggk)dk attached to an individual = fo [1—exp(—ak)]p(k)dk. (53
reaction channel. We restrict our analysis to the case of in-
dependent reaction channels obeying Poissonian statisti
By combining Eqs(31) and(33) we arrive at the following
expression for the Fourier transfo(y) of the probability

P(W)dW:
J

Now we differentiate Eq(53) term by term with respect to
o, resulting in

i exp(—UW)WP(W)dW=“°° exp(—UW)P(W)dw}
0 0

z@<y>=exp[ f:[exmkw—l]p(k)dk}, (49
X

Jx exr(—ok)kp(k)dk}
0

from which, by performing an inverse Fourier transform and
passing from complex exponential to trigonometric func-
tions, we obtain

(59

By applying the inverse Laplace transform to E§4) we
arrive at a linear integral equation for the average density of

1 + o 0
P(W)= 5 f_ exp{—in+ fo [expliky)—1] statesp(k)dk,
W
kp(K)P(W—k)dk=WP(W). 5

><p(k>dk]dy fo p(kIPW=k) (W) (55

1 (= " The solution of Eq.(55) can be represented as an inverse

:;f exp[—j p(k)[l—cos{ky)]dk] Laplace transform
0 0

X cos yW+ f p(kysin(ky)dkidy.  (50) 1 [orie JO X~ o W)WR(W)dW
0 P(k)Zm .

. . . . . f exp—oW)P(W)dW
In particular, if the distribution of reaction channels is self- 0

similar and the average density of stapgk)dk obeys the

power law(35), the probability distributiorP(W)dW of the xexpko)do. (56)
total rate coefficient can be evaluated from EsQ) by in- .
serting Eq.(35) and evaluating the integrals ovier A remarkable property of Eq$49)—(56) is that they are

independent of the value of the reaction oraeit follows
1 (= B that they must have exactly the same form both for linear and
P(W)=— f exp[ —(yQ)? cos(—)] for nonlinear kinetics. We notice that Eg&0), (51), and
m Jo 2 (56) have already been derived in the literature for the par-
ticular case of linear kinetics, by means of a method that is
]dy. (51) different from the one used hef#&2].
If the reaction ordew of the process, the initial concen-
tration cq, and the survival functiogl (t)) are known, then
The distribution(51) corresponds to the nonlinear generali- at least in principle the distributioR(W)dW of the total rate
zation of the stretched exponential given by E@6) and  coefficient can be evaluated from experimental data. From
(40). Egs.(26) and (28) we obtain

B

X co% yW+ (yQ)ﬁsin( 5
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° P(W)dW the kinetic behavior of the Huber type emerges as a universal
<|(t)>=f 1+ (v—1)(cg)” Wi T (57)  behavior in the limit of a large number of reaction channels
0 0 with  nonintermittent  fluctuations. In addition, a
Equation(57) is a linear integral equation for the distribution "€normalization-group approach has been used to show that

P(W)dW of the total rate coefficient. This integral equation for intermittent fluctuations a more complicated kinetic law
can be transformed, through discretization, into a linear ma€Merges that includes the Huber kinetic law as a particular
trix equation that can be solved numerically. case. In our future research we intend to investigate the pos-

We notice that the positive moments of the total rate coSibility to extend these results to the more complex case of

efficient nonlinear rate processes. Another interesting problem is the

generalization for nonlinear processes of the method sug-
o gested by Allinger and Blumen for the study of linear rate
(W)= jo WPP(W)dW, m=12,..., (58  processes with dynamic disordei6]. Work on these prob-

lems is in progress.

can be evaluated from the time derivatives of the average

survival function(l(t)). By differentiating Eq.(57) m times ACKNOWLEDGMENTS
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APPENDIX: FOX'S H FUNCTIONS

VI. CONCLUSIONS In 1961 Fox defined théd functions in his studies of

In this paper we have suggested a statistical theory 0_$ymmetrical Fourier kernels as Mellin-Barnes path integrals
one-variable nonlinear rate processes in disordered systenig.the complex planésee, e.g.[13-15)
By using the method of characteristic functionals combined (ag.A,)
with a functional generalization of the theory of random Hg"q“(x)=Hg‘q” bp'Bp }
point processes we have derived analytical expressions of the (bg,Bg)
averaged survival functions for both static and dynamical o [, AD (az,A), (8, A)
disorder. The theory has been applied to the particular case =Hpq (b1,B1).(bs,B,),....(by.By)
of a self-similar distribution of independent reaction chan- S A
nels obeying Poissonian statistics. In this particular case we 1 s
have derived a nonlinear generalization of the well-known =5 JLdS x(8)%°, (A1)
stretched exponential kinetic law. This nonlinear stretched
exponential can be expressed analytically in terms of the Foyith the integral density
functions. We have investigated the possibilities of extend-
ing the spectral kinetic analysis to nonlinear processes. In the
particular case of independent processes with static disorder
we have derived a set of relations between the probability x(s)=
distribution of the total rate coefficient of the process and the
average density of states of the individual rates correspond-
ing to the different reaction channels. These relations may
serve as a basis for extracting information about the local andihe constraints for the parameters occurring in 88) are
global rate statistics from the experimental data. given in Ref.[15]. Note that the path integral in E437)

In the particular case of linear rate processes with static orepresents just the inverse Mellin transform of the kernel
dynamical disorder it has been shown in the literature thaj(s).

X

X

m
1

r'(b;—-B;s[l r'(1-a+As)
1

I1
; ; (82)
Il raa-b+B;9 Il I'(aj—As)

n+1

+1
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