PHYSICAL REVIEW E VOLUME 56, NUMBER 2 AUGUST 1997

Biased continuous time random walks between parallel plates

Albert Compté
Departament de Bica, Fsica Estadstica, Universitat Autnooma de Barcelona, E-08193 Bellaterra, Catalonia, Spain

Ralf Metzler
Department of Mathematical Physics, University of Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany

Juan Camacho
Departament de Bica, Fsica Estadstica, Universitat Autnoma de Barcelona, E-08193 Bellaterra, Catalonia, Spain
(Received 4 April 1997

The generalized scheme of continuous time random walks in moving flaid€ompte, Phys. Rev. B5,
6821(1997)] is applied to particles diffusing between parallel plates whose jumps are biased by a nonhomo-
geneous longitudinal velocity field. We observe that when the statistics governing diffusion is Brownian the
results are those of Taylor dispersion, i.e., enhanced longitudinal diffusion due to the coupling of the transverse
diffusion of the solute and the unidirectional velocity field. However, forml dights with infinite mean
waiting time we observe an anomalous dispersion approaching ballistic diffusion. We interpret this behavior as
a consequence of the coupling between the flow and the waiting time stafiSti€$63-651X97)01208-7

PACS numbd(s): 05.40:+j, 05.60+w, 02.50-r, 47.15—xX

I. INTRODUCTION in a fractal porous media subject to a pressure gradient, when
the diffusing particles get stuck in the fractal matrix for a
Continuous time random walkCTRW's) [1] are an in-  certain time before proceeding with a new jump. In this re-
teresting and useful generalization of Brownian randomspect, analogous concepts to our distribution of waiting times
walks, since they permit the analysis of the diffusion prop-have already been used in hydrodynamic dispersion in po-
erties of Markovian processes governed by statistics otheous media by resorting to the analogy with a resistor net-
than the standard Gaussian statistics of the central limit theawork [9]. In this paper we will bear in mind this kind of
rem (Lévy statistic3. This feature has been exploited in a experiments when applying the CTRW techniques to diffu-
variety of applications, ranging from conduction in amor-sion in a nonhomogeneous force figld our previous ex-
phous material$2] to turbulent diffusion in fluidd3]. We  amples the electric field or the pressure gradient, respec-
will here apply a newly proposed scheme of CTRW's intively). To use a general and more visual picture that
nonhomogeneous velocity fieldd4] to model the diffusion encompasses all the possible experimental instances of the
properties of Ley flights of infinite mean waiting time scheme, we shall imagine a fluid flowing between parallel
evolving within a nonhomogeneous force field and restraineghlates where a tracer is released and its diffusion studied with
to stay between parallel plates. This problem has an intrinsithe property that the tracer particles are not being continu-
interest since, as we know from standard Brownian diffu-ously dragged by the stream but stay still between successive
sion, nonhomogeneous velocity fields in a bounded fluiqumps.
might have essential influences on the dispersion of a solute To model our system we shall make use of a generaliza-
(Taylor dispersiori5]) or in other related topics such as the tion of the CTRW schem§4], which has been proposed to
rich variety of situations encompassed by generalized Tayloaccount for stochastic movements defined by a step length
dispersion[6]. The question of how such inhomogeneities and waiting time probability distribution function in a veloc-
might affect the diffusion of a [xy walker is therefore rel- ity field. In [4] this generalized scheme was applied to linear
evant as a basic problem and has simultaneously consideshear flows and the results were proven to be consistent with
able applied interest. Indeed, one of the first successful apghe standard results of Brownian diffusion the¢t@]. Sub-
plications of CTRW’s was to interpret the anomaloussequently the scheme was applied tory.dlights of infinite
behavior of the transient current in an amorphous materiainean waiting time and infinite mean square step length, re-
(xerographic filmg[2]. In that case, diffusion was biased by spectively, to obtain their dispersion in linear shear flows and
a homogeneous electric field; allowing it to be inhomoge-thus study their anomalous diffusive properties. At this point,
neous would result in a physical instance of the system weéhe scheme was seen to be consistent with the relation of
study here. Other situations where our model finds applicaCTRW's to fractional derivative§11,12, and with some
tion are separation techniques such as chromatography apgeviously proposed fractional diffusion equations in con-
electrophoresis, where long tail entanglement time distribuvective flows[13]. We plan to proceed here quite similarly
tions provide a better description than standard diffusiorbut we now use a different flow, namely, a laminar flow
theory[7,8]. This system may also be of interest in diffusion constrained between two parallel plates, and focus on the
longitudinal diffusion(namely, in the flow directionof the
tracer patrticles.
*Electronic address: albert@telemaco.uab.es As we mentioned, our system is very reminiscent of typi-
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cal elementary instances of Taylor dispersion especiallyvherer, is a microscopic time associated with advection in
when visualized as diffusion in a flow and, as we shall seehe sense that,v(x) is the mean drag experienced by a
here, the asymptotic behaviors do indeed coincide with theandom walker jumping from the point This interpretation
standard results in Taylor dispersion for Brownian diffusionimplies that, if the mean waiting time of the microscopic
but differ for Levy flights with divergent mean waiting time. process exists, then in order that the mean velocity of the
The main feature of Taylor dispersion is the enhancement afiragged particles at position 7,v(x)/ 7, coincides with the
the longitudinal diffusion, characterized for long times by anvelocity field v(x) at that point we necessarily havg=r .
effective diffusivity D ¢ proportional to the inverse of the However, if the mean waiting time is infinit@s happens in
molecular diffusivity, as was first noted by Taylff] in a  the Levy flights that we consider herghis argument is no
fluid in Poiseuille streaming through a cylindrical tube andlonger valid, since we now do not have a characteristic mi-
later generalized by Ari§14] to arbitrary cross section and croscopic time scale. In this case, the relationshiprpto
flow profile. Many works have subsequently treated theother microscopic times in the system will prove crucial for
question of the longitudinal dispersion of particles suspendedbtaining a well-defined macroscopic linfi].

in flows from a variety of points of view [15,16], and ref- The CTRW scheme can now be reformulated taking into
erences therejp and in some instances efforts have beenconsideration the dependences expressed in (Ep. if
made to incorporate in the system non-Brownian randonP(x,t) is the probability density of arriving at pointat time
walks, such as persistent random walks,17] with no  t andp(x,t) is the probability density of being at pointat
qualitative deviation from standard behavior. It must betimet, we have

stressed, however, that the situation dealt with in the present

paper is slightly different from the usual one in Taylor dis- _ Lt , L,

persion. Indeed, we consider here that the solute particles are P(x,t)= [ dx Odt (X=X, =%

dragged by the flow only during the jumps, but remain still

between successive jumps. The case where the particles are XP(x',t")+P;(x) (1), (2)

continuously dragged by the velocity field will be included in
the context of CTRW in future works. In this paper we find
that for Levy flights the asymptotic behavior for long times
has essential differences to standard Taylor diffusion and ap-
proaches ballistic diffusion, whereby Taylor dispersion iswhere we have introduced in E@) the probability® (t’) of
only present as a higher-order phenomenon, the leading terremaining at least a time& on the spot before proceeding
fqr long times correponding to a purely convective mechawith another jumd W (t) = f,drf;dt’(r,t’)] and we have
nism. incorporated the initial distribution function
The paper is structured as follows: in the next section wep, (x) = P(x,t=0) in Eq. (2). In Egs.(2) and (3) we explic-
briefly summarize the generalized CTRW scheme[4ff  itly suppose that the particles stay still between successive

Section Ill contains the details of the application of thejumps_ We now combine Eq&2) and(3) to get
scheme to a moving fluid constrained to move laminarly be-

p(x,t)=fotdt’P(x,t—t’)\I’(t’), (3

tween two parallel plates. The application to a particular ve- (., , L, L

locity profile is made in Sec. IV and in Sec. V it is shown P(X1t):f dx J’Odt P(Xx=x", 1=t X ) p(X', 1)

that for Brownian diffusion the usual mean square displace-

ment of the tracer particles in Taylor dispersion is exactly +P, (X)W (1), 4

obtained through this method. We proceed in Sec. VI to

study the behavior of lwy flights for that same velocity Of, in the Fourier-Laplace domain,

profile. To this aim we need to make use of some aspects of

the theory of Fox'H functions, which we quickly expose in p(k,u)= J dk’ ¢k, u;k—k")p(k’,u)+ P;(k)¥(u).
the Appendix. The conclusions of the paper are finally made

in Sec. VII. 5

Equations(1), (4), and(5) are the main equations of the
Il. CTRW IN MOVING FLUIDS generalized CTRW scheme and they are the starting point for

. L . . any application to particular forms of(x), as was done in
This generalization of CTRW to account for diffusion in a [4]ywit?1plinear sheal? flows. o)

velocity field is presented in more detail elsewhpfé but
we give here a short summary to present the scheme which
we shall later apply to model our system [#] it was argued
that in a velocity fieldv the distribution of step lengths of the  The system under study is a solute suspended in a fluid
random walker¢ gets shifted proportionally te with re-  constrained between two parallel infinite plates and allowed
spect to the distribution of step lengths in a resting flid  to flow laminarly in one direction. Let us suppose that these
Furthermore, in an inhomogeneous velocity fiek) the  plates are parallel to th&Z plane and that they are equidis-
probability density$ of a length of step with waiting time  tant to the origin of coordinates and separated a distance
t will crucially depend on the velocity of the fluid at the 2a along they axis. The flow direction will be chosen to be
starting point of the jumpx so that we have the x axis. The problem is therefore essentially two dimen-
sional and we shall henceforth suppress all references to the
&= (r,t;x)=p(r — 7v(x),1), 1 variablez for the sake of clarity. To impose the nonpenetra-

Ill. CTRW BETWEEN PARALLEL PLATES
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bility at the plates we could imagine a system composed by 1 mar

infinite repetitions of the real system along thedirection pm(Ky,U)= E[P(kx,kfz—a,u)

(method of images Nevertheless, since we will eventually

want to apply our scheme to iz flights and it has been mar

shown in[18] that the method of images is not applicable to +(—1)mp( K ky=— 55U

Lévy flights with an absorbing boundary, we will here pro-

ceed along a more intuitive path, although essentially equiva- |f the fluid is at restp(y) =0, Eq.(8) can be easily solved

lent, to justify its application when we have two reflecting for p,,, by using the formuld6). For more complicated flows,

barriers instead of an absorbing boundary. though, we still cannot obtaip,, from Eq.(8). We first need
Following [18] it is our aim here to express the density to calculate the probability densify of the random walker

distribution function of the walker between the platesin the unfolded space with periodic velocity field. We take

p(X,y,t) in terms of the unrestricted density distribution formula (5) where, following Eq.(1), ¢ is given by

function in an infinite mediuniP(x,y,t), which for a walker

evolving on a resting fluid is known to be given in the

Fourier-Laplace domain by the formula,19]

®

d(k,uk' )= z/;(k,u)f dx’ e K X'gminakvix) (g)

¥(u) in terms of the velocity field/(x"). Sincev(x’) is directed

m' (6) along thex axis, depends only oy, and is periodic of period
4a we may express the exponential appearing in @gin

with P;(k) the Fourier transform of the initial distribution terms of a Fourier series as

Pi(x)=P(x,t=0).

We now argue that the reflecting boundariesyat—a
andy=a might be obtained by folding the plane along the
linesy=(2n+1)a for all integern onto a single stripe of
width 2a, centered ay=0 and of infinite length along the where
x axis. It is also necessary to build up a velocity field for the
whole space in terms of th@arbitrary) velocity profile in the d. (k)= ijza e imakw(V)gminmyl2agy,
stripe —a<<y<a, for our purposes thig(x) must be peri- T 4a) g, '
odic of period 4 and symmetric with respect to the walls.

We now only need to sum up at each point of the originalThis last expression can be transformed, using the fact that
stripe the contributions to the density distribution function ofv(y) is symmetric across the walls(y+a)=v(a—y) and
each folded stripe: v(y—a)=v(—a—y), to obtain an integral fos (y) over the
interval —a<y<a, where no further restrictions are im-
posed by the geometry on the functional relationv (y),

P(k,u)=Pi(k)

e imak V(X') = g—imakev(y") = E dn(kx)einwy’&a,
n=—ow

o0

p(X,y,t)= 2 [P(x,4an+y,t)+ P(x,4an+2a—y,t)].

n=-—ow

d,(ky) = ifa efirakxv(y)[efinwy&a_’_ (— 1)neinwy/2a]dy.
Applying the Fourier transform we get 4a) -5 (
10

©

p(ky ky )= > [€42"P(ky Ky 1) We now introduce this result into Eq&®) and(5) to get

n=—w
N - n
+e7ant2kp(k, k)] (7) Pk, ky ,U)= (ks Ky, U) > dn(kX)P(kx,ky—z—Z,u)
n=-—w

To carry out the summations explicitly we use the identity (WP (k, k)
i x 1y /)y

[

2 e ikm_ o—iki2 E (—1)™s| m+ L which combined with Eq(8) yields the following coupled
m== o m=— o 2m set of linear equations for the coefficients:
so that Eq.(7), after inverting the Fourier transform, turns nar *
into pn(ky,u)= lﬂ( Ky 'ky:Z ,U) mzz_ dm(Ky) pm—n(Ky,U)
= . 1 mar ¥(u) n
— immyl2a___ - -
P(X.y,t) m;—w e 4a P kay 2a 1 +H[ Pi<kX!ky_ 2a
m B mar n nr
+(—1) P X,ky——z,t s +(—1) Pi kX'ky:_E s (11)

where we recognize a Fourier series of peried donsistent where use has been made of the relation
with the periodicity of the velocity profile which we use to d_,(k,)=(—1)"d,(k,), obvious from Eg.(10). Equation
calculateP(r,t). We shall henceforth work with the Fourier (11) is now the equation to be solved for a given velocity
coefficients ofp(ky,y,u), field, a given initial conditiorP;(x), and a given step distri-
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bution . However, for the case of a symmetric velocity field 1 (a
v(y)=v(-y) and a symmetric initial conditon  dn(Ky)= EJ EXF{ — i TaKyv
Pi(x,y)=P;(x,—y), Eq. (11) can be somewhat simplified @

by observing that the coefficientt,(ky) in Eq. (10) vanish =i"e 7% g (— k), (15)

for unevenn. It is then easy to see that the coefficients

pn(ky,u) vanish for unevem as well, and only the coeffi- whereJ,(x) is the Bessel function of the first kind of order
cientsp,(Kky,u) for evenn remain to be computed from Eq. n and argumenk. Even though the coefficientd5) might
(112). Since we are now in a case of higher periodi¢figriod  seem complicated, they have an important characteristic
2a) we can redefine the nonvanishing Fourier coefficients tavhich will be very useful in our further developments: they
simplify the notation asl;=d,, andp,=p,,, are of orderk} ask,—0,

e—invy/ady

Ty
1+ cos—)
a

, 1(—iro\" )
dn(kx)zm 5 ky| 1—i7q0ky

na -
pé(kx:u): ¢’< Ky vky:?:u> m:z_m drl*n(kx)p;n—n(kx ,u)

2n+3 ov?
L Tl a4 & (16)
nw
+—\If(u)Pi(kx,ky=— . (12
2a a To understand the usefulness of this fact we must focus on

our main objective, which is to establish the mean square
P 2\ _ /2 2 ;
Equation(12) can be rewritten taking into account that, be- displacementox©)=(x°) —(x)* averaged along thg direc-
cause of the symmetry in the velocity, the distribution func-tion- To this aim we will need to compute
tion must also be symmetric and therefere,=p;,,

o a dpg(Ky,t)
(x)zf dxxf dyp(x,y,t)=2aipo—X
—o0 —a &k)( kx:0
! /N . ' ' ' \I, :2 ip; t 1
pn:lﬂ(n) dopn+m2:1 dm(plm—n+pm+n)}+ﬁpi(n)v a|p0, ( )1 ( 7)
(13 w a 3%p(Ky,t)
<X2>=J dxxzj dyp(x,y,t)= —ZaP(;sz
e —a -
where we have dropped the explicit dependence of the vari- ” K0
ables for they can easily be inferred from E42) and the =—4ap{ A1), (18
subscript ) indicates thak, is to be replaced by#/a in '
the corresponding function. where byp{ (t) and py(t) we denote the coefficients of

The study of the solute’s longitudinal dispersion will need k>2( andk, in the Taylor series representation gff(ky K, ,t)
the evaluation of the first moments of the averaged concengsk .0, respectively. Of course at this step we are assum-
t_rationpo(x,t)_. To proceed, two things are therefore needed'1-ng the analyticity inx of p(x,y,t) and we are therefore
first, the precise form odl(Ky) or dy,(k,) must be computed  explicitly excluding from our analysis CTRW's with nonana-
from the velocity fieldv(y) and introduced into Eq11) or |ytic step length distributiorfsuch as CTRW's with infinite
Eqg. (13); and secondly, a particular statistics for the jumpsmean square step lengttwe are thus only interested in the
¥ (r,t) must be introduced in our equations. In the next secfjrst terms of the Taylor series fy(k,,t) aroundk,=0 in
tion we find the equations for the averaged denggyfor a  rder to obtain the required quantityx?). For this reason
conveniently chosen velocity profile, and in the subsequenf,e can proceed in a perturbative manner to solve to the
sections two statistics for the stochastic movements of thgywest orders ok, Eq. (13) for n=0, and the property16)
solute are analyzed: the standard Brownian case angt Le ot oy coefficientsd! (k,) will be of extreme utility to trun-
flights with infinite mean waiting time. cate the infinite sum in Eq13). Let us first write the first

orders ink, for the quantities of interest as

IV. EQUATIONS FOR THE AVERAGED DENSITY pg pé(kx,U)Zprﬁ,o(u)+pr'1,1(U)kx+PF],z(U)k§+ o

The choice of the functional form af(y) is crucial to
permit the analytic study of Eq11). We choose the sym- B (K, U) =y o U) + Py 2(U)k§+ oo
metric velocity field ' '

drq(kx):dr,nnkg_l—dr,1,n+1k2+l+dr,1,n+2k2+2+ T (19)

v(y)=v

a
1+ COS?y), (14)  where we have supposed that we start from an isotropic dis-
tribution of stepsy in the fluid at rest so that we have
¥ny1=0. Note that in these expansions the second subindex
wherev is the mean velocity of the flow. We look for the always indicates the order ky of the corresponding term in
coefficients of the Fourier series of éxprko(y)] for pe- the series. We now write the relevant equations from Eq.
riod 2a, (13) for the orders of interest: 0, 1, and 2,
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Pn.o= ¥(m,090,0Pn0t %a Pitn,0

P
Pna= ¥m),090.00n1F ¥(n),090.1Pn.0F Y(m,0d1.1(Pr+ 10T PR-10 T %a Piny1s
Pn2=¥n).090.00n 2 ¥in) 090 1201 (¥in) 090 27 ¥(n)280,0 Pn.ot P(n)0d11(Pa+ 1.1+ Pr—1.0) + Yin) 081 Prs 10T P10

'
+ Py, 092APns 20t P20 T %a Pin,2s

where we have not written the dependencies of each function but they can be inferred frofdZEgsd (19). Now, to
computepg ; and pg ,, we shall need

1 v

p”'(’:l——l//(nmﬁpim).o' n=-2-1,...,2

. Yiny,090.10n01 Yim 01110t Pr-1.0 +(W128) Py 1 N

= =-1,0,1
Pn1 1— lﬂ(n),o
, Po).0901001F (¥0),0d0 .27 ¥(0). D oot 28(0),081,1P1,1F 24(0), 081,20 1,0F 2¥(0) 082,202,601 (V/28)Pin) 2 (20)
p0,2 1— 'r//(O),O ’
|
where we have set;,=1, as is obvious from Eq16), and ) a? o 202 ¢
we have used that,=p’ , for symmetric .vel.o<.:i.ty fie.lds.. Wg (%)= —4apg A U):ZU 1-¢ TR
now only need to choose a symmetric initial distribution
Pi(x,y), define our spatially isotropic and analytic % §+2 ¢ . ¢ 23)
W(x,y,t) for the particular kind of CTRW which we want to 2 Tl-e emeiat_

study, and solve the coupled system of linear algebraic equa-

tions (20) to obtainpg ; andpg ,. In the next two sections we  For Brownian diffusion, we now introduce an exponential
do this for Brownian diffusion and for lwy flights, respec- decreasing distribution of waiting times(t) =7~ lexpt/7),
tively. For each case we shall also consider two differentvhich upon a Laplace transform turns into
initial distributionsP;(x,y). @(u)=(1+ur) 1. Notice thatr is now the mean waiting
time between steps, so that one hgs 7 as was argued in
Sec. Il. By taking the limitr—0 and o0—0 and keeping
V. BROWNIAN DIFFUSION D = ¢%/ 7 constant we obtain the macroscopic res(is and
(X?) (henceforth we write capita{ to indicate that the mac-
We choose a Gaussian distribution of step lengths for oufoScopic limit has already been taken on the corresponding
random walker: quantities with lower casg), which retain only the essential
properties of the random walk and thus discard all spurious
behaviors possibly dependent on the model chosen. We fi-

ke k, ,u)=<p(u)exp[—02(k§+k§)], 1) nally invert the Laplace transform to get

(X)(t)=vt,

¢(u) being the Laplace transform of the distribution of wait-
ing times, and we solve Eq20) for two different initial
distributions: one homogeneously distributed on the line
x=0 for —a<y<a and one initially concentrated at the
origin. For the first of these initial conditions we have The mean square displacement is now computed from these
P,(x)=(1/2a) 0(a—y|)8(x), O(x) being the Heaviside results as
function. Upon Fourier transformation it is found that
Pi(ny(Ky) = 6n 0 and the systeni20) is readily solved to get

2a2) UZa4

T 2% 4 -w?Dta?
’772D t 71_4D2(1 e )

<x2>(t)=v2t2+(2D+

(8X)=(X?) ~(X)?=

20+ 15,
7D

2,4
., TV @ v-a _ +2Dt/a2
(x)=2aipg,(u)= % g (22) ~ —agz(l-e TP, (24)
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which is exactly the same functional relation, even for the 2Dt+0O(t3), t<a?/D
numerical constants and the transient terms, that is obtained o 2.2
by different stochastic methods in Taylor dispersion for the (AX%)= 2a
velocity profile (14) [20]. Asymptotically we now find the mD
typical behaviors of the mean square displacement for small

and large times, which show the standard Taylor diffusionWe see that the asymptotics prove to be independent of the

initial conditions(as was expectedand these initial condi-

2D+

t+0(1), t>a?D.

results: . . J .
tions are only relevant in the derivation of the transient terms
1 for (AX?) in Egs.(24) and(27). It is now worth noting that
2Dt+ Evzt2+ o(t?), t<a?/D for Brownian diffusion our model, designed for particles not
(AX?)= being continuously dragged by the fluid stream, yields ex-
232 t>a2/D actly the same results as the traditional computations for lig-
2D+ 2D t+0(1), a’lb. uid systems in Taylor dispersion. This point becomes clear if

we focus on the waiting period between successive jumps,
For the other initial distributio?;(x) = 5(x), we proceed this being the only difference between the two models. If we
analogously from Eq(20) with now P; (k) =1. The cal- have a finite mean waiting tir_’ne _be_tween successive steps
culations to obtairpg , andp , are somewhat more intricate @nd we take the macroscopic limit as~0 we are effec-

than in the previous case and yield the following expression&vely making the waiting period between steps vanish on
for the quantities in which we are interested: average, whereby no differences should arise from models

only differing in the behavior of the particles during this

® emlo’la? 1 interval of time.
<X>:7'av_ 25722 o (25
e - 1-¢ VI. LE VY FLIGHTS
) a® o We now turn to the question of determining the longitu-
(X >:2j 1-g dinal dispersion for Ley flights with infinite mean waiting

time evolving in a fluid constrained between parallel plates at
y=—a andy=a and subject to the velocity field.4). This
point is easy after the developments of the preceding section
if we take a Ley flight of infinite mean waiting time and a
Gaussian distribution of step lengths as in E2{l), where
now

2 2 padnlalla?_ 2. 272028
TaU 56 o —Q e o _4(,0 eZﬂ'zo'Z/aZ

2 2/.2 2 2/.2
2u (efrrrr/a_(P)Z(eM'r(r/a_(P)

2 2/.2
+T§vz[(3+4cp)e” M I
2u| e’y 1-¢ (1-¢)°

(26) e(u)=

We now introduce the distribution of waiting times _ . . .
o(u)=(1+un) ! and take the macroscopic limit as we did This choice allows us to make use of all the previous calcu-
before. Reverting again to the time representation through al[qtlons up to Eqs.(??) and (2.3.) or Eqs.(_25) and (26), de-
inverse Laplace transform we get pending on the initial conditions. We introduce there our

¢(u) and take the macroscopic limit—0, r,—0, 0—0

72 keepingD = o?/7” and A=r,/7” constantA must be kept
1—exp — gz—Dt ,

m,0< y<l1. (28

2
va
(X)(t)=vt+ =y as a macroscopic parameter associated with convection with
dimensions of time to the power-1y. As it was argued in

[4] the introduction of the constart seems to be necessary

2,52

(X3)(t)=v22+| 2D+ Uza 1— Ee‘ szt/az) t to obtain well-defined _eq_uations free of aII_ microscopic pa-
7D 3 rametersr, 7,, ando; it is nevertheless still unclear what
3 234 8 1 physical foundations might support it. We first apply this
_2 % — _g-mDUa’_ ~ o-4m’Dtia?| procedure to the case of a homogeneous initial distribution
4 7D 9 9 on the segment-a<y<a of the y axis, that is to say we

_ introduce Eq.(28) in Egs.(22) and (23) and then take the
from  where the mean square displacementyacroscopic limit to get

(AX?)=(X?)—(X)? of a Brownian random walker initially

concentrated at=0 in Taylor dispersion is readily derived, (Xy=Avu 771 (29
2,52 2,4
o0 v-a v-a 7 8 _ #2Dt/a2 o o 1
= |t ——| = — — 2y _ 14 pA2,2,—2y-1
(AX5)=|2D+ 5 |t— —a52( 7~ 3© (X3)=2Du" "1+ AZy 2y 2l 24 NGt
L (30
+ e*Z‘ITZDt/aZ_ - —472Dt/a? (27)

12 ' We now need to apply the inverse Laplace transform to these

expressions. To this aim the only difficulty is to invert the
Hence, the behavior for long and short times is found toexpressioru™"*~(1+Ku~7) "1, which appears in Eq30)
be for n=2. We express it as a geometrical series
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Maitland’s generalized hypergeometric functigi’; [22].

ufnyfl
qu*”V*E (—Ku=—7mm To come up with this result and to obtain a unified expres-
u m=0 sion, we make use of the properties of Fold'sunction[22],
; ; ; a brief summary of which is given in the Appendix. Intro-
and now invert it term by term to obtain ducing the Fox functionsAl) and(A2), we arrive at
u_n'y—l o (_Kt’y)m Avty 1.1
| I Pt P S B A X)(t)= =——{ 1+ (y+1)HY
£ 1+Ku7) “o T(my+ny+1) 0 T(y+1) 12
2
—tE, 1,0 (—KLY), (31) D y‘(o'l) ]
011 1 - 1 '
where in the last equality we have identified the generalized ©D.(=v)
Mittag-Leffler functionE,, 5(z) [21]. Applying now this re- 2D
sult to Egs.(29) and (30) we obtain 2\ (1) — y 2. 2,2y
(X?)(t) F(y-i-l)t +2A%%t T2y D)
Av
_ 7
3747 a? T {(0,D,(-2y,7)
X2y = 2D t7+ 2A%° t27 2 1(0,1
= T T2y L4 ié{D—Z—tV( D
D2 3 M a® [(0D).(=2y.)
r
+A2v2t27E%1+27(— 2 ty) h ;{DW o (-1 )
Zol0n.(=2y.m))

in terms of the Mittag-Leffler function. To compute the mean
square displacement we now apply the definition
2\ 2 2
(AX5=(X")—(X)" and get We can now compute the mean square displacement for the
particles initially concentrated at the origin and get

1

2D
(AX2)=—t7+A202t27[ - 5 2D 1
I'iy+1 r'2y+1 I'(y+1 2y~ v 2,,2¢2y _
(y+1) (2y+1) I'(y+1) (AX?) FrD +A%% T2y5D)  T1?
D2 y
+E7,1+27 __a2 t . (32) _}_le% D7T2 , (0’1)
3 (0,1),(—2v,7)

We now study the other initial condition, namely, a pulse
initially concentrated at the origin. We introduce our distri- 8 1 D7T (0,1
bution of waiting timeq28) into Egs.(25) and(26) and take +§H =z v (0,2),(—27,7)
the macroscopic limit. We obtain, in the Laplace domain,

+2H ;{DW t ‘(_11)
Ry=Aou™ " N1t mr =y (33 (0,9,(-27,7)
2 A2U2 B 2 ;{D’ﬂ (0 1)
(X23y=2u"2r" DU+ A% 2+ = 31+4DZad)u" [(y+1) (0,1),(—v,7)
4 A%y? A%y? D7 [0 2 -
31T Da%adu 7 [1+ (Dadad)u ]2 : 0.0, (=yy] |’ 39

34
34 To compute the asymptotic behaviors of the res(88®

By using now the resul31) it is easy to invert Eq(33) but  and(35) we need to expand conveniently thésefunctions
to invert Eq.(34) we need another special function, namely,as we show in the Appendix, and we obtain

2D a
v 2,2 ! 2y 3y t<(a?D 172 1/7’
F(yr1)t TAY (F(Zy-i—l) Forne) O, @D
(AX?)= (36)
2.2,2
722 2 2y /2D+A vea 4+0(1), t>(a2D lm 2L
T(2y+1) T(y+1)? T(y+1)\ D2 ’ ’
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where the coefficienta; andb; depend on the initial condi- We can corroborate this interpretation of the long-time
tions and are hera;=3 andb,;=1 for a homogeneously result(36) through some easy calculations involviegclu-
distributed(in the axisx=0) initial condition anda,=8 and  sivelythe convection of the tracer particles: let us neglect the
b,=4 for an initial pulse at=0. We observe in Eq(36) transverse diffusion of the particles so that the particles ad-
that, for long times, Ley flights (y+1) might present su- Vvance on average the same quantify whenever they
perdiffusion(if 1/2< y<1). Therefore we encounter a para- IUMp- We then have the following expressions for the mean
doxical situation, where a stochastic mechanism which intro&nd the mean square displacement, respectively,

duces a delaying ternfLévy flights with infinite mean =

waiting time turns out to bring about superdiffusion when OO0 =7wN(), (37
constrained to move between parallel plates and subject to 2N 2 23

the nonhomogeneous velocity fiel@4). A similar paradox () (1) = T NA(D), (38)

appeared if4] when this Ley flight was evolving in @ \hereN(t) stands for the number of steps that a particle has
purely sheared two-dimensional flc_)w. It_can. neverthelgss beken up to time, and the bar over it indicates the average
argued that an analogous paradoxical situation arises in stagver all the tracer particles diffusing in the system. We de-

dard Taylor diffusion, where the smaller the molecular dif-note byp,(t) the probability that a tracer particle has per-
fusion coefficientD the larger the effective diffusion rate formedn jumps before time,

along directionx. In the latter case, this is not after all para-

doxical if one follows a particle near the maximum of the pn(t)=ftdt’ft_tldt”- N JH’—""‘(nfl)dt(n)(p(tr)
velocity profile (herey=0) and one realizes that the closer 0 0

the particle remains to this maximum the farther it travels

along the directiorx and, at the same time, the particles near X(t"): @MW (t—t' —t"— - —t),
the minimum of velocity remain more stagnant the close
they remain in their diffusive motiofil6]. It is therefore
logical that a small molecular diffusion rate leads to a large pPr(W)=T(u)[e(u)]".

longitudinal Taylor diffusion rate. However, the mechanism o o

that accounts for the superdiffusion in Eq36) for  The quantitieN(t) and N?(t) are now easily seen to be

Tor, in the Laplace domain

t>(a’D 72 is now of a different nature and stems w 1 ()
from the fact that our diffusing particles stay still between N(t) = no.(t) = N(u)= = ety
successive jumps and are not being continuously dragged by ) ngo Pa(t) () ul-—oe(u)’

the stream. We encounter arbitrarily long waiting time be-
tween the biased steps of the walker, which means that some  __ — o(u) 1+ ¢(u)
particles remain forever stagnated after a finite number of N*(t)= Z npy(t) = N*(u)= U 1= oW’
steps whereas others keep jumping in the flow. This leads to n=o ¢ (39)
an enhancement in the dispersion, which does not have any-
thing to do with the transverse diffusive motion and this iswhence it is now straightforward to calculate) and (x2)
clear in Eq.(36), where the leading term for long times does for our Levy flights using Eq(28) in Egs.(39) and introduc-
not depend o but only on the velocity and the param- ing the results in Eq€37) and(38). The results obtained are,
eterA. The next-order term, though, does indeed contain thafter the corresponding macroscopic limit,

coupling of convection to the diffusive transverse motion,

which is characteristic of Taylor dispersion. The mechanism (X)= Av tv

of Taylor dispersion is therefore present but does not repre- r(y+1)

sent the dominant order for long times. This interpretation
also explains why the dispersion for long times in B2f) is

©

2\ 2..2¢2
accomplished by means of a new ternt4# and not through (X >_r(2y+ 1) AT,
an increase of the effective diffusion coefficient in front of
t”. For if an appreciable number of particles remains fixed ) » 2 2 1 2y
after a small number of steps and the rest keep moving with (AX5)=A% T(2y+1) T(y+1)7? 7,

(X)t”, the dispersion must at least increase as

(AX?)ct2”, in a sort of “ballistic” way. The fact that the which are in absolute accordance with the leading terms for
average displacement of the particles does not increase liteng times in Eq.(36) and the previous expressions fof)
early with time, as should appear to be logical after a suffiand(X?). This therefore makes it clear that for\yeflights
ciently long time, now has an easy explanation since thisvith divergent mean waiting time the main dispersion
appreciable portion of “frozen” particles slows down the mechanism is convection decoupled from diffusion and we
advancement of the center of mass of the cloud of particlesherefore do not properly have Taylor dispersion for suffi-
A particular physical picture of this behavior is provided ciently long times.

quite clearly by macromolecular separation in gel electro- It must be noted here that such a convectively originated
phoresis, where the motion of the macromolecules can bdispersion has already been observed in gel electrophoresis
modeled as a succession of periods of advancement intefi8], and it has been interpreted through the modeling of the
rupted by periods of immobility due to the entanglementkinetics of the transition between the adsorbed and mobile
with the gel matrix8]. phases in terms of a waiting time distribution function with a
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finite first moment and divergent varianEg. It is straight- As a conclusion, in any experimental setup in accordance
forward to prove that, if the waiting time distribution|ii] is ~ with the scheme considered hefelectronic transport in
taken as here, the results agree perfectly with ours as long asnorphous materials, diffusion in fractal porous media, in-
we identify 1 as the first-order rate constant of the transi-teractive dispersion in gel electrophoref$$, etc) the prop-
tion from the mobile phase to the adsorbed phase. Corerty of microscopic scale invariance in time of the underly-
versely, our model yields the asymptotic results[@f as  ing diffusion process should dramatically manifest in the
well, as is readily seen by substituting their waiting time longitudinal dispersion of the tracer particles for sufficiently
distribution in Eq.(39). Both from the random walk formal- long times. )
ism in this paper and from a kinetic approach[if it is In this paper we have not applied the scheme toyle
therefore concluded that, when a long tail waiting time dis-flights with infinite mean square step length, because we in-
tribution is present, the main dispersion mechanism is neithesur some mathematical difficulties when defining the disper-
diffusion nor Taylor dispersion but pure convection. Thussion of the random walker, much as it happened4ih but
the long-time analysis of such a system is most easily pemwith the additional difficulty of not having now a symmetric
formed through the statistical considerations leading to Eqgeroblem in thex direction. Because of the intricate math-
(37) and (398). ematics involved, we will include the analysis of this situa-
tion in a future publication.

VIl. CONCLUSIONS
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move between two parallel plates. As is customary in

anomalous diffusion problemil2,23, the results involve
Fox’s H functions and this permits the derivation of both the
long-time and the short-time limit$>(a?D 7 2)¥” and
t<(a’D 'm~ 2, respectively. This long-time behavior is  Fox's H function is defined via a contour integral of
especially remarkable because it presents an essential devidellin-Barnes type[22]. Originally applied in statistics, it
tion from Taylor dispersion results, where the long-timearises in the physical sciences naturally in the solution of
mean square displacement only differs from diffusion in alinear differential equations of fractional ordgt2,23,24.
resting fluid through an enhancement of the diffusion coeffi-To avoid unnecessary confusion, we omit the explicit discus-
cient. In this generalized case, though, the leading term fosion of the mathematical definition and properties of Fox’s
long times is only velocity dependent and increases’4s H function. The interested reader may find the essentials in
instead oft”, the temporal characteristic dependence ofyLe [12,22-24. At this point it suffices to note that the Fox
dispersion in a resting fluid. We therefore encounter a “bal-function is a very general class so that Laplace and Fourier
listic” kind of diffusion asymptotically independent of the transforms of anH function only change its parameters.
diffusion constanD ast—o. This strange behavior, as we Similarly, the fractional derivative of ahl function is just
have argued in the preceding section, must be explained kynotherH function. In addition, aH function is computable
different arguments than those interpreting the enhancement; use of its series expansion.

of the dispersion coefficient in standard Taylor diffusion  |n the mathematical manipulations following E§3), the
[16]. Now the arbitrarily long waiting time between biased corresponding expression in the Laplace domain can be iden-
steps of the random walker facilitates the advancement odfied with a simpleH function, which can easily be Laplace
part of the particles jumping in the direction and the sepa- inverted due to the well-known theorems fbrr functions
ration from the “frozen” particles, which enter arbitrarily [24]. Consulting the tables if22], one can identify the ob-
long waiting periods. Therefore the presence of a welltained results with either the generalized Mittag-Leffler func-
defined microscopic time scale, the mean waiting time betjon E..s(x) or Maitland’s generalized hypergeometfior

tween steps, abruptly marks the transition from a procesgyright's) function oV 4(X). These identities have the follow-
diffusing superdiffusively to a standard diffusive regime. A ing form:

similar situation was encountered [ih2]. It is important to

note at this point that this behavior, anomalous in the frame

of Taylor dispersion, is only due to the fact that in our sys- (0,1)

tem the particles remain still before proceeding with a new Eaﬁ(—x)=H%;§{x‘ } (A1)
jump_ (0!1)!(1_B!a)

Professor David Jou, Professor Jd3asas-Vaquez and
ofessor Theo F. Nonnenmacher are gratefully acknowl-

APPENDIX



1454

(81AD (@2 A0)es (BpRp)
(blvBl)!(bZ!BZ)v"'! (bQ!Bq),

) { (1—a;,A)),(1—a,,A,), ...,(1—ap,Ap)}
=Hy% 4| x

PAa*1™(0,1),(1-by,By), ... (1-Dbg,By)

p=q

(A2)
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P (23 '—x}—Hlé{x(_l'l)
Y a+ny,y T MO, (—ny,y)
Z(—1)M(m+1)x™
:mzo FAtntmy A

For the calculation of the asymptotic behavior, we can now On the other hand, fox>1 large, we find the following

employ the standard properties dffunctions and its series
expansions.
For a small argument<1, both Fox functions can be
expanded in a series as follows:
E -x)=H} ] x (0
rend TOZHE 0,1),(—nyyy)

1 Hl’é{ (n,1/y) }
~ 1 % (n,L),(0,)
(—1)™"

m=0 ['(A+(n+m)y)’

8

asymptotes:
(0.1 I 1
1,1 o
ek (0,1,(=ny,y»)| TA+(n-1)p)~ (A4)
(_111) ] 1
1,1 o
H]_,2 X (O.l)!(_n’y,’y)_ I‘(l_i_(n_z)‘y)x ’ (AS)

whereby higher orders may be neglected for our computa-
tions.
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