
A W RICHARDS

Modern ergodic theory
There is much more to the mathematical study of
Gibbs ensembles than the question of whether or not
time averages and ensemble averages are equal

Joel L Lebowitz and Oliver Penrose

The founding fathers of statistical me-
chanics, Boltzmann, Maxwell, Gibbs
and Einstein, invented the concept of
ensembles to describe equilibrium and
nonequilibrium macroscopic systems.
In trying to justify the use of ensem-
bles, and to determine whether the
ensembles evolved as expected from
nonequilibrium to equilibrium, they
introduced further concepts such as
"ergodicity" and "coarse graining."
The use of these concepts raised
mathematical problems that they
could not solve, but like the good
physicists they were they assumed that
everything was or could be made all
right mathematically and went on with
the physics.

Their mathematical worries, how-
ever, became the seeds from which
grew a whole beautiful subject called
"ergodic theory." Here we describe
some recent (and some not so recent)
developments that partially solve some
of the problems that worried the
Founding Fathers; these results appear
not to be widely known in the physics
community, and we hope to remedy
the situation. (For a more thorough
review of the subject, see reference 1.)

Joel L. Lebowitz is chairman of the physics
department at the Belfer Graduate School
of Science, Yeshiva University, in New
York. Oliver Penrose, a member of the
mathematics faculty at the Open Universi-
ty, Walton, UK, worked on this article while
on leave at the Applied Physics Depart-
ment, Stanford.

At the top of the page we see Boltzmann,
Maxwell, Gibbs and Einstein, the "Founding
Fathers" of statistical mechanics.

Although results are not yet well
enough developed to answer all the
questions in this area that are of inter-
est to physicists today, such as the der-
ivation of kinetic equations or the gen-
eral problem of irreversibility, they do
make a start.

Ergodic theory is concerned with the
time evolution of Gibbs ensembles. It
has revealed that there is more to the
subject than the simple question of
whether a dynamical system is ergodic
(which means, roughly, whether the
system, if left to itself for long enough,
will pass close to nearly all the dynam-
ical states compatible with conserva-
tion of energy). Instead there is a hi-
erarchy of properties that a dynamical
system may have, each property imply-
ing the preceding one, and of which
ergodicity is only the first (see figure
1). The next one, called "mixing,"
provides a clear-cut formulation of the
type of irreversible behavior that peo-
ple try to obtain by introducing
coarse-grained ensembles. At the top
of our hierarchy is a condition (the
Bernoulli condition) ensuring that in a
certain sense the system, though
deterministic, may appear to behave as
randomly as the numbers produced by
a roulette wheel.

Some of the mathematical results we
shall be discussing have established
the positions of some model physical
systems in this hierarchy. Of particu-
lar interest to physicists is the work of
Ya. Sinai2 on the hard-sphere system,
which shows that this system is both
ergodic and mixing. We shall also dis-
cuss some work by A. N. Kolmogorov,

V. I. Arnold and J. Moser on systems
of coupled anharmonic oscillators,
which shows that, contrary to a com-
mon assumption, these systems may
not even reach the "ergodic" rung on
the ladder. (G. H. Walker and J. Ford
have described this work for physi-
cists.3)

All the physical systems we shall
discuss obey classical mechanics, have
a finite number of degrees of freedom
and are confined to a finite region of
physical space. The reason for our re-
striction to classical mechanics is that
a finite quantum system can never ex-
hibit any of the properties higher than
simple ergodicity in our hierarchy (al-
though, of course, a large quantum sys-
tem may approximate closely the be-
havior characterized by these con-
cepts). This is because the spectrum
of a finite quantum system is necessar-
ily discrete, whereas for a finite classi-
cal system the spectrum (of the Liou-
ville operator) can be continuous. The
reason for our restriction to finite sys-
tems is that very little is known about
the ergodic properties of infinite sys-
tems. This lack of knowledge is re-
grettable because only for an infinite
system (by which term we mean the
limit of a finite system as its size be-
comes infinite) can one expect to find
strictly irreversible behavior in quan-
tum mechanics. Moreover, the dis-
tinction between microscopic and mac-
roscopic observables, which appears es-
sential to any complete theory of irrev-
ersibility and kinetic equations, can
only be formulated precisely for infi-
nite systems. Much research remains
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History of ergodic theory

The "ergodic hypothesis" was intro-
duced by Boltzmann in 1871. To quote
Maxwell ". . .(it) is that the system, if left
to itself in its actual state of motion,
will, sooner or later, pass through every
phase which is consistent with the
equation of energy." In our notation
"phase" means dynamical state and the
original ergodic hypothesis means that
if y and x are any two points on the
energy surface Sf:, then y = 0,(x) for
some t. The ergodic hypothesis thus
stated was proven to be false, whenever
S£ has dimensionality greater than one.
by A Rosenthal and M. Plancherel in
1913. S. G. Brush gives a nice ac-
count of the early work on this problem
(see reference 5).

The definition of an ergodic system
given in equation 1 (page 25) can be
shown to be equivalent to what is some-
times called the "quasi-ergodic" hy-
pothesis, which replaces "every phase"
in Maxwell's statement by "every region
Ft on SE of finite area," with the further

qualification that this is true for "almost
all" dynamical states. Indeed as we
point out in this article, the fraction of
time that the system will spend in Ft is
equal, for an ergodic system, to the
fraction of the area of Sg that is occu-
pied by Ft.

It was shown by G. D. Birkhoff in
1927 that ergodicity is equivalent to the
energy surface being "metrically transi-
tive." Stated precisely this means that
a system is ergodic on S if and only if
all the regions Ft on S left invariant by
the time evolution, (fit(Ft) = Ft, either
have zero area or have an area equal to
the area of S.

The difficult part of Birkhoff's Theo-
rem is to show that f*(x), which in-
volves taking the time average over infi-
nite times, actually exists for almost all
x when f(x) is an integrable function. It
is then relatively easy to show that l*(x)
is time invariant; that is, f*\(j>t(x)] =
f*(x), and that ergodicity is equivalent
•to S being metrically intransitive.

to be done on the ergodic theory of in-
finite systems, both classical and
quantum, but we can be sure that the
concepts to be discussed here will play
an important part in it.

Surfaces and ensemble densities
Before we go on to discuss the new

results, we review some mathematical
definitions.4 If our dynamical system
has n degrees of freedom, we can think
of its possible dynamical states geome-
trically, as points in a 2n-dimensional
space (phase space), with n position
coordinates and n momentum coordi-
nates. If the energy of the system is E,
then its dynamical state x [= (c/i . . .
qn, pi . . . pn)\ must lie on the energy
surface H(x) = E, where H is the
Hamiltonian function. We donote the
energy surface, which is (2n — ^-di-
mensional, by SE or just i' and assume
that S is smooth and of finite extent;
for example in the case of a system of
harmonic oscillators, for which the
Hamiltonian is a quadratic form, the
energy surfaces are (2n — l)-dimen-
sional ellipsoids.

The time evolution of the system
causes x to move in phase space, but
since we are assuming our system to be
conservative the point x always stays
on the energy surface. If the system is
in some state x at some time fo then its
state at any other time t0 + t is
uniquely determined by x and t (only).
Let us call the new state </>,(*). This
defines a transformation tt>, from 6'
onto itself. There is one such function
for each value of t.

We shall want to integrate dynami-
cal functions (that is, functions of the

dynamical state) over £>'. When doing
this it is convenient not to measure.(2n
— 1 (-dimensional "areas" on the sur-
face .S in the usual way but to weight
the areas in such a way that the natu-
ral motion of the system on S carries
any region R (after any time t) into a
region <t>t(R) of the same area. This
can be accomplished by defining the
weighted area of a small surface ele-
ment near x, dx, to be such that dxdE
is the correct Euclidean 2n-dimension-
al volume element of a "pill box" with
base dx and height dE.

By a Gibbs ensemble we mean an in-
finitely large hypothetical collection of
systems, all having the same Hamilto-
nian but not necessarily the same dy-
namical state. We shall only consider
ensembles whose systems all have the
same energy, so that their dynamical
states are distributed in some way over
some energy surface .S. It may happen
that this distribution can be described
by an ensemble density; by this we
mean a real-valued function p on S
such that the fraction of members of
the ensemble whose dynamical states
lie in any region R on the surface S is

p( x )dx

with dx the weighted area defined
above. The simplest ensemble density
on 6' is given by

fix) = C (all x in S)

where C is a constant, which can be
determined from the normalization
condition )'s(x)dx - 1. This is called
the microcanonical ensemble on 5'.

The systems constituting the ensem-

ble evolve with time, so that the en-
semble density will depend on time.
The rule connecting the ensemble
densities p, describing the same en-
semble at different times t is Liou-
ville's theorem, which can be written

p,(x) = p<L<t>-,(x)] ' (a lUallx inS)

where po(x) is the ensemble density at
time zero. For example, Liouville's
theorem shows that the density of the
microcanonical ensemble does not
change with time: If

po(*) = C

for all x in S, then Liouville's theorem
gives, for any t,

p,(x) = C

for all x in S.

The ergodic problem

The principal success of ensemble
theory has been in its application to
equilibrium. To calculate the equilib-
rium value of any dynamical function
we average it over a suitable ensemble.
The same ensemble also enables us to
estimate the magnitude of the fluctua-
tions of our dynamical function. To
ensure that the calculated averages are
independent of time, we use an invar-
iant ensemble; that is, one for which
the fraction of members of the ensem-
ble in every region R on the energy sur-
face 6' is independent of time. We al-
ready know one invariant ensemble:
the microcanonical, whose ensemble
density is uniform on S. Before we
can use it confidently to calculate
equilibrium values, however, we would
like to be sure that this is the only in-
variant ensemble: If other invariant
ensembles exist then, in principle, they
could do just as well for the calculation
of equilibrium properties, and we
would have to choose which to use in a
particular situation.

There are two questions to settle:
the first is whether there are any in-
variant ensembles on S that do not
have an ensemble density. In general
there are; for example in the case of a
hard-sphere system in a box one could
have an invariant ensemble where
every particle moves on the same
straight line being reflected at each
end from a perfectly smooth parallel
wall (see figure 2).

The obviously exceptional character
of this motion is reflected mathemati-
cally in the fact that this ensemble,
though invariant, is confined to a re-
gion of zero "area" on S and therefore
has no ensemble density. To set up
such a motion would presumably be
physically impossible because the
slightest inaccuracy would rapidly de-
stroy the perfect alignment. It is
therefore natural to rule out such ex-
ceptional ensembles by adopting the
principle that any ensemble corre-
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sponding to a physically realizable sit-
uation must have an ensemble density.

There remains the second part of the
question: Are there any invariant
ensembles on S that do have a density
but differ from the microcanonical en-
semble? This is equivalent to the er-
godic problem5 in which one compares
the time averages of a dynamical func-
tion /,

i rT

f*(x) = lim ~ f(4>,(x
))dt

with its microcanonical ensemble aver-
age

(/) = J f(x)dxlj dx

A system is said to be eri>odic on its
energy surface S if time averages are in
general equal to ensemble averages;
that is, if for every integrable function
/we have

f*(x) (1)

for almost all points x on S. "Almost
all" means that if M is the set of
points .v for which equation 1 is false,
we have J A/C/.V = 0. The answer to our
second question is given by a theorem,6

which we shall not prove: the micro-
canonical ensemble density is the only
invariant ensemble—that is, the only
one satisfying p[4>,(x)\ = p(x) for all x
in 5'—if and only if the system is ergo-
dic on S.

The physical importance of ergodi-
city is that it can be used to justify the
use of the microcanonical ensemble for
calculating equilibrium values and
fluctuations. Suppose / is some mac-
roscopic observable and the system is
started at time zero from a dynamical
state x, for which f(x) has a value that
may be very far from its equilibrium
value. As time proceeds, we expect
the current value of/, which is f[4>,(x)],
to approach and mostly stay very close
to an equilibrium value with only very
rare large fluctuations away from this
value. This equilibrium value should
therefore be equal to the time average

I /* because the initial period during
which equilibrium is established con-
tributes only negligibly to the formula
defining f*(x). The theorem tells us
that this equilibrium value is almost
always equal to (/), the average of / in
the microcanonical ensemble, provided

. the system is ergodic.
To justify the use of the microcanon-

ical ensemble in calculating equilibri-
um fluctuations we proceed in a simi-
lar way. For some observable event A
(such as the event that the percentage

: of gas molecules in one half of a con-
.tainer exceeds 51%) let R be the region
in phase space consisting of all phase
points compatible with the event A;
that is the event A is observed if and
only if the phase point is in R at time
f. If the system is observed over a long

period of time, the fraction of time
during which event A will be observed
is given by the time average g*(xa),
where XQ is the initial dynamical state
and g is defined by

(1 if .v is in R,
gix) = ioifnot

The ergodic theorem tells us that for
almost all initial dynamical states this
fraction of time is equal to the ensem-
ble average of g, which is

(g) -Lii dx

This is just the "probability" of the
event A as calculated in the micro-
canonical ensemble on S.

Another way of defining ergodicity is
to say that any integrable invariant
function is constant almost every-
where. That is to say, if / is an inte-
grable function satisfying the condition
that

/[</;, (.v)] = f(x)

for all x in S, then there is a constant C
such that f(x) equals c for almost all x:
In other words, the set M of points x

for which fix) does not equal c satisfies
.1\'.\jdx = 0. This has the physical in-
terpretation that for a Hamiltonian
system ergodic on S every integrable
constant of the motion is constant on
S. Furthermore if ergodicity holds on
each St: then there are no integrable
constants of the motion other than
functions of the energy E. Indeed, if
there were other constants of the mo-
tion (for example angular momentum
if the Hamiltonian had an axis of sym-
metry) we could construct invariant
densities that were not microcanonical
by taking p{x) to be a function of one
of these other constants of the motion,
and so the system would clearly be
nonergodic. When such additional
constants of the motion exist they
must be taken into account in the sta-
tistical mechanics and thermodynam-
ics of the system; the standard meth-
ods, based on the microcanonical en-
semble, must then be generalized for
these systems.

Some special systems
We now illustrate the idea of ergodi-

city by considering some specific me-
chanical systems. The simplest of
these is the harmonic oscillator, whose

Baker's transformation

Geodesic flow on space
of constant negative

curvature

Hard-sphere system

Simple harmonic
oscillator

Bernoulli system

r

Ksystem

i

Mixing system

<

Ergodic system

Equivalent to roulette
wheel

Approach to equilibrium

Use of microcanonical
ensemble

Hierarchy of systems. Arrows denote implication: Every mixing system is ergodic. every
Bernoulli system equivalent to a roulette wheel, and so on The middle column lists the
three systems discussed in this article—with the "strongest" at the top—as well as the
K-system (after A. N. Kolmogorov), which is not discussed. At the left are examples of
the systems and at the right physical interpretations or implications Figure 1
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Hamiltonian (in some suitable units) is

H(q, p) = n w (p2 + <?")

where u is the angular frequency. The
transformation </>, for this system is a
rotation through angle u;, in the (q,p)
plane. The trajectories, which here
coincide with the energy surfaces SE,
are circles of radius (2E)1 2. (The sur-
face element dx is here proportional to
the ordinary length of an arc segment.)
To be invariant under the transforma-
tion <j>, an ensemble density on S must
be unaffected by rotations and is there-
fore a constant. It follows, then, that
the only invariant density is the micro-
canonical density and so the simple
harmonic oscillator is ergodic.

Almost as simple is the multiple
harmonic oscillator (physically, say, an
ideal crystal), that is, a system with
two or more degrees of freedom whose
potential energy is a quadratic form in
the position coordinates. Unlike the
simple harmonic oscillator it cannot be
ergodic, because it has constants of the
motion (the energies of the individual
normal modes) that are not constant
on the energy surfaces (the surfaces of
constant total energy).

It used to be thought that this lack
of ergodicity was an accident and that
any small anharmonicity (such as
would inevitably be present in a real
system) must make the system ergodic
by permitting transfer of energy from
one mode to another. In 1954, how-
ever, Kolmogorov announced results
that contradicted this belief.7 In 1955,
Enrico Fermi, J. Pasta and S. W. Ulam8

carried out a computer simulation of
such a system. Initially, they excited
one mode only, and instead of the
equipartition of the energy between all
modes predicted by the microcanonical
ensemble they found that most of it
appeared to remain concentrated in a
few modes; this indicated that anhar-
monic oscillator systems may not be
ergodic.

The lack of ergodicity was proved
rigorously by Kolmogorov, Arnold and
Moser.3 They found that if the
frequencies of the unperturbed oscilla-
tors are not "rationally connected"
(that is, if no rational linear combina-
tion of them is zero) then, in general,
adding to the Hamiltonian an anhar-
monic perturbation sufficiently small
compared to the total energy does not
make the system ergodic. The unper-
turbed trajectories (possible paths of
the phase point) all lie on n-dimen-
sional surfaces in S (which has 2n - 1
dimensions) called "invariant tori,"
and "KAM" prove that under a weak
perturbation most trajectories continue
to lie within smooth n-dimensional tori,
so that the perturbed system is also
nonergodic. The trajectories that do
not lie on the new invariant tori are, on

Ensemble with no ensemble density. Hard
spheres move up and down the dotted line,
which meets the perfectly smooth hard
walls at right angles. Collisions between
particles and collisions with the walls do not
deflect the particles from the line if they are
perfectly aligned at the start. An ensemble
of such systems has no ensemble density
because it is concentrated on a region on
the energy surface with zero area (just as
the area of a line or of a line segment in a
plane is zero). Figure 2

the other hand, very erratic indeed and
may fill some (2n - 1 (-dimensional
region densely.9 One consequence of
this very complicated behavior is that
even though the system is not ergodic
the motion can no longer be decom-
posed into independent normal modes.

Similar results probably hold also
for rationally connected frequencies
(which cannot be treated rigorously,
although they are of more physical in-
terest); thus Michael H§non and Carl
Heiles10 carried out computer calcula-
tions for the Hamiltonian

H =

whose unperturbed frequencies u;i = 1,
u>2 = 1, are rationally connected since
l««i - l»o>2 - 0. They found that
the energy surfaces with E equal to
1/12, 1/8 and probably also 1/6 are not
ergodic (see figure 3). As seen in the
diagrams the fraction of the area corre-
sponding to smooth curves (which are
responsible for the nonergodic behav-
ior) decreases as the energy increases.

For a general system of anharmonic
oscillators, such as a real crystal, we
expect similar behavior, with the frac-
tion of SE corresponding to nonergodic
behavior decreasing as E increases, and
probably disappearing altogether at
some critical energy, above which the
system would be ergodic and perhaps
also show the stronger properties that
we shall discuss.9 At present very lit-
tle is known about the magnitude of
this critical energy in a system with
many degrees of freedom.

In the case of gases, the situation is

Smooth hard walls

Hard spheres

somewhat different. If there were no
interaction at all between the mole-
cules then the energy of each molecule
would be an invariant of the motion, so
that the system (an ideal gas) would be
nonergodic. The KAM theorem would
therefore lead us to expect nonergodi-
city to persist in the event of a suffi-
ciently weak interaction between the
particles. The actual interactions,
however, are not weak because two
molecules very close together repel
each other strongly; consequently the
theorem does not apply. A simple
model of this type is the hard-sphere
gas enclosed in a cube with perfectly
reflecting walls or periodic boundary
conditions. Sinai has outlined a proof
that this system is ergodic; he has pub-
lished a detailed proof, based on the
same ideas, for a particle moving in a
periodic box containing any number of
rigid convex elastic scatterers. We
shall refer again to this important re-
sult.

Mixing

We have seen how to formulate a
condition to ensure that the equilibri-
um properties of a dynamical system
are determined by its energy alone and
can be calculated from a microcanoni-
cal ensemble. This ergodicity condi-
tion does not, however, ensure that if
we start from a nonequilibrium ensem-
ble the expectation values of dynami-
cal functions will approach their equi-
librium values as time proceeds. An
illustrative example is given by the
harmonic oscillator. For the har-
monic-oscillator system, Liouville's
theorem shows that the ensemble den-
sity repeats itself regularly at time in-
tervals of 2w/w, therefore all ensemble
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averages also have this periodicity, and
so cannot irreversibly approach their
equilibrium values.

To ensure that our ensembles ap-
proach equilibrium in the way we
would expect of ensembles composed of
real systems, we need a stronger condi-
tion than ergodicity. To see what is

- required, let us start at t - 0 with
some ensemble density poU) on S,

. which is supposed to represent the ini-
tial nonequilibrium state. At a later
time t the ensemble density is, by
Liouville's theorem, po[<j>-t(x)]. The
expectation value of any dynamical
variable / at time t is therefore

X f ( x ) p t l [ ( p , ( x ) ] d x (2)

As t becomes large, we would like this
integral to approach the equilibrium
value of/, which is (for an ergodic sys-
tem) fsfWdx/fsdx. A sufficient
condition for this is that the system
should satisfy the condition called mix-
ing,11 which is that for every pair of
functions / and g whose squares are in-
tegrable on .S we require

Hm f(x)g(<t>.,(x))dx =

f f(x)dx f g(x)

I dx

The special case where g is po shows
that integral 2 will approach the equi-
librium value of / for large f when the
system is mixing. Another way of
looking at this condition is that it re-
quires every equilibrium time-depen-
dent correlation function such as

' (f(x)g[<t>,(x)\) to approach a limit (/) (g)

- 0 . 4

0

0.4
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Nonergodicity of an anharmonic oscillator system with rationally connected frequencies.
The Hamiltonian for this system is given on page 26 Michael Henon and Carl Heiles (see
reference 10) did computer calculations for this system and found that energy surfaces
SE with E equal to 1/12, 1/8 and probably 1/6 are not ergodic. The planes shown here
are intersections of the surface q, equal to zero with SE for E equal to 1/12 (a). 1/8 (b) and
1/6 (c), and the points are the intersections of a trajectory with this plane. When the tra-
jectory lies on a smooth two-dimensiona4 invariant torus, the intersection points form a
smooth curve, but the intersections of an "erratic" trajectory (one that does not lie on a
smooth curve) are more or less random. Note that the fraction of area corresponding to
smooth curves (which are responsible for the nonergodic behavior) decreases with in-
creasing energy. Figure 3

as t approaches ± ». The condition
can be shown to be equivalent to the
following requirement: if Q and R are
arbitrary regions in S, and an ensemble
is initially distributed uniformly over
Q, then the fraction of members of the
ensemble with phase points in R at
time t will approach a limit as t ap-
proaches °°; this limit equals the frac-
tion of the area of S occupied by R.

Mixing is a stronger condition than
ergodicity: it can easily be shown to
imply ergodicity but is not implied by
it, as we have seen in the case of a sim-
ple harmonic oscillator.

The mathematical definition of mix-
ing was introduced by John von Neu-
mann12 in 1932 and developed by E.
Hopf,13 but goes back to J. Willard
Gibbs,14 who discusses it by means of an
analogy: ". . . the effect of stirring an
incompressible liquid . . . Let us sup-
pose the liquid to contain a certain
amount of coloring matter which does
not affect its hydrodynamic properties
. . . [and] that the coloring matter is dis-
tributed with variable density. If we give
the liquid any motion whatever . . . the
density of the coloring matter at any
same point of the liquid will be un-
changed . . . Yet . . . stirring tends to
bring a liquid to a state of uniform
mixture."

Gibbs saw clearly that the ensemble
density p, of a mixing system does not
approach its limit in the usual "fine-
grained" or "pointwise" sense of p,U)
approaching a limit as t"-• °° for each
fixed x. Rather, it is a "coarse-
grained" or "weak" limit, in which the
average of p,(x) over a region R in S
approaches a limit as f • « for each
fixed R. (A similar distinction applies
in defining the entropy. The fine-

grained entropy -k Jp,(.v) log pt(x)dx,
where k is Boltzmann's constant, re-
tains its initial value forever, but the
coarse-grained entropy -k fpt*(x) [log
pt*(x)]dx, where pt*(x) is a coarse-
grained ensemble density obtained by
averaging p,(x) over cells in phase
space, does change for a nonequili-
brium ensemble, and approaches as its
limit the equilibrium entropy value
k log f sdx.)

It is sometimes argued that one can-
not have a proper approach to equilibri-
um for any finite mechanical system
because of a theorem, due t<> Point-are.15

that every such system eventually
returns arbitrarily close to its initial
state. (The time involved, however,
will be enormously large for a macro-
scopic system. Boltzmann. for exam-
ple, estimated a typical Poincare peri-
od for 100cm3 of gas to be enormously
long compared to 10 raised to the power
10 raised to the power 10 years.) Here,
however, we are considering ensembles,
not individual systems, and the mixing
condition guarantees that the ensemble
density eventually becomes indistin-
guishable from the microcanonical
density and remains so forever after.
It is true that individual systems in
the ensemble will return to their initial
dynamical states, as required by Poin-
care's theorem, but this will happen at
different times for different systems, so
that at any particular time only a very
small fraction of the systems in the en-
semble are close to their initial dynam-
ical states.

The reason for the irrelevance of
Poincare recurrences in mixing systems
is that the motion of the phase point is
very unstable. Dynamical states that
start very close to each other in phase
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A familiar example of "mixing." According to V. I. Arnold and A Avez, the two liquids are
rum (twenty percent) and cola (eighty percent), with the result of the mixing process known
as a "Cuba libre." (See reference 1 for details of the process.) Figure 4

space become widely separated as time
progresses, so that the recurrence time
depends extremely sensitively on the
initial conditions of the motion. (The
importance of this instability in statis-
tical mechanics was first recognized by
N. S. Krylov, a Russian physicist who
died in his twenties in 1947; a recent
paper16 gives a theorem that shows this
statement about instability to be a rig-
orous consequence of mixing.) This
type of instability appears to be char-
acteristic of real physical systems, and
leads to one sort of irreversibility:
even if we could reverse the velocities
of every particle in a real system that
has been evolving towards equilibrium,
the system would not necessarily re-
turn or even come close to its initial
dynamical state with the velocities re-
versed because the unavoidable small
external perturbations would be mag-
nified. This instability is noticeable in
molecular-dynamics calculations with
hard-sphere systems: if we numerical-
ly integrate the equations of motion
from time 0 to t and then try to recover

the initial state by integrating back-
wards from time t to time 0, we obtain
instead a completely new state. This
is because the numerical integration is
unstable to small rounding-off errors
made during the computation, which
play the same role as external pertur-
bations in a real system.

Only a few physical systems have
been proven so far to be mixing. The
most important is the hard-sphere gas,
mentioned above. Sinai's proof that
this system is ergodic2 also gives the
stronger result that it is mixing.
Roughly, Sinai's method of proving
mixing is to show that the hard-sphere
system is unstable in the sense dis-
cussed above. Physically this instabil-
ity comes from the fact that a slight
change in direction of motion of any
particle is magnified at each collision
with the convex surface of another par-
ticle. The full proof for the simplest
case of a "single ' particle moving
among fixed convex scatterers occupies
some 70 pages of difficult mathemat-
ics. (G. Gallavotti has provided an el-

ementary introduction to some of the
ideas.17)

Bernoulli systems

For lack of space we shall not discuss
the next concept in our sequence, that
of the "K-system" (after Kolmogorov).
For this and related topics such as the
Kolmogorov-Sinai "entropy" the read-
er is referred to reference 1. Instead
we jump to the last concept in our hi-
erarchy, that of a Bernoulli system.
By a Bernoulli dynamical system we
mean one that is, in a sense we shall
define, equivalent to an infinite se-
quence of spins of a suitably designed
roulette wheel.

To make this equivalence more pre-
cise, we define a finite partition of the
energy surface S of our dynamical system
as any finite collection of n nonover-
lapping regions /?o Rn - I which to-
gether cover the whole of .S1. Suppose
that some device can be made that will
determine which of these regions the
phase point is in at any time, but gives
no information whatever about which
part of the region it is in. That is,
every time we use this measuring de-
vice we obtain an outcome that is a
positive integer—the label of the region
the phase point of the system is in at
that time.

Suppose we use the device repeated-
ly at intervals of, say, one second. Its
outcome will be a sequence of positive
integers from the set |0,. . .,n - lj,
which can be extended indefinitely. In
general, we would expect these integers
to be correlated; that is, the micro-
canonical probability for each new ob-
servation depends on what has been
observed before (as in a Markov pro-
cess, for example). This correlation
comes about because the dynamical
states of the system at different times
are deterministically related, through
the equations of motion.

The astonishing fact is, however,
that for a certain class of dynamical

The baker's transformation recalls the kneading of a piece of dough. We first squash the
square to half its original height and twice its original width, and then cut the resulting
rectangle in half and move the right half of the rectangle above the left. Figure 5
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systems it is possible to choose the re-
gions i?o>- • Mn-i in such a way that
the observations made at different
times are completely uncorrelated, just
like the numbers shown at different
times by a roulette wheel. At the
same time, the regions so chosen give
enough information to discriminate be-
tween dynamical states: if two sys-
tems have different dynamical states
at some time, then the observations
made on them cannot yield identical
results for the observations at every
time. When such regions can be cho-
sen, we call the system a Bernoulli sys-
tem.

Recently D. Ornstein and B. Weiss18

showed that the class of Bernoulli sys-
tems includes a type of dynamical sys-
tem (the geodesic flows on a space of
constant negative curvature) whose er-
godic properties are very similar to
those of the hard-sphere system stud-
ied by Sinai, and it appears likely that
the hard-sphere system too is a Ber-
noulli system.

As an illustration of a simple Ber-
noulli system, consider a system whose
phase space is the square 0 < p < 1,
0 < q < 1 shown in figure 5, and whose
(non Hamiltonian) law of motion is
given by a mapping known as the bak-
er's transformation1^ because it recalls
the kneading of a piece of dough. If
the phase point is (p,q) at time i, then
at time r + 1 it is at the point obtained
by squashing the square to a (1/2 X 2)
rectangle, then cutting and reassem-
bling to form a new square as shown in
the diagram. The formula for this
transformation is

0( > _ f(2p,g/2)ifO<p<l/2
l(2p-l,(g /2 + l/2)if

digit after the binary point from p and
attaches it to q, so that

4>(O.pip2...,O.q]q2...) =

1/2 < p < 2p.

If p and q are written in binary nota-
tion (1/8 in binary notation is
0.00100.. ., 1/4 is 0.01000, and so on),
the transformation removes the first

Definition of the regions RQ and R-, used to
show that the baker's transformation is a
Bernoulli system. Figure 6

where the p, and qt take on the values
0 and 1. This transformation is invert-
ible, and from it we can define $_i as
the inverse of 0 and 0 ± , as the t th ite-
ration of 0±i (Only integer values of
the time are used here, rather than all
real values as in our discussion of dy-
namics earlier in this article, but we do
not regard this distinction as impor-
tant.) Moreover, the transformation
preserves geometrical area, and so the
analog of the microcanonical distribu-
tion is just a uniform density.

To see how this completely
deterministic system can at the same
time behave like a roulette wheel, we
take the regions RQ and i?i to be the
two rectangles 0 < p < 1/2, 1/2 < p <
1 shown in figure 6. Suppose the
phase point at time 0 is

(p,q) = (O.pip2.. .,0.0x92—)
If pi is zero, the system at time 0 is in
Ro', if Pi is one, the system at time 0 is
in/?i. At time 1 phase point is

(0.p2pi...,0.plqlq2...)

and so we observe the phase point in
region RP2- At time 2 it is in Rp3 and
so on. Likewise, at time - 1 it is in
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