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A B S T R A C T

Detailed knowledge of individual income dynamics is one essential ingredient for investigating the existence of
the American dream, pertinent to the question Are we able to improve our income status during our working
life? This key question simply boils down to observing individual status and how it moves between two
thresholds: the current income and the desired income. Yet, our knowledge of these temporal properties of
income remains limited since we rely on estimates coming from transition matrices which simplify income
dynamics by aggregating the individual changes into quantiles and thus overlooking significant microscopic
variations. Here, we bridge this gap by employing First Passage Time concepts in a baseline stochastic process
with resetting used for modeling income dynamics and developing a framework that is able to crucially
disaggregate the temporal properties of income to the level of an individual worker. We find analytically and
illustrate numerically that our framework is orthogonal to the transition matrix approach and leads to improved
and more granular estimates. Moreover, to facilitate potential empirical applications of the framework, we
introduce a statistical methodology, and showcase the application using the USA income dynamics data. These
results help to improve our understanding on the temporal properties of income in real economies and could
potentially provide a set of tools for designing policy interventions.
1. Introduction

How long does it take for individuals to improve their income
profiles within the socio-economic ladder? For James Truslow Adams,
this question was one of the pillars for the existence of the American
dream, besides personal development and happiness [1]. If the time is
comparable to the working life of an individual, then it can be argued
that social and economic systems function as envisaged. Otherwise,
there might be a need to reorganize socio-economic policies. As a result,
developing methods for studying the temporal properties of income
dynamics is a fundamental question in the literature of economic
inequality and mobility [2–9] (Fig. 1(a–b)).

These temporal changes are usually studied by using income tran-
sition matrices [8–12]. An income transition matrix aggregates and
summarizes the probability of a worker to move between two arbitrary
income quantiles, 𝑘 and 𝑙, within a given time period (Fig. 1(c)). Using
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this matrix, we can estimate the expected time for a worker to first
reach the lowest income that is required to reach 𝑙 given that the
worker is currently in quantile 𝑘. This quantity is known as the mean
first passage time (MFPT) [13–15] and is an adequate approximation
for the time required for a worker to improve their income level
[13,14].

Transition matrices, however, only provide aggregated quantities
for the time properties of income. That is, because of the aggregation
we are unable to differentiate the fortunes of workers that are members
of the same quantile. Indeed, the income within a quantile is usually
heterogeneous (i.e., not everyone has the same income), implying that
not everyone within the quantile will have the same probability to
change their income status. Instead, there are intra-quantile dependen-
cies that govern the MFPT. As a result, in order to move away from
this drawback of transition matrices, the more recent literature has
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Fig. 1. Approaches to measuring the time properties of income:
(a) Bar chart for the income within a population in an initial time period. (b) Bar
chart for the income within a population in a target time period. In both (a–b) the
workers are sorted according to their income in descending order. (c) Transition matrix
𝐀 measuring the transition probabilities between income quantiles for the workers in
(b) if they started in (a). The entries of the matrix describe the probabilities to move
between two quantiles, and the MFPT ⟨𝑇 ⟩ is a function of 𝐀. (d) In our approach, the
income dynamics of a worker is a stochastic process the MFPT ⟨𝑇 ⟩ to reach the target
income in (b) if a worker started in (a) is a function of parameters that quantify the
state of the economy.

developed alternate measures for tracking income fluctuations that are
able to disaggregate the transition matrices to a higher resolution [16].
But, despite these innovations, our knowledge about the time at which
these fluctuations occur remains limited.

To bridge this gap, we build an analytical framework for disaggre-
gating the MFPT to the level of an individual worker in the economy.
We exploit the properties of an established stochastic process used for
modeling income dynamics called Geometric Brownian Motion with
stochastic resetting (srGBM) [17,18]. srGBM has been widely used
for investigating the role of various phenomena on income dynamics:
from taxes [19] up to changes in skill prices [20]. Mathematically, our
srGBM-MFPT framework can be seen as a natural generalization of the
finite-state transition matrix approach to processes with a continuum
of states (Fig. 1(d)) [20]. Practically, it can be seen as an answer to
whether the income dimension of the American Dream is a reality for a
particular worker (after accounting for some simple assumptions about
the economy). We utilize our analytical results to develop a statistical
methodology for applying the MFPT in real-world data and display its
application by providing estimates for the time properties of the income
distribution in the United States (USA) for the period between 1978–
2015. With these estimates we are able to see a more granular and
2

comprehensive picture than previous approaches for the ability of a
worker to move across the income distribution. Hence, they could aid
in answering important questions, such as: What is the time needed
for a low-wage worker to spend in the workforce in order to reach
a reasonable income level? Which proportion of workers are able to
reach the highest status during their working life? How easy it is for the
workers to reach certain income targets? Assuming srGBM dynamics,
how can we optimize the time required for a worker to improve their
status inside an economy?

2. Results

To develop a ‘‘disaggregated’’ view for the MFPT across each worker
of the income distribution, we use the properties of geometric Brown-
ian motion with stochastic resetting (srGBM) [17,18,20–25] which is
pertinent to income dynamics. For example, this model confers several
real world socio-economic phenomena such as the power law stationary
income distributions [19,20,26] or the famous Great Gatsby curve that
visualizes the relationship between inequality and mobility [18]. In our
approach, we simply assume that time is continuous and there is a
population of 𝑁 workers in the economy. The income 𝑥(𝑡) of a worker
in period 𝑡 grows multiplicatively with a rate 𝜇 and volatility 𝜎 until
a random event that occurs with a rate 𝑟 resets its dynamics [27]. The
reset event can be interpreted as a worker that left the job market (for
example by retiring, being laid off or after an injury) and is substituted
by another younger worker with a starting income 𝑥𝑟 [26]. Further
details about srGBM can be found in Appendix A.

We thereby emphasize that in spite of its universality, srGBM is
still a baseline model for income dynamics. Naturally, it has certain
limitations that could restrict its real world applications. Below, we
mention a few. First, in this model the population size is fixed, whereas
in real economies the population size varies across the years. Second,
the model has multiplicative dynamics and each individual income
cannot go below zero. Negative income, for example, can occur to self-
employed individuals that suffered losses during a year. Third, in this
model, we assume that each individual has the same features (same
income growth and volatility), whereas in reality the income growth is
also dependent on factors such as education, social contacts, and even
the industry where the individual works. To reduce these limitations
and estimate the srGBM parameters, we will always assume that the
state of the economy is fixed during the estimation period and that each
individual income cannot go below zero.

2.1. MFPT in srGBM

How long does it take for a worker having a certain initial income
𝑥0 to reach a target threshold 𝑦 with intermittent resets to a new and
fluctuating income 𝑥𝑟? This time is random owing to the fact that the
growth of income is inherently stochastic and furthermore there is a
temporal stochasticity induced by resetting. The MFPT estimates the
expected time for an ensemble of such processes [13–15] of reaching
income 𝑦 when starting with 𝑥0 and is given by (Appendix B)

⟨𝑇𝑟(𝑥0, 𝑦, 𝑥𝑟)⟩ =
1 − 𝑇̃ (𝑥0, 𝑦, 𝑟)
𝑟 𝑇̃ (𝑥𝑟, 𝑦, 𝑟)

, (1)

where

𝑇̃ (𝑥0, 𝑦, 𝑟) =
(

𝑥0
𝑦

)𝑞1
, 𝑞1 =

√

(𝜎2 − 2𝜇)2 + 8𝑟𝜎2 + (𝜎2 − 2𝜇)
2𝜎2

. (2)

We observe that larger growth of income (Fig. 2(a)) and larger
randomness in the economy (Fig. 2(b)) decrease the MFPT in srGBM
(see also Appendix C for numerical methods). These two notable factors
indeed comply with typical observations, i.e., it is easier for workers
to move across the income distribution when the economy is growing
at faster rates and when there is more volatility [28]. Furthermore, we
observe that there is an optimal resetting rate (𝑟∗) which minimizes the



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 175 (2023) 113921P. Jolakoski et al.
Fig. 2. Dependence of the MFPT in srGBM on the model parameters.
(a) MFPT in srGBM as a function of the resetting rate for various drift rates 𝜇. (b) Same as (a), only for various volatilities 𝜎2. The black hollow circles show the optimal resetting
rate. The inset plots show how the optimal resetting rate evolves as a function of 𝜇 and 𝜎2. More details about this optimal behavior can be found in Appendix B.
MFPT ⟨𝑇𝑟⟩ in (1). In economics terms, the resetting rate can be seen as a
controlled factor that policy makers can control in order to optimize the
dynamics of income within an economy. For instance, they can develop
policies that are aimed at increasing/decreasing the number of workers
who retire or leave their job as a means to reduce time required for a
worker to move across the income distribution [29–31]. In this context,
we find two additional features of srGBM that could be compatible to
real world observations: First, for a fixed volatility, larger growth (𝜇)
decreases the optimal rate at which the MFPT is at a minimum level
(inset of Fig. 2(a)). This, for example, could be a result of joint factors
leading to economic growth such as efficient qualification programs, or
quality foreign investments. Second, for a fixed growth rate, when the
randomness in the system is increased, we also observe an increased
optimal resetting rate (inset of Fig. 2(b)). This, for example, can be a
result of increased intrinsic differences between societal groups when
it comes to getting new jobs (e.g., gender or racial differentials).

2.2. Transition matrix vs. Stochastic process approach for MFPT

Differently from our approach, the state of the art methods for
studying income dynamics rely on utilizing the properties of the income
transition matrix [32]. However, as we will show here, transition
matrices in many situations may provide much less information about
income dynamics than what we can infer using our framework.

An income transition matrix aggregates the income movements over
a given period in time [9]. It summarizes the mobility in a stochastic
matrix 𝐀 in which the elements 𝐴𝑘𝑙 quantify the probability that an
individual in income quantile 𝑘 in time 𝑡 is found in income quantile 𝑙
in time 𝑡 + 𝛥. Formally, let 𝑘(𝑡) denote the set of individuals that are
part of quantile 𝑘 in time 𝑡. Then,

𝐴𝑘𝑙 =
|𝑘(𝑡) ∩ 𝑙(𝑡 + 𝛥)|

|𝑙(𝑡 + 𝛥)|
, (3)

where || is the cardinality of  [8].
In a perfectly mobile economy, the entries of the transition matrix

are all equal to each other. Realistic income transition matrices, how-
ever, are characterized with higher mobility at the bottom of quantiles
than at the top. To illustrate this, in Fig. 3(a) we display the income
transition matrix for the United States (for the period between 1989–
1998) by using data taken from Ref. [32]. In Fig. 3(b) we show that
the income transition matrix in srGBM can easily reproduce these
properties by conducting a simple experiment. The experiment is based
on generating an artificial economy with a population of one million
3

workers. Each worker is assigned an initial income that is drawn from
the stationary srGBM distribution with parameters that best fit the real
income transition matrix (Fig. 3(a)). The dynamics of the income is
then simulated for a sufficiently long time and the mobility dynamics
across a 10 year period are aggregated into deciles. The coefficient of
determination, calculated by using the transition matrix derived from
the srGBM as predictive deciles and comparing it with the actual tran-
sition matrix entries, has a value of 0.83. This means that the srGBM
generated transition matrix is able to explain 83% of the variations in
the real transition matrix, thus suggesting that the model indeed is more
adequate to reproduce the real world income mobility.

Using the information contained in the transition matrix, we can
quantify the MFPT for an individual to move between two quantiles 𝑘
and 𝑙 using various methods (see Appendix D and Refs. [33–36]).

Before we detail the similarities and differences between the srGBM
and the transition matrix MFPT (TMFPT), several of its features need
to be pointed out. First, the TMFPT is measured in 𝛥 periods (e.g., in
the cases described in Fig. 3(a–b), the MFPT is measured in decades),
but unless there are changes in the economic conditions, its value
normalized in a different unit (e.g., years) is independent of 𝛥. Second,
the income transition matrix is ignorant of the growth, volatility,
and resetting rates. Instead, these parameters are bulked together in
the transition probabilities. Lastly, the majority of the methods for
estimation of the TMFPT rely upon discretized time dynamics, and thus
need to be modified to capture the continuous time dynamics [33].
Hence, every estimation based on the transition matrix can only be an
approximation for the MFPT.

The relationship between the srGBM-MFPT and the TMFPT can
be shown in two different ways. First, for TMFPT between any two
quantiles, we can estimate the starting income and the target income
that generate the same srGBM-MFPT. Intuitively, the starting income
belongs to the lower quantile and the target income to the upper
quantile, but in general the position of the starting income depends
on the extent of aggregation. Second, we can expand the number (𝐾)
of quantiles of the transition matrix until they reach the total number
(𝑁) of workers in the economy (and suppose that 𝑁 is sufficiently
large). This is also known as the finite state to continuum approach
in statistical physics [20]. The limiting case as 𝑁 → ∞ and 𝐾 → 𝑁
results in the srGBM-MFPT.

In general, the aggregation of real world income dynamics leads to
underestimating the MFPT (see Figs. 3(c–f), for various comparisons
between srGBM-MFPT and TMFPT). This is due to the fact that the ag-
gregation leads to neglecting the differences in the income distribution
that appear within a quantile. Namely, the income within a quantile
can exhibit a certain distribution implying that not everyone within the
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Fig. 3. Transition matrix MFPT vs. srGBM MFPT.
(a) Income transition matrix in USA for the period 1989–1998, taken from [32]. (b) Income transition matrix estimated through srGBM with parameters 𝜇 = 0.10 year−1, 𝜎2 = 0.03
year−1, 𝑟 = 0.041 year−1, chosen to match the empirical transition matrix in (a). This was done by minimizing the Frobenius norm of the difference matrix between the empirical
and the one derived from srGBM. The coefficient of determination, calculated by using the transition matrix derived from the srGBM as predictive deciles and comparing it with
the actual transition matrix entries, has a value of 0.83. (c) MFPT (in years) between deciles using the transition matrix approach from the data in (a). (d) MFPT (in years)
between deciles calculated using the srGBM MFPT approach. (e) Difference between the MFPT obtained from the transition matrix (c) and srGBM approaches (d). (f) Also shows
the difference between the two approaches by investigating the MFPT to a target income as a function of the starting income.
quantile has the same income. Subsequently, not everyone within the
quantile will have the same probability to change their income status
as well. Instead, there are intra-quantile dependencies that govern the
MFPT. The TMFPT is unable to identify this phenomenon because the
aggregation essentially removes certain parts of the income distribution
and quantifies income dynamics based on quantile positions. In stark
contrast, the srGBM-MFPT captures this distribution dependence be-
cause it models the exact starting and the target income that a worker
wants to reach.

2.3. Applying the srGBM MFPT to real world data

We can apply the presented theoretical framework for srGBM MFPT
to answer real world questions that could improve our knowledge about
the income dynamics within an economy, such as: What is the time
needed for a low wage worker to spend in the workforce in order to
reach a reasonable income level? Which workers are able to reach the
highest status during their working life? How easy it is for workers to
reach certain income targets? How can we optimize the time required
for a worker to improve their status in an economy?

To answer these questions, we develop a statistical methodology
for estimating the MFPT across two points of the income distribution.
Our methodology, in general, relies on two assumptions which can be
relaxed depending on the availability of data. First, we assume that
the srGBM parameters can be discretized and are able to change each
year. This reflects changes in economic conditions and policies. Then,
the srGBM parameters can be estimated directly using data for the dy-
namics of the income distribution or taken from other sources. Because
these are only estimates for the srGBM parameters, they are coupled
with confidence intervals for the MFPT (See Appendix E and Refs. [18–
20]). Second, we assume that the resetting rate can be approximated
using data on the working age population who lost and/or left their
job within a calendar year. In what follows, we will display results for
the MFPT between percentiles of the income distribution, but we point
out that the results can be easily disaggregated into an even higher
resolution.
4

Let us now show how we can use the data from [18] and our
srGBM MFPT method to estimate confidence intervals for the required
time for US workers to move between two arbitrary percentiles of
the income distribution (See Appendix F for more details about the
statistical estimation).

We reiterate that the interpretation of our results is limited to
assuming that there are no changes in the economic conditions once we
estimate the MFPT and that we assume a homogeneous population of
workers whose income cannot go below 0. Hence, we will answer ques-
tions about the time properties of the income of the typical individuals
in the economy for each of the studied years under the assumption that
the economy will remain the same over the estimated MFPT (e.g., fixed
population size) and that the individuals will remain homogeneous
(e.g., every individual will be subjected to the same average income
growth and interactions). In this case, any changes in the MFPT over
the years could be potentially attributed to changes in the economic
policies or external shocks to the economy.

What is the required time for a low income worker to reach a reasonable
income? In Fig. 4(a) we show the estimated MFPT for a worker to leave
the lowest 10% and reach the level of income of the 50%, 75%, 90%,
95% and 99%, given that they started at the middle position in the
decile. We observe that the MFPT of all these targets was decreasing
and until the end of the 1990s, when they reached their minimum. At
the end of the 1990s these MFPTs drastically increased and stayed at a
high level until the last year of our analysis (2015).

Which workers are able to reach the highest income status during their
working life? Next, we investigate how long it would take a person
to reach the income levels of the 99 percentile, given that they start
at an average position in various quantiles of the income distribution
(Fig. 4(b)).

Similar to the previous results, the amount of time needed to reach
the highest income status (around $ 1M) was at its lowest values in
the end of the 1990s. However, the MFPT values were much larger
compared to the working life of an individual. For instance, in these
periods, the workers which started in the 95th percentile of the income
distribution (154,500 $), had to work around 700 years in 1999 to
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Fig. 4. MFPT in the US income distribution as a function of time.
In the top panel we show (a) The MFPT for a worker in the bottom 10% to reach 50%, 75%, 90%, 95% and 99%. (b) The MFPT for reaching 99% of the income distribution for
a worker belonging in 10%, 50%, 75%, 90% and 95%. In the bottom panel we show the fraction of poorest 10% which reach the income of the 50%, 75%, 90%, 95% and 99%
in (c) 20 years, (d) 40 years, (e) Empirical resetting rate and mean optimal resetting rate as a function of time. The inset plot gives the corresponding MFPT for the optimal and
the empirical resetting rate. The color filled regions represent two standard error confidence interval bands. The srGBM parameters are the same as those estimated in Ref. [18].
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
reach the highest paid percentile (around $ 1M), though with a very
wide confidence interval. This MFPT, remained at a consistently high
level until the last year of our analysis.

We compare our MFPT results with actual income data per per-
centile taken from World Inequality database (See Appendix I). We find
that the income has different dynamics across the percentiles (e.g., it
grows for the top 10%, whereas it declines for the bottom 10%). This
implies that over time we end up with initial and target incomes
that increasingly disparate. In spite of this, the MFPT shows a nearly
identical trend for all income groups.

How easy it is for workers to reach certain income targets? We can also
analyze the fraction of the lowest income workers that constitute the
bottom decile which reach a certain target in the income distribution in
a time span that corresponds to the duration of a typical working life.
For this we can reverse the MFPT equation and estimate how many
workers are able to reach an MFPT within a given time span of X years
(see Appendix G for the mathematical details).

For example, the economic conditions in the US allowed only less
than 2% of workers coming from the lowest income level (5282 $) to
reach the middle income status (29,394 $) in a span of 20 years ever
5

since 1978. This percentage drops significantly as we move to more
recent years and to larger income targets (Fig. 4(c)). The percentage
becomes not much larger, if we set X to a larger value, such as 40 years
(Fig. 4(d)).

How can we optimize the mfpt? Finally, we can ask ourselves how close
is the estimated MFPT to the optimal MFPT?

In Fig. 4(e) we plot the mean optimal resetting rate and compare
it with the empirical resetting rate (see Appendix H on the methods
of estimation). The inset plot compares the optimal MFPT and the
one observed in reality. We find that the empirical resetting rate is
persistently above the optimal, starting from 1988. In other words,
it should be easily possible to decrease the MFPTs of the US income
distribution by developing policies that decrease the resetting rate.

3 Conclusion and discussion

Socio-economic policies aimed at improving the welfare of individ-
uals often rely upon estimates for the typical time-frame required for
workers to improve their income status. Yet, state-of-the-art methods
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for these estimates can only offer an aggregated view. Here, we devel-
oped a disaggregate measure by exploiting the MFPT, a simple estimate
for this time, in the srGBM baseline model for income dynamics. We
found that the srGBM-MFPT adequately reproduces the real world
features of income dynamics, often depicted in an income transition
matrix. We showed that the srGBM-MFPT is an orthogonal measure to
standard metrics. It provides a deeper insight into the time properties
of income within an economy as it is able to uncover the workers which
are able to move across the whole space of the income distribution
during their working life. This includes moves within an aggregated
single level of the transition matrix approach. Also, we created an
empirical methodology for applying our theoretical results. We showed
that the methodology is equipped with a set of tools which make
it capable of answering specific questions about the time properties
of income for any economic structure, and presented its application
using US income data. Hence, we expect it to be of wide interest to
practitioners for developing policy interventions aimed at optimizing
the time.

We point out certain limitations to our approach. First, these es-
timates are based on srGBM which can offer a good but nevertheless
restricted information about the income dynamics. In srGBM the pop-
ulation is fixed, thus limiting our analysis to assumptions that the
economy will stay the same within the period used for estimating the
model parameters. Moreover, the model assumes that all workers are
homogeneous and have the same socio-economic attributes, that there
are no interactions among workers, and each individual income cannot
go below 0. Heterogeneity appearing as a result of education, gender,
field of work, social contacts, etc. could potentially affect the income
dynamics [37–40,40–43]. The model cannot account for these phe-
nomena. Instead, the model captures the attributes of workers by two
parameters: the growth of income and the volatility. We emphasize that
the methodology can be generalized and applied to more sophisticated
situations by assuming that the growth rates and volatilities are type
dependent or when they are themselves random variables (e.g., via
doubly-stochastic models) [20]. Then, each worker type will have their
own MFPT (estimated using the same equation). This may uncover
even more detailed information about the time properties of the income
distribution and considerably enhance the interpretation of our results.
Indeed, this appears to be fruitful topic for expanding the srGBM-MFPT
framework.

Second, here we studied only one aspect of the American Dream
namely the income distribution and its evolution. The American Dream
is much more than that and is also related to wealth inequality and
its dynamics — two aspects that are yet not captured by our frame-
work. Indeed, recent studies have suggested that the time properties
of the realistic wealth distribution may not exhibit the features which
are usually assumed in policy practices [44,45]. Hence, extending
the framework to account for wealth may be a non-trivial future
contribution.

Third, we restricted our empirical analysis to only one economy. We
do not go into a detailed investigation on the geographical distribution
of srGBM, which might be essential for understanding the spatial
differences in various socio-economic phenomena.

Lastly, we emphasize that the application which we presented here
is only descriptive. By comparing our MFPT results with actual income
data per percentile we found that while income has different dynamics
across the percentiles, the MFPT shows a nearly identical trend for
all income groups. This intriguing observation suggests that despite
the widening income gap, the average time it takes for an individual
to transition from their initial income to their target income remains
relatively consistent across all income groups over the years. This could
be indicative of underlying mechanisms in the economy that maintain
a certain level of income mobility, regardless of the initial or target in-
come levels. However, this uniformity in MFPT across different income
percentiles also raises questions about the factors that contribute to
6

income growth and decline, and calls for further investigation into the m
complex interplay of economic, social, and individual factors that shape
income dynamics. We invite policy practitioners to delve deeper into
the interpretation of the questions arising from our empirical findings.

Yet, despite these limitations, the srGBM MFPT framework signif-
icantly improves upon the state of the art by providing a method
that is more comprehensive, and also more accurate, at investigating
the dynamics of a worker’s income. This methodology advances our
understanding of the time dimension of an individual worker’s income,
and improves the current state-of-the-art. It will motivate new mul-
tidisciplinary research focused on creating even more comprehensive
methods that can be used to predict the time properties of income –
mean and higher order metrics – in specific domains of the economy
and be applied to economies all across the globe.

4 Materials and methods

4.1 Geometric Brownian motion with stochastic resetting

We denote the income of a worker at time 𝑡 by 𝑥(𝑡). As explained
in the main text, the income dynamics empirically follows srGBM and
can be described by the following stochastic equation

𝑑𝑥(𝑡) = (1 −𝑍𝑡)𝑥(𝑡) [𝜇𝑑𝑡 + 𝜎𝑑𝑊 ] +𝑍𝑡
(

𝑥0 − 𝑥(𝑡)
)

, (4)

here 𝑑𝑡 denotes the infinitesimal time increment and 𝑑𝑊 is an
nfinitesimal Wiener increment, which is normal-variate with ⟨𝑑𝑊𝑡⟩ = 0
nd ⟨𝑑𝑊𝑡𝑑𝑊𝑠⟩ = 𝛿(𝑡 − 𝑠)𝑑𝑡. Here 𝛿(𝑡) denotes the Dirac 𝛿-function.
esetting is implemented with a random variable 𝑍𝑡 which resets the

ncome dynamics to the initial value 𝑥(0) = 𝑥𝑟 = minimum observed
ncome in the economy (bottom 1%). To be specific, 𝑍𝑡 takes the value

when there is a resetting event in the time interval between 𝑡 and
+ 𝑑𝑡; otherwise, it remains zero. For simplicity, we assume that the
robability for a reset event, i.e., Prob(𝑍𝑡 = 1) in the interval 𝑑𝑡 is given
y 𝑟𝑑𝑡. In the limit 𝑑𝑡 → 0, this confers to an exponential waiting time
ensity, namely 𝑟𝑒−𝑟𝑡 for resetting events. Notice that resetting can take
he value of income 𝑥(𝑡) to go below 𝑥0, but it cannot make it negative.

.2 Empirical values of srGBM parameters in USA

We use the yearly estimates for the parameters needed to estimate
he srGBM provided in [18] (see also Appendix E). Moreover, each year,
he true resetting rate is approximated with the fraction of the working
ge population (15–64) in the USA who lost and/or left their job within
calendar year. Workers who lost their job are those that either are

emporarily laid off as well as those who permanently lost their jobs.
he job leavers, on the other hand, are those that quit and immediately
egan searching for a new work. We take these data from the dataset
or unemployment provided by the U.S. Bureau of Labor Statistics. The
ime series covers the period from 1977 up to 2015 and can be accessed
t https://fred.stlouisfed.org.

.3 Estimating the srGBM MFPT in the USA

In order to study the first passage times in the US income distribu-
ion we need to specify an initial position and an absorbing boundary.

e estimate these quantities by providing a starting percentile and a
arget percentile, then we translate these values to the corresponding
nitial position, and target income in the estimated income distribu-
ion, which is calculated by running an srGBM simulation of a model
conomy, using the fitted empirical values of the model parameters.

To be more specific, if we want to estimate the average time
pan before a typical worker of the bottom percentile reaches a top
ercentile, then we fix their threshold percentile income as a starting
osition of the stochastic process (srGBM) and the target percentile

‘entry level’’ income as a virtual absorbing boundary. In our model, we
onsistently use the income of the bottom 1% as a representation of the

inimum income in the economy. By setting the income of the bottom

https://fred.stlouisfed.org
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1% as the minimum, we are acknowledging the reality of income
disparities in society while also emphasizing the possibility of economic
mobility. Using the income of the bottom 1% as a baseline, rather
than the legal minimum wage, provides a more accurate reflection of
the actual economic conditions experienced by individuals. The legal
minimum wage is a prescribed standard set by law, but it may not
accurately represent the income realities for all individuals, especially
those working less than full-time hours, those in informal employment,
or those who are unemployed. The bottom 1% income level, on the
other hand, is derived from actual income data and thus captures
a broader range of economic situations, including part-time work,
unemployment, and underemployment. This makes it a more inclusive
and realistic measure for studying income dynamics and mobility.
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Appendix A. Properties of srGBM

In the literature, resetting is described as an approximation for
the external forces that influence the income dynamics and ensures a
stationary distribution [27,46–49]. We can use the renewal approach
(see [46]) to show that that the probability density function (PDF)
corresponding to 𝑥(𝑡) has a stationary solution. In particular, the PDF
with resetting (𝑟 > 0) can be written as

𝑃𝑟(𝑥, 𝑡|𝑥0, 𝑥𝑟) = 𝑒−𝑟𝑡𝑃0(𝑥, 𝑡|𝑥0) + 𝑟∫

𝑡

0
𝑒−𝑟𝑢𝑃0(𝑥, 𝑢|𝑥𝑟) 𝑑𝑢, (A.1)

where 𝑃𝑟∕0(𝑥, 𝑡|𝑥0∕𝑥𝑟) is the PDF of the reset/reset-free income dy-
namics. The reset-free PDF is a log-normal function (following Itô
convention) and reads [50,51]

𝑃0(𝑥, 𝑡|𝑥0) =
1

𝑥
√

2𝜋𝜎2𝑡
exp

⎛

⎜

⎜

⎜

−
[

log( 𝑥
𝑥0
) − (𝜇 − 𝜎2

2 )𝑡
]2

2𝜎2𝑡

⎞

⎟

⎟

⎟

. (A.2)
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⎝ ⎠
Finding the PDF 𝑃𝑟(𝑥, 𝑡|𝑥0, 𝑥𝑟) at all times usually is a daunting task,
however a large time limit which is independent on the initial condi-
tion, 𝑥0, can be obtained by making use of the final value theorem [52].
Namely,

𝑃 𝑠𝑠
𝑟 (𝑥|𝑥𝑟) = lim

𝑡→∞
𝑃𝑟(𝑥, 𝑡|𝑥𝑟) = lim

𝑠→0
𝑠𝑃𝑟(𝑥, 𝑡|𝑥𝑟) = 𝑟𝑃0(𝑥, 𝑟|𝑥𝑟), (A.3)

where 𝑓 (𝑠) = [𝑓 (𝑡)] = ∫ ∞
0 𝑒−𝑠𝑡𝑓 (𝑡) 𝑑𝑡 is the Laplace transform of the

unction 𝑓 (𝑡). Substituting Eq. (A.1) into the above relation, it can be
hown that the stationary distribution follows a power law,

𝑠𝑠
𝑟 (𝑥|𝑥𝑟) =

𝑟𝜎2

𝛼𝜎2 +
(

𝜇 − 𝜎2
2

)

⎧

⎪

⎨

⎪

⎩

(

𝑥
𝑥𝑟

)−𝛼−1
, 𝑥 > 𝑥𝑟,

(

𝑥
𝑥𝑟

)𝛼+2
(

𝜇− 𝜎2
2

)

−1
, 𝑥 ≤ 𝑥𝑟,

(A.4)

where

𝛼 =
−(𝜇 − 𝜎2∕2) +

√

(𝜇 − 𝜎2∕2)2 + 2𝑟𝜎2

𝜎2
, (A.5)

s the shape parameter. Emergence of the power law is the fingerprint
f the real-world income distributions [53,54]. Other stylized facts that
re recovered by the model are: larger 𝜇 (larger average population
rowth), larger 𝜎 (more randomness in the dynamics) and/or smaller
(less retiring or layoffs), result in a smaller shape parameter and a
eavier-tailed distribution. This leads to higher inequality and lower
obility in the economy. Thus, srGBM is a minimal model that is

ble to adequately represent a range of real word situations. As such
t has been implemented to date in various empirical studies (see for
xample [18,20]).

ppendix B. Derivation of the first passage time in srGBM

In this section, we present the derivation for the average first
assage time for the srGBM. To this end, we employ the renewal
ramework that allows us to write the observables in the presence of
esetting in terms of the observables with 𝑟 = 0. Naturally, the bedrock

of these studies relies upon obtaining exact results for the resetting
free process. Since we are interested in the first passage quantities,
the building blocks are usually based on the first passage time density
or the survival probability function. In what follows, we first compute
these quantities exactly for 𝑟 = 0 case, and then make the connection
to the framework to obtain the moments.

Our starting point is to write the Fokker Planck equation for the dis-
tribution of the random income variable 𝑥(𝑡) that follows the geometric
Brownian motion with 𝑟 = 0. This reads
𝜕
𝜕𝑡
𝑃0(𝑥, 𝑡|𝑥0, 𝑡0) = (𝑥0)𝑃0(𝑥, 𝑡|𝑥0, 𝑡0) , (B.1)

where (𝑧) = 𝜇𝑧 𝜕
𝜕𝑧 +

𝜎2

2 𝑧2 𝜕2

𝜕𝑧2
is the generator for the GBM process (fol-

lowing Itô convention). Computation of the first passage time density
requires one to set the appropriate boundary conditions. This can be
done by assuming that the GBM is constrained on some domain . A
seful measure to compute the first passage properties is the so-called
urvival probability 𝑄(𝑥0, 𝑡) which can be defined in one dimension
without any loss of generality) as follows — the probability that the
ncome 𝑥(𝑡) has not reached a threshold 𝑦 up to time 𝑡 starting from a
nitial value 𝑥0. Formally, this is defined as

(𝑥0, 𝑦, 𝑡) = ∫

𝑦

𝑥0
𝑑𝑥 𝑃0(𝑥, 𝑡|𝑥0, 𝑡0) , (B.2)

o that it satisfies the Fokker–Planck equation
𝜕
𝜕𝑡
𝑄(𝑥0, 𝑦, 𝑡) = (𝑥0)𝑄(𝑥0, 𝑦, 𝑡) . (B.3)

he above equation is supplemented by the following conditions

Initial condition 𝑄(𝑥0, 𝑦, 𝑡 = 0) = 1, 𝑥0 ≠ 𝑦, (B.4)

oundary condition 𝑄(𝑥0 = 𝑦, 𝑦, 𝑡) = 0, ∀𝑡. (B.5)
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The first passage time density 𝑓𝑇 (𝑡) is related to the survival probability
ia [13]

𝑇 (𝑡) = − 𝜕
𝜕𝑡
𝑄(𝑥0, 𝑦, 𝑡) , (B.6)

and its moment generating function (MGF) is given by

𝑇̃ (𝑥0, 𝑦, 𝑠) ≡ ⟨𝑒−𝑠𝑇 ⟩ = ∫

∞

0
𝑑𝑡 𝑒−𝑠𝑡 𝑓𝑇 (𝑡) . (B.7)

The MGF is also related to the survival function in Laplace space quite
trivially — by taking the Laplace transform in Eq. (B.6), we have

𝑇̃ (𝑥0, 𝑦, 𝑠) = −𝑠𝑞(𝑥0, 𝑦, 𝑠) + 1 , (B.8)

where 𝑞(𝑥0, 𝑦, 𝑠) = ∫ ∞
0 𝑑𝑡 𝑒−𝑠𝑡𝑄(𝑥0, 𝑦, 𝑡) is the Laplace transform of the

survival probability. Further, we have used the initial condition (B.4).
The Laplace transform then trivially satisfies [see (B.3)]

[ − 𝑠] 𝑞(𝑥0, 𝑦, 𝑠) = −1 , (B.9)

with appropriate boundary conditions. Translating to the first pas-
sage function, we arrive at the following eigenvalue equation for the
moment generating function

𝑇̃ (𝑥0, 𝑦, 𝑠) = 𝑠𝑇̃ (𝑥0, 𝑦, 𝑠) , (B.10)

We now assume that in one dimension, the threshold is at 𝑦 > 0 so that

𝑇̃ (𝑥0 = 𝑦, 𝑦, 𝑠) = 1. (B.11)

Moreover, near |𝑥0| → 0, we should have

𝑇̃ (𝑥0, 𝑦, 𝑠) < ∞ , (B.12)

since starting from 𝑥0 → 0+, it will take a finite time for the stochastic
process to hit 𝑦, and thus the first passage time cannot diverge. The
solution for (B.10) with the above boundary conditions reads

𝑇̃ (𝑥0, 𝑦, 𝑠) = 𝐴𝑥𝑞1(𝑠)0 + 𝐵𝑥𝑞2(𝑠)0 , (B.13)

where 𝑞1(𝑠) =

√

(𝜎2 − 2𝜇)2 + 8𝑠𝜎2 + (𝜎2 − 2𝜇)
2𝜎2

> 0 (B.14)

and 𝑞2(𝑠) = −

√

(𝜎2 − 2𝜇)2 + 8𝑠𝜎2 − (𝜎2 − 2𝜇)
2𝜎2

< 0, (B.15)

for any combination of 𝜇 and 𝜎2. To be consistent with the boundary
ondition (B.12), we should have 𝐵 = 0, and thus

𝑇̃ (𝑥0, 𝑦, 𝑠) = ⟨𝑒−𝑠𝑇 ⟩ = 𝐴𝑥𝑞1(𝑠)0 , (B.16)

here 𝐴 can be calculated using the other boundary condition (B.11).
utting all the pieces together, we have

̃ (𝑥0, 𝑦, 𝑠) =
(

𝑥0
𝑦

)𝑞1(𝑠)
, 𝑥0 ≤ 𝑦. (B.17)

B.17) is a very useful result since it allows us to compute all the
oments for the first passage times by noting

𝑇 𝑛(𝑥0, 𝑦)⟩ ≡ (−1)𝑛 𝑑
𝑑𝑠

𝑇̃ (𝑥0, 𝑦, 𝑠)|𝑠→0, (B.18)

which will also be useful to obtain the first passage time moments in
the presence of resetting (see below).

The first passage quantities under resetting (i.e., 𝑟 > 0) can be
elated to the underlying reset-free (i.e., 𝑟 = 0) quantities using the

renewal formalism [15,46,55–58]. Our starting point is to write a
renewal equation for the survival probability 𝑄𝑟(𝑥0, 𝑦, 𝑥𝑟, 𝑡) (similar to
(𝑥0, 𝑦, 𝑡) in Eq. (B.2)) which is defined as the probability that the
rocess has started from 𝑥0, got reset at 𝑥𝑟 and stayed below the
oundary coordinate 𝑦 up to time 𝑡. The renewal equation for the
urvival function reads [55]

𝑟(𝑥0, 𝑦, 𝑥𝑟, 𝑡) = 𝑒−𝑟𝑡𝑄(𝑥0, 𝑦, 𝑡) +
𝑡
𝑑𝜏 𝑟𝑒−𝑟𝜏 𝑄(𝑥0, 𝑦, 𝜏) 𝑄𝑟(𝑥𝑟, 𝑦, 𝑥𝑟, 𝑡− 𝜏).
8

∫0 b
(B.19)

Taking Laplace transform on the both sides of Eq. (B.19) and after some
manipulations we arrive at the following relation

𝑞𝑟(𝑥0, 𝑦, 𝑥𝑟, 𝑠) =
𝑞(𝑥0, 𝑦, 𝑠 + 𝑟)

1 − 𝑟𝑞(𝑥𝑟, 𝑦, 𝑠 + 𝑟)
(B.20)

=
1 − 𝑇̃ (𝑥0, 𝑦, 𝑠 + 𝑟)
𝑠 + 𝑟𝑇̃ (𝑥𝑟, 𝑦, 𝑠 + 𝑟)

, (B.21)

where, while going from the first line to second, we have used Eq. (B.8)
i.e., the relation between first passage time density and survival func-
tion in the Laplace space. The mean first passage time is then given by

⟨𝑇𝑟(𝑥0, 𝑦, 𝑥𝑟)⟩ = ∫

∞

0
𝑑𝑡 𝑡𝑓𝑇𝑟 (𝑡) = 𝑞𝑟(𝑥0, 𝑦, 𝑥𝑟, 𝑠 → 0) =

1 − 𝑇̃ (𝑥0, 𝑦, 𝑟)
𝑟𝑇̃ (𝑥𝑟, 𝑦, 𝑟)

,

(B.22)

here 𝑇̃ (𝑥0, 𝑦, 𝑟) =
(

𝑥0
𝑦

)𝑞1(𝑟)
. This is the central formula behind the

MFPT analysis that was announced in the main text. We have verified
(B.22) with numerical simulations in Fig. 2. The results show an
excellent agreement between them.

A simple observation at Fig. 2 shows us that the MFPT can be
optimized as a function of the resetting rate 𝑟. This optimal rate can
be computed from the relation
𝜕
𝜕𝑟

⟨𝑇𝑟(𝑥0, 𝑦, 𝑥𝑟)⟩
|

|

|

|𝑟=𝑟∗
= 0. (B.23)

lthough it is not possible to obtain an exact expression for 𝑟∗, one
an use a numerical approach. The optimal resetting shows interesting
ehaviors in terms of the intrinsic system parameters such as 𝜇 and
as can be seen from Fig. 2. While the optimal rate is non-zero for

mall values of 𝜇, it eventually becomes zero for large 𝜇. On the other
and, this behavior is reversed as 𝜎 is varied from small to large. Such
transition of the optimal resetting rate from a finite value to zero

s reminiscent of the canonical thermodynamic phase transition that
an further be understood within the Landau like mean field theory
see [59] for a general theory and such instances in physics).

ppendix C. Numerical estimation of MFPT through srGBM

The basic ingredient used to numerically simulate srGBM is to gen-
rate a trajectory using Eq. (4). Concretely, to obtain the distribution
f the position of the particle at time 𝑡, we discretize the time 𝑡 = 𝑛𝛥𝑡,
here 𝑛 is an integer. We initialize the position of the particle at
(0) = 1, and then, at each step (𝜏 = 1,… , 𝑛), the particle can either
eset or it can evolve according to the laws of GBM. Thus,

1. with probability 1 − 𝑟𝛥𝑡 (𝑟 is the rate of resetting); the particle
undergoes GBM so that

𝑥(𝜏𝛥𝑡) = 𝑥[(𝜏 − 1)𝛥𝑡][𝜇 + 𝜎
√

𝛥𝑡𝜂(𝜏𝛥𝑡)], (C.1)

where 𝜂(𝜏𝛥𝑡) is a Gaussian random variable with mean 0 and
variance 1, and 𝛥𝑡 is the microscopic time step;

2. with complementary probability 𝑟𝛥𝑡, resetting occurs such that

𝑥(𝜏𝛥𝑡) = 𝑥(0) = 𝑥𝑟. (C.2)

The length of a single first passage event can be estimated as
follows: we simulate the stochastic process described in Eqs. (C.1) and
(C.2) until the particle hits a predefined virtual absorbing boundary,
𝑥(𝜏𝛥𝑡) = 𝑦. The length of this first passage event is simply 𝜏𝛥𝑡. In order
to illustrate how we can numerically extract a series of first passage
time events, we identify the sections of three sample trajectories which
start at 𝑥(0) = 1 and end at a predetermined boundary, 𝑥(𝜏𝛥𝑡) = 𝑦, that
s represented by the solid line in Fig. C.5. Given these first passage
vents, we can easily calculate the corresponding first passage times

y taking their time span. The average of these time lengths gives an
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Fig. C.5. First passage time events.
Here we plot three typical srGBM trajectories with their corresponding first passage
times (circled points). Every trajectory starts at 𝑥0 = 1 (horizontal dashed line). The
horizontal bold line at 𝑥 = 2 represents the predefined target. The black vertical
lines represent a resetting event. Here, we have assumed 𝑥0 = 𝑥𝑟 without any loss
of generality.

estimate for the MFPT of the stochastic process and generally can be
written as:

⟨

̂̃𝑇𝑟⟩ =
𝛴𝑁 𝜏𝛥𝑡

𝑁
. (C.3)

As we increase the number of sampled trajectories, 𝑁 , the estimated
empirical MFPT should converge to the analytical value.

Appendix D. Estimation of the MFPT through transition matrices

An income transition matrix aggregates the income rankings and
summarizes mobility in a stochastic matrix 𝐀 in which the elements
𝐴𝑘𝑙 quantify the probability that an individual in income quantile 𝑘 in
period 𝑡 is found in income quantile 𝑙 in period 𝑡 + 𝛥.

Mathematically, the entries of the transition matrix can be defined
as follows. Let 𝑘(𝑡) denote the set of individuals that are part of
quantile 𝑘 in time period 𝑡. Then,

𝐴𝑘𝑙 =
|𝑘(𝑡) ∩ 𝑙(𝑡 + 𝛥)|

|𝑙(𝑡 + 𝛥)|
, (D.1)

where || is the cardinality of . For example. suppose that we want to
calculate the element 𝐴1,10 of the transition matrix. Visually, this entry
represents the probability that the highest paid worker of the bottom
quantile (see Fig. D.6(a)) in time 𝑡 reaches the threshold income of the
lowest paid worker of the top quantile (see Fig. D.6(b)) in time 𝑡 + 𝛥𝑡.
This probability is calculated as a fraction of the individuals that cross
the minimum income of the target decile in 𝛥𝑡 as shown in Fig. D.6(c)
and (d). We can easily generalize this procedure and compute the full
transition matrix 𝐀 after arbitrary time steps.

The income transition matrix that is generated from real world
data follows approximately continuous time dynamics. The standard
methods for estimating the MFPT from a transition matrix, however,
assume discrete time. Conveniently, 𝐀 can be easily transformed to a
so called embedded Markov chain matrix 𝐀̃ whose MFPT estimated
using discrete time methods is the same as if we were to estimate the
continuous time MFPT from 𝐀.

In what follows, we describe the procedure for generating 𝐀̃ and
estimating the corresponding MFPTs.

The fist step is to generate the Markov generator matrix 𝐐 of 𝐀
that describes the rates at which workers move across quantiles. The
elements 𝑄 of 𝐐 are
9

𝑘𝑙
Fig. D.6. Construction of a transition matrix.
(a) Income distribution histogram for the lowest paid individuals at time 𝑡. (b) Income
distribution histogram for the highest paid individuals at time 𝑡 + 𝛥. (c) Left diagram:
the set of individuals that belong to the bottom quantile at 𝑡. Right diagram: the set of
individuals that belong to the top quantile at 𝑡+𝛥. (d) Transition probability from the
bottom to the top quantile in time 𝛥𝑡 is calculated as the fraction of individuals that
reached the threshold income of the target quantile, namely from the black colored
bar in (a) to the blue colored bar in (b). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

𝑄𝑘𝑙 =

{

log(𝐴𝑘𝑙), if 𝑘 = 𝑙
𝐴𝑘𝑙 log(𝐴𝑘𝑙)∕(1 − 𝐴𝑘𝑙), otherwise.

Using 𝐐, 𝐀̃ can be estimated as

𝐀̃ = 𝐈 − 𝚍𝚒𝚊𝚐 (𝐐)−1 𝐐, (D.2)

where 𝐈 is the identity matrix and 𝚍𝚒𝚊𝚐 (𝐐) is a matrix with entries equal
to 𝑄𝑘𝑙 if 𝑘 = 𝑙, and 0 otherwise.

The MFPT between two quantiles 𝑘 and 𝑙 of a transition matrix 𝐴
with 𝐾 quantiles is related to the vector that describes the stationary
transition probabilities π′ = (𝜋1, 𝜋2,… , 𝑝𝐾 ) of the discrete Markov chain
given with 𝐀̃. The matrix 𝐌 whose entries 𝑀𝑘𝑙 give the MFPT between
𝑘 and 𝑙 can be estimated in the following way:

1. Compute the stationary probability vector 𝑝∗𝑡 of the Markov
chain described with 𝐀̃. This vector is given by the left eigen-
vector corresponding to the largest eigenvalue of 𝐀̃.

2. Compute the fundamental matrix 𝐙, as 𝐙 = [𝐈 − 𝐀 + 𝟏π′]−1.
3. Compute the MFPT matrix 𝐌 with mean first passage time from

quantile 𝑘 to quantile 𝑙 defined as 𝑀𝑘,𝑙 =
𝑍𝑙𝑙−𝑍𝑘𝑙

𝜋𝑙
.

We refer the reader to Refs. [33–36] for more details about the
estimation procedure.

Appendix E. Method for empirical estimation of srGBM parame-
ters

We assume that the income dynamics follows srGBM that is con-
stantly under the threat of changing its parameters. In this context,
we will assume that the resetting rate 𝑟(𝑡) is a function of time and
will provide an approximation 𝑟̂(𝜏) with the fraction of people that lost
and/or left their job. For simplicity, we will measure the resetting rate
on a yearly basis and assume that in between two years the resetting
rate is fixed, i.e., 𝑟(𝑡) ≈ 𝑟̂(𝜏) for any 𝜏 between 𝑡 and 𝑡+1. Our goal is to
simultaneously provide consistent estimates 𝜇̂(𝜏) and 𝜎̂(𝜏) for the drift
parameter 𝜇(𝜏) and the noise amplitude 𝜎(𝜏) as a function of the time,
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Fig. E.7. Income dynamics in USA.
The solid lines represent the average income in US Dollars. The dash-dotted lines correspond to the threshold income in US Dollars. The resetting income is the minimum positive
average income observed in the lowest percentiles of the income distribution.
A
r

a

A

h

that best fits the observed shares of income owned by the top 1% in
the US income distribution. The assumption for dynamics in the model
parameters reflects the possibility of noise in the data. In addition,
it can be an approximation for the changes in economic conditions
that affect the srGBM dynamics. These can be either due to changes
in government policies or due to circumstances that are not under the
control of the policymakers.
Formally, the estimation procedure consists of the following steps:

1. Fix the resetting rate 𝑟̂(0) in the initial period at the initial year
𝜏 = 0 and then estimate 𝜇̂(0) and 𝜎̂(0) to match the srGBM
stationary distribution.

2. Propagate 𝑁 individual income trajectories according to the
laws of srGBM. That is, with probability 1 − 𝑟̂(𝜏)𝛥𝑡 the income
undergoes GBM so that:

𝑥𝑖(𝑡 + 𝛥𝑡) = 𝑥𝑖(𝑡) + 𝑥𝑖(𝑡)[𝜇̂(𝜏)𝛥𝑡 + 𝜎̂(𝜏)
√

𝛥𝑡𝜂𝑖(𝛥𝑡)], (E.1)

where 𝜂𝑖(𝛥𝑡) is a Gaussian random variable with zero mean and
unit variance, and 𝛥𝑡 is a small time increment. Here, we used
the Itô convention. With complementary probability 𝑟̂(𝜏)𝛥𝑡, the
income resets to the initial position:

𝑥𝑖(𝑡 + 𝛥𝑡) = 𝑥𝑟. (E.2)

At last, we find the values 𝜇̂(𝜏 + 1) and 𝜎̂(𝜏 + 1) that minimize
the squared difference between the inferred share of the top 1%
in the modeled population in year 𝜏 + 1 and the observed share
in real data.

3. Repeat Step 2 until the end of the time series.

For each time series we run a simulation for a model economy of
𝑁 = 106 workers. However, because of the randomness of the numeric
simulations, each simulation will result in different fitted values. To
take this into consideration, we construct a Monte Carlo estimation by
repeating the process 100 times and report the average value of 𝜇̂(𝜏)
and 𝜎̂(𝜏). In addition, this allows us to estimate the variability of the
results and provide confidence intervals for both parameters.

Appendix F. Method for empirical estimation of srGBM MFPT

The estimation procedure for the srGBM MFPT consists of the
following steps:
10
1. Fix the srGBM parameters to match those estimated in [18].
Choose an initial position and a target. These positions represent
the estimated income for the starting and target percentile,
respectively.

2. Calculate the MFPT using Eq. (1).
3. Repeat Step 2 until the end of the time series.

ppendix G. Method for estimation of fraction of individuals
eaching a target income in X years

The estimation procedure for the fraction of individuals that reach
target income in X consists of the following steps:

1. Fix the srGBM parameters to match those estimated in [18].
Choose an initial position and a target. These positions represent
the average income for the poorest individuals and target decile,
respectively.

2. Propagate 𝑁 individual income trajectories according to the
laws of srGBM for XX years. Calculate how many individuals 𝑛
out of the population 𝑁 reach the target income fixed in the first
step.

3. Repeat Step 2 until the end of the time series.

ppendix H. Method for estimation of the optimal resetting rate

In order to estimate the optimal resetting rate for each year, we
ave to fix 𝜇̂(𝜏), 𝜎̂(𝜏), 𝑥𝑟(𝜏), 𝑥0(𝜏), and the target 𝑦(𝜏). However, given

that there are multiple choices for a starting and target position, we can
estimate in total 45 different optimal resetting rates. The minimization
procedure is performed using Hessian-free optimization, in particular
the truncated Newton (TNC) algorithm.

Appendix I. Income dynamics data

In this section we present data taken from the The World Inequa
lity Database for which we provide full availability at the following
link. Fig. E.7 show the average and threshold income dynamics for
the quantiles we study, namely the 10th decile, 50th decile, 75th per-
centile, 90th decile, 95th percentile and 99th percentile. The average
pre-tax national income corresponds to the average level of income
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of the specific income group, whereas threshold income corresponds
to the minimum level of income that gets you into a specific income
group. In addition, pre-tax national income in Dollars $ is calculated
as the sum of all pre-tax personal income flows accruing to the owners
of the production factors, labor and capital, before taking into account
the operation of the tax/transfer system, but after taking into account
the operation of the pension system. In this aggregation the population
is comprised of individuals over age 20. The base unit is the individual
(rather than the household) but resources are split equally within
couples.
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