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Abstract
We introduce and study a Lévy walk (LW) model of particle spreading with a finite propagation
speed combined with soft resets, stochastically occurring periods in which an harmonic external
potential is switched on and forces the particle towards a specific position. Soft resets avoid
instantaneous relocation of particles that in certain physical settings may be considered unphysical.
Moreover, soft resets do not have a specific resetting point but lead the particle towards a resetting
point by a restoring Hookean force. Depending on the exact choice for the LW waiting time
density and the probability density of the periods when the harmonic potential is switched on, we
demonstrate a rich emerging response behaviour including ballistic motion and superdiffusion.
When the confinement periods of the soft-reset events are dominant, we observe a particle
localisation with an associated non-equilibrium steady state. In this case the stationary particle
probability density function turns out to acquire multimodal states. Our derivations are based on
Markov chain ideas and LWs with multiple internal states, an approach that may be useful and
flexible for the investigation of other generalised random walks with soft and hard resets. The
spreading efficiency of soft-rest LWs is characterised by the first-passage time statistic.

1. Introduction

Lévy flights (LFs), jump processes whose jump lengths � follow a Lévy stable law with power-law asymptote
� |�|−1−α (0 < α < 2), were coined by Mandelbrot [1], who, inter alia, used them to account for
empirically observed fat-tailed distributions of speculative prices on financial markets [2]. While LFs may
occur naturally along the contour of long and sufficiently quickly relaxing polymer and DNA chains
through hopping across loops [3, 4], generally jump processes with very long, instantaneous relocation
events of massive particles appear physically problematic. To remedy this fact Lévy walks (LWs) with a finite
propagation speed were introduced [5]. In particular, the resulting coupling of jump lengths and walk times
effects finite moments of all orders for LWs as compared to the infinite variance of LFs [5].

LFs and LWs have been widely advocated as efficient search processes in one and two dimensions due to
the occurrence of occasional long relocations, that reduce local oversampling in comparison to a Brownian
walk [6–10]. In movement ecology, the LF foraging hypothesis [11] has become one of the ground
hypotheses for optimised random search for sparse food sources. While more recently it has been pointed
out that LFs and LWs may not always minimise search times and/or target localisation probabilities [12–14]
they represent widely identified patterns in movement ecology [15, 16].

LW statistics were shown to characterise human hunter-gatherer foraging [17], pedestrian movement
[18], human movement patterns [19] as well as COVID-19 pandemic propagation [20], and they were
shown to emerge in optimised robotic search [21]. More microscopically, LWs were observed for the
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motion of individual molecular motors in living biological cells [22] and for the motor-driven transport of
single messenger RNA molecules in live dendritic cells [23]. We also mention LW statistics in the spreading
of cancer cells [24] as well as in human memory retrieval [25] and cognition processes [26].

In physical settings LWs have been very successfully used to describe the dynamics of particles in weakly
chaotic systems, in which motion events in phase space are interspersed by sticking events, e.g. around
stable islands or in eddies [27–30]. LWs also describe the blinking dynamics of quantum dots [31], and they
may emerge from deterministic nonlinear systems near a critical point [32]. More information about LWs
can be found in the detailed recent review [33].

Another stochastic mechanism to improve the search efficiency of random search processes in many
scenarios is stochastic resetting (SR) [34–36]: a diffusing particle is occasionally (at fixed time intervals or
stochastically) ‘reset’ to a specified location. In most settings SR leads to a non-equilibrium steady state
(NESS) characterised by a large deviation function [34, 37]. Generically, if the target location is within the
typical range explored by the reset trajectory the search process becomes more efficient. SR has also been
extended to numerous non-Markovian and non-Gaussian scenarios, including long-ranged correlated
processes [38] and geometric Brownian motion [39]. Typical applications include molecular chemical
reactions with stochastic decay [40], backtracking RNA polymerase scenarios [41], enzymatic reactions
[42, 43], pollination strategies [44], or web search algorithms [45, 46], inter alia. Another recent
generalisation is SR with random amplitudes as effective models for systems experiencing occasional crises
such as riverbed sedimentation, population dynamics, and financial markets [47].

One objection against such resetting mechanisms is that, similar to the long instantaneous jumps for
LFs, sudden relocation events during resets that are long compared to the diffusive distance covered by the
undisturbed particle, may not be considered physical. In LFs this problem was mended by introducing a
spatiotemporal coupling and thus a finite propagation speed. For resetting we here introduce soft resets,
considering the dynamical response of the particle to an harmonic external potential that is switched on an
off stochastically. In fact the experimental SR of colloidal particles in a switching optical tweezers trap
recently demonstrated in [48] is a direct example for soft resetting, especially for relatively shallow trap
stiffness, as optical tweezers exert a Hookean force on the trapped dielectric particle. We here combine the
soft resetting procedure with LW dynamics and obtain a rich and versatile model for the description of
physically regularised spreading and search processes of particles with finite propagation speed.

Direct applications of this model include the movement of animals who venture out and occasionally
return towards the central area of their territory, but not always to the same nest. Similarly, these could be
young animals who are called back by the parental group when they stray away too far, and when it is
sufficient that they return to within the field of vision. In financial markets soft resets may serve as models
for monetary interventions by central banks, attempting to curb excessive market developments. On a more
microscopic scale, soft-reset LWs may represent molecular motors that are influenced by shallow optical
tweezers that are switched stochastically. Such tweezers could also be combined with colloidal tracers in
weakly chaotic fluids. In both cases such a setup would also allow for experimental probing the response
behaviour of particles in non-equilibrium systems.

In what follows we develop and analyse the LW model with soft stochastic resets. In section 2 we
construct the mathematical framework, followed by the exploration of the statistical properties for various
combinations of the laws for the waiting times in the LW and the resetting times in section 3. In particular,
we demonstrate the emergence of multimodal stationary probability density functions (PDFs) in the NESS
of the reset process. The spreading dynamics of soft-rest LWs is analysed in section 4 in terms of the
first-passage time PDF and the mean first-passage time. We discuss our results and draw our conclusions in
section 5. Finally, in the appendices we collect some more formal calculations.

2. Model

We develop the soft-rest LW model in one dimension. It consists of two distinct phases, the free LW motion
phase and the non-instantaneous soft-resetting phase. In the first phase we assume that the particle moves
symmetrically with the constant speed v0, so that the LW velocity can be ±v0, with probability of 1/2 for
going left or right (− or +). The duration (waiting) time τ for each LW motion event is taken to be an
independent identically distributed (i.i.d.) random variable whose PDF is denoted by φ(1)(τ ). In this
ordinary LW phase, if the particle just finishes one step of the walk and arrives at position x at time t, then it
left either x − v0τ or x + v0τ at time t − τ , each with probability 1/2 [33]. In the soft-resetting phase the
particle is driven by the harmonic potential V(x) = γ

2 x2, giving rise to the restoring Hookean force
F(x) = −γx directed to the origin with the force constant γ. If the harmonic external potential stems from a
stochastically switched optical tweezer, γ corresponds to the (adjustable) tweezer trap stiffness.
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In a constantly acting harmonic potential the LW is trapped [49]. When the harmonic potential is
switched on at a given location of this phase at position z and the trapping is parameterised by the time
variable η, the position x of a particle with mass m satisfies the set of equations [49]⎧⎪⎪⎪⎨⎪⎪⎪⎩

m
d2x

dη2
= −γx

dx

dη

∣∣∣∣
η=0

= ±v0,
(1)

where the second equation represents the fact that the initial velocity for each soft-rest phase is v0 or −v0.
In this paper we consider the symmetric case so that the probability for each case is 1/2. From the initial
position z we can then write down the solution to the ordinary differential equations (1) in the form

x = z cos(ωη) ± v0

ω
sin(ωη) (2)

with ω =
√
γ/m. In our approach here we consider η to be an i.i.d. random variable following the PDF

φ(2)(η). An alternative formulation could include a damping term for the motion in the harmonic potential.
This scenario, of particular relevance when ω is large, will be considered elsewhere.

Now we can treat these two phases as two internal states introduced in the Markov chain approach in
[50, 51], and we construct a 2 × 2 transition matrix M, that we assume to have the form

M =

(
M11 M12

M21 M22

)
, (3)

where Mij � 0 (i, j = 1, 2) represents the probability of transitioning from state i to j. Moreover we assume
that the sums of each row equal unity, i.e. (1, 1)MT = (1, 1). Additionally we denote the initial distribution
for the internal states as ξ = (ξ(1), ξ(2))T with ξ(1), ξ(2) � 0 and ξ(1) + ξ(2) = 1. In this vein, in the following
the superscript with a bracket represents the corresponding state, e.g. x(i) denotes the particle arrives at
location x in state i. Then the LW process under stochastic harmonic trapping can be illustrated as follows:
when the particle starts to move at the initial position x0, it will stochastically choose to stay in phase one
(or two) with probability ξ(1) (or ξ(2) = 1 − ξ(1)), then the particle follows a free LW and moves to
x(1)

1 = x0 ± v0τ with τ generated from the PDF φ(1)(τ ). Alternatively the particle starts the second phase
and moves to x(2)

1 = x0 cos(ωη) ± v0/ω sin(ωη), where η is chosen from the law φ(2)(η). When process has
just finished its Nth motion event (N � 1) and arrives at x(i)

N with i = 1, 2, then for the (N + 1)th step, we
have the possible outcomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(1)
N+1 = x(i)

N + v0τ , with probability
Mi1

2
;

x(1)
N+1 = x(i)

N − v0τ , with probability
Mi1

2
;

x(2)
N+1 = x(i)

N cos(ωη) +
v0

ω
sin(ωη), with probability

Mi2

2
;

x(2)
N+1 = x(i)

N cos(ωη) − v0

ω
sin(ωη), with probability

Mi2

2
,

(4)

where τ and η are random variables with respect to the PDFs φ(1)(τ) and φ(2)(η). From the particle
dynamics we can thus express how the harmonic potential stochastically acts on the LW particle via the
transition matrix M. It should be noted that the first two relations in equation (4) describe the free LW
process, which may be referred to as the ‘walking’ phase in the blue lines of figure 1(b). Conversely, the
third and last relations in equation (4) describe the effect of the harmonic potential, which may be referred
to as the ‘soft-reset’ phase related to the red curves of figure 1(b).

In figure 1 we show a comparison between a standard trajectory of a free, undisturbed LW with
power-law travel time PDF (40) with α = 1.5 (panel (a)), and a soft-reset LW with exponential resetting
time PDF (panel (b)). We note the characteristic difference of soft-reset events to hard resets: while the
latter would have an infinite slope and instantaneously reset the particle to its origin, the soft-reset
dynamics represented by the red lines in panel (b) exhibit non-linear relaxation dynamics in the harmonic
potential. Moreover, the relaxation typically does not reset the particle to its origin. Instead, the particle
either leaves the soft-reset phase before reaching the origin, or it may overshoot the origin in partial
oscillations in the harmonic potential. In an extended scenario (not considered here), one might also
include damping in the soft-reset phase. Measured trajectories x(t) may thus provide vital clues towards the
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Figure 1. Comparison of a regular LW trajectory with constant speed (panel (a)) and an LW trajectory with soft resets
(panel (b)). In (b) the initial distribution of states is ξ = (1/2, 1/2)T and Mi,j = 1/2, and the PDF φ(2)(τ) for the soft reset times
is exponential with unit characteristic time. In both panels the blue lines represent the free ‘walking’ phase (i.e. the first state of
an undisturbed LW) described by the first two relations in equation (4), and the red line corresponds to the ‘soft-reset’ phase (i.e.
the second state) described by the third and last relations in equation (4). In both panels v0 = 1 and the PDF φ(1)(τ) of
relocation times in the free LW phase has the power-law form (40) with α = 1.5. In (b) we chose ω = 4.

reset-time PDF as well as how well the harmonic model chosen here for the soft-reset driving describes the
observed dynamics.

Next we derive the equation for the PDF p(x, t) of finding the particle at position x at time t. In the
following we denote St ∈ {1, 2} as the internal state in which the particle is encountered at a given time t,
and the joint probability of St and the position of the particle at time t is denoted as p(i)(x, t) = p(x, St = i, t)
with i = 1, 2. Obviously these quantities fulfil the relation

p(x, t) = p(1)(x, t) + p(2)(x, t). (5)

From LW theory [33] and the formulation of stochastic processes with internal states [50, 51], p(i)(x, t) can
be expressed by help of the PDFs q(1,2)(x′, t′), which state that the renewal event finishes at time t

′
and the

particle arrives at position x′ with state 1 or 2. For brevity we will drop the primes in the following. Then,
according to the probabilistic statements in equation (4), the equations for q(1,2)(x, t) follow in the form(

q(1)(x, t)

q(2)(x, t)

)
=

∫ ∞

−∞
dy

∫ t

0
dτMT

(
ν(1)(x, y, τ) 0

0 ν(2)(x, y, τ)

)(
φ(1)(τ) 0

0 φ(2)(τ)

)(
q(1)(y, t − τ)

q(2)(y, t − τ)

)

+ p0(x)δ(t)ξ, (6)

where

ν(1)(x, y, τ) =
1

2

[
δD(x − y − v0τ) + δD(x − y + v0τ)

]
,

ν(2)(x, y, τ) =
1

2

[
δD

(
x − y cos(ωτ) − v0

ω
sin(ωτ)

)
δD

(
x − y cos(ωτ) +

v0

ω
sin(ωτ)

)]
,

(7)

and δD(·) is the Dirac δ function. Moreover, p0(x) in equation (6) represents the initial distribution of the
particle position, here we choose p0(x) = δD(x − x0). Finally we have⎛⎝p(1)(x, t)

p(2)(x, t)

⎞⎠ =

∫ ∞

−∞
dy

∫ t

0
dτMT

⎛⎝ν(1)(x, y, τ)Ψ(1)(τ)

ν(2)(x, y, τ)Ψ(2)(τ)

⎞⎠⎛⎝q(1)(y, t − τ)

q(2)(y, t − τ)

⎞⎠ , (8)

where Ψ(i)(τ) =
∫∞
τ φ(i)(r)dr represents the survival probability. The Laplace transform

ĝ(s) = L t{g(t)}(s) =

∫ ∞

0
e−stg(t)dt (9)

of Ψ(i)(τ ) with respect to τ is Ψ̂(i)(s) = 1
s (1 − φ̂(i)(s)). In the following, we will obtain the form of p(x, t)

from (5), (8) and (6) with the help of orthogonal Hermite polynomials, and choose some representative
PDFs φ(1) and φ(2) to calculate the corresponding asymptotic behaviours of the mean squared displacement
(MSD). In some cases we resort to numerical simulations.
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3. Statistical properties

We first express the terms q(1,2)(x, t) and p(1,2)(x, t) from relations (6) and (8) in the form of Hermite
orthogonal polynomials, as introduced in appendix A. The asymptotic behaviours of the MSDs with
different transition matrices M and different types of the laws φ(1)(τ) and φ(2)(τ ) will be calculated.

It can be obtained from equation (6) that

q(1)(x, t) − ξ(1)δD(x − x0)δD(t) =
M11

2

∫ t

0
q(1)(x + v0τ , t − τ)φ(1)(τ)dτ

+
M11

2

∫ t

0
q(1)(x − v0τ , t − τ)φ(1)(τ)dτ

+
M21

2

∫ t

0
q(2)(x + v0τ , t − τ)φ(1)(τ)dτ

+
M21

2

∫ t

0
q(2)(x − v0τ , t − τ)φ(1)(τ)dτ ,

(10)

and

q(2)(x, t) − ξ2δD(x − x0)δD(t) =
M12

2

∫ t

0

[
q(1)(x+, t − τ) + q(1)(x−, t − τ)

] φ(2)(τ)

| cos(ωτ)| dτ

+
M22

2

∫ t

0

[
q(2)(x+, t − τ) + q(2)(x−, t − τ)

] φ(2)(τ)

| cos(ωτ)| dτ ,

(11)

where x± = x/cos(ωτ) ± (v0/ω)tan(ωτ). In the following we assume that q(i)(x, t) can be explicitly
expressed by Hermite polynomials Hn(x), see (A2). Specifically,

q(i)(x, t) =
∞∑

n=0

Hn(x)e−x2
T(i)

n (t), for i = 1, 2, (12)

where the temporal terms T(i)
n (t) remain to be determined. Following the derivations in appendix B, we

have the following recursion relations

√
π2nn!T(1)

n (t) − ξ(1)δD(t)Hn(x0) =

√
π

2

n∑
k=0

n!

(n − k)!

(
1 + (−1)n−k

)
2nvn−k

0

∫ t

0
τn−kφ(1)(τ)

×
(

M11T(1)
k (t − τ) + M21T(2)

k (t − τ)
)

dτ

(13)

and

√
π2nn!T(2)

n (t) − Hn(x0)ξ2δD(t) =

√
π

2

n∑
k=0

� k
2 	∑

j=0

2n−2jn!

j!(n − k)!

(
(−1)j + (−1)n−k+j

) (v0

ω

)n−k

×
∫ t

0
cosk−2j(ωτ)sin2j+n−k(ωτ)φ(2)(τ)

×
(

M12T(1)
k−2j(t − τ) + M22T(2)

k−2j(t − τ)
)

dτ.

(14)

Following a Laplace transformation with respect to time t in equations (13) and (14) we obtain the
following solvable equations

√
π2n n!T̂(1)

n (s) − ξ(1)Hn(x0) =

√
π

2

n∑
k=0

n!

(n − k)!

(
1 + (−1)n−k

)
2nvn−k

0

dn−k

dsn−k
φ̂(1)(s)

×
(

M11T̂(1)
k (s) + M21T̂(2)

k (s)
)

,

(15)

5
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and

√
π2nn!T̂(2)

n (s) − Hn(x0)ξ2 =

√
π

2

n∑
k=0

� k
2 	∑

j=0

2n−2jn!

j!(n − k)!

(
(−1)j + (−1)n−k+j

) (v0

ω

)n−k

×L τ

{
cosk−2j(ωτ)sin2j+n−k(ωτ)φ(2)(τ)

}
(s)

(
M12T̂(1)

k−2j(s) + M22T̂(2)
k−2j(s)

)
,

(16)
where L τ{·}(s) represents the Laplace transform with respect to τ and introducing the Laplace variable s,
as defined in (9). In analogy to equation (12) we also express

p(i)(x, t) =
∞∑

n=0

Hn(x)e−x2
R(i)

n (t), for i = 1, 2, (17)

where the terms R(i)
n (t) are to be determined. Through relation (8) and with similar derivations in appendix

B, for each n = 0, 1, . . . we have the following recursion equations in Laplace space,

R̂(1)
n (s) =

n∑
k=0

vn−k
0

2(n − k)!

(
1 + (−1)n−k

) dn−k

dsn−k
Ψ̂(1)(s)

(
M11T̂(1)

k (s) + M21T̂(2)
k (s)

)
(18)

and

R̂(2)
n (s) =

n∑
k=0

� k
2 	∑

j=0

2−2j−1

j!(n − k)!

(
(−1)j + (−1)n−k+j

)
×

(v0

ω

)n−k
L τ

{
cosk−2j(ωτ)sin2j+n−k(ωτ)Ψ(2)(τ)

}
(s)

(
M12T̂(1)

k−2j(s) + M22T̂(2)
k−2j(s)

)
.

(19)

Let us first verify the normalisation of p(x, t), i.e.
∫∞
−∞p(x, t)dx = 1. With the definition of the Fourier

transform, f̃(k)= Fx{f (x)}(k) =
∫∞
−∞e−ikx f (x)dx, the normalisation can be equivalently verified in

Fourier–Laplace space by ˆ̃p(k, s)|k=0 = 1/s. Then, from the assumed form (17) and the property (A6) of the
Hermite polynomials, we see that

ˆ̃p(k, s) = ˆ̃p(1)(k, s) + ˆ̃p(2)(k, s) =
∞∑

n=0

√
π(−ik)n exp

(
−k2

4

)(
R(1)

n (s) + R(2)
n (s)

)
. (20)

Then with k = 0 we find
ˆ̃p(k, s)

∣∣∣
k=0

=
√
π
(

R(1)
0 (s) + R(2)

0 (s)
)
. (21)

From relations (18) and (19) we have

R̂(i)
0 (s) = Ψ̂(i)(s)

(
M1iT̂

(1)
0 (s) + M2iT̂

(2)
0 (s)

)
, (22)

and with the recursion relations (15) and (16),⎧⎪⎪⎪⎨⎪⎪⎪⎩
T̂(1)

0 (s) − ξ(1)

√
π
= φ̂(1)(s)

(
M11T̂(1)

0 (s) + M21T̂(2)
0 (s)

)
T̂(2)

0 (s) − ξ2√
π
= φ̂(2)(s)

(
M12T̂(1)

0 (s) + M22T̂(2)
0 (s)

)
,

(23)

where we note that H0(x) = 1, see also equation (A2). Then by solving equation (23) and substituting into
relation (22) we verify that

R̂(1)
0 (s) + R̂(2)

0 (s) =
1√
πs

, (24)

where the relations M12 = 1 − M11, M21 = 1 − M12 and ξ(1) = 1 − ξ(2) are used during the calculations.
Then from result (24) the normalisation follows, see equation (21).

6
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To obtain the time dependence of the MSD we use the relation for the mth moment of the PDF p(x, t) in
Fourier space,

〈xm(t)〉 = im dm

dkm
p̃(k, t)

∣∣∣∣
k=0

. (25)

Using equation (20) we find that

〈x̂2(s)〉= L t

{
〈x2(t)〉

}
(s)

=

√
π

2

(
R̂(1)

0 (s) + R̂(2)
0 (s)

)
+ 2

√
π
(

R̂(1)
2 (s) + R̂(2)

2 (s)
)

=
1

2s
+ 2

√
π
(

R̂(1)
2 (s) + R̂(2)

2 (s)
)

,

(26)

where the last equation utilises relation (24). Therefore, in order to calculate the asymptotic behaviour of
the MSD, we need to obtain the results of R̂(1,2)

0 (s) and R̂(1,2)
2 (s) through equations (18) and (19). Moreover,

T̂(1,2)
0 and T̂(1,2)

2 given by expressions (15) and (16) are required to calculate R̂(1,2)
0 (s) and R̂(1,2)

2 (s). It should
be noted that, if we choose the initial position to be the origin, x0 = 0, then from relation (25) the Laplace
transform of the mean value reads

〈x̂(s)〉 =
√
π
(

R̂(1)
1 (s) + R̂(2)

1 (s)
)
. (27)

Then from equations (18) and (19) we obtain

R̂(1)
1 (s) = Ψ̂(1)(s)

(
M11T̂(1)

1 (s) + M21T̂(2)
1 (s)

)
,

R̂(2)
1 (s) =L τ

{
cos(ωτ)Ψ(2)(τ)

}
(s)

(
M12T̂(1)

1 (s) + M22T̂(2)
1 (s)

)
,

(28)

and further from equations (15) and (16),

T̂(1)
1 (s) = φ(1)(s)

(
M11T̂(1)

1 (s) + M21T̂(2)
1 (s)

)
T̂(2)

1 (s) =L τ

{
cos(ωτ)φ(2)(τ)

}
(s)

(
M12T̂(1)

1 (s) + M22T̂(2)
1 (s)

)
.

(29)

Here we can see that the first moment vanishes when t is sufficiently large for the different pairs of the
densities φ(1)(t) and φ(2)(t) examined later in this section. This fact indicates that the process is indeed
(asymptotically) symmetrical.

Another quantity of interest is the kurtosis defined as

K =
〈x4(t)〉
〈x2(t)〉2

, (30)

that will be used to characterise the tails of the stationary PDF. Owing to the fact that non-Gaussian PDFs
are not fully characterised by the second moment, the fourth moment can be used to examine the
non-Gaussianity of a PDF. In one dimension, the value of the kurtosis for a Gaussian is K = 3, and
deviations to smaller or larger K values, respectively, point at more concentrated and longer tailed PDFs as
compared to a Gaussian. To demonstrate the non-Gaussianity of our solutions in what follows, we evaluate
the kurtosis based on equations (25) and (20), from which we find the fourth moment as

〈x4(t)〉 = 3
√
π

4

(
R(1)

0 (t) + R(2)
0 (t)

)
+ 6

√
π
(

R(1)
2 (t) + R(2)

2 (t)
)
+ 24

√
π
(

R(1)
4 (t) + R(2)

4 (t)
)
. (31)

We denote 〈x̂4(s)〉= L t

{
〈x4(t)〉

}
(s).

To obtain concrete expressions for these quantities we consider several relevant combinations of the laws
φ(2)(τ ) and φ(1)(τ), the results for the MSDs are then summarised in tables 1 and 2.

3.1. The PDF φ(2)(τ ) is an exponential distribution
We start with an exponential form φ(2)(τ) = λ2 e−λ2τ with the characteristic time 1/λ2 for the trapping
period in the harmonic soft-reset potential, in combination with different choices for the LW waiting time
PDF φ(1)(τ). For each case we calculate the corresponding asymptotic behaviours of the averages and the
MSDs.

7



New J. Phys. 24 (2022) 033003 P Xu et al

Table 1. Long time behaviour of the MSD of the soft-reset LW for an
exponential PDF φ(2) of the trapping periods. The respective equation
numbers are listed. The symbol � indicates asymptotic scaling without
prefactors.

φ(2)(τ ) φ(1)(τ) M11 and M22 MSD 〈x2(t)〉

λ2 e−λ2τ

λ1 e−λ1τ

0 � M11, M22 < 1 � t0 (32)
M11 = 1, 0 � M22 < 1 � t (37)
0 � M11 < 1, M22 = 1 � t0 (38)

M11 = M22 = 1 � t (37)

Power-law α1 ∈ (0, 1)
0 � M11, M22 < 1 � t2 (42)

M11 = 1, 0 � M22 < 1 � t2 (43)
0 � M11 < 1, M22 = 1 � t2−α1 (44)

M11 = M22 = 1 � t2 (46)

Power-law α1 ∈ (1, 2)
0 � M11, M22 < 1 � t3−α1 (48)

M11 = 1, 0 � M22 < 1 � t3−α1 (50)
0 � M11 < 1, M22 = 1 � C (51)

M11 = M22 = 1 � t3−α1 (52)

Table 2. Asymptotic scaling of the MSD for soft-reset LWs when the duration of the harmonic confinement has an
asymptotic power-law PDF φ(2)(τ). The symbol � indicates asymptotic scaling without prefactors.

φ(2)(τ) φ(1)(τ) M11 and M22 MSD 〈x2(t)〉

Power-law α2 ∈ (0, 1)

λ1 e−λ1τ

0 � M11, M22 < 1 � t0

M11 = 1, 0 � M22 < 1 � t
0 � M11 < 1, M22 = 1 � t0

M11 = M22 = 1 � t

Power-law α1 ∈ (0, 1)
0 � M11, M22 < 1 If α2 < α1: � t2−α1+α2 , if α2 > α1: � t2

M11 = 1, 0 � M22 < 1 � t2

0 � M11 < 1, M22 = 1 � t2−α1

M11 = M22 = 1 � t2

Power-law α1 ∈ (1, 2)
0 � M11, M22 < 1 � t3−α1

M11 = 1 0 � M22 < 1 � t3−α1

0 � M11 < 1, M22 = 1 � t2−α1

M11 = M22 = 1 � t3−α1

Power-law α2 ∈ (1, 2)

λ1 e−λ1τ

0 � M11, M22 < 1 � t0

M11 = 1, 0 � M22 < 1 � t
0 � M11 < 1, M22 = 1 � t0

M11 = M22 = 1 � t

Power-law α1 ∈ (0, 1)
0 � M11, M22 < 1 � t2

M11 = 1, 0 � M22 < 1 � t2

0 � M11 < 1, M22 = 1 � t2−α1

M11 = M22 = 1 � t2

Power-law α1 ∈ (1, 2)
0 � M11, M22 < 1 � t3−α1

M11 = 1, 0 � M22 < 1 � t3−α1

0 � M11 < 1, M22 = 1 � t0

M11 = M22 = 1 � t3−α1

3.1.1. The PDF φ(1)(τ) is an exponential distribution
First we consider the exponential waiting time PDF φ(1)(τ) = λ1 e−λ1τ with characteristic time 1/λ1. Then
from relation (27) it can be found that the average 〈x(t)〉 � 0 at sufficiently long times t. In the following we
focus on the asymptotic behaviour of the MSD 〈x2(t)〉 that corresponds to small values of s in Laplace
space. Then from equation (26) the asymptotic behaviour of the MSD in Laplace space can be calculated by
neglecting higher order terms.

(a) The case 0 � M11, M22< 1. When M11 and M22 are strictly less than one, i.e. 0 � M11, M22 < 1, we
have

〈x2(t)〉 ∼ v2
0

λ2
1(1 − M11)

[
1

ω2

(
λ2

1(1 − M11) + λ2
2(1 − M22)

)
+ 2

(
2 − M22 −

λ1(1 − M11)

λ1(1 − M11) + λ2(1 − M22)

)]
, (32)

corresponding to a t-independent plateau value, i.e. the particle is localised. Moreover, from result (32) we
conclude that the initial distribution ξ has no influence on the MSD at sufficiently long times t.

For this case 0 � M11, M22 < 1 we now consider the stationary PDF pst(x) = limt→∞ p(x, t). In figure 2
we show results from stochastic simulations, demonstrating a crossover of pst(x) from a mono-modal to a

8
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Figure 2. Stochastic simulations of the stationary PDF pst(x) for exponential forms of the PDFs φ(1)(τ) and φ(2)(τ). The lines are
obtained from sampling over 5 × 104 realisations with the parameters ξ = (0.5, 0.5)T, M11 = M22 = 0.5. The other parameters
for (a) are λ1 = 1, v0 = ω = 1, and for (b) λ1 = λ2 = 1, and v0 = ω. In panel (a) the convergence to a Gaussian bell curve for
increasing λ2 is distinct.

bimodal shape when the inverse time scale λ2 decreases, or when v0, ω increase. Although λ1, M11, and M22

have some influence on the stationary distribution, as well, they do not change the mono-modal or bimodal
character of pst(x).

The existence of a stationary PDF and crossovers from mono- to bimodal shapes was previously
demonstrated for LWs in a constantly applied harmonic external potential [49]. For LFs, in contrast, an
harmonic external potential effects a mono-modal stationary Lévy-stable PDF with the same index of
stability as the driving noise [52]. Multimodal PDFs of LFs are only realised for steeper than harmonic
(‘superharmonic’) potentials [53–56], compare also the mono-modal shapes for ‘subharmonic’ external
potentials in [57].

We finally consider the kurtosis K of the PDF in the stationary state, given by the asymptotic behaviour
of 〈x4(t)〉. Figure 3 shows results of simulations for different parameters as functions of the inverse time
scales λ1 and λ2. Depending on the parameter combinations the kurtosis indicates the existence of both
leptokurtic (K > 3) and platykurtic (K < 3) shapes of pst(x). The full lines are numerical evaluations of our
explicit but intricate result (C1).

Analytically, from equation (31) by solving equations (15) and (16) for {T̂1,2
i (s)}i=0,2,4 as well as

equations (18) and (19) for {R̂1,2
i (s)}i=0,2,4, the asymptotic behaviour of K is obtained after inverse Laplace

transformation, see equation (C1). As can be seen in figure 3(a) at small λ1 we have K > 3, i.e. a leptokurtic
PDF. This is consistent with the small λ1-limit of equation (C1),

lim
λ1→0

K = 3
λ4

2(1 − M22) + 4λ2
2(5 − 4M22)ω2 + 8(8 − 3M22)ω4

(λ2
2 + 10ω2)(λ2

2(1 − M22) + 2(2 − M22)ω2)
, (33)

which indeed leads to limλ1→0 K > 3 since the numerator minus the denominator is larger than zero,

2λ2
2(3 − 2M22)ω2 + 4(6 − M22)ω4 > 0. (34)

Further figure 3(a) shows that K < 3, i.e. the PDF is platykurtic when λ1 becomes large enough. This
conclusion can also be obtained from equation (C1) by taking the limit

lim
λ1→∞

K = 3
λ2

2 + 6ω2

λ2
2 + 10ω2

< 3. (35)

On the other hand, we can also investigate how the kurtosis changes with λ2. First, we take the limit of
small inverse time scales λ2, yielding

lim
λ2→0

K = 3

(
1 − 2λ4

1(1 − M11)2 − 4(7 − M22)(1 − M22)ω4

5(λ4
1(1 − M11) + 2(1 − M22)ω2)2

)
, (36)

9
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Figure 3. Numerical simulations of kurtosis for φ(1)(τ) and φ(2)(τ) are exponential densities. The numerical simulations for
(a) and (b) are obtained by sampling over 104 realisations with the parameters v0 = ω = 1, �ξ = (0.5, 0.5)T, M11 = 0.5; for (a)
λ2 = 1, the real lines are the corresponding theoretical results in (C1).

which, depending on the exact parameter values, can be smaller or larger than 3, as evidenced in
figure 3(b). For all cases, interestingly, the kurtosis converges to three for large λ2 independent of the exact
parameter values, i.e. limλ2→∞ K = 3. The Gaussian PDF is indeed the expected long-time shape of an LW
with exponential waiting time PDF. We conclude that for different regions of λ1, the behaviours of kurtosis

K can be different as λ2 grows. Specifically, when λ1 <
(

2(7−M22)(1−M22)
(1−M11)2

)1/4
ω, the kurtosis is K > 3 for small

λ2, indicating a leptokurtic PDF. It then changes to the Gaussian value K = 3 when λ2 increases. In the

other case, λ1 >
(

2(7−M22)(1−M22)
(1−M11)2

)1/4
ω, the value of the kurtosis is K < 3 for small λ2, indicating a

platykurtic PDF. It then assumes K > 3 for intermediate λ2, and then finally converges to the Gaussian
value K = 3. Therefore, the behaviour of the kurtosis is completely different from the LW in a constantly
switched-on harmonic external potential [49].

(b) The case M11= 1 and 0 � M22< 1. When M11 = 1 and 0 � M22 < 1,

〈x2(t)〉 ∼ 2v2
0

λ1
t, (37)

i.e. the process is not confined, and the MSD growth is unbounded. Indeed, for this choice of M11 and M22

the particle simply follows the dynamics of an ordinary one-dimensional symmetric LW with constant
speed v0. Due to the exponential waiting time PDF the MSD shows the linear growth found in expression
(37).

10
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(c) The case M22= 1 and 0 � M11< 1. The opposite case is given when M22 = 1 and 0 � M11 < 1. This
is the case of an LW, that is constantly influenced by an external harmonic potential. The result obtained
here is then the same as derived in [49], namely, we find the MSD plateau

〈x2(t)〉 ∼ v2
0

ω2
. (38)

(d) The case M11= M22= 1. For the last case, M11 = M22 = 1, the transition matrix M is the identity
matrix I, and therefore we can treat this process as two isolated processes: the one is a free LW particle
moving in one-dimensional space with a constant speed, the other one is an LW moving in an harmonic
potential. These two process are correlated though the initial distribution ξ, such that at sufficiently long
times we find

〈x2(t)〉 ∼ 2v2
0ξ

(1)

λ1
t, (39)

which differs from result (37) by the factor ξ(1).
In summary, when both PDFs φ(1)(τ ) and φ(2)(τ) are of exponential shape, with finite characteristic

times, in the limit of long times we either find a linear growth in time of the MSD or a plateau value. In the
non-trivial case 0 � M11, M22 < 1, the harmonic potential is stochastically applied on the LW particle. This
stochastic soft-reset is, however, sufficient to effect an NESS with a stationary PDF. The latter can attain
mono-modal and bimodal shapes, depending on the parameters. For M11 = 1 and 0 � M22 < 1 we have a
free LW particle, and for our case of exponentially distributed waiting times the corresponding MSD grows
linearly with t, i.e. indicating normal diffusion [33]. For M22 = 1 and 0 � M11 < 1 we have the confined
LW in a constant external potential [49], and for M11 = M22 = 1 the mixing of two independent dynamics
(free LW and confined LW) leads to a linear growth of the MSD with t, proportional to the probability ξ(1)

that the particle initially is free.
The dynamics of the soft-reset LW discussed here can thus be considered as a competition between free

LW diffusion and localisation by the external harmonic potential. From result (32) we conclude that the LW
of free normal diffusion is confined by the stochastically switched harmonic soft-reset potential. In the case
when M22 = 1 and 0 � M11 < 1, the fact that M11 < 1 indicates that the process may switch from the first
to the second state, i.e. from free to confined motion, while M22 = 1 indicates that, once in the confined
state, the process will always stay in this second state and cannot switch back to the first one, leading to the
confinement expressed by result (38). From this reasoning it may appear that the result in this case will
always be recovered, independent of the exact choices of φ(1)(τ) and φ(2)(τ ). However, from the following
discussions, we will find some cases with the same conditions on M11 and M22, when the MSD differs from
expression (38), or when even no localisation occurs.

3.1.2. The PDF φ(1)(τ) is an asymptotic power-law PDF with divergent characteristic time
In this part, we consider φ(1)(τ) to assume the form

φ(1)(τ) =
α1

τ0(1 + τ/τ0)1+α1
(40)

encoding the asymptotic power-law φ(1)(τ) ∼ α1τ
α1
0 /τ 1+α1 . For simplicity we will choose τ 0 = 1. We see

that when α1 ∈ (0, 1) the characteristic time 〈τ 〉 diverges. In the long time limit, therefore, the Laplace
transform of expression (40) is given by

φ̂(1)(s) ∼ 1 − Γ(1 − α1)sα1 . (41)

(a) The case 0 � M11, M22 < 1. First we consider the ‘mixing’ case 0 � M11, M22 < 1. Following
expression (26) we calculate the asymptotic behaviour of the MSD in the long time limit,

〈x2(t)〉 ∼ 1

2
(2 − α1)(1 − α1)v2

0t2, (42)

which indicates that the stochastic harmonic potential cannot localise the ballistic LW particle. Although the
anomalous diffusion exponent does not change, the stochastic harmonic potential makes the LW slower,
given by the factor (2 − α1)/2 compared with the free LW in equation (43) below, and as demonstrated in
figure 4.

(b) The case M11= 1 and 0 � M22< 1. For the pure LW case of M11 = 1 and 0 � M22 < 1 the asymptotic
behaviour of the MSD is given by

〈x2(t)〉 ∼ (1 − α1)v2
0 t2, (43)

which corresponds to the result of an ordinary LW [33].
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Figure 4. MSD versus time t in log–log scale from stochastic simulations, for the case of exponential PDF φ(2)(τ) and
asymptotic power-law PDF φ(1)(τ) with 0 < α1 < 1, from averaging over 2 × 104 realisations. The parameters are λ2 = 1,
α1 = 0.5, ξ = (0.5, 0.5)T, v0 = 1, and ω = 1. The diamonds represent the choice M11 = M22 = 0.5 of the transition matrix M,
and the squares correspond to the case M11 = 0.5, M22 = 1. The blue and yellow full lines which fit very well with the numerical
results are the corresponding theoretical results (42) and (44), respectively.

(c) The case M22= 1 and 0 � M11< 1. When M22 = 1 and 0 � M11 < 1, we may intuitively expect to
have the same result as in equation (38). However, instead of a localisation we obtain the following result,

〈x2(t)〉 ∼ Ct2−α1 , (44)

where C is a constant given by

C =
2M11v

2
0ξ

(1)

1 − M11
. (45)

The behaviour in equation (44) indicates superdiffusion with anomalous scaling exponent 2 − α1. Thus,
while the soft-reset mechanism effects a reduction of the propagation from ballistic motion for the free LW
and case (a) above, the diverging characteristic time of the PDF φ(1)(τ) is sufficient to counterbalance the
soft-reset confinement with finite characteristic trapping period.

(d) The case M11= M22= 1. In the last case M11 = M22 = 1 the process is again divided into two
independent states through the initial distribution ξ. The states will not mix, such that

〈x2(t)〉 ∼ (1 − α1)ξ(1)v2
0 t2, (46)

i.e. we observe ballistic motion with the prefactor ξ(1).

3.1.3. The PDF φ(1)(τ) is an asymptotic power-law PDF with finite characteristic time but divergent second
moment
We now consider the case when φ(1)(τ) is still power-law distributed as given by equation (40), but now the
scaling exponent is restricted to range in the interval 1 < α1 < 2, so that the characteristic time for the PDF
φ(1)(τ ) is finite, however, its second moment diverges. The Laplace transform of this φ(1)(τ) at small Laplace
variable s corresponding to the long time limit is asymptotically given by [33]

φ̂(1)(s) ∼ 1 − 1

α1 − 1
s − Γ(1 − α1)sα1 . (47)

(a) The case 0 � M11, M22< 1. Following the derivation described below equation (26) the asymptotic
behaviour of the MSD for the case 0 � M11, M22 < 1 can be obtained in the form

〈x2(t)〉 ∼ (α1 − 1)λ2(1 − M22)v2
0

(3 − α1) [(α1 − 1)(1 − M11) + λ2(1 − M22)]
t3−α1 . (48)
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Figure 5. Stochastic simulations of the MSD versus time t on log–log scale for the case when φ(2)(τ) has an exponential shape
and φ(1)(τ) is of power-law form with scaling exponent 1 < α1 < 2. The numerical results are obtained from averaging over
2 × 104 realisations. The parameters are λ2 = 1, α1 = 1.5, ξ = (0.5, 0.5)T, v0 = 1, and ω = 1. The diamonds are obtained from
simulations with M11 = M22 = 0.5, and the inset corresponds to the case M11 = 0.5, M22 = 1 indicating localisation. The red
full line is the theoretical result (48) and the yellow dashed line above the red line represents the MSD for the free LW whose
waiting time follows the same PDF φ(1)(τ).

Similar to the situation of equation (42) the soft-reset harmonic potential with finite period cannot localise
the LW but effects a reduction from the ballistic to the superdiffusive behaviour with scaling exponent
3 − α1. This result is corroborated by stochastic simulations as demonstrated in figure 5 showing nice
convergence to the predicted scaling.

The PDF p(x, t) for this case obtained from stochastic simulations at long times is shown in figure 6. We
deduce that the asymptotic behaviour of the PDF has the power-law tail

p(x, t) � |x|−α1 . (49)

It should be noted that since LWs are spatiotemporally coupled, a particle travelling long distances is
penalised by a high time cost [5, 59]. At any finite time t, a free LW with constant speed v0 can travel a
maximal distance of ±v0t, and it is thus constrained in the interval [−v0t, v0t], such that p(x, t) = 0 for |x|
outside this interval. Therefore, the long tails seen in equation (49) do not reach to infinite at any fine t, and
the second moment of the LW is finite. The pre-asymptotic scaling observed in figure 6 is best fitted by the
power-law p(x, t) � |x|−α1+0.4. This result is completely different from the case of immediate resetting with
rate 0 < r < 1 in [58], where we cannot find a crossover of the powers in the PDF but observe a single
power-law with scaling exponent −α1.

(b) The case M11= 1 and 0 � M22< 1. The simple case M11 = 1 and 0 � M22 < 1 of a free LW has the
ordinary LW scaling [59–62]

〈x2(t)〉 ∼ 2v2
0(α1 − 1)

(3 − α1)(2 − α1)
t3−α1 . (50)

(c) The case M22= 1 and 0 � M11< 1. An interesting result of localisation in the soft-reset scenario is
obtained when M22 = 1 and 0 � M11 < 1. Consistent with the simulations results shown in the inset of
figure 5, the MSD in the long time limit scales as

〈x2(t)〉 ∼ C, (51)

for some constant C. This result verifies our claim that when the average of φ(1)(τ ) exists, for the condition
M22 = 1 and 0 � M11 < 1 the harmonically soft-reset process is localised.

(d) The case M11= M22= 1. Finally for the independent case M11 = M22 = 1, the corresponding result
for the MSD reads

〈x2(t)〉 ∼ 2(α1 − 1)ξ(1)

(3 − α1)(2 − α1)
t3−α1 , (52)
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Figure 6. PDF p(x, t) at time t = 103 from stochastic simulations for an asymptotic power-law form for the waiting time density
φ(1)(τ) with scaling exponent α1 = 1.5 and exponential PDF φ(2)(τ) for the soft-reset period, with λ2 = 1. The dots are results
from numerical simulations obtained from sampling over 5 × 104 realisations with the parameters ξ = (0.5, 0.5)T,
M11 = M22 = 0.5, and v0 = ω = 1.

i.e. we observe superdiffusion with coefficient ξ(1).
All results for the MSD of section 3.1 are summarised in table 1.

3.2. The PDF φ(2)(τ ) is an asymptotic power-law
We now focus on the case when the soft-reset periods are broadly distributed according to the asymptotic
power-law form

φ(2)(τ) =
α2

τ ′0(1 + τ/τ ′0)1+α2
. (53)

We consider the two ranges 0 < α2 < 1 and 1 < α2 < 2 for the scaling exponent α2, respectively
corresponding to the case of diverging mean period and finite period with diverging second moment. Again
we combine this PDF with different types of the LW waiting time PDF φ(1)(τ) and calculate the
corresponding MSDs in the long time limit.

3.2.1. The PDF φ(1)(τ) has an exponential form
When the PDF φ(1)(τ ) has an exponential distribution, we intuitively expect that the process will localise
due to the asymptotically overwhelming action of the harmonic confinement. As the exact determination of
the prefactors is quite complicated we only provide the resulting scaling behaviours here.

(a) The case 0 � M11, M22< 1. In this case the LW motion with finite characteristic waiting time under
the action of the soft-reset mechanism produces a localisation of the form

〈x2(t)〉 ∼ C1 (54)

for the MSD, with the constant C1.
(b) The case M11= 1 and 0 � M22< 1. This is again the simple case of a free LW with exponential waiting

time PDF, so that the MSD asymptotically scales linearly in time,

〈x2(t)〉 ∼ 2v2
0

λ1
t. (55)

(c) The case 0 � M11< 1 and M22 = 1. Localisation is also obtained in this case, where the MSD is
dominated by the trapping potential,

〈x2(t)〉 ∼ v2
0

ω2
. (56)
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Figure 7. MSD versus time t on log–log scale from stochastic simulations when both PDFs φ(2)(τ) and φ(1)(τ) have asymptotic
power-law forms with α1,α2 ∈ (0, 1). The numerical results are obtained from averaging over 2 × 104 realisations. The
parameters are ξ = (0.5, 0.5)T, v0 = 1, ω = 1. The stars represent the combination α1 = 0.3, α2 = 0.7, and M11 = M22 = 0.5
of the parameters. The full purple line corresponds to the theoretical result (59). The squares represent simulations with
α1 = 0.7, α2 = 0.3, and the same choice of M11, M22, the corresponding theoretical result is (58). The circles correspond to
simulations with α1 = 0.7, α2 = 0.3, and M11 = 0.5, M22 = 1, the associated theoretical result is equation (60) shown as full
black line.

(d) The case M11 = M22 = 1. For the independent motion case we again find normal diffusion,

〈x2(t)〉 ∼ 2v2
0ξ

(1)

λ1
t, (57)

with the coefficient ξ(1).

3.2.2. The PDF φ(1)(τ) is an asymptotic power-law with divergent mean
When the waiting time PDF φ(1)(τ) has the asymptotic power-law shape (40) with 0 < α1 < 1, the
characteristic waiting time diverges. The asymptotic behaviours of the Laplace transforms
L τ

{
cos2(ωτ)φ(2)(τ)

}
(s), L τ

{
sin2(ωτ)φ(2)(τ)

}
(s), and L τ

{
sin2(ωτ)Ψ(2)(τ)

}
(s) are obtained in

equations (D6), (D7), and (D9), respectively. We can then distinguish our four cases:
(a) The case 0 � M11, M22< 1. Following the calculations in appendix D, we find superdiffusion for the

case 0 � M11, M22 < 1 when both PDFs φ(1)(τ) and φ(2)(τ ) have diverging mean but the tail of the
soft-reset period is longer, i.e. 0 < α2 < α1 < 1,

〈x2(t)〉 ∼ (1 − M22)Γ(3 − α1)v2
0

(1 − M11)Γ(1 − α2)Γ(3 − α1 + α2)
t2−α1+α2 . (58)

The resulting exponent 2 − α1 + α2 underlines the competition between the soft-reset trapping duration
and the LW waiting times. Conversely, when 0 < α1 < α2 < 1 or 1 < α2 < 2, the LW motion dominates
the spreading dynamics and we obtain ballistic motion weighted by the respective scaling exponents,

〈x2(t)〉 ∼ 1

2
(1 − α1)(2 − α1)v2

0 t2. (59)

Both results are verified in figures 7 and 8 from stochastic simulations.
(b) The case M11 = 1 and 0 � M22 < 1. For the free LW case the asymptotic behaviour of the MSD is the

same as equation (43) for α2 ∈ (0, 1).
(c) The case 0 � M11 < 1 and M22 = 1. When α2 ∈ (0, 1) and α2 ∈ (1, 2), for the case 0 � M11 < 1 and

M22 = 1 we obtain superdiffusion of the form

〈x2(t)〉 ∼ 2M11v
2
0ξ

(1)

1 − M11
t2−α1 , (60)
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Figure 8. MSD versus time t on log–log scale from stochastic simulations when both PDFs φ(2)(τ) and φ(1)(τ) have asymptotic
power-law forms with α1 ∈ (0, 1) and α2 ∈ (1, 2). The numerical results are obtained from averaging over 2 × 104 realisations.
The parameters are α1 = 0.5, α2 = 1.5, ξ = (0.5, 0.5)T, v0 = 1, and ω = 1. The stars represent the parameters
M11 = M22 = 0.5, the full purple line represents the theoretical result (59). The squares correspond to M11 = 0.5 and M22 = 1,
the theoretical result is given by equation (60) shown as the full red line.

whose scaling exponent solely depends on the waiting time exponent α1. This result is confirmed from
stochastic simulations in figures 7 and 8.

(d) The case M11 = M22 = 1. Finally, the independent case follows the asymptotic behaviour (46) for
both α2 ∈ (0, 1) and α2 ∈ (1, 2).

3.2.3. The PDF φ(1)(τ) has asymptotic power-law form with finite mean but diverging second moment
We complete our analysis of the soft-reset LW process for the case when φ(1)(τ) has an asymptotic
power-law form with scaling exponent 1 < α1 < 2.

(a) The case 0 � M11, M22 < 1. In this case the long time dependence of the MSD is superdiffusive,

〈x2(t)〉 ∼ Ct3−α1 (61)

when both α2 ∈ (0, 1) and α2 ∈ (1, 2).
For this case we also consider the asymptotic behaviour of the PDF p(x, t). According to the stochastic

simulations figure 9(a) we conclude that for α2 ∈ (0, 1) the asymptotic behaviour follows the power-law

p(x, t) ∼ 1

|x|α1+0.4
, (62)

at both intermediate and large values of |x|. Due to the absence of a crossover the PDF for this case is
therefore different from result (49) above, whereas when α2 ∈ (1, 2) according to the numerical simulation
shown in figure 9(b) we find different asymptotic behaviours for different regions of x, specifically

p(x, t) ∼

⎧⎪⎪⎨⎪⎪⎩
1

|x|α1+(α2−1)/2
for intermediate values of |x|,

1

|x|α1−(α2−1)/2
for large values of |x|.

(63)

According to this conjecture the combined slope of both power-laws is 2α1.
(b) The case M11= 1, 0 � M22 < 1. For pure LWs, as expected, the result for the MSD is given by the

previous equation (50).
(c) The case 0 � M11 < 1 and M22 = 1. Localisation is obtained in the case 0 � M11 < 1 and M22 = 1,

when φ(1)(τ) has a finite mean waiting time,

〈x2(t)〉 ∼ C (64)

for both α2 ∈ (0, 1) and α2 ∈ (1, 2).
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Figure 9. PDF p(x, t) at time t = 103 from stochastic simulations when both PDF φ(1)(τ) and φ(2)(τ) are asymptotic power-laws.
The dots represent numerical simulations obtained from sampling over 5 × 104 realisations with the parameters ξ = (0.5, 0.5)T,
M11 = M22 = 0.5, and v0 = ω = 1. For (a) α1 = 1.5 and α2 = 0.5, while for (b) α1 = 1.5 and α2 = 1.7.

(d) The case M11 = M22 = 1. For independent processes the MSD follows equation (52).
We summarise our results for the MSD when φ(2)(τ ) has an asymptotic power-law from in table 2.

4. First-passage time dynamics

The first-passage time is one of the central statistic of stochastic processes [63, 64]. It quantifies when a
stochastic variable first reaches a given value, relevant for, inter alia, molecular chemical reactions, financial
transactions, or successful search processes. For LFs first-passage statistics and leapovers across the target
were obtain in [56, 65, 66]. Results for asymmetric LFs were reported in [67, 68], while combined dynamics
of LFs and Brownian motion, multiple targets, and LFs in external fields were analysed in [12, 69, 70]. LW
first-passage were studied in [56, 71].
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Figure 10. Mean first passage time 〈TL(x0)〉 versus ratio q of the matrix elements from stochastic simulations for different
choices of L. The numerical results are obtained from averaging over 5 × 104 realisations on the interval (−∞, L]. The
parameters are ξ = (0.5, 0.5)T, v0 = 2, ω = 1, x0 = 0, and M22 = 0.5. Moreover we choose the PDF φ(1)(τ) to be of asymptotic
power-law form with α1 = 1.5, and the PDF φ(2) is an exponential distribution with λ2 = 1.

Figure 11. Mean first passage time 〈TL(x0)〉 versus ratio q of the matrix elements from stochastic simulations for different
choices of M22. The numerical results are obtained from averaging over 5 × 104 realisations on the interval (−∞, L] with L = 10.
The parameters are ξ = (0.5, 0.5)T, v0 = 2, ω = 1, and x0 = 0. Moreover we choose the PDFs φ(1)(τ ) and φ(2)(τ) to be of
asymptotic power-law forms with α1 = 1.5 and α2 = 1.8, respectively.

We here investigate the first-passage behaviour for soft-reset LWs. We denote by TL(x0) the first time
when the stochastic process starting at point x0 first reaches a boundary at L > 0. The first-passage time for
the traditional LW on a finite domain is discussed in [56]. Here we will utilise numerical simulations to
calculate the mean first passage time 〈TL(x0)〉 with x0 = 0, and the corresponding PDF
ϕ(T) = 〈δD(TL(0) − T)〉. In the associated one-dimensional domain (−∞, L), it will take a long time for an
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Figure 12. Mean first passage time 〈TL〉 from stochastic simulations on log–log scale. The numerical results are obtained from
averaging over 5 × 104 realisations on the interval (−∞, L]. The parameters are ξ = (0.5, 0.5)T, v0 = 2, M11 = M22 = 0.5,
ω = 1, and x0 = 0. Moreover, we choose φ(1)(τ) to be an asymptotic power-law with α1 = 1.5 and φ(2)(τ) to be an exponential
distribution with λ2 = 1. The full line represents the scaling 〈TL〉 ∼ Lα1 for large L.

ordinary LW particle to reach the boundary L. In order to improve the search efficiency and reduce the first
passage time, the concept of ‘resetting’ is often invoked, which means to return the particle to some point
after a given search time [35, 58, 72]. It can be found that the random harmonic potential in our
soft-resetting scenario has a similar beneficial effect on the LW search.

First we discuss the effect of the entries of the transition matrix on the mean first passage time 〈TL(0)〉,
for which we define the ratio q = M11/M22 with 0 < M11, M22 < 1. Thus q is less than 1

M22
. We here only

consider the cases when the waiting time PDF φ(1)(τ) is an asymptotic power-law with 1 < α1 < 2, the
most standard LW scenario, together with the soft-reset period PDF φ(2)(τ) of either exponential or
asymptotic power-law shape with 1 < α2 < 2. A more extensive study of the first-passage dynamics of
soft-reset LWs for the entire parameters space will be the focus of another report.

From the stochastic simulations shown in figure 10 we find that there exists some optimal ratio q∗ that
minimises the mean first passage time 〈TL(x0)〉 as long as the boundary is a sufficient distance L away. In
this case, for q < q∗ the mean first passage time decreases approximately linearly with increasing q, while
〈TL(x0)〉 increases more quickly when q > q∗. Moreover we see from figure 11 that the optimal value of q,
q∗, depends on the value of M22: when M22 is smaller, q∗ is reduced.

These results indicate that for the domain (−∞, L) the most efficient search strategy for an LW process
is given in the presence of stochastic soft-reset events. For large L, from the simulations in figure 12 we find
that 〈TL(0)〉 ∼ Lα1 .

Next, we consider the PDF φ(T) of first passage times. From stochastic simulations we obtain the
asymptotic behaviours for different cases. First when φ(1)(τ) is an asymptotic power-law with 0 < α1 < 1,
and φ(2)(τ ) has a finite average, when 0 < M11, M22 < 1 we find that

ϕ(T) � T−1−α1 , (65)

for sufficiently large L and T. Additionally, when the mean of the density φ(1)(τ ) is finite and φ(2)(τ ) is an
asymptotic power-law with 0 < α2 < 1, under the same conditions 0 < M11, M22 < 1 the first-passage PDF
asymptotically scales like

ϕ(T) � T−1+α2/2. (66)

The results of equations (65) and (66) are in line with the stochastic simulations in figure 13.
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Figure 13. First passage time PDF ϕ(T) from stochastic simulations. The numerical results are obtained by averaging over
5 × 104 realisations on the interval (−∞, L] with L = 10. The parameters are ξ = (0.5, 0.5)T, v0 = 2, M11 = M22 = 0.5, ω = 1,
and x0 = 0. Moreover, in (a) we choose φ(1)(τ) to be an asymptotic power-law with α1 = 0.4 and φ(2)(τ) to be an exponential
PDF with λ2 = 1. The full line represent the scaling from equation (65). In (b) we exchange the choices of φ(1)(τ) and φ(2)(τ),
and the corresponding asymptotic scaling of ϕ(T ) is given by equation (66).

Finally, we determine the mean first-passage time on the finite domain [−L, L], denoted as 〈T[−L,L](x0)〉
with start position x0 = 0. With the same definition of the ratio q, we simulate 〈T[−L,L](x0)〉 versus q. From
the simulations results in figure 14 we find a totally different behaviour in which 〈T[−L,L](x0)〉 is simply a
decreasing function of q. Not unexpectedly, in the finite-domain scenario resets do not effect an optimal
behaviour. In fact, when the domain is finite, the best effect is when the random harmonic potential is weak
or absent.

5. Conclusion

We here developed and analysed an LW model in the presence of stochastic soft-resetting events by an
harmonic potential, formulated in terms of multiple internal states. The switching between free LW motion
and soft-reset events is described in terms of the transition matrix M while the durations of either phase are
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Figure 14. Mean first passage time 〈T[−L,L]](x0)〉 versus the ratio q. The numerical results are obtained from averaging over
5 × 104 realisations on the interval [−L, L] with L = 10. The parameters are ξ = (0.5, 0.5)T, v0 = 2, ω = 1, and x0 = 0.
Moreover we choose φ(1)(τ ) and φ(1)(τ) to be power-law PDFs with scaling exponents α1 = 1.5 and α2 = 1.8, respectively.

defined by the respective PDFs φ(1)(τ) and φ(2)(τ ). The solution was obtained from expansion in Hermite
orthogonal polynomials, an effective method to deal with some problems in LW theory that cannot be
solved by ordinary Fourier–Laplace transform. The waiting time PDF φ(1)(τ) here quantifies the duration
of LW motion events while the PDF φ(2)(τ ) reflects the length of the periods, during which the confining
harmonic potential is switched on. The two effects of free motion and confinement compete against each
other, and we unveiled a very rich behaviour of the particle spreading dynamics for specific choices of the
PDFs φ(1)(τ ) and φ(2)(τ).

Specifically, when φ(2)(τ) is an exponential PDF, the process is localised if φ(1)(τ ) is also an exponential
PDF with M11, M22 ∈ [0, 1). When φ(1)(τ) is an asymptotic power-law PDF with divergent second moment,
the asymptotic behaviours of the MSDs witness that the stochastic harmonic potential has only a minor
influence on the diffusion, by changing the prefactor of the MSD. Moreover, when 0 � M11 < 1 and
M22 = 1, it will be expected to observe particle localisation since this choice of M11 and M22 ends up with
the result that all of particles stay in the confined state. However, when the average of φ(1)(τ) is divergent,
we still obtain superdiffusion, a somewhat counter-intuitive result. The effect of the competition between
free motion and the stochastic harmonic potential can be observed most directly when both φ(1)(τ ) and
φ(2)(τ ) are asymptotic power-law distributions with 0 < α1,α2 < 1. In this case, we find that when α2 < α1

and 0 � M11, M22 < 0, the MSD 〈x2(t)〉 ∼ t2−α1+α2 is superdiffusive, whereas ballistic motion is obtained
when α2 > α1—in that case the free LW motion dominates.

For the soft-rest LW scenario we find that the stationary PDF in the NESS may acquire mono-modal or
bimodal shapes depending on the specific choices of the parameters λ1, v0, and ω. Multimodal states have
previously been observed for both LFs and LWs in external potentials [49, 53–55, 73]. However,
multimodal states may also be observed in persistent long-ranged correlated processes such as
superdiffusive fractional Brownian motion [74] and are an interesting phenomenon of their own right,
deserving additional future attention.

Moreover, from the analysis of the kurtosis K, we discover that for 0 � M11, M22 < 1 the PDF can be
leptokurtic or platykurtic, determined by the value of the inverse waiting time scale λ1 for small inverse
time scale λ2 of the soft-reset periods. This phenomenon is completely different from LWs in a permanently
acting harmonic potential case. Moreover, from the analysis of the asymptotic behaviours of the tails of
PDFs, we also observe marked differences from the case of a constant harmonic confinement.

In the last part of this paper, we discuss the first passage time in terms of numerical simulations. First we
define the ratio q as M11 over M22, from the simulations we find that when we choose domain as (−∞, L]
then the mean first passage time for large L can achieve a minimum for some q∗. However, when the
domain is finite, [−L, L], soft-resets do not effect optimal search dynamics.
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We expect that the rich phase space of soft-reset LWs makes them an ideal candidate to quantify random
search processes in the presence of soft resetting events.
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Appendix A. A brief introduction of Hermite orthogonal polynomials

Hermite polynomials {Hn(x)} are orthogonal over (−∞,∞) with respect to the weight function
w(x) = e−x2

[75, 76], ∫ ∞

−∞
Hm(x)Hn(x)w(x)dx =

√
π2n n!δn,m, (A1)

where δn,m is the Kronecker δ symbol defined as

δn,m =

{
1 for m = n

0 for m �= n.

The Hermite polynomials are given by

Hn(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
n!

n/2∑
i=0

(−1)
n
2 −i

(2i)!
(

n
2 − i

)
!
(2x)2i for even n;

n!

n−1
2∑

i=0

(−1)
n−1

2 −i

(2i + 1)!
(

n−1
2 − i

)
!
(2x)2i+1 for odd n.

(A2)

The values of the Hermite polynomials at x = 0 are

Hn(0) =

⎧⎨⎩
(−1)n/2n!

(n/2)!
for even n;

0 for odd n.

(A3)

Another two important properties for Hermite polynomials are

Hn(x + y) =
n∑

l=0

(
n
l

)
Hl(x)(2y)n−l, (A4)

and

Hn(cx) =

� n
2 	∑

k=0

cn−2k(c2 − 1)k

(
n
2k

)
(2k)!

k!
Hn−2k(x), (A5)

where

(
n
l

)
= n!

l!(n−l)! and
⌊

n
2

⌋
is the floor function representing the biggest integer less than n/2. Further

there exists the following Fourier transform [75]

Fx

{
Hn(x)e−x2

}
(k) =

√
π(−ik)n exp

(
−k2

4

)
. (A6)
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Appendix B. Derivations of equations (13) and (14)

In this part, we derive the recursion relations of T(1,2)
n (t). First we substitute the presumed form

(12) into (10), then there exists

∞∑
n=0

Hn(x)e−x2
T(1)

n (t) =
M11

2

∫ t

0

∞∑
n=0

[
Hn(x + v0τ)e−(x+v0τ)2

+ Hn(x − v0τ)e−(x−v0τ)2
]

T(1)
n (t − τ)φ(1)(τ)dτ

+
M21

2

∫ t

0

∞∑
n=0

[
Hn(x + v0τ)e−(x+v0τ)2

+ Hn(x − v0τ)e−(x−v0τ)2
]

× T(2)
n (t − τ)φ(1)(τ)dτ + ξ(1)δD(x − x0)δD(t). (B1)

Then the main procedure to deal with equation (B1) is to multiply with Hm(x) and integrate with
respect to x over (−∞,∞) on both sides of (B1). Then the left-hand side of equation (B1) becomes

∞∑
n=0

∫ ∞

−∞
Hm(x)Hn(x)e−x2

T(1)
n (t)dx =

√
π2mm!T(1)

m (t), (B2)

where the orthogonal property (A1) is used. For the right-hand side of equation (B1) the key issue to
perform these procedures will be

∞∑
n=0

∫ ∞

−∞
Hn(x ± v0τ)e−(x±v0τ)2

Hm(x)dx =

∞∑
n=0

∫ ∞

−∞
Hn(y)e−y2

Hm(y ∓ v0τ)dy

=

∞∑
n=0

m∑
k=0

m!(∓2v0τ)m−k

k!(m − k)!

∫ ∞

−∞
Hn(y)Hk(y)e−y2

dy

=
m∑

k=0

√
π2km!(∓2v0τ)m−k

(m − k)!
,

where we utilise the properties (A4) and (A1) of the Hermite polynomials. Then the result of equation (13)
can be easily obtained.

Equation (11) is more tricky to deal with. Building on the approach developed in [49] we have

∞∑
n=0

Hn(x)e−x2
T(2)

n (t) − ξ2δD(x − x0)δD(t) =
M12

2

∫ t

0

∞∑
n=0

[
Hn(x+)e−x2

+ + Hn(x−)e−x2
−
]

× T(1)
n (t − τ)

φ(2)(τ)

| cos(ωτ)| dτ

+
M22

2

∫ t

0

∞∑
n=0

[
Hn(x+)e−x2

+ + Hn(x−)e−x2
−
]

× T(2)
n (t − τ)

φ(2)(τ)

| cos(ωτ)| dτ.

(B3)

Then we deal with equation (B3) with the same procedure performed on (B1), and the left-hand side is the
same as (B2) expect for changing the first state to the second one. As for the right-hand side, the key issue is
to calculate the following integral

∫ ∞

−∞
q(i)(x±, t − τ)Hm(x)dx =

∞∑
n=0

1

| cos(ωτ)|

∫ ∞

−∞
Hn(x±)e−x2

±T(i)
n (t − τ)Hm(x)dx

=

∞∑
n=0

∫ ∞

−∞
Hn(y)e−y2

Hm

(
cos(ωτ)y ∓ v0

ω
sin(ωτ)

)
dy

× T(i)
n (t − τ),

(B4)
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where we change the variable in the second equation. Then from (A4) and (A5), we have

Hm

(
cos(ωτ)y ∓ v0

ω
sin(ωτ)

)
=

m∑
l=0

m!

l!(m − l)!
Hl

(
cos(ωτ)y

)(
∓2v0

ω
sin(ωτ)

)m−l

=

m∑
l=0

m!

l!(m − l)!

� l
2 	∑

k=0

cosl−2k(ωτ)(cos2(ωτ) − 1)k

× l!

k!(l − 2k)!
Hl−2k(y)

(
∓2v0

ω
sin(ωτ)

)m−l

.

(B5)

Substituting (B5) into (B4) and with the help of (A1) we have

∫ ∞

−∞
q(i)(x±, t − τ)Hm(x)dx =

m∑
l=0

� l
2 	∑

k=0

√
π2l−2k m!

k!(m − l)!
cosl−2k(ωτ)

(
cos2(ωτ) − 1

)k

×
(
∓2v0

ω
sin(ωτ)

)m−l

T(i)
l−2k(t − τ).

(B6)

Therefore, after multiplying with Hm(x) and integrating with respect to x over the whole space on both
sides of (11), and further from (B6) we have the recursion relation (14).

Appendix C. Expression for the kurtosis

The exact expression for the kurtosis reads

K ∼
[
3λ4

1(−1 + M11)2(λ1(−1 + M11) + λ2(−1 + m22))2ω4
(
1 +

(
2
(
λ3

1(−1 + M11)2(2v2
0 − ω2)

+λ2
1λ2(−1 + M11)(−1 + M22)(2v2

0 − ω2) + 2λ1(−1 + M11)(−1 + M22)v2
0(λ2

2 + 2ω2)

+ 2λ2(−1 + M22)v2
0(λ2

2(−1 + M22) + 2(−2 + M22)ω2)
))/ (

λ2
1(−1 + M11) (λ1(−1 + M11)

+ λ2(−1 + M22))ω2
)
+

(
λ1(−1 + M11)

(
4λ2

1(−1 + M11)(−1 + M22)v2
0(2v2

0 − ω2)

×(λ4
2 + 12λ2

2ω
2 + 20ω4) + 4(−1 + M22)v4

0(λ2
2(−1 + M22) + 2(−2 + M22)ω2)

× (λ4
2 + 16λ2

2ω
2 + 24ω4) + λ4

1(−1 + M11)2(24v4
0ω

2 − 40v2
0ω

4 + 10ω6 + λ2
2(−2v2

0 + ω2)2)
)

+λ2(−1 + M22)
(
4λ2

1(−1 + M11)v2
0(2v2

0 − ω2)(λ2
2 + 10ω2)(λ2

2(−1 + M22) + 2(−2 + M22)ω2)

+4v4
0

(
λ6

2(−1 + M22)2 + 6λ4
2(4 − 7M22 + 3M2

22)ω2 + 8λ2
2(18 − 24M22 + 7M2

22)ω4

+ 16(16 − 14M22 + 3M2
22)ω6

)
+ λ4

1(−1 + M11)2
(
24v4

0ω
2 − 40v2

0ω
4 + 10ω6

+ λ2
2(−2v2

0 + ω2)2
)))

/(λ4
1(−1 + M11)2(λ1(−1 + M11) + λ2(−1 + M22))ω4(λ2

2 + 10ω2))
)]/[

4v4
0

(
λ3

1(−1 + M11)2 + λ2
1λ2(−1 + M11)(−1 + M22) + λ1(−1 + M11)(−1 + M22)(λ2

2 + 2ω2)

+ λ2(−1 + M22)(λ2
2(−1 + M22) + 2(−2 + M22)ω2)

)2
]
.

Appendix D. Derivations of equations (58) and (59)

In order to calculate the MSD when both φ(1)(τ ) and φ(2)(τ) are asymptotic power-law PDFs, i.e. of the
form φ(i)(τ) = αi(1 + τ)−1−αi , some Laplace transforms are useful when we consider equation (26). The
first Laplace transform required is

L τ

{
cos2(ωτ)φ(2)(τ)

}
(s) =

α2

2
esE1+α2 (s) +

α2

4
es−2iωE1+α2 (s − 2iω) +

α2

4
es+2iωE1+α2 (s + 2iω),

(D1)
where Eβ(x) =

∫∞
1

e−xt

tβ
dt is the exponential integral. Next take a Taylor expansion on the right-hand side of

(D1) and ignore the higher order terms. Then the first term reads

α2

2
esE1+α2 (s) ∼ 1

2
+

s

2(1 − α2)
+

α2

2
Γ(−α2)sα2 . (D2)
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Further, the following relation is needed to calculate the Taylor expansion of next two terms of (D1),

e−2iωE1+α2 (−2iω) + e2iωE1+α2 (2iω) =

∫ ∞

1

e−2iω(t+1)

t1+α2
dt +

∫ ∞

1

e2iω(t+1)

t1+α2
dt

= 2

∫ ∞

1

cos(2ω(t + 1))

t1+α2
dt

= 2Iα2+1(ω),

(D3)

where

Iβ(ω) =

∫ ∞

1

cos(2ω(t + 1))

tβ
dt. (D4)

Then

es−2iωE1+α2 (s − 2iω) + es+2iωE1+α2 (s + 2iω) ∼
(
e−2iωE1+α2 (−2iω) + e2iωE1+α2 (2iω)

)
+ s

(
−e−2iωEα2 (−2iω) + e−2iωE1+α2 (−2iω)

)
+ s

(
−e2iωEα2 (2iω) + e2iωE1+α2 (2iω)

)
= 2Iα2+1(ω) + 2

(
Iα2 (ω) + Iα2+1(ω)

)
s.

(D5)

Finally, from (D1) there exists

L τ

{
cos2(ωτ)φ(2)(τ)

}
(s) ∼ 1

2
+

α2

2
Iα2+1(ω) +

(
1

2(1 − α2)
− α2

2
Iα2 (ω) − α2

2
Iα2+1(ω)

)
s

+
α2

2
Γ(−α2)sα2

. (D6)

Similarly, we have

L τ

{
sin2(ωτ)φ(2)(τ)

}
(s) =

α2

2
esE1+α2 (s) − α2

4

[
es−2iωE1+α2 (s − 2iω) + es+2iωE1+α2 (s + 2iω)

]
∼ 1

2
− α2

2
Iα2+1(ω) +

α2

2
Γ(−α2)sα2

+

(
1

2(1 − α2)
− α2

2
Iα2 (ω) − α2

2
Iα2+1(ω)

)
s.

(D7)

Additionally, the survival probability of φ(2)(τ) is

Ψ(2)(τ) =

∫ ∞

τ

α2(1 + τ ′)−1−α2 dτ ′ = (1 + τ)−α2 . (D8)

Then

L τ

{
sin2(ωτ)Ψ(2)(τ)

}
(s) =

1

2
esEα2 (s) +

1

4

[
es−2iωEα2 (s − 2iω) + es+2iωEα2(s + 2iω)

]
∼ 1

2(α2 − 1)
+

1

2
Iα2+1(ω) +

1

2
Γ(1 − α2)sα2−1

+
1

2

(
1

2 − α2
− 1

α2 − 1
+ Iα2 (ω) − Iα2−1(ω)

)
s.

(D9)
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Choosing 0 � M11, M22 < 1 and 0 < α2 < α1 < 1, then from (15) we have

T̂(1)
0 (s) ∼ O(s−α2 ), (D10)

where we borrow the notation O(s−α2 ) to represent Cs−α2 with the constant C. Moreover, from (16) we
have

T̂(2)
0 (s) ∼ O(s−α2 ). (D11)

Although for T̂(1)
0 (s) and T̂(2)

0 (s) the order of s are the same, so that the symbols may seem the same, the
constants are different. Again by solving (15) and (16) with n = 2, and utilising (D6), (D7) there exists

T̂(1)
2 (s) ∼ O(s−α2 ),

T̂(2)
2 (s) ∼ O(s−2+α1−α2 ).

(D12)

Then from (18) and (19), and (D9) we have

R̂(1)
2 (s) ∼ O(s−3+α1−α2),

R̂(2)
2 (s) ∼ O(s−3+α1 ).

(D13)

Finally from (26), we have
〈x2(s)〉 ∼ O(s−3+α1−α2 ), (D14)

whose inverse Laplace transform is given by

〈x2(t)〉 ∼ t2−α1+α2 . (D15)

In contrast, when we choose 0 < α1 < α2 < 1, with similar calculations

T̂(1)
0 (s) ∼ O(s−α1 ), T̂(2)

0 (s) ∼ O(s−α1 )

T̂(1)
2 (s) ∼ O(s−2), T̂(2)

0 (s) ∼ O(s−2),
(D16)

further
R̂(1)

2 (s) ∼ O(s−3), R̂(1)
2 (s) ∼ O(s−3+α2 ). (D17)

Thus we have 〈x2(t)〉 ∼ t2.
Finally when 1 < α1 < 2, and 0 < α2 < 1, with the same conditions on M11, M22, it can be obtained

that 〈x2(t)〉 ∼ t3−α1 .

ORCID iDs

Ralf Metzler https://orcid.org/0000-0002-6013-7020
Weihua Deng https://orcid.org/0000-0002-8573-012X

References

[1] Mandelbrot B B 1982 The Fractal Geometry of Nature (San Francisco, CA: Freeman)
[2] Mandelbrot B 1963 The variation of certain speculative prices J. Bus. 36 394
[3] Sokolov I M, Mai J and Blumen A 1997 Paradoxal diffusion in chemical space for nearest-neighbor walks over polymer chains

Phys. Rev. Lett. 79 857
[4] Lomholt M A, Ambjörnsson T and Metzler R 2005 Optimal target search on a fast-folding polymer chain with volume exchange

Phys. Rev. Lett. 95 260603
[5] Shlesinger M F, Klafter J and Wong Y M 1982 Random walks with infinite spatial and temporal moments J. Stat. Phys. 27 499
[6] Shlesinger M F and Klafter J 1986 On Growth and Form ed H E Stanley and N Ostrowsky (Dordrecht: Martinus Nijhoff)
[7] Viswanathan G M, Buldyrev S V, Havlin S, da Luz M G E, Raposo E P and Stanley H E 1999 Optimizing the success of random

searches Nature 401 911
[8] Bartumeus F, Catalan J, Fulco U L, Lyra M L and Viswanathan G M 2002 Optimizing the encounter rate in biological
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[49] Xu P, Zhou T, Metzler R and Deng W 2020 Lévy walk dynamics in an external harmonic potential Phys. Rev. E 101 062127
[50] Xu P and Deng W 2018 Fractional compound Poisson processes with multiple internal states Math. Model. Nat. Phenom. 13 10
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