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Abstract
We study the stochastic motion of a test particle in a heterogeneous medium in
terms of a position dependent diffusion coefficient mimicking measured deter-
ministic diffusivity gradients in biological cells or the inherent heterogeneity
of geophysical systems. Compared to previous studies we here investigate the
effect of the interplay of anomalous diffusion effected by position dependent
diffusion coefficients and coloured non-Gaussian noise. The latter is chosen
to be distributed according to Tsallis’ q-distribution, representing a popular
example for a non-extensive statistic. We obtain the ensemble and time aver-
aged mean squared displacements for this generalised process and establish its
non-ergodic properties as well as analyse the non-Gaussian nature of the asso-
ciated displacement distribution. We consider both non-stratified and stratified
environments.
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1. Introduction

Since its classical probabilistic formulations by Einstein [1] and Smoluchowski [2], Brown-
ian motion [3] emerged as a cornerstone of non-equilibrium statistical physics and physical
kinetics [4, 5]. A central idea was the concept of fluctuating forces [6] originally phrased by
Langevin in his description of Brownian motion based on the extension of Newton’s second
law [7]. The defining properties of Brownian motion in the continuum limit are the Gaussian
probability density function (PDF) for finding the test particle at a given distance away from its
initial position after a given time, and the linear growth in time of the mean squared displace-
ment (MSD) [8, 9]. Applications of Brownian motion range from the modelling of molecular
regulation dynamics in biological cells [10–12], modelling of stock and option markets price
fluctuations [13], describing microbial evolution in predictive microbiology [14] to quantitative
descriptions of tracer spreading on geophysical scales [15].

Deviations from the laws of Brownian motion in stochastic transport date back to
Richardson’s study of tracer dispersion in turbulent flows [16]. Another milestone was the
study by Scher and Montroll, of diffusive charge carrier motion in amorphous semiconduc-
tors [17]. By now such ‘anomalous diffusion’, characterised by the non-linear time depen-
dence 〈x2(t)〉 � Kαtα of the MSD [18–22], is widely observed. Depending on the value of
the anomalous diffusion exponent α one distinguishes subdiffusion (0 < α < 1) and superdif-
fusion (α > 1), and Kα of dimension cm2/secα is the generalised diffusion coefficient [23].
Anomalous diffusion has been particularly well studied in biologically relevant systems [20,
24–26]. Subdiffusion, inter alia, was found for the motion of messenger RNA and lipid gran-
ules in live cells [27–29], telomeres in nuclei of mammalian cells [30], or the motion of lipids
and proteins in membranes [31, 32]. Subdiffusion is also ubiquitous in subsurface hydrology
[33, 34]. Superdiffusion, due to active molecular motion, is known from several cellular sys-
tems, e.g., [35–38]. We also note that ‘hyperdiffusion’ with α > 2 may occur, e.g., in scenarios
of tilted washboard potentials or in turbulence [16, 39].

Various theoretical models have been designed to describe different physical mechanisms
underlying anomalous diffusion. Subdiffusive motion emerges, e.g., from the continuous time
random walk model with scale-free, power-law density of waiting times [17–20, 23, 41], as
seen, e.g., in membrane protein motion [42]. Another mechanism are long ranged correla-
tions of the displacements, as in fractional Brownian motion (FBM) [43–48] or in fractional
Langevin equation motion [49]. Such correlations are associated with the viscoelasticity of
the environment and are observed, e.g., in tracer diffusion in complex liquids [50] and in the
crowded cytoplasm of biological cells and membranes [28, 32, 35, 42, 51–53]. Superdiffusion
motion, e.g., comes about due to positive correlations in FBM [43] or in spatiotemporally cou-
pled Lévy walks [41, 54–61]. Examples for such statistics are found, i.a., in correlated vesicle
motion in cells [37] or for the motion of molecular motors in cells [38, 62]. A number of other
anomalous diffusion models are described in [21, 23, 63].

Typically (anomalous) diffusion models are formulated with a fixed diffusion coefficient.
In some specific systems, two or multiple different, quenched layers with different diffusiv-
ities are considered, e.g., in the modelling of protein diffusion in bacterial cytoplasm and
nucleoid region [11, 12]. Similarly, different approaches exist to quantify the motion of tracers
in patchy landscapes with different diffusivities [64–67] as well as in quenched, rugged energy
landscapes [21, 68]. Another, ‘annealed’ approach to heterogeneous environments is the con-
cept of ‘diffusing diffusivity’ [69–76], in which the stochastic motion of the test particle is
modulated by a time dependent diffusion coefficient, whose dynamics itself is a stochastic
process, compare also the recent study demonstrating the fluctuating diffusivity of a protein
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effected by its shape fluctuations [77]. The diffusing diffusivity concept was developed to
describe experiments with linear (‘Fickian’) MSD but non-Gaussian displacement PDF that,
ultimately, crosses over to an effective Gaussian. Such ‘Brownian yet non-Gaussian’ diffusion
was observed in various systems [62, 78], see also the references in [72–76]. We note that the
emergence of Brownian yet non-Gaussian diffusion was recently scrutinised on quenched dif-
fusivity landscapes [79] and related to random coefficient autoregressive processes [80]. For
anomalous diffusion with anticorrelated increments observed experimentally non-Gaussian
statistics were also found [52, 53, 81, 82]. A formulation of FBM with diffusing diffusivity
showed model-specific crossover behaviours [83, 84], while non-Gaussianity for generalised
Langevin equations was studied in [85]. We also note generalisations in which the diffusivity
is a functional of Brownian motion [86, 87].

Another class of systems considers ‘deterministic heterogeneity’ in the sense that the dif-
fusion coefficient varies systematically as some prescribed function D(x) [88–91]. A prime
example for this behaviour is the diffusivity landscape mapped out in mammalian HeLa and
NLFK cells, in which the local diffusivity of the tracers follows a quite clear increase from the
cell boundary towards the cell nucleus [92], see also the study for bacteria cells in [93]. This
is the case we study here. Concrete functional forms for D(x) are power-law dependencies as
well as logarithmic and exponential variations [88, 94–97]. The dynamics of these heteroge-
neous diffusion processes (HDPs) is anomalous and non-ergodic in the sense that ensemble
and time averages of the MSD do not converge even asymptotically [88, 94, 98]. Moreover,
HDP dynamics is ageing and leads to an emerging population splitting between high and low
mobility tracer fractions [88, 95].

Some recent experimental and theoretical studies have given strong indications of non-
Gaussian noise in the sensory systems in a type of crayfish [98], in rat skin [99], and in neural
networks [100, 101]. The source of noise in many biological systems may be non-Gaussian
[102–104]. Non-Gaussian diffusion in heterogeneous media has been discussed, specifically in
the context of diffusing diffusivity models [79, 102]. We here generalise HDPs with power-law
diffusivity dependence on the position of the test particle with regard to both autocorrela-
tion and distribution of the input noise. Specifically we introduce an exponential noise–noise
correlation, so-called coloured noise, and we consider non-Gaussian noise following Tsallis’
q-distribution. As we will see these changes effect interesting new dynamics to HDPs and may
be useful for a range of applications.

Coloured noise as we will apply here with exponential noise–noise correlation and thus
finite correlation time have a quite long tradition in the theory of stochastic processes
[105–108] and were originally considered in connection with lasers and magnetic resonance
phenomena [108–111]. More recent applications of coloured noise include population dynam-
ics [112] or neuron models [101–113]. Exponentially correlated noise is usually generated by
an Ornstein–Uhlenbeck process [114–122]. Such a noise process depends on two parameters,
the correlation time and the noise intensity. In the limit of zero correlation time the autocorre-
lation function approaches the delta function of white noise [123]. The distribution of coloured
noise is typically assumed to be Gaussian.

Non-Gaussian noise will be modelled in terms of the Tsallis q-Gaussian or q-distribution
[124, 125]. This distribution follows from Tsallis’ non-extensive entropy [126, 127] and arises
as solution of non-linear Fokker–Planck equations (FPE) [128]. Such types of distributions
were observed in a wide variety of systems, such as financial markets [129, 130], granular
media [131], or earthquake statistics [132]. The q-Gaussian emerges as a limit of highly corre-
lated random variables [133]. Such non-extensive characteristics sometimes concurrently also
exhibit long correlations or memory [134]. This type of noise is called coloured non-Gaussian
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noise and can be generated from Tsallis’ q-Gaussian statistic. It can be viewed as a generalisa-
tion of the Ornstein–Uhlenbeck noise with a non-extensivity parameter q indicating the degree
of departure from Gaussian [135, 136].

When the noise is Gaussian, HDPs are Markovian and analytical results can be obtained
from the associated FPE [88]. For coloured non-Gaussian noise the process is non-Markovian
and thus difficult to solve for analytical results [134]. However the problem can be transformed
into a two-dimensional Markovian process which describes the joint dynamics of the stochastic
and the noise processes. An effective Markov FPE can be obtained from approximate methods,
including path integral methods [135, 137, 138] and the unified coloured noise approximation
[137, 139]. The second order moment method can be applied to analyse non-Gaussian noise
driven stochastic systems [140]. Studies using coloured non-Gaussian noise found that the
departure of the noise from a Gaussian statistic significantly affects the response of the system,
e.g., it enhances the signal to noise ratio in stochastic resonance, the current and efficiency in
Brownian motors, or the trapping in resonant gating, and it shifts noise-induced transition lines
[136, 141, 142].

We here study the dynamical properties of diffusion process driven by coloured non-
Gaussian noise and with a position dependent diffusion coefficient. In particular, the behaviour
of the time averaged and ensemble MSD is examined. Ergodicity breaking (EB) and non-
Gaussianity effects are investigated. The paper is organised as follows. In section 2 we lay out
the governing equations of the system and the employed numerical discretisation scheme as
well as introduce definitions of the observable quantities. In section 3 we present and discuss
our results. Specifically, the PDF is derived via the moment approach, the numerical simula-
tions strategy is presented, and then the ensemble and time average MSD, as well as the EB
and non-Gaussianity parameters are analysed. In section 4 we present our conclusions.

2. Model description

We here describe our model of diffusion in a heterogeneous medium, in which the diffusivity
varies spatially and the driving noise is coloured and non-Gaussian.

2.1. Dynamical equations

Consider the following one-dimensional system for the displacement x(t) of a test particle that
is driven by the coloured non-Gaussian noise η(t) (the ‘q-noise’ [141]),

dx(t)
dt

=
√

2D(x) × η(t), (1)

dη(t)
dt

= − 1
τ

d
dη

Vq(η) +
1
τ
ξ(t). (2)

Here ξ(t) represents Gaussian white noise of zero mean and correlation function 〈ξ(t)ξ(t′)〉 =
2Dδ(t − t′). τ is the characteristic time of the coloured non-Gaussian noise and the q-noise
potential Vq(η) is given by

Vq(η) =
1

β(q − 1)
log

[
1 + β(q − 1)

η2

2

]
, (3)

with β = τ
D . The index q is called the non-extensivity parameter, indicating the departure

from Gaussian behaviour (q = 1 and q �= 1 for Gaussian and non-Gaussian statistic, respec-
tively). The diffusivity D(x) in (1) is spatially dependent and varies as power-law of the form
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D(x) = D0|x|α with exponentα. Several recent studies have considered such diffusivities with
either constant or variable [95, 114] power-law exponent. To avert trapping of the particle due
to the singularity at the origin x = 0 (zero or diverging diffusivity, depending on the scaling
exponent α) in the numerical simulations we consider the diffusivity of the form

D(x) =

{
D0(a + |x|α), for α > 0,

D0/(a + |x|α), for α < 0,
(4)

with sufficiently small shift a [88, 95]. The exponentα assumes real values. The diffusivity is a
constant forα = 0, which implies a homogeneous diffusion process. For α > 0, the diffusivity
increases with increasing |x|, and conversely for α < 0. We interpret the stochastic integral
corresponding to the Langevin equation (1) in the Stratonovich sense [88]. This interpretation
is permitted as long as we do not require the system to reach equilibrium, e.g., on a finite
domain or in a confining external potential [91, 143, 144]. In particular, we note that the motion
of tracers in biological cells, spreading patterns of animals or humans, or dynamics in financial
mathematics, are typically far from equilibrium.

Note that the q-noise (2) is a generalisation of the Ornstein–Uhlenbeck process which
renders the system non-Markovian. The statistical properties of the noise process η(t) were dis-
cussed in [135, 141]. By solving the corresponding FPE, the stationary distribution Pst

q (η) can
be obtained. Pst

q (η) is well defined only for q ∈ (−∞, 3) while for q � 3 it is not normalisable
and thus not a valid PDF. For q ∈ (1, 3) it reads

Pst
q (η) =

1
Zq

[
1 + β(q − 1)

η2

2

]−1/(q−1)

, η ∈ (−∞,∞), (5)

with normalisation factor Zq =
[
π/(β[q − 1])

]1/2
Γ(1/[q − 1] − 1/2)/Γ(1/[q − 1]) where Γ

indicates the Gamma function. For q = 1 it reads

Pst
1 (η) =

1
Z1

exp(−βn2/2), (6)

with normalisation factor Z1 =
√
π/β. This corresponds to Ornstein–Uhlenbeck noise. Finally

for q ∈ (−∞, 1), the stationary PDF is given by

Pst
q (η) =

⎧⎪⎨
⎪⎩

1
Zq

[
1 −

( η

w

)2
]1/(1−q)

, if |η| < w,

0, otherwise,

(7)

with normalisation factor Zq =
√
π/(β(1 − q))Γ(1/[1 − q] + 1)/Γ(1/[1 − q] + 3/2). Here

w = [(1 − q)β/2]−1/2 is a cutoff value. The stationary distribution exists only for q < 3 (since
for q � 3, Zq diverges or is negative and consequently Pst

q (η) < 0 which means that it is not
a PDF). The Ornstein–Uhlenbeck process, i.e., the process giving rise to Gaussian coloured
noise, is recovered in the limit q → 1. For 1 < q < 5

3 the distribution is fat-tailed while q < 1
yield cut-off distributions. The first moment vanishes, 〈η(t)〉 = 0, while the second moment is
finite only when q < 5

3 , for which it reads 〈η(t)2〉 = 2D
τ (5−3q) .

2.2. Numerical discretisation scheme

For the simulations we employ a discrete representation based on Heun’s method, which
is a second order Runge–Kutta-type integration scheme. We first rewrite the stochastic
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equations (1) and (2) in the form

dx(t)
dt

= f (x(t), η(t)) , (8)

dη(t)
dt

= h (η(t), q) +
1
τ
ξ(t), (9)

where f (x(t), η(t)) =
√

2D(x(t)) × η(t) and h(η, q) = − 1
τ

[
2η(t)

2+η(t)2(q−1)β

]
. Then, the numerical

iteration scheme reads

x(i + 1) = x(i) +Δt × [F1(i) + F2(i)]
2

, (10)

η(i + 1) = η(i) +Δt × [H1(i) + H2(i)]
2

+

√
2D ×Δt

τ 2
× R, (11)

where R is a normally distributed random variable with zero mean and unit variance, and

F1(i) =
√

2D [x(i)] × η(i), (12)

F2(i) =
√

2 {D [x(i)] +Δt × F1(i)} ×
(
η(i) + H1(i)Δt +

√
2D ×Δt

τ 2
× R

)
, (13)

H1(i) = − 2η(i)/τ
2 + η(i)2 × (q − 1) × β

, (14)

H2(i) = −
2
[
η(i) +Δt × H1(i) +

√
2D×Δt

τ2 × R
]
/τ

2 +
[
η(i) +Δt × H1(i) +

√
2D×Δt

τ2 × R
]2

× (q − 1) × β

, (15)

for i = 1, 2, . . .

2.3. Observables of interest

The stochastic motion of a test particle can be characterised in terms of the MSD. The latter can
be calculated in terms of either an ensemble or a time average [20]. The ensemble-averaged
MSD corresponds to the second moment about the origin of the PDF P(x, t),

〈x2(t)〉 =
∫ ∞

−∞
x2P(x, t)dx, (16)

where the angular brackets 〈·〉 denote ensemble averages. For processes resulting in a power-
law form 〈x2(t)〉 � Kαtα with the generalised diffusion coefficient Kα, the anomalous diffusion
exponentα allows one to distinguish subdiffusion (0 < α < 1), normals diffusion (α = 1), and
superdiffusion (α > 1) [20–22].

For an individual and sufficiently long trajectory, the time-averaged MSD (TAMSD) is
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evaluated in terms of the sliding time average [20, 23]

δ2(Δ) =
1

T −Δ

∫ T−Δ

0
[x(t +Δ) − x(t)]2 dt, (17)

where T is the total measurement time (length) of the time series x(t) and Δ is called the
lag time. The overline · denotes time averaging. The TAMSD compares the squared particle
increments along the trajectory as separated by the time differenceΔ, i.e., it corresponds to the
squared deviations over a sliding window of width Δ. It is a function of both the lag time Δ
and the length T of the time series, but we only indicate its Δ-dependence. To average out the
fluctuations of individual TAMSDs δ2

i (Δ) often the ensemble mean over N trajectories xi(t) is
evaluated [20, 23, 145],

〈
δ2(Δ)

〉
=

1
N

N∑
i=1

δ2
i (Δ). (18)

We call the stochastic process of interest ergodic (in the Boltzmann–Khinchin sense, which
is looser than stricter ergodicity, e.g., in the mixing sense [146]) when we observe the long-time
equivalence limT→∞δ2(t) = 〈x2(t)〉. When this equivalence is not fulfiled we call the process
(weakly) non-ergodic [20, 23, 145, 147]. Moreover, when the TAMSD explicitly depends on
the measurement time T we call the process ageing [20, 23, 145, 147, 148]. While Brownian
motion is ergodic, continuous time random walks with scale-free waiting times are (weakly)
non-ergodic [20, 145, 147]. FBM is ergodic [147, 149] (note the transient non-ergodicity in
confinement [40, 50]), while motion based on the generalised Langevin equation with a power
law memory kernel is ergodic, except for the ballistic case [39, 40]. Experimental and sim-
ulation studies indeed unveiled such ergodicity breaking in heterogeneous media including
cytoplasm and membranes of living cells [26, 29, 42, 51, 145].

For a given lag time Δ and finite T, the TAMSD varies from one trajectory to another,
even for normal Brownian diffusion. The TAMSD therefore is a random variable. Defining the
dimensionless variable ζ(Δ) = δ2(Δ)/〈δ2(Δ)〉 the deviation of the amplitude of the TAMSD
δ2(Δ) of an individual trajectory with respect to the mean 〈δ2(Δ)〉 for a given lag time Δ can
be quantified in terms of the PDF φ(ζ) [20, 23, 145, 147]. The variance of this PDF is the
ergodicity breaking parameter [20, 23, 145, 147, 150]

EB(Δ) =

〈(
δ2(Δ)

)2
〉
−
〈
δ2(Δ)

〉2

〈
δ2(Δ)

〉2 =
〈
ζ2(Δ)

〉
− 1. (19)

Note that EB is often defined in the limit T →∞ for fixed Δ, and then (asymptotic) ergodicity
is given for limT→∞ EB = 0. However, interesting information may be encoded in the explicit
dependence on both Δ and T. For instance, for Brownian motion we obtain EB = 4Δ/(3T)
[20, 23, 149]. Another measure for weak EB is the ratio of the mean TAMSD to the ensemble-
average MSD [151]

EB(Δ) =

〈
δ2(Δ)

〉
〈x2(Δ)〉 . (20)
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3. Results and discussions

We now proceed to the analysis of the stochastic process given by equations (1) and (2),
combining analytical calculations and simulations.

3.1. Theoretical approximations

For the analytical study we consider the system of stochastic equations

dx(t)
dt

=
√

2D0|x|αη(t), (21)

dη(t)
dt

= − 1
τ

d
dη

Vq(η) +
1
τ
ξ(t), (22)

in which we use the pure power-law D0|x|α for the position dependence of the diffusivity, and
the exponentα is fixed or a random variable. The explicit form of Vq(η) is given by equation (3).
The state space variable of the system is (x, η). The probability that the systems is in state (x, η)
at time t is given by the single event PDF Pq(x, η; t, τ ), that obeys the generalised ‘stochastic
continuity equation’ (see appendix B)

∂Pq(x, η; t, τ )
∂t

= − ∂

∂x

[√
2D0|x|αηPq(x, η; t, τ )

]

+
∂

∂η

[〈(
1
τ

d
dη

Vq(η) − 1
τ
ξ(t)

)
Pq(x, η; t, τ )

〉]
, (23)

subject to the initial condition Pq(x, η; t = 0) = δ((x, η) − (x0, η0)). Recalling that the process
η(t) is driven by white Gaussian noise ξ(t) given by equation (22), the PDF P(η, t) is given by
the average over the realisations of the stochastic driving force term ξ(t),

P(η; t) = 〈δ(η(t) − η)〉, (24)

where the bracket 〈·〉 means averaging with respect to the noise distribution. Note that
Pq(x, η; t, τ ) = P(x; t|η; t, τ )P(η; t, τ ). Using (24) in the last part of (23), taking the average over
all realisations of η(t), and finally applying the law of total expectation, i.e., 〈ξ(t)δ(η(t) − η)〉 =
〈ξ(t)〈δ(η(t) − η)|ξ(t)〉〉 produces

∂Pq(x, η; t, τ )
∂t

= −
√

2D0η
∂

∂x

[√
|x|αPq(x, η; t, τ )

]

+
∂

∂η

[(
1
τ

d
dη

Vq(η)

)
Pq(x, η; t, τ )

]

− 1
τ

∂

∂η

[
〈ξ(t)δ(η(t) − η)〉P(x; t|η; t, τ )

]
. (25)

We recognise a correlation between the stochastic force ξ(t) and its functional δ(η(t) − η).
The average in the last term of equation (25) can be evaluated via Novikov’s theorem. For the
Gaussian white noise ξ(t) with zero mean the noise noise functional is given as

〈ξ(t)δ(η(t) − η)〉 =
∫ t

0
dt′γ(t, t′)

〈
δ [δ(η(t) − η)]

δξ(t′)

〉
,

= − ∂

∂η

∫ t

0
dt′γ(t, t′)

〈
δ(η(t) − η)

δη(t)
δξ(t′)

〉
, (26)

8
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where γ(t, t′) = 〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′), and where the quantity δη(t)/δξ(t′) is a functional
derivative of η(t) with respect to ξ(t′). The latter may be interpreted as the non-averaged
response function of η(t) to the stochastic force ξ(t′). Substituting (26) into (25) yields

∂Pq(x, η; t, τ )
∂t

= −
√

2D0
∂

∂x

[√
|x|αηPq(x, η; t, τ )

]

+
∂

∂η

[
1
τ

d
dη

Vq(η)

]
Pq(x, η; t, τ )

+
D
τ

∂

∂η

{[
∂

∂η

∫ t

0
dt′δ(t − t′)

×
〈
δ(η(t) − η)

δη(t)
δξ(t′)

〉]
P(x; t|η; t, τ )

}
. (27)

The functional derivative δη(t)/δξ(t′) is evaluated by first performing a formal time integration
of the second equation in (21),

η(t) = − 1
τ

∫ t

0
ds

d
dη

Vq(η(s)) +
1
τ

∫ t

0
dsξ(s). (28)

Here we used η(t = 0) = 0. Then taking the functional derivative with respect to ξ(t′) yields

δη(t)
δξ(t′)

= − 1
τ

∫ t

t′
ds
δ
[

d
dη Vq(η(s))

]
δξ(t′)

+
1
τ

∫ t

t′
ds

δξ(s)
δξ(t′)

,

= − 1
τ

∫ t

t′
ds
δ
[

d
dη Vq(η(s))

]
δξ(t′)

+
1
τ
. (29)

The lower integration limit is due to causality meaning t′ � s.
For convenience take δη(t)/δξ(t′) ≈ 1

τ
which is justified by considering the approximation

given in equation (31). Thus, the FPE for the PDF Pq(x, η; t, τ ) is finally given as

∂Pq(x, η; t, τ )
∂t

= −
√

2D0η
∂

∂x

[√
|x|αPq(x, η; t, τ )

]

+
∂

∂η

[(
1
τ

d
dη

Vq(η)

)
Pq(x, η; t, τ )

]

+
D
τ 2

∂2

∂η2
Pq(x, η; t, τ ). (30)

For simplicity and tractability of the computation, η2 in dVq(η)/dη can be approximated by its
expectation, i.e., η2 ≈ 〈η2〉 = 2D/[τ (5 − 3q)] [140, 152, 153]. Thus,

d
dη

Vq(η) = η

[
1 +

β

2
(q − 1)〈η2〉

]−1

≈ η

[
2(2 − q)
5 − 3q

]−1

=
η

rq
, (31)

where rq = 2(2 − q)/(5 − 3q). With this approximation the coloured non-Gaussian noise
process (2) can be rewritten as an Ornstein–Uhlenbeck process,

dη(t)
dt

= − η

τq
+

rq

τq
ξ(t), (32)
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with the correlation time τ q = τrq and the noise intensity rq. Using the approximation (31) in
the FPE (30) leads us to

∂Pq(x, η; t, τ )
∂t

= −
√

2D0η
∂

∂x

{√
|x|αPq(x, η; t, τ )

}

+
1
τq

∂

∂η
{ηPq(x, η; t, τ )}+

r2
qD

τ 2
q

∂2

∂η2
Pq(x, η; t, τ ). (33)

3.1.1. Method of moments approach. We now use the method of moments approach to
coloured noise in order to obtain an effective stochastic differential equation. The [m, n]th joint
moment of [x, η] about the origin is defined by

〈xmηn〉 =
∫

dx
∫

dηxmηnPq(x, η; t), (34)

where m and n are integers. Multiplying equation (33) by xmηn, then integrating with respect
to x and η yields the evolution equation for the joint moments 〈xmηn〉. Setting m and n
appropriately we have

d〈x〉
dt

=
√

2D0〈η|x|
α
2 〉, (35a)

d〈η〉
dt

= − 1
rqτ

〈η〉, (35b)

d〈x2(t)〉
dt

= 2
√

2D0〈ηx|x| α2 〉, (35c)

d〈η2〉
dt

= − 2
rqτ

〈η2〉+ 2D
τ 2

, (35d)

d〈xη〉
dt

=
√

2D0〈η2|x| α2 〉 − 1
rqτ

〈xη〉. (35e)

We now define the quantities μx , ν, γ, ζ, and χ corresponding to means and (co)variances,

μx = 〈x〉, (36a)

ν = 〈η〉, (36b)

γ = 〈x2〉 − 〈x〉2, (36c)

ζ = 〈η2〉 − 〈η〉2, (36d)

χ = 〈xη〉 − 〈x〉〈η〉. (36e)

The evolution equations for these quantities can be derived by first expanding equations (35a) to
(35e) with x = μx + δx and η = ν + δη around their mean values and retaining terms up to the
order of 〈(δx)2〉. Assuming that 〈δx〉 = 0 and 〈δη〉 = 0, we see that γ = 〈(δx)2〉, ζ = 〈(δη)2〉,
and χ = 〈δxδη〉. We then get

dμx

dt
=
√

2D0

(
ν|μx|

α
2 +

1
2
α

2
(α− 2)

2
ν|μx|

(α−4)
2 γ +

α

2
|μx|

(α−2)
2 χ sign(μx)

)
,

(37a)

10
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dν
dt

= − ν

rqτ
, (37b)

dγ
dt

= 2
√

2D0

(
|μx|

α
2 χ+

α

2
ν|μx|

(α−2)
2 γ sign(μ)

)
, (37c)

dζ
dt

= − 2
rqτ

ζ +
2D
τ 2

, (37d)

dχ
dt

=
√

2D0

(
|μx|

α
2 ζ +

α

2
ν|μx|

(α−2)
2 χ sign(μx)

)
− 1

rqτ
χ. (37e)

The stationary values are given by

νs = 0, (38a)

ζs =
D
τ

rq, (38b)

χs =

√
2D0Dr2

q|μx|
α
2(

1 − ατq

√
D0
2 v|μ| α−2

2 sign(μ)

) . (38c)

Using equations (38a)–(38c) in (37a) and (37c), the evolution equation for the mean μ and
variance γ becomes

dμx

dt
=
√

2D0v|μ|
α−4

2

[
|μ|2 + 1

2
α

2

(
α− 2

2

)
Dr2

q

τq

]
+

αD0Dr2
q

|μ| α2
(
|μ| α2 sign(μ) − ατq

√
D0
2 v

) ,

(39a)

dγ
dt

=
4D0Dr2

q|μ|α(
1 − ατq

√
D0
2 v|μ| α−2

2 sign(μ)

) + α
√

2D0v|μ|
α−2

2 γ sign(μ). (39b)

Notice that the factor Dr2
q in equations (39a) and (39b) depends on the coloured non-

Gaussian noise. When α = 0, corresponding to homogeneous diffusion with non-Gaussian
noise, equations (39a) and (39b) simplify substantially.

We now define the effective diffusion coefficient

Deff =
2rq

√
D0D|x|α√(

1 − τq
α
2

√
2D0η|x|

α−2
2 sign(x)

)

=

√
8D0Dr2

q|x|α+1(
2|x| − ατq(dx/dt) sign(x)

) . (40)

The coefficient Deff depends on q, D, and τ , the parameters q-noise, as well as the scaling
exponent α. The effective stochastic differential equation for x may be then expressed as

dx
dt

= Deffξ(t), (41)
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where ξ(t) is Gaussian white noise with zero mean and delta noise correlation 2Dδ(t − t′).
For q = 1 equation (41) corresponds to the original HDP process with Gaussian white driv-
ing noise. Squaring equation (41) and setting (dx(t)/dt)2 = 0 yields the ordinary differential
equation

dx
dt

=
2|x|

ατq sign(x)

(
1 − 4D0Dr2

q|x|α
)
. (42)

Now setting d2x/dt2 = 0, Deff is written as

Deff =

√√√√ 4D0Dr2
q|x|α

1 − rq
√

2D0

(
1 + 2|x|

ατq

)−1
|x|α/2 sign(x)ξ(t)

=
√

4D0Dr2
q|x|α

∞∑
n=0

1
22n

(
2n
n

)

×
[

rq

√
2D0

(
1 +

2|x|
ατq

)−1

|x|α/2 sign(x)ξ(t)

]n

. (43)

Retaining only terms up to first order in ξ(t) equation (41) becomes

dx
dt

=
√

4D0Dr2
q|x|αξ(t). (44)

As a consequence of this truncation the effect of the parameter τ is lost, which implies that
the noise correlation time does not affect the long time behaviour, as it should. The FPE of the
PDF Pq(x, t) corresponding to equation (44) reads

∂Pq(x, t)
∂t

= 4D0Dqr2
q
∂

∂x

{
|x|α/2 ∂

∂x

(
|x|α/2Pq(x, t)

)}
, (45)

with Dq = 2D2. For α = 0, we have

Pq(x, t) =
1√

8πD0Dqtrq
exp

(
− x2

8D0Dqr2
qt

)
, (46)

which is a Gaussian PDF with mean zero and variance 23D0[D([2 − q]/[5 − 3q])]2t. In this
case the ensemble averaged MSD is equal to the variance which means it is linear in time.
More generally, the solution of equation (45) is derived by applying the procedure used in
[88], leading to (see appendix A)

Pq(x, t) =
|x|1/p−1√
8πD0Dqr2

qt
exp

(
− |x|2/p

2(2/p)2D0Dqr2
qt

)
. (47)

Here p = 2/(2 − α) and Dq = 2D2. The ensemble averaged MSD is given as

〈x2(t)〉 = Γ
(

p+ 1
2

)
√
π

[√
D0Dq

2
p

(
2 − q

5 − 3q

)]2p

tp. (48)
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Figure 1. Theoretical PDFs according to equation (47) (dashed lines with symbols) and
simulations results (solid lines) for D0 = 0.01, D = 0.5, τ = 1, and for various q values
(q = 0.1: purple dashed line with circles and full blue line; q = 1: black dashed line
with squares and red line; q = 1.5: orange dashed line with triangles and full green line).
In the different panels, the diffusivity scaling exponent is (a) α = −1, (b) α = 0, and
(c) α = 1. The initial position in all cases is at the origin. In panel (a) t = 3, 25, and 15
for q = 0.1, 1.0, and 1.5. In panel (b) t = 4, 100, and 20 for q = 0.1, 1.0, and 1.5. In
panel (c) t = 5, 50, and 8 for q = 0.1, 1.0, and 1.5.

For q = 1 and D = 1 equations (47) and (48) are similar to the corresponding ones for the
standard HDP process with Gaussian noise found in [88]. The only difference arises from the
definition of the delta-correlation of the noise. Whereas in [88] 〈ξ(t)ξ(t′)〉 = δ(t − t′) (the noise
strength there was solely taken to be represented by D0) in our case it is 2Dδ(t − t′). The scaling
of the ensemble MSD in equation (48), i.e., 〈x2(t)〉 ∼ tp implies subdiffusion for −2 < α < 0,
normal diffusion for α = 0, and superdiffusion for 0 < α. The special case α = 1 is ballistic
motion, and sometimes the case 1 < α < 2 is called hyperdiffusion. It should be noted that
our approximation may lead to loss of information of the transient dynamics in the theoretical
model. To capture the complete behaviour we use numerical simulations.

Figure 1 compares the analytical PDF (47) to the simulations results. Generally, the theoret-
ical and the simulated results show good agreement. We note that the simulations are based on
the regularised law (4) for the position dependence of the diffusion coefficient while the ana-
lytical form (47) is based on the pure power-law with a = 0. Therefore smaller deviations are
observed especially around the origin. Analogously to the results in the original investigation
in [88] the distribution is bimodal and dips to zero at x = 0 for α = −1; it is bell-shaped for
α = 0, while for α = 1 the curves are inverted funnel-shaped with a cusp at x = 0. For both
α = −1 and 0, the PDFs have larger peaks but are less stretched for q = 0.1, whereas they
have smaller peaks but are more stretched for q = 1.5. For α = 1 the PDF for q = 0.1 has a
larger peak and is more stretched while for q = 1.5 it has a smaller peak and is less stretched.
The shapes reflect the degree of non-Gaussianity of the noise amplitude as well as the precise
form of D(x), the latter implying higher diffusivity away from the origin for α > 0 and vice
versa. Generally the shapes of the PDF indicate that the particles become enriched in zones of
smaller diffusivity. Thus both α and q affects the shape of the distribution around the origin
and in the tails.

Figure 2 shows the PDF on a log-linear scale for different non-extensivity parameter q and
scaling exponentsα at time t = 2. The PDF broadens with increasing q, i.e., particle spreading
is enhanced for larger q. The tails broaden with increasing α, and vice versa. The solid green
line with squares (q = 1 and α = 0) corresponds to the Gaussian case, i.e., the limiting case
of normal Gaussian diffusion.
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Figure 2. PDF according to equation (47) for various q and α. The dashed, solid and
dotted lines are for α = −1, 0, and 1, respectively. The circles, squares, and triangles
represent q = 0.1, 1.0, and 1.5, respectively. We chose D = 0.5, D0 = 0.01, and t = 2.0.

3.2. Simulations results

We now proceed to discuss the results of our simulations in more detail. We first consider
the case of an unstratified medium, in which the diffusion coefficient varies according to
equation (4) on the entire x-axis. In the second part we consider a stratified medium in which
equidistant slices are each governed by a law of the type (4).

3.2.1. Unstratifiedmedium. In this subsection simulation results are presented for the situation
that the diffusivity changes over the entire range x ∈ (−∞,∞). The quantities we evaluate are
the ensemble- and TAMSD, the EB parameters, and the non-Gaussian parameter.

Ensemble and TAMSD. Figure 3 presents the TAMSD for 1000 individual trajectories along
with the mean TAMSD and the ensemble averaged when the correlation time is short, here,
τ = 1. The non-extensivity parameter q is varied horizontally across the figure as q = 0.1,
1.0, and 1.5, while the diffusivity scaling exponent α is varied vertically, as α = −1, 0, and 1.
The case of α = 0, when the diffusion coefficient is constant (= D0), corresponds to diffusion
in an homogeneous medium, otherwise the medium is heterogeneous with a position-varying
diffusion coefficient. The other parameters for all panels are D = 0.5 and D0 = 0.1, and the
initial position is uniformly distributed between −1 and 1. The overall analysed time of each
trajectory is T = 104. The curves of the individual TAMSD are almost parallel and close to each
other in panel (a). In (d) and (g) the trajectories are also almost parallel but are more scattered.
In (e) the trajectories coincide for shorter lag times, implying almost perfect reproducibility
from one trajectory to another, but at longer lag times significant scatter emerges. Conversely
in panels (b), (c), (f ), (h), and (i) the trajectories are scattered for all lag times. Due to decreasing
statistic the scatter is generally more pronounced for longer lag times.

In all panels the trajectories nicely follow the trend set by the mean TAMSD (blue solid
curve). They show superdiffusive scaling at shorter lag times, that is, Δγ with γ = 1.5 in (b),
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Figure 3. Ensemble averaged MSD (green curves), TAMSD (red curves) of 1000 indi-
vidual trajectories, and mean TAMSD (blue curves) with q = 0.1 in (a), (d), and (g);
q = 1.0 in (b), (e), and (h); q = 1.5 in (c), (f), and (i). We chose α = 0 in (a)–(c);
α = −1 in (d)–(f); α = 1 in (g)–(i). Other parameters: τ = 1, D = 0.5, D0 = 0.01.
The total measurement time for the TAMSD is T = 104.

(e) and (h) q = 1.0; and ballistic motion with γ = 2 for q = 0.1 and 1.5. At longer lag times
the mean TAMSD exhibits ballistic motion (γ = 2) for q = 0.1 and normal diffusion (γ = 1)
for q = 1.0 and 1.5, respectively. Notice that for q = 0.1 the scaling of the ensemble averaged
TAMSD suggests ballistic motion at all lag times whereas for q = 1.0 and 1.5 it displays a
crossover from ballistic to normal diffusion.

The ensemble averaged MSD shows a scaling of the form 〈x2(t)〉 � t2+λ with 0.1 � λ � 3,
which implies hyperdiffusion at shorter and intermediate times, before coinciding with the
mean TAMSD at longer times. The two quantities are almost coinciding in panels (a), (e), and
(f) even for shorter lag times, a signature of ergodic behaviour. In contrast, in panels (d), (g)–(i)
the ensemble averaged MSD is much smaller than the mean TAMSD at short time scales. In
panels (b) and (c) it is larger. At longer time scales the ensemble averaged MSD and the mean
TAMSD converge in all panels. The disparity between the ensemble averaged MSD and the
mean TAMSD at shorter lag times indicates a (transient) weak ergodicity breaking.

The scaling exponent λ of the ensemble averaged MSD 〈x2(t)〉 � t2+λ ranging in the inter-
val 0 < λ < 3 has been reported in tracer particles in turbulent flows [154] and tilted washboard
potentials [39]. For a short correlation time, the long time power-law scaling is 〈x2(t)〉 ∼ tp
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Figure 4. TAMSD (red curves) from 1000 individual trajectories; ensemble averaged
MSD (green curves); and average TAMSD (blue curves), with q = 0.1 in (a), (d), and (g);
q = 1.0 in (b), (e), and (h); q = 1.5 in (c), (f), and (i). We haveα = 0 in (a)–(c); α = −1
in (d)–(f); α = 1 in (g)–(i). Other parameters: τ = 100, D = 0.5, and D0 = 0.01. The
total measurement time is T = 104.

where p = 2
2−α according to equation (48) (see the original derivation in [88]) holds when

q = 1; this case corresponds to panels (b), (e), and (f). The fact that equation (48) predicts the
same scaling exponent p also for non-Gaussian noise with q �= 1 is shown for q = 1.5 in panels
(c), (f ), and (i); for q = 0.1 the correct scaling is also seen in panel (g), while for panels (a)
and (d) the crossover to this scaling occurs at later times.

Figure 4 presents simulations results for the TAMSD, mean TAMSD, and the ensemble
averaged MSD for the case of a long correlation time, i.e., τ = 100. In all panels the individual
TAMSD trajectories are somewhat scattered which indicates a high degree of irreproducibil-
ity of the TAMSD. Naturally the scatter becomes more pronounced at longer lag times. The
TAMSD curves follow the trend given by the mean TAMSD. At shorter lag times the ensemble
averaged TAMSD and the mean MSD show a significant disparity, i.e., weak ergodicity break-
ing. Whereas the scaling of the ensemble averaged TAMSD implies ballistic motion,�Δ2, the
scaling of the ensemble averaged MSD suggests hyper-diffusion, t2+λ with λ = 1 or 1.2. At
longer lag times, however, the two averaged quantities coincide. The scaling suggests ballistic
motion for q = 0.1, i.e., in panels (a), (d), and (g); superdiffusion in panel (h); standard diffu-
sion in panels (e), (f ), and (i); and subdiffusion in panels (b) and (c). The theoretical power-law
exponent of the ensemble averaged MSD, equation (48), holds in panels (b), (c), (e)–(g), while
the convergence has not occurred in the other panels (check this statement).
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Figure 5. Ergodicity breaking parameter EB as function of lag time Δ for varying non-
extensivity index q. In (a) and (d) α = −1; in (b) and (e) α = 0; in (c) and (f) α = 1.
Moreover, τ = 1 in (a)–(c); τ = 100 in (d)–(f). Parameters: D = 0.5, D0 = 0.01, and
T = 104.

EB parameters. We now turn to the ergodicity breaking parameters EB and EB, quantifying,
respectively, the variance of the amplitude fluctuations of individual TAMSD curves and the
relative deviation from ergodicity.

Figure 5 shows the dependence of the ergodicity breaking parameter EB on the lag time
Δ. In all panels, EB is non-zero for all lag times. For Δ � T , EB converges to a plateau,
whose value strongly depends on the non-extensivity index q. As Δ→ T, EB increases
with growing Δ for q = 1.0 and 1.5, except in panel (f) where it remains constant for
q = 1.5. For q = 0.1 EB remains fairly constant with a small growth in panels (c), (d), and
(f), and a small decrease in panel (a) at very long lag times. When α = −1, EB assumes
small values at short lag times and larger values at longer lag times, except for q = 0.1, for
which it is small at all lag times. When α = 0 EB assumes small values for q = 1.0 and large
values for q = 0.1 and q = 1.5. EB is small and large, respectively, for τ = 1 and τ = 100.
Conversely, for α = 1 EB assumes large values for all three q values. Generally, statistically
reliable information is obtained at shorter lag times, when Δ � T. Notice that for α = 0,
q = 1.0, and τ = 1, EB is close to zero when Δ � T and then grows as Δ

T , which is con-
sistent with the behaviour of EB for standard Brownian motion in homogeneous media. We
find that as Δ

T → 0 EB is very close to zero when q = 1 and α = 0 for both τ = 1 and 100,
indicating ergodic behaviour. In all other panels EB assumes non-negligible values, indicating
significant fluctuations among individual trajectories.

Figure 6 shows the dependence of the ergodicity breaking parameter EB on the trace length
T. The value EB(Δ = 1) for the case q = 1.0 and α = 0 matches that of Brownian motion
(EB = (4/3)Δ/T) while in all other cases it is significantly greater. EB also varies with q.
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Figure 6. Dependence of the ergodicity breaking parameter EB(Δ = 1) on the total
trace time T for different values of the non-extensivity parameter q and the diffusiv-
ity scaling exponent α. The solid lines with symbols of triangle, square, and circle are
for q = 0.1, 1.0, and 1.5, respectively. The dashed line stands for Brownian motion.
Parameters: τ = 1, D0 = 0.01, and D = 0.5.

Figure 7. Ergodicity breaking parameter EB as function of the lag time Δ for varying
q, and with α = −1, 0 and 1 in (a)–(c), respectively. Parameters: τ = 100, D = 0.5,
D0 = 0.01, and T = 104.

Generally, it decreases as T →∞, except for the case when q = 1.0 and α = 1, for which it
remains almost constant close to one. Both q and α lead to deviations from Brownian motion.

Figure 7 displays the dependence of the ergodicity breaking parameter EB on lag time Δ
for different q with τ = 100. In all panels EB is significantly greater than one for Δ � T
whereas it approaches unity as Δ→ T . It assumes higher values for q = 0.1 and lower ones
for q = 1.0. It decreases rapidly to one, representing the fact that in the weakly divergent case
Δ→ T the mean TAMSD coincides with the ensemble averaged MSD. Although the curves
show the same overall trend they exhibit variations for different q and α indicating that EB is
affected by both parameters, as expected. For the ergodic system in the sense of the MSDs,
EB = 1.

Non-Gaussianity parameter. The non-Gaussianity parameter is an indicator for a deviation
of the displacement PDF from a Gaussian. A systematic analysis of the non-Gaussianity of a
process may provide clues for the origin of the anomalous behaviour. It is defined as the ratio
of the fourth moment of the TAMSD versus the squared second moment. In one dimension it
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Figure 8. Non-Gaussian parameter G as function of lag time Δ for varying diffusivity
scaling exponent α. We show results for the non-extensivity parameter q = 0.1, 1.0, and
1.5 in panels (a)–(c), respectively. Parameters: τ = 10, D = 0.5, and D0 = 0.01.

is given by

G(Δ) =
1
3

〈
δ4(Δ)

〉
〈
δ2(Δ)

〉2 − 1, (49)

where we define

〈
δ4(Δ)

〉
=

1
T −Δ

∫ T−Δ

0
(x(t +Δ) − x(t))4 dt. (50)

A G(Δ) value close to zero implies Gaussian statistics whereas values significantly greater than
zero indicate more heterogeneous diffusion dynamics. Here we show the non-Gaussianity as
function of the lag time Δ and the non-extensivity parameter q.

Figure 8 examines the behaviour of G(Δ) for varying α with q fixed. When q = 0.1 in
panel (a), G(Δ) assumes small, moderate, and large values for α = −1, 0, and 1, respectively.
It remains constant at short and medium lag times but gradually grows for α = 0 or descends
for α = −1 and 1 as Δ→ T. When q = 1.0 in panel (b), G(Δ) is very close to zero for α = 0
and close to one for α = −1 and 1. In the former case, it is constant for short lag times but
grows at long lag times. Conversely, in the latter case it remains constant at all lag times. When
q = 1.5 in panel (c), G(Δ) assumes moderately large values for α = 0 but substantially larger
values for α = −1 and 1 in the range of short lag times. In both cases it remains approximately
constant. In the range of longer lag times G(Δ) assumes larger values. It first grows, then
descends for α = 0 and α = −1, while it descends for α = 1. When q = 1.0 and α = 0 the
process is Gaussian and homogeneous, and G(Δ) has practically zero value. All other cases
yield substantially larger values for the non-Gaussian parameter implying significant deviations
from Gaussian behaviour, as expected. For a fixed α the curves of G(Δ) for different q show
varying behaviours implying that q affects G(Δ), another expected effect albeit we could not
find explicit analytical expressions for the detailed behaviour. We emphasise the existence of
a pronounced maximum of the non-Gaussianity for the case q = 1.5.

3.2.2. Stratified medium. Consider now the situation in which the medium is divided into
strata (layers). In a given stratum of width 2δx the scaling exponent α of the diffusivity is
constant and D(x) is centred symmetrically around the mid-point of the stratum. Across strata
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Figure 9. TAMSD (red curves) from 1000 individual trajectories, ensemble mean
TAMSD (blue curves), and averaged MSD (green curves), with q = 0.1 in (a), (d), and
(g); q = 1.0 in (b), (e), and (h); q = 1.5 in (c), (f), and (i). We chose μ = 0 in (a)–(c);
μ = −1 in (d)–(f); μ = 1 in (g)–(i). Parameters: σ = 1, δx = 10, τ = 1, D = 0.5, and
D0 = 0.01. The total measurement time is T = 104.

α is normally distributed with mean μ and standard deviation σ, as previously considered in
the white Gaussian-noise scenario of [114].

TAMSD, ensemble averaged TAMSD and MSD. Figure 9 shows the TAMSD for individual
trajectories, the mean TAMSD, and the ensemble averaged MSD when the correlation time is
short, i.e., τ = 1. The non-extensivity parameter q and the mean μ of the diffusivity scaling
exponent are varied in the panels across and vertically, respectively. For q = 0.1 the individual
TAMSD trajectories are almost parallel and equally scattered at all lag times. In all other panels
the trajectories are scattered, more pronounced at longer lag times. In the left panels, i.e., for
q = 0.1 there is a significant disparity between the ensemble averaged MSD and the mean
TAMSD at both shorter and longer lag times. At shorter lag times the mean TAMSD exhibits
ballistic motion (∼Δ2), while the ensemble averaged MSD shows hyperdiffusive scaling, i.e.,
t2+λ with λ = 1.6, 1.8, and 1.2 in panels (a), (d), and (g), respectively. In the centre and the
right panels, at Δ � T the ensemble averaged MSD exhibits hyperdiffusive scaling t2+λ with
λ = 0.6 in panels (b), (e), and (f); 1 and 0.9 in panels (c) and (i), respectively. It displays
ballistic motion in panel (h). Concurrently the ensemble average TAMSD shows superdiffusive
scaling Δγ with γ = 1.4 in panel (b), 1.6 in panels (e) and (h), and 1.8 in panels (c), (f ), and (i).
At longer lag times the mean TAMSD and the ensemble averaged MSD coincide. Panels (a),
(d), and (g) indicate ballistic motion while all other panels show normal diffusion. The disparity
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Figure 10. TAMSD (red curves) from 1000 individual trajectories, mean TAMSD (blue
curves), and ensemble averaged MSD (green curves), with q = 0.1 in (a), (d), and (g);
q = 1.0 in (b), (e), and (h); q = 1.5 in (c), (f), and (i). We chose μ = 0 in (a)–(c);
μ = −1 in (d)–(f); μ = 1 in (g)–(i). Parameters: σ = 1, δx = 10, τ = 100, D = 0.5,
and D0 = 0.01. The total measurement time is T = 104.

between the mean TAMSD and the ensemble averaged MSD for Δ � T is a signature of weak
non-ergodicity.

Figure 10 shows the TAMSD, the mean TAMSD, and the ensemble averaged MSD for
long correlation time, τ = 100. In panels (a), (d), and (g), i.e., for q = 0.1, the curves for the
TAMSD are almost parallel and scattered at all lag times. In all other panels the TAMSD curves
form a band that broadens for longer lag times. The amplitude scatter is more pronounced at
longer lag times. Generally, the TAMSD curves follow the trend given by their mean. In panel
(a) the mean TAMSD scales as Δ1.8 at short lag times and as Δ2 at longer lag times, i.e., we
observe superdiffusion and ballistic motion, respectively. In all other panels the scaling of the
mean TAMSD at shorter lag times is ballistic, �Δ2. At longer lag times the scaling is still
ballistic in panels (d) and (g), while in panels (b), (c), (e), (f ), (h), and (i) the scaling is �Δ,
i.e., normal diffusive. In all panels the ensemble averaged MSD exhibits hyperdiffusive scaling
�t2+λ with λ = 1 in panels (b), (c), (e)–(g); and with λ = 1.2 in panels (a), (d), (h), and (i).
At short times the ensemble averaged MSD and the mean TAMSD are disparate, respectively
with hyperdiffusive and ballistic scaling. At long times the two quantities coincide. The degree
of disparity is large for q = 0.1 and for μ = −1. The deviations between the mean TAMSD
and ensemble averaged MSD at Δ � T is more pronounced in figure 10, i.e., when τ = 100
than in figure 9, when τ = 1, which implies that the ergodicity depends on the noise correlation
time.
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Figure 11. Ergodicity breaking parameter EB as function of lag time Δ for varying non-
extensivity parameter q. In (a) and (d), μ = −1; in (b) and (e), μ = 0; in (c) and (f),
μ = 1. Parameters: τ = 1 in (a)–(c); τ = 100 in (d)–(f). In all panels σ = 1, δx = 10,
D = 0.5, D0 = 0.01, and T = 104.

Figure 12. Dependence of the ergodicity breaking parameter EB(Δ = 1) on the trace
length T . In all panels, the solid lines with triangle, square, and circle are for q = 0.1,
1.0, and 1.5, respectively. The dashed line represents Brownian motion. The diffusivity
scaling exponent α varies across the panels while σ = 1, τ = 1, δx = 10, D = 0.5, and
D0 = 0.01 are fixed.

EB parameters. We now turn to the ergodicity breaking parameters EB and EB. Figure 11
shows the dependence of EB on lag time. EB assumes small values at all lag times for q = 0.1
and 1.0, while for q = 1.5 it exhibits small values for shorter lag times, i.e., τ � T and large
values for longer lag times. For q = 0.1 it remains constant at all lag times whereas for q = 1.0
and 1.5 it is constant at shorter lag times but grows steadily with increasing lag time for longer
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Figure 13. Ergodicity breaking parameter EB as function of time lag Δ for varying q,
and with μ = 0, −1, and 1 in (a)–(c), respectively. We chose σ = 1, δx = 10, τ = 100,
D = 0.5, D0 = 0.01, and T = 104.

Figure 14. Non Gaussianity parameter G as function of Δ for varying μ. We chose q =
0.1, 1.0, and 1.5 in panels (a)–(c), respectively. Parameters: σ = 1, δx = 10, τ = 10,
D = 0.5, and D0 = 0.01.

lag times. In all panels EB is smallest for q = 1.0 at shorter lag times, while at longer lag times
crossings between the lines for different q are observed.

Figure 12 shows a significant deviation of the ergodicity breaking parameter EB(Δ = 1)
from the behaviour of Brownian motion. Whereas the behaviour is the same for all μ, it varies
with the non-extensivity index q. As T →∞, EB(Δ = 1) decreases.

Figure 13 shows the dependence of EB on lag time for varying q. For Δ � T , EB assumes
larger values and decreases with increasing lag time. It flattens at some intermediate lag
times, then decreases again for q = 0.1 or increases gradually for q = 1.0 and q = 1.5, and
approaches unity as Δ→ T . For each q, EB exhibits a similar trend for μ = 0, −1, and 1.

Non-Gaussian parameter. Figure 14 presents the non-Gaussian parameter as a function of
lag time for varying μ. For q = 0.1 panel (a), G(Δ) decreases with increasing Δ at short and
intermediate lag times but flattens as Δ→ T for μ = 0 and 1; for μ = −1 it remains constant
at all lag times. For q = 1.0 in panel (b), G(Δ) descends linearly with lag time for μ = −1,
while for μ = 0 and 1 it descends and ascends in the short and long lag time regimes, respec-
tively. For q = 1.5 in panel (c), G(Δ) is decreasing, increasing, and then decreasing again at
shorter, intermediate, and longer lag times, respectively. For a given μ, the curves of G(Δ) vary
with q.
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4. Conclusions

We studied the diffusive motion of a test particle experiencing a spatially varying diffusion
coefficient while driven by coloured non-Gaussian noise, a relevant scenario in a variety of
physical and biological systems. Concretely, the noise is distributed according to Tsallis’ q-
distribution and follows an Ornstein–Uhlenbeck process, i.e., it is exponentially correlated.
In particular, this means that the generated noise is stationary. We used the TAMSD, the
mean TAMSD, and the ensemble averaged MSD to quantify the emerging anomalous diffusion
dynamics. The process is further analysed in terms of the EB parameters and the non-Gaussian
parameter. We considered unstratified and stratified media.

We showed that the non-extensivity parameter q affects the effective diffusivity but not the
scaling exponent of the ensemble averaged MSD. The non-Gaussianity of the emerging PDFs
depend on both q and the scaling exponentα of the diffusivity. Depending on q,α, and the noise
correlation time τ , individual TAMSD traces can be widely scattered, implying a significant
degree of irreproducibility for large parameter ranges. Both the mean TAMSD and the ensem-
ble averaged MSD reveal several diffusion regimes. The ensemble averaged MSD exhibits
hyperdiffusion at shorter times, ballistic motion and superdiffusion at intermediate times, and
standard or subdiffusion at longer times. The mean TAMSD shows ballistic motion, superdif-
fusion, or normal diffusion at shorter times; superdiffusion or normal diffusion at intermediate
times; and normal or subdiffusion at longer times. For short noise correlation time, the mean
TAMSD and the ensemble averaged MSD coincide for α = 0 and q = 1, indicating ergodic
behaviour (at times longer than τ effective Brownian motion emerges) but they differ for the
other cases in the short lag time regime, implying significant weak ergodicity breaking. For
long noise correlation time, the mean TAMSD and MSD exhibit significant disparity on the
analysed time scales.

The ergodicity breaking parameters EB and EB depend on q, α, and τ . Depending on
whether the medium is unstratified or stratified, EB exhibits striking behaviours as func-
tion of lag time or measurement time, including minima and maxima at intermediate times.
Lacking fully analytic solutions this behaviour was analysed in detail from simulations. For
short noise correlation times, EB indicates ergodicity breaking in both media. However, it is
close to zero for q = 0.1 in a stratified medium, implying almost vanishing non-ergodicity. As
expected, it corresponds to the behaviour for homogeneous diffusion for q = 1.0 and α = 0.
The non-Gaussianity parameter G(Δ) also depends markedly on the parameters q and α.

The coloured non-Gaussian heterogeneous diffusion model introduced here provides a
highly flexible model to capture complex stochastic motion in heterogeneous media. While
we unveiled several interesting features here, the detailed behaviour of the ergodic behaviour
of this model will be explored in more detail in future work.
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Appendix A. Probability density function

Here, we provide the key steps to solve the Langevin equation (44) in the Stratonovich sense
applying the procedure used in [88]. Introduce the substitution

y(x) =
∫ x dx′√

4D0Dr2
q|x′|α

,

which implies that

dy
dx

=
1√

4D0Dr2
q|x|α

.

Using the chain rule, dy
dt =

dy
dx

dx
dt , we find that

ẏ(t) = ξ(t),

with 〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′), that is, a Brownian process for which the PDF of y is Gaussian
with mean zero and variance 2Dt. For initial condition y(0) = 0, the PDF becomes

P(y, t) =
1√

4πDt
exp

(
− y2

4Dt

)
.

Our aim is to obtain the PDF of the random variable x. To that end we first define y explicitly
in terms of x

y =
1√

4D0Dr2
q

∫ x

|x′|− α
2 dx′ =

1√
4D0Dr2

q

|x|
1
p

1
p

sign(x),

with p = 2/(2 − α). Thus,

dy
dx

=
|x|1/p−1√
4D0Dr2

q

,

and then the PDF of x yields in the form

Pq(x, t) =
|x|1/p−1√
8πD0Dqr2

qt
exp

{
− |x|2/p

2
(
2/p

)2
D0Dqr2

qt

}
,

with Dq = 2D2.
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Appendix B. The stochastic continuity equation

We here provide some details on the derivation of the stochastic continuity equation (23).
Starting with the stochastic equations (21) and (22) consider (x, η) to be a vector in (two-
dimensional) phase space. Let Pq(x, η; t, τ ) represent the density of the system at point (x, η)
and time t, where (x, η) is the solution of the above systems such that (x, η, t = 0) = (x0, η0).
Then Pq(x, η; t, τ ) can be expressed in terms of an average over realisations of the noise ξ(t),

Pq(x, η; t, τ ) = 〈δ((x, η) − (x0, η0))〉 ,

which satisfies the ‘stochastic continuity equation’

∂Pq(x, η; t, τ )
∂t

+
∂{ẋPq(x, η; t, τ )}

∂x
+

∂{〈η̇Pq(x, η; t, τ )〉}
∂η

= 0,

subject to the initial condition

Pq(x, η; t = 0) = δ((x, η) − (x0, η0)).

Substituting ẋ(t) and η̇(t) yields the sought-after relation (23). Here, the brackets 〈·〉 denotes
averaging over realisations of the noise ξ(t).
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[80] Ślȩzak J, Burnecki K and Metzler R 2019 Random coefficient autoregressive processes describe
Brownian yet non-Gaussian diffusion in heterogeneous systems New J. Phys. 21 073056

[81] Sabri A, Xu X, Krapf D and Weiss M 2020 Elucidating the origin of heterogeneous anomalous
diffusion in the cytoplasm of mammalian cells Phys. Rev. Lett. 125 058101

[82] He W, Song H, Su Y, Geng L, Ackerson B J, Peng H B and Tong P 2016 Dynamic heterogeneity
and non-Gaussian statistics for acetylcholine receptors on live cell membrane Nat. Commun. 7
11701

[83] Wang W, Seno F, Sokolov I M, Chechkin A V and Metzler R 2020 Unexpected crossovers in
correlated random-diffusivity processes New J. Phys. 22 083041

[84] Wang W, Cherstvy A G, Chechkin A V, Thapa S, Seno F, Liu X and Metzler R 2020 Frac-
tional Brownian motion with random diffusivity: emerging residual nonergodicity below the
correlation time J. Phys. A: Math. Theor. 53 474001
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