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Editorial on the Research Topic

Anomalous Transport: Applications, Mathematical Perspectives, and Big Data

Diffusion is a fundamental process that addresses the stochastic motion of a test particle and the
emerging broadening of its distribution function in the course of time. Diffusive-like motion was first
reported in 1828 following the seminal experiments by Robert Brown a year earlier on the erratic
motion of micron-sized granules contained in Clarkia pulchella pollen grains [1]. The theoretical
foundations of Brown’s observations were established almost a century later by Einstein, Sutherland,
Smoluchowski, and Langevin [2–5].

Diffusion theory is a fundamental and well established area of research which continues to be very
active. Concurrently, a broad range of stochastic phenomena exhibit significant deviations from
normal diffusive behavior, commonly termed as anomalous diffusion. Anomalous transport is
ubiquitously observed in many complex systems, ranging from the electronic transport of solid-state
disordered systems [6], the motion of molecules inside living cell [7] and on their membrane [8], in
the telomere motion inside the nucleus of mammalian cells [9], in soil transport [10], in heat
transport in low-dimensional systems [11], and in certain classes of billiards [12], among a host of
other phenomena.

From a statistical view point, all these diverse phenomena share a common description
depending on how the broadening of the distribution function of the process ξ(t) grows in
time. This is customarily measured by the variance of the second moment, the so-called mean
squared displacement (MSD) 〈ξ2(t)〉xtc. Normal diffusion corresponds to an MSD that grows
linearly in time c � 1, while anomalous diffusion is classified as subdiffusive for c< 1 and
superdiffusive c> 1. From a dynamical view, there is a wealth of theoretical research devoted
to unveil the physical mechanisms that can induce anomalous diffusion (see, e.g., Refs. 13–15 and
references therein).

From an experimental point of view the past decade has vividly changed the field. Video
microscopy and particle tracking are providing a rapidly increasing wealth of highly-resolved
experimental observations. Moreover, numerical simulations of ensembles of trajectories are now
feasible also for disordered systems where one must average over many realisations of the geometry.
The resulting data sets should best be addressed from a big data perspective to extract characteristic
transport properties. Firstly, this poses challenges for the automatic data processing and parameter
inference. Secondly, it calls for newmathematical perspectives that underpin the data analysis from a
unified point of view. In particular, data sets are big enough now to address the anomalous decay of
correlations in the dynamics and to search for universality in the transport.
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The aim of this Research Topic attempts to unify different
visions, approaches and methodologies around the field of
anomalous diffusion, to present an overview of the state of the
art of the field, and insight into the main directions of current
research. The research topic comprises 19 contributions
discussing current issues, from experiments to theory, in
anomalous transport. Here is a brief overview of these
contributions.

A pathway to obtain anomalous diffusion is through
molecular crowding and confinement. These two constraints
prevail in living cells, where anomalous transport is often
observed. With the advent of experimental techniques such as
Fluorescence Spectroscopy (FS) and Single-Particle Tracking
(SPT) we are able to study the dynamics in the cell and the
cell kinetics that determine the essential processes of the living
matter. This is the subject of the perspective article by Wringer
et al. After an extensive overview Wringer et al. propose a
collaborative global challenge to unify data benchmarks of
biologically-relevant measures.

Memory effects have in general a strong influence on
transport, leading to non-stationarity and aging. Using spectral
theory Lapolla et al. discuss the non-Markovian stochastic
processes that arises in the projected dynamics, like, e.g., in
coarse-graining. Following this approach and using the
coordinate Bethe ansatz Lapolla et al. are able to solve the
problem of single file diffusion in a tilted box, where
projection corresponds to the dynamics of the tagged particle
after tracing out the dynamics of the rest of the particles.

Masó-Puigdellosas et al. also consider memory effects of
resetting dynamics. They study how anomalous diffusion
exhibited by otherwise diffusive random walks is determined
when the walkers are subject to random relocations withmemory.
They show that the type of transport, from subdiffusive to
superdiffusive is determined by the details of the resetting
dynamics.

Over the last few decades different classes of anomalous
transport have been described and observed. They include
situations in which the MSD grows linearly in time as in
normal diffusion, yet the statistics of the displacement is
described by a strongly non-Gaussian probability distribution
function. Such a situation, known as Brownian yet non-Gaussian
diffusion (BnGD), is often observed in soft matter, biological and
complex systems, and in general, in transport through
heterogeneous environments [16]. Generalisations to non-
Gaussian fluctuations include diffusing diffusivities [17], and
strong anomalous diffusion in which the time scaling of the
moments of the displacement is nonlinear in the moment’s
order [18].

Brownian yet non-Gaussian diffusion is the subject of the
article of Baldovin et al. in which the authors consider a
polymerization process in a closed fixed volume and with a
fixed number of polymers. Following the statistics of the
polymers center of mass they show that BnGD is a direct
consequence of the polymerization process.

Di Tullio et al. discuss how anomalous diffusion emerges from
diffusive dynamics on complex heterogeneous environments.
They consider different models of anomalous diffusion such as

continuous time random walks, Brownian motion with grey
noise, and time-subordinated processes with a heterogeneous
condition in which spatial and temporal scales are in turn random
variables following a proper distribution, and show how this
rescaling determines the type of anomalous transport.

Heterogeneous diffusion is characterised by an initial
sampling of the local environment to a later exploration of the
surrounding effective medium, yielding generically transient
anomalous diffusion. Spakowitz studies the emergence of
anomalous diffusion in heterogeneous environments. He
models heterogeneity with a diffusivity that varies with
position. By means of diagrammatic techniques, Spakowitz
obtains an exact expression for the particle Green’s function
that captures the spatially varying diffusivity.

Active microrheology studies the response of a complex
medium to the passage of a tracer particle that is driven
through it, as in a colloid driven by an external force through
a quiescent bath. The tracer particle reaches a stationary state in
which the external force and the dragging force equilibrate. In the
stationary state the tracer particle produces a nonequilibrium
inhomogeneity in the density of the medium which in general
leads to anomalous diffusion of the tracer [19].

Werner et al. consider the transport of asymmetrically grafted
nanoparticles, often called hairy nanoparticles, that are pulled
through a quiescent bath. Because of the external pulling the
grafted colloids change the depletion zone around them, which in
turns leads to an anisotropic effective viscosity. Werner et al.
study the dependence of the friction force exerted by the bath on
the profile of the local viscosity, and discuss the consequences of
their results for active microrheology.

Bacteria are an example of active matter in which each
bacterium transduces chemical energy into motion. Therefore,
active matter is intrinsically out of equilibrium. What happens
when a bacteria cell moves across complex geometries? This is the
topic that Weber et al. address in their article. It is known that
bacteria strongly interact with their surroundings and are often
guided by confinements. Weber et al. consider a bacteria moving
inside a labyrinth with square lattice geometry. The bacteria’s
motion is modelled as a run-and-tumble. Their analytical
predictions show a transient non-Gaussian diffusion and
compare well with experiments.

In the article of Um et al. active matter is further investigated.
Modelling self-propelled particles as a Langevin dynamic driven
by a telegraphic active noise, which essentially describes the
transport of an active particle under confinement. Um et al.
show that depending on the properties of the noise, different
types of transport emerge, and they discuss relations with run-
and-tumble and Lévy walks.

Reza Shaebani et al. consider the run-and-tumble model,
characteristic of bacteria’s motion and derive an expression for
the MSD. They show that depending on the dynamic parameters
and on the initial position of the process, the MSD exhibits a
variety of transient regimes of anomalous transport. In all cases
diffusion sets in asymptotically, with a diffusion coefficient that
turns out to be independent of the initial starting of the process.

Territoriality is ubiquitous in the animal kingdom. Among
mammals it is often associated with individuals marking their
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passage, to which other individuals react upon their encounter. A
simple model for this situation is the so-called Territorial
Random Walk (TRW) which comprises diffusion and local
avoidance mechanism. Sarvaharman et al. consider a
correlated TRW in which walkers are persistent and analyse
the phase diagram picture that arises in this situation.

Transport in biological systems occurs in a complex
“disordered” environment characterised by geometric disorder
and the existence of energy barriers. For instance, inside the cell
the actin cytoskeleton forms a cellular compartmentalisation for
the proteins diffusing in the plasma membrane. It is believed that
such constraints are responsible for the commonly observed
subdiffusion. Muñoz-Gil et al. discuss the dynamics of a
random walk in a compartmentalisation substrate where
compartments are separated by barriers with random
transmittance. They show that in their model a stochastic
transmittance is essential to anomalous diffusion.

Segovia Gutierrez et al. present experimental results for the
dynamics of synthetic trimer molecules in a random potential
energy landscape that is realised by a random light field. Using
SPT techniques they study the translational and rotational MSD
showing that trimers move subdiffusively. However, such
anomalous behavior is transient and converges to normal
diffusion in the long time limit.

While anomalous diffusion has been well established over
decades, anomalous heat transport was experimentally observed
for the first time in 2008 [20]. Almost 200 years ago Joseph
Fourier established from simple physical assumptions that the
transport of heat must be described by a diffusion equation. Even
when this is overwhelmingly observed, a first principles
derivation of Fourier’s law of heat conduction is still absent.

In the attempts to derive the diffusive character of heat
conduction it has turned out that in low-dimensional systems
Fourier’s law probably does not hold. From a theoretical
viewpoint, anomalous heat transport arises in general due to
the strong dynamic correlations existing in low-dimensional
systems, though a detailed understanding has remained elusive
for decades. An overview of these issues appear in the review
article of Benenti et al. They discuss anomalous heat transport in
anharmonic chains of oscillators, considering magnetic fields and
long-range interactions, among others. Furthermore, they discuss
the important case of coupled transport which is the essence of
generic thermodynamic transport. Benenti et al. close their review
with an overview of open problems and future perspectives.

Concerning one-dimensional systems, the current picture that
emerges is that when heat transport turns anomalous it means
that the heat conductivity depends on the global state of the
system rather than on its local properties. In the review article of
Dhar et al. the authors discuss this non-locality, due to which
Fourier’s law is replaced by a non-local fractional diffusion
equation. Dhar et al. review the different theoretical

approaches leading to this framework and offer an exhaustive
overview of recent progress.

Giberti et al. further discuss the non-locality implied by an
anomalous heat conduction and how this affects the important
assumption of Local Thermal Equilibrium (LTE). The non-local
description of heat transport has direct fundamental
consequences on the definition of local intensive
thermodynamic quantities and therefore, on the LTE. To
study these consequences Giberti et al. show that one-
dimensional chains of oscillators interacting through a
Lennard-Jones potential exhibit anomalously large distortions
and fluctuations that hinder an appropriate thermodynamic
treatment.

By means of parameter estimation from a finite set of
trajectories and machine learning techniques Ridha Znaidi
et al. provide algorithmic strategies to uncover the underlying
dynamics of such trajectories. They assume the dynamics to be
described by a set of fractional partial differential equations,
which in the extended systems are able to describe anomalous
diffusion.

Finally, the automatic data processing and parameter
inference is discussed by Natole et al. For any scoring
function, the area under the receiver operating characteristic
curve (AUC) is equivalent to the probability of a positive sample
ranking higher than a negative sample. As such the AUC is a
standard classification measure used in the analysis of
imbalance class data and in clinical trials such as the
development of vaccines to mitigate the COVID-19
pandemic. In their article Natole et al. develop a stochastic
learning algorithm that maximises the AUC with respect to
accuracy.

We are confident that this collection of articles provides a
timely showcase for the state of the art in the field of anomalous
diffusion. Moreover we look forward to see how the topics
presented here will inspire further work in this rapidly
developing field.
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We study the random walk of a particle in a compartmentalized environment, as realized

in biological samples or solid state compounds. Each compartment is characterized by

its length L and the boundaries transmittance T. We identify two relevant spatio-temporal

scales that provide alternative descriptions of the dynamics: (i) the microscale, in which

the particle position is monitored at constant time intervals; and (ii) the mesoscale, in

which it is monitored only when the particle crosses a boundary between compartments.

Both descriptions provide—by construction—the same long time behavior. The analytical

description obtained at the proposed mesoscale allows for a complete characterization

of the complex movement at the microscale, thus representing a fruitful approach for

this kind of systems. We show that the presence of disorder in the transmittance is a

necessary condition to induce anomalous diffusion, whereas the spatial heterogeneity

reduces the degree of subdiffusion and, in some cases, can even compensate for the

disorder induced by the stochastic transmittance.

Keywords: random walk, anomalous diffusion, stochastic processes, complex systems, barriers

1. INTRODUCTION

The characterization of the diffusive behavior in complex environments is crucial in many fields,
ranging from biology [1], via physics and chemistry, to geology [2]. Recently, it has been shown
that a large number of systems display anomalous diffusion associated to spatial and/or energetic
disorder of the environment. Often, the motion of particles in such systems has been shown to be
subdiffusive, i.e.,

〈

x2(t)
〉

∼ tσ with anomalous exponent 0 < σ < 1. The characterization of this
movement provides important information on the disorder of the media and on the laws governing
the system [3]. The advances in this field have been mainly driven by developments in fluorescence
microscopy, which enable us to record movies of single particles diffusing in living matter, with a
spatial precision of a few nanometers at the millisecond time scale [4].

The presence of barriers that prevent the particles to freely diffuse in the environments is
a general mechanism used to explain subdiffusion [5]. Indeed, there exists a plethora of works
treating the effect of these barriers in various forms, from local maxima in potential landscapes [6]
to thin slices of poorly diffusive materials [7]. Recently, an analytical approach has been proposed
for sufficiently regular geometries [8]. Recent experimental observations in cellular biology have
shown that the actin cytoskeleton acts as a compartmentalization scaffold for proteins diffusing
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in the plasma membrane [9, 10], hence stressing the importance
of studying the motion in such environments. Moreover,
the evidence of the occurrence of ergodic and non-ergodic
processes in the diffusion of biomolecules [11] has triggered the
description of models in which geometric and energetic disorders
coexist [12, 13].

In this article, we study a general barrier model, where a
particle performs an unbiased random walk through a complex
environment made by a mesh of compartments separated by
barriers with random transmittance. A schematic of the system
is shown in Figure 1. We show that even though the particle
performs a Brownian motion within each compartment, the
stochasticity of the barrier’s transmittance induces anomalous
diffusion for the overall movement. We also explore the effect
of the stochasticity in the length of the compartments, showing
that it generally increase the anomalous exponent, up to restoring
normal diffusion.

In order to study the behavior of the particle, we propose
a coarse-graining approach transforming the rather complex
walk of the particle (mainly due to the interaction with the
boundaries) into two very well known theoretical models
describing anomalous diffusion: continuous time random walks
and Lévy walks. The former, introduced by Montroll and
Weiss [14], consists in a random walk where the time between
successive steps is a stochastic value. Similarly, a Lévy Walk [15]
consists in a random walk where not only the step time is
a stochastic variable, but also its length. For a comprehensive
introduction to both models, we refer the readers to Klafter and
Sokolov [16] and Zaburdaev et al. [17].

In the most general description of our system, we show
how the walk of the particle can be mapped into a Lévy

FIGURE 1 | Schematic of the system. (A) Example of a one dimensional

compartmentalized environment, with compartment size L and boundary

transmittance T. Higher boundaries represent lower transmittance. For

simplicity we plot the meshwork as formed by the segments of a line. (B)

Motion of the particle in such environment. The dark line represents the

microscale description of the motion and the green one indicates its

mesoscale description, in this case a Lévy walk with steps given by their

length and flight time (L, t).

walk with rests, where flight times depend on the step size.
In our system, the steps and rests are not alternate but have
complementary probabilities at each event. We show how the
existing theory for a Lévy walk with rests can be extended
to study such kind of walk. We determine the relationship
between the stochasticity of the environment and the anomalous
diffusion of the particle by solving different configurations of our
system, characterized by fixed or random compartment sizes and
boundary transmittances.

2. MATERIALS AND METHODS

The motion takes place on an environment characterized by a set
of compartments with size {Li}

N
i=1, with N ≫ 1 and Li ∈ [1,∞).

We treat the size of the compartments as a stochastic variable,
following the probability distribution function (PDF) g(L). The
compartments form a meshwork with unbounded connectivity,
which we assume to be always sufficiently large such to make
very unlikely that the particle returns to the same compartment
after leaving it. The boundary between the compartments is
partially reflective, i.e., a particle reaching a boundary has a
finite probability T of moving through the boundary to the next
compartment and a complementary probability R = 1 − T
of being reflected. The transmittance of each segment {Ti}

N
i=1,

T ∈ (0, 1] is a random variable drawn from the PDF q(T).
For the sake of simplicity, we focus on the case where

the compartments consist in one-dimensional segments (see
Figure 1A). The extension of this theory to two- or three-
dimensional supports, like circles or spheres, is conceptually
straightforward but more elaborated and geometry-dependent,
since it requires the determination of the stochastic time that
the particle spends in each support. The particle performs
an unbiased, discrete, random walk through the environment,
temporarily confined between the boundaries until it is
transmitted to the next compartment.

The motion of particles in disordered media has been
thoroughly studied in the past [18]. The usual approach is
to explicitly solve the diffusion equation for the system under
study. For instance, such direct approach has been recently
applied to subdiffusive particles through the barrier separating
two liquids [19]. However, when considering systems like the
one presented above, where both the boundary transmittance and
compartment length are stochastic variables, the direct approach
is complicated and does not lead to exact analytical results.
Therefore, we use an alternative method to solve the motion of
the particle through such a system. First, we distinguish between
a microscale description, in which the position of the particle
is monitored at constant times << L2/D with D being the
diffusivity, and a mesoscale description, in which the position is
sampled at times subordinated to the exit from a compartment.
We note here that, by definition, the asymptotic behavior of
the motion of the particle coincides on both scales. Therefore,
studying the movement at the mesoscale provides a correct
description of the movement at long times.

In the mesoscale description, the microscopic walk of the
particle (represented by the black line in the same figure) is
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reduced to a collection of lengths (Li) and times (ti) traveled to
exit the compartments, as shown by the green line of Figure 1B.
As a matter of fact, the length traveled by the particle in each step
corresponds to the size of the compartment itself. The flight time
ti is the stochastic time the particle spent bouncing between the
boundaries before being transmitted to next compartment. In our
case, this time is related to the transmittance T and length L of
the compartment through the conditional probability φ(t|T, L).
One can then write the joint probability for the particle to be
in a compartment of length L and boundary transmittance T at
time t as

ψ(t, L,T) = φ(t|T, L)g(L)q(T). (1)

Once inside a compartment, the particle has two options: leaving
through the same boundary through which it entered, or through
the opposite one. Since our approach monitors the particle
only when exiting a boundary, in the latter case, the particle
has traveled a distance equal to the size of the compartment.
However, in the former, the particle is not effectively moving,
since it occupies the same position when entering and exiting
the compartment. This translates into a rest with duration equal
to the time taken to exit the compartment. Therefore, after
entering each compartment, the particle has a probability of
resting ϕr(L,T) and the complementary probability of walking
ϕw(L,T) = 1− ϕr(L,T).

Through this coarse-graining approach, we convert the
microscale walk into a Lévy walk with rests, with flight times
depending on the jump length [20]. Previous works have
extensively studied such kind of walks, both with alternating
walks and rests [16] or with an equal probability of resting and
walking [17]. However, our system shows a substantial difference,
since it displays different probabilities of resting or walking,
ϕr + ϕw = 1, that can be used to calculate the PDFs of walk
[ψw(t)] and rest times [ψr(t)] as

ψw(r)(t)=

∫ ∞

1
dL

∫ 1

0
ϕw(r)(L,T)ψ(t, L,T)dT, (2)

and, in the spirit of Zaburdaev et al. [17], to derive the density of
particles at position x and time t in the Fourier–Laplace space

P6(k, s) =

∫ 1

0
P6,T(k, s,T)dT, (3)

where

P6,T(k, s,T) = (4)

9r(s)P0(k)+
{

ϕw(x,T)9(x, s,T)
}

k
ψr(s)P0(k)

1− {ϕr(x,T))ψ(x, s,T)}kψr(s)
.

Here, P0(x) corresponds to the initial distribution of particles,
9(t) =

∫ ∞

t ψ(t′)dt′ to the survival probability, i.e., the
probability of not jumping until time t, 9(x, t,T) =
∫ ∞

t ψ(x, t′,T)dt′ to the PDF of the displacement of the walker
during the last uncompleted step, and {f (x)}k to the Fourier
transform of f (x). For constant step/rest probabilities, e.g., ϕw =

ϕr = 1/2, Equation (4) leads to the known result for the Lévy
walk with rests [17].

However, when the previous condition is not fulfilled, solving
Equation (4) requires the calculation of ϕw(L,T). A case in which
ϕw(L,T) is easily solvable is when the boundaries are completely
transmitting, i.e., q(T) = δ(T − 1). In that case, one finds

ϕw(L,T = 1) = ϕw(L) = 1−
L

L+ 1
∼ L−1. (5)

For T 6= 1, obtaining an analytical expression for ϕw(L,T) is
a challenging task [21]. A trick commonly used to avoid this
difficulty consists in considering an annealed system [18], i.e.,
assuming that each time the particle exits a compartment, it
reappears at the center of the next one. In this case, the particle
will always travel a distance Li/2 to escape the ith-segment,
independently on the exit side, hence eliminating the presence
of rests. In this case ϕw(L,T) = 1 ∀L,T and the motion of the
particle is then a Lévy walk with flying times depending on the
jump length [20]. This is also analogous to the case in which, once
the particle enters a compartment, it cannot cross again the same
edge it entered from and thus will always travel a distance Li. For
this reason, in the following we will refer to this approximation
as the osmotic approach, in contrast with the general case that we
name non-osmotic.

From now on we will focus on the osmotic approach, which
allows for a thorough theoretical description in the different
configurations considered. In the osmotic approach, Equation (4)
takes the much simpler form

P
(OA)
6 =

9(k, s)

1− ψ(k, s)
, (6)

where ψ(k, s)=
∫ 1
0ψ(k, s,T)dT.

To characterize the motion of the particle, we will use
the mean squared displacement (MSD), defined as

〈

x2(t)
〉

=

−P′′(k, s)|k=0, which can be rewritten as Massignan et al. [22]

〈

x2(s)
〉

=

∫ 1

0
dT

[

−ψ ′′(k, s)|k=0

s[1− ψw(s)]
+

−9 ′′(k, s)|k=0

1− ψw(s)

]

. (7)

As we will show later through numerical simulations of the
microscopic walk, in spite of the simpler description, the osmotic
approach displays the same long time behavior as the non-
osmotic one.

3. RESULTS

In the following, we will use the method described above to
solve the motion of the particle in different configurations of the
system. We will first consider the case in which each boundary
has a different transmittance, drawn stochastically from the PDF
q(T), but all the compartments have equal length. We will then
briefly comment about the case in which the stochasticity is only
present in the compartment length. Last, we will consider the case
where both the length and boundary transmittance are random
variables. For each case, we will give the analytical solutions of
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the mesoscopic walk and compare it to numerical simulations of
the microscopic description.

The form of the conditional probability of the exit time
given a compartment of size L and transmittance T is common
to all the cases. A reasonable assumption based on the
Brownian motion is that, independently on the expression of
this conditional probability, it should give an average time
for exiting a compartment 〈t〉 which depends on the length
as L2. We can further assume that the dependence on T is
such that 〈t〉 ∝ (L/T)2. We checked that this behavior is
consistent with the numerical results for a collection of T and
L, finding that the average exit time follows an exponential
behavior, ∝ exp−tL2/T2, for large L and small T. For all
cases numerically considered, even when the distribution did not
match an exponential behavior, we found a quadratic dependence
on L/T. Therefore, we assume the simplest distribution which
produces the expected behavior of the average exit time, which is

φ(t|T, L) ∼ δ(t − (L/T)2). (8)

This form of the conditional time also has the advantage of
simplifying the analytical expressions and, as we discuss below,
allows us to correctly model the microscopic motion in all the
cases considered. The analytical calculation of this conditional
probability falls beyond the scope of this work. We note that
previous works have focused in the investigation on the exit
time in similar structures [23, 24], but do not provide a
useful expression for our particular system nor a practical way
to derive it.

We will now consider the case in which the boundaries have
all the same transmittance, i.e., q(T) = δ(T − T̄), with T̄ ∈ (0, 1].
We will consider that each compartment has a different length,
retrieved from the PDF

g(L) = βL−1−β . (9)

Our first step is to calculate the distribution of flight times, which
is done by convolving Equation (1) over all possible values of L

ψL(t) =

∫ ∞

1
φ(t|L, T̄)g(L)dL ∝ t−1−β/2. (10)

Using this result and Equations (1) and (7), we find that
〈

x2(t)
〉

∼

t ∀ T, i.e., the particle performs normal diffusion. Therefore,
the stochasticity of the compartment length does not imply any
effect on the MSD and, indeed, similar results are obtained when
using regular compartment size.We would like to emphasize that
this result holds for any finite T different from zero. In fact, as
shown in Lapeyre [25], for T = 0 subdiffusion occurs. In the
presence of transmitting boundary, there is no mechanism that
confines the particle for pathologically long times, so particles
diffuse normally in the asymptotic limit.

A very different result arises when considering disordered
boundary transmittances {Ti}

N
i=1 distributed according to a

power law PDF

q(T) = α

(

1

T

)1−α

. (11)

We first analyze the case in which the compartments have all the
same size, i.e., the lengths {Li}

N
i=1 are distributed according to the

PDF g(L) = δ(L − L̄), where L̄ ∈ [1,∞). We refer to this system
as the spatially ordered case. In the osmotic approach, the walk
consists on a collection of steps of size L̄ with flight times drawn
from the PDF

ψ(t) =

∫ 1

0
φ(t|L̄,T)q(T)dT ∝ t−1−α/2. (12)

As all the steps have equal length, the walk reduces to a
continuous time random walk with waiting time PDF given by
Meroz et al. [12]. Thus, in the spatially ordered case the MSD is
given by Charalambous et al. [26]

〈

x2(t)
〉(SO) t→∞

−−−→ tα/2, (13)

showing that the particle undergoes subdiffusive motion for
0 < α < 1. In Figure 2A we show the numerical results
corresponding to MSD calculated for a single value of α = 0.2
and different values of L̄ by using the microscale description
for the spatially ordered case. The plot shows that the motion
is initially Brownian and become subdiffusive at longer times.
The time at which the onset of subdiffusion occurs increases as L̄
grows, corresponding to the time needed to reach the boundary,
of a compartment. The asymptotic value of the MSD for any
L̄ is given by Muñoz Gil et al. [13]. This is a first indication
that anomalous diffusion can only be obtained by considering
stochastic boundary transmittance with a heavy-tail PDF. In the
spatially ordered case, the distribution of transmittances of the
media can be directly inferred from the asymptotic behavior of
the MSD of the particle.

We will now consider the case where both compartment
length and boundary transmittance are stochastic variables. As
stated before, this situation can be modeled at the mesoscale
as a Lévy walk with flight times depending on the step size.
We consider that the transmittances are distributed according
to Equation (11) and the compartment lengths as described by
Equation (9). Following the method used to derive Equation (12),
we can calculate the PDF of flight times by convolving the
conditional probability φ(t|T, L) with Equations (11) and (9), to
find

ψf (t) ∝ t−1−γ , with γ =

{

α if β > α,

β if β < α.
(14)

By using the previous result and Equation (1) we can determine
the MSD through its Laplace transform as in Equation (7). In the
time domain we find

〈

x2(t)
〉(SD) t→∞

−−−→ t
1
2 (2−β+γ ). (15)

The values of the MSD exponent σ = 1
2 (2− β + γ ) obtained for

different values of α and β are shown in Figure 2B. In Figure 2C

we further show the values of the MSD exponent calculated from
numerical simulations for the microscale description of the walk
(dashed lines) and the theoretical value given by Equation (15).
The numerical calculation and the theoretical prediction show
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FIGURE 2 | (A) MSD of a particle moving in an system of compartments of

equal length and boundary transmittances distributed following (11), with

α = 0.2. All curves are calculated for the microscale and tend to the predicted

subdiffusive motion given by (13). A larger L leads to a larger time for the onset

of subdiffusion to occur. The dashed bottom line corresponds to the

mesoscale and coincides with the theoretical prediction. (B) Value of the

exponent of the MSD in a system with stochastic compartment sizes and

boundary transmittance, given by (15). (C) Comparison between the predicted

results of the previous case and numerical simulations of the microscopic walk

(dashed lines).

a good agreement. It can be noticed that, when α > β (and
thus γ = β), the particle movement is normally diffusive (see
Equation (15) and Figures 2B,C). Therefore, the stochasticity
in the length of the segments is capable of compensating for
the disorder that would be induced by the stochasticity in
transmittance, that would generate a subdiffusive motion with
anomalous exponent σ = α/2 in the case the segments lengths
were regular. In addition, for β > α, the motion is subdiffusive,
but with a higher anomalous exponent as compared to the case
in which the lengths were regular. Therefore, in this case the two
disorders compete, producing a weaker subdiffusion.

4. DISCUSSION

In this article, we introduce a coarse-graining method that we use
to study diffusion through complex environments. This method
is useful to study systems in which the microscopic behavior of
the particles is too involved to be described analytically. To obtain
a description of the motion in such cases, we propose a procedure
that allows one to transform the microscopic walk into well-
known theoretical models, such as Lévy Walks or continuous
time random walks. The coarse-grained transformation maps
the original walk performed at the microscale into a simplified
movement at a larger scale (which we term mesoscale) that

captures the relevant properties of the environment. This allows
for a complete analytical characterization of the diffusion in terms
its observables, such as the mean square displacement.

To illustrate the use of the proposed method, we consider the
diffusion in an environment consisting of compartments with
random sizes and/or transmittances. To resolve the diffusion
of the system at the microscale, one needs to consider the
complex interaction of the particle with the boundary of each
compartment. For some simple systems, e.g., when all the
compartments have the same size, it is possible to get an
analytical solution of the microscale motion. In this cases, we
show that a heavy-tailed distribution of boundary transmittance
is a necessary requirement to induce subdiffusion. However,
for more intricate spatially-disordered environments, it is often
difficult to obtain an analytical solution at the microscale.
This is the scenario where our method allows to get insights
on the motion while neglecting microscopic details. As an
example, we demonstrate that when the compartments length is
a stochastic variable, geometric disorder alone cannot generate
subdiffusion. However, it can affect the one generated by the
heterogeneity in the boundary transmittance. Namely, increasing
the geometric disorder reduces the degree of subdiffusion, as it
increases the value of the anomalous exponent toward one. We
thus fully characterize the mean-square displacement exponent
as a function of the parameters controlling the heavy-tailed
distributions of both the lengths and barrier heights.

The model presented in this article might be a useful
framework to interpret diffusion in a variety of systems
composed of compartment of varying size and barriers. A striking
example of such kind of system is provided by eukaryotic
cells, highly compartmentalized at different spatial scales to
provide optimal conditions to perform specific functions [27].
The presence of compartments has been shown to affect the
diffusion of transmembrane proteins in the plasma membrane,
e.g., as a consequence of a self-similar actin network acting as
semipermeable barrier [9].

An interesting outlook of our model could consist in the
possibility of its further generalization, as to include previously
proposed models for diffusion in complex environment. For
example, our approach shares important features with the
previously proposed comb model [28]. In fact, the comb model
can be considered as a continuous-time random walk with
stochastic waiting time, the latter derived from first-passage
time. This system can be analyzed through our coarse-grained
approach upon conversion of the waiting time distribution into
a stochastic transmittance. The realization of the comb model
including convective terms [29], could be further implemented in
our approach, e.g., through the use of asymmetric transmittance.
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Area under the ROC curve (AUC) is a standard metric that is used to measure

classification performance for imbalanced class data. Developing stochastic learning

algorithms that maximize AUC over accuracy is of practical interest. However, AUC

maximization presents a challenge since the learning objective function is defined over

a pair of instances of opposite classes. Existing methods circumvent this issue but with

high space and time complexity. From our previous work of redefining AUC optimization

as a convex-concave saddle point problem, we propose a new stochastic batch learning

algorithm for AUC maximization. The key difference from our previous work is that we

assume that the underlying distribution of the data is uniform, and we develop a batch

learning algorithm that is a stochastic primal-dual algorithm (SPDAM) that achieves a

linear convergence rate. We establish the theoretical convergence of SPDAM with high

probability and demonstrate its effectiveness on standard benchmark datasets.

Keywords: AUC maximization, imbalanced data, linear convergence, stochastic optimization, ROC curve

1. INTRODUCTION

Quantifying machine learning performance is an important issue to consider when designing
learning algorithms. Many existing algorithms maximize accuracy, however, it can be a misleading
performance metric for several reasons. First, accuracy assumes that an equal misclassification cost
for positive and negative labeling. This assumption is not viable for many real world examples such
asmedical diagnosis and fraud detection [1]. Also, optimizing accuracy is not suitable for important
learning tasks such as imbalanced classification. To overcome these issues, Area Under the ROC
Curve (AUC) [2, 3] is a standard metric for quantifying machine learning performance. It is used
in many real world applications, such as ranking and anomaly detection. AUC concerns the overall
performance of a functional family of classifiers and quantifies their ability of correctly ranking any
positive instance with regards to a randomly chosen negative instance. This combined with the fact
that AUC is not effected by imbalanced class data makes AUC a more robust metric than accuracy
[4]. We will discuss maximizing AUC in a batch learning setting.

Learning algorithms that maximize AUC performance have been developed in both batch and
online settings. Previously, most algorithms optimizing AUC for classification [5–8] were for batch
learning, where we assume all training data is available making those methods not applicable to
streaming data. However, online learning algorithms [9–14], have been proven to be very efficient
to deal with large-scale datasets and streaming data. The issue with these studies is that they focus
on optimizing the misclassification error or its surrogate loss. These works all attempt to overcome
the problem that AUC is based on the sum of pairwise losses between examples from different
classes, making the objective function quadratic in the number of samples. Overcoming this issue
is the challenge of designing algorithms to optimize the AUC score in either setting.
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In this work, we present a new stochastic batch learning
algorithm for AUC maximization, SPDAM. The algorithm is
based on our previous work that we can reformulate AUC
maximization as a stochastic saddle point problem with the
inclusion of a regularization term [15]. However, the key
difference from our previous work is that SPDAM assumes
that the distribution is uniform and is solved as a stochastic
primal dual algorithm [16]. The proposed algorithm results in a
faster convergence rate than existing state-of-the-art algorithms.
When evaluating on several standard bench mark datasets,
SPDAM achieves performances that are on par with other
state-of-the-art AUC optimization methods with a significant
improvement in running time.

The paper is organized as follows: Section 2 discusses related
work. Section 3 briefly reformulates AUC optimization as a
saddle point problem. Section 4 exploits section 3 with the
assumption that the distribution is a uniform distribution
over the data and introduces SPDAM. Section 5 details the
experiments. Finally, section 6 gives some final thoughts.

2. RELATED WORK

AUC has been studied extensively because it is an appropriate
performance measure for when dealing with imbalanced
data distributions for learning classification. Designing such
algorithms that optimize AUC is a significant challenge because
of the need for samples of opposite classes. An early work
first maximized the AUC score directly by performing gradient
descent constrained to a hypersphere [17]. Their algorithm used a
differentiable approximation to the AUC score that was accurate
and computationally efficient, being of the order of O(n), where
n is the number of data observations. Another early work
optimized the AUC score using support vector machines [6].

In more recent work [18–22], significant progress has
been done to design online learning algorithms for AUC
maximization. Online methods are desirable for evaluating
streaming data since these methods update when new data is
available. However, a limitation of these methods is that the
previous samples used need to be stored. For iteration t and
where the dimension of the data is d, this results in a space and
time complexity ofO(td). This is an undesirable property because
these algorithms will not scale well for high-dimensional data as
well as will require more resources. To overcome the quadratic
nature of AUC, the problem of optimizing the AUC score can be
reformulated as a sum of pairwise loss functions using hinge loss
[19, 22]. The use of a buffer with size s was proposed. This lessens
the complexity to O(sd). However, if the buffer size is not set
sufficiently large this will impact the performance of the method.

Again, using the idea of reformulating AUC as a sum of
pairwise loss functions was further expanded upon [18]. Using
the square loss function instead of hinge loss, a key observation
was made in which the mean and covariance statistics of the
training data could be easily updated as new data becomes
available. Unlike the previous work where s samples needed to
be stored, these statistics only needed to be stored. However,
this algorithm still results in scaling issues for high-dimensional

data because storing the covariance matrix results in a quadratic
complexity ofO(d2). The authors did make note of this issue and
proposed using low-rank Gaussian matrices to approximate the
covariance matrix. The approximation is not a general solution
to the original problem and depends on whether the covariance
matrix can be well approximated by low-rank matrices.

Work has been also been done to maximize AUC using batch
methods. In Ding et al. [23], the authors propose an algorithm
that uses an adaptive gradient method that uses the knowledge
of historical gradients and that is less sensitive to parameter
selection. The method proposed in Gultekin et al. [24] is based
on a convex relaxation of the AUC function, but instead of
using stochastic gradients, the algorithm uses the first and second
order U-statistics of pairwise distances. A critical feature of this
approach is that it is learning rate free as training the step size is
a time consuming task.

More recently, work based on Ying et al. [25] has been
expanded upon. The critical idea was the primal and dual
variables introduced have distinct solutions. Two different works
took advantage of this observation. The first work developed a
primal dual style stochastic gradient method [26] while the other
develops a stochastic proximal algorithm that can have non-
smooth penalty functions [27, 28]. Both algorithms achieve a
O(1/T) convergence rate up to a logarithmic term.

3. PROBLEM STATEMENT

First, consider X ⊆ R
d to be the input space and Y = {−1,+1}

the output space. For the training data, z = {(xi, yi), i =
1, . . . , n}, we assume to be i.i.d. and the samples are obtained
from an unknown distribution ρ on Z = X × Y . As in Ying
et al. [25], we restrict this work to the family of linear functions,
i.e., f (x) = w⊤x.

3.1. AUC Optimization
The ROC curve is the plot of the true positive rate vs. the false
positive rate. The area under the ROC curve (AUC) for any
scoring function f :X → R is equivalent to the probability of
a positive sample ranking higher than a negative sample [3, 29].
It is defined as

AUC(f ) = Pr(f (x) ≥ f (x′)|y = +1, y′ = −1), (1)

where (x, y) and (x′, y′) are independently drawn from ρ. The
intent of AUC maximization is to find the optimal decision
function f :

argmax
f

AUC(f ) = argmin
f

Pr(f (x) < f (x′)|y = 1, y′ = −1)

= argmin
f

E

[

I[f (x′)−f (x)>0]

∣

∣y = 1, y′ = −1
]

, (2)

where I(·) is the indicator function. As in Ying et al. [25],
define p = Pr(y = 1). Recall that the conditional
expectation of a random variable ξ (z) is defined by E[ξ (z)|y =
1] = 1

p

∫∫

ξ (z)Iy=1dρ(z). In (2), the indicator function is not

continuous, and is usually replaced by a convex surrogate such
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as the ℓ2 loss (1 − (f (x) − f (x′)))2 or the hinge loss
(

1 −
(f (x) − f (x′))

)

+
. We used the ℓ2 loss for this work as it has been

shown to be statistically consistent with AUC while the hinge
loss is not [18, 30]. Letting λ be a regularization parameter, AUC
maximization can be formulated by

argmin
w

E

[

(1− w⊤(x− x′))2|y = 1, y′ = −1
]

+
λ

2
‖w‖2,

= argmin
w

1

p(1− p)

∫∫

Z×Z

(1− w⊤(x− x′))2

I[y=1,y′=−1]dρ(z)dρ(z
′)+ λ

2 ‖w‖
2.

(3)

where the samples (x, y) and (x′, y′) are independent. When ρ is a
uniform distribution over training data z, we obtain the empirical
minimization (ERM) problem for AUC optimization studied in
Gao et al. [18] and Zhao et al. [22]

argmin
w

1

n+n−

n
∑

i=1

n
∑

j=1

(1− w⊤(xi − xj))
2
I[yi=1∧yj=−1] +

λ

2
‖w‖2,

(4)
where n+ and n− denote the numbers of instances in the positive
and negative classes, respectively.

3.2. Equivalent Representation as a Saddle
Point Problem (SPP)
As in Ying et al. [25], AUC optimization as in (3) can be
represented as stochastic Saddle Point Problem (SPP) (e.g., [15]).
A stochastic SPP is generally in the form of

min
u∈�1

max
α∈�2

{

f (u,α) : = E[F(u,α, ξ )]
}

, (5)

where �1 ⊆ R
d and �2 ⊆ R

m are non-empty closed convex
sets, ξ is a random vector with non-empty measurable set
4 ⊆ R

p, and F :�1 × �2 × 4 → R. Here E[F(u,α, ξ )] =
∫

4
F(u,α, ξ )d Pr(ξ ), and function f (u,α) is convex in u ∈ �1

and concave in α ∈ �2. In general, u and α are referred to as
the primal variable and the dual variable, respectively. In this
work, we modified our formulation for AUC maximization to
include a regularization term. We give a modified version of the
result in Ying et al. [25] that includes the L2 term. First, define
F :R

d × R
3 × Z → R, for any w ∈ R

d, a, b,α ∈ R and
z = (x, y) ∈ Z , by

F(w, a, b,α; z) = (1− p)(w⊤x− a)2I[y=1] + p(w⊤x− b)2I[y=−1]

+ 2(1+ α)(pw⊤xI[y=−1] − (1− p)w⊤xI[y=1])

− p(1− p)α2 +
λ

2
‖w‖2. (6)

Equation (6) is similar as in our previous work [25]. The only
difference is the inclusion of a regularization term. The main
result still holds in a similar manner.

Theorem 3.1. The AUC optimization (3) is equivalent to

min
w∈Rd

(a,b)∈R2

max
α∈R

{

f (w, a, b,α) : =

∫

Z

F(w, a, b,α; z)dρ(z)
}

. (7)

In addition, we can prove the following result.

Proposition 3.1. For any saddle point (w∗, a∗, b∗,α∗) of the
SPP formulation (7), w∗ is a minimizer of the original AUC
optimization problem (3).

Proof: Let f̄ (w, a, b,α) = 1+
∫

Z
F(w,a,b,α;z)dρ(z)

p(1−p)
+ λ

2 ‖w‖
2 and let

(w∗, a∗, b∗,α∗) be a saddle point of the problem

min
w∈Rd

(a,b)∈R2

max
α∈R

f̄ (w, a, b,α).

Since the order of the two minimization [i.e., minimizing with
respect tow andminimizing with respect to (a, b) ] does not affect
the result. This implies, for every fixed w, (a∗, b∗,α∗) is a saddle
point of the sub-problem

min
(a,b)∈R2

max
α∈R

f̄ (w, a, b,α).

Notice from the proof for Theorem 3.1 that

E

[

(1− w⊤(x− x′))2|y = 1, y′ = −1
]

+
λ

2
‖w‖2 =

min
(a,b)∈R2

max
α∈R

f̄ (w, a, b,α). (8)

Hence,

E

[

(1−w⊤(x−x′))2|y = 1, y′ = −1
]

+
λ

2
‖w‖2 = f̄ (w, a∗, b∗,α∗).

This further implies

min
w

E

[

(1− w⊤(x− x′))2|y = 1, y′ = −1
]

+
λ

2
‖w‖2 =

min
w

f (w, a∗, b∗,α∗). (9)

As w∗ is a minimizer of the righthand side of the Equation (9),
w∗ is also a minimizer of the lefthand side of the equation.

4. STOCHASTIC PRIMAL-DUAL
ALGORITHM FOR AUC MAXIMIZATION

The algorithm developed in our previous work focused on
the population objective of the saddle point problem (7). It is
essentially an online projected gradient descent algorithm which
has an optimal convergence rateO(1/

√
t). This convergence rate

is distribution-free, i.e., it holds true for any distribution ρ.
In this section, we are concerned with the case that the

distribution ρ in (7) is a uniform distribution over the given
data z = {z1, . . . , zn}. Denote by Nn = {1, 2, . . . , n} for any
n ∈ N. Now, when ρ is a uniform distribution over finite data
{(xi, yi) : i ∈ Nn}, we can reformulate (4) as a SPP as in (5):

min
w∈Rd

(a,b)∈R2

max
α∈R

1

n

∑

i∈Nn

F(w, a, b,α, zi). (10)
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In this case, the AUC optimization is equivalent to the saddle
point problem (10). For this special case, we will develop in this
section a stochastic primal-dual algorithm for AUC optimization
(10) which is able to converge with a linear convergence rate.
To this end, we now consider the following general saddle point
problem for AUC maximization

min
w,a,b

max
α

{ 1

n+

∑

i∈Nn

(w⊤xi − a)2Iyi=1 +
1

n−

∑

i∈Nn

(w⊤xi − b)2Iyi=−1

+ 2(1+ α)w⊤
[ 1

n−

∑

i∈Nn

xiIyi=−1 −
1

n+

∑

i∈Nn

xiIyi=1

]

− α2

+�(w)
}

, (11)

where �(w) is a penalty term. If �(w) = I‖w‖≤R(w), the above
formulation is equivalent to the saddle point formulation (10).

Before describing the detailed algorithm, we introduce some
notations and slightly modify the saddle formulation (11).
Specifically, denote by n+ and n− the numbers of samples in
the positive and negative classes, respectively. In this discrete
case p = n+

n . Let b = m− − m+ where m+ and m− are
the means of the positive and negative classes, respectively, i.e.,
m+ =

1
n+

∑

i∈Nn
xiIyi=1 and m− =

1
n−

∑

i∈Nn
xiIyi=−1. For any

i ∈ Nn, denote

x̄i =
xi −m+
√
2p

if yi = 1, x̄i =
xi −m−

√

2(1− p)
if yi = −1.

(12)

Let g(w) = |b
⊤w|2

2 + b⊤w+�(w). To satisfy the hypothesis that

g is a λ strong convex function, we will let �(w) = λ
2 ‖w‖

2.
Now we have the following reformulation of (11), based on
which we will develop a stochastic primal-dual algorithm for
AUC maximization.

Proposition 4.1. Formulation (13) is equivalent to

min
w

max
β

{ 1

n

∑

i∈Nn

βiw
⊤x̄i −

‖β‖2

2
+ g(w)

}

, (13)

where g :Rd → R is defined, for any w ∈ R
d, by g(w) =

|b⊤w|2

2 + b⊤w+�(w).

Proof: By minimizing out a, b and α, formulation (11) is
equivalent to

min
w

max
α

{ 1

n+

∑

i∈Nn

(w⊤(xi −m+))
2
Iyi=1

+
1

n−

∑

i∈Nn

(w⊤(xi −m−))
2
Iyi=−1 + 2b⊤w+ |b⊤w|2 +�(w)

}

.

Substituting (12) into the above equation yields the
desired result.

Recall that κ = max{‖xi‖ : i ∈ Nn}. We can establish the
following linear convergence rate of SPDAM.

TABLE 1 | Pseudo-code of Stochastic Primal-Dual Algorithm for AUC

maximization.

Stochastic Primal-Dual Algorithm for AUC Maximization (SPDAM)

1. Choose parameters σ > 0 and τ > 0

2. Initialize β (0) and w(0). Let w̄(0) = w(0) and u(0) = 1
n

∑

i∈Nn
β
(0)
i
x̄i .

3. For t = 0, . . . ,T − 1 do

Uniformly and randomly choose I ⊆ Nn of size m and execute the following

updates:

β
(t+1)
i

=







argmaxβi∈R

{

βi〈w̄
(t), xi〉 −

|βi |
2

2 −
|βi−β

(t)
i
|2

2σ

}

if i ∈ I

β
(t)
i

otherwise.

u(t+1) = u(t) + 1
n

∑

i∈I (β
(t+1)
i
− β

(t)
i
)xi .

ū(t+1) = u(t) + n
m (u(t+1) − u(t)).

w(t+1) = argminw∈Rd
{

〈ū(t+1),w〉 + g(w)+ ‖w−w
(t)‖2

2τ

}

.

w̄(t+1) = w(t+1) + θ (w(t+1) −w(t)).

4. end for

5. Output: w(T ) and β (T )

Theorem 4.1. Assume that g is λ-strongly convex. Let (w∗,β∗) be
the saddle point of (13). If the parameter σ , τ and θ are chosen
such that

σ =
(n−m)+

√

(n−m)2 + 4nκ2m/λ

8mκ2
, τ =

1

4σκ2
and

θ = 1−
λ

λ+ 2σκ2
,

then, for any t ≥ 1, the SPDAM algorithm achieves

(

1

m
+

1

4σm

)

E
[

‖β(t+1) − β∗‖2
]

+

(

λ+
1

2τ

)

E
[

‖w(t+1) − w∗‖2
]

+
1

4τ
E

[

‖w(t+1) − w(t)‖2
]

≤ θ t
[

(

1

m
+

1

2σm

)

‖β(0) − β∗‖ +

(

λ+
1

2τ

)

‖w(0) − w∗‖2
]

.

(14)

Before we present the proof for the above theorem. It is useful to
make some comments. Firstly, the proposed algorithm in Table 1
is inspired by the stochastic primal-dual algorithm proposed in
Yu et al.[16] and Zhang and Lin [31] which focused on Support
Vector Machines (SVM) and logistic regression. Secondly, the
algorithm SPDAM enjoys faster convergence over the stochastic
projected gradient method in our previous work. However,
the incremental primal-dual algorithm here, in contrast to the
algorithm in Table 1 which can deal with streaming data, is not
an online learning algorithm, since it needs to know a priori
the number of the samples, the ratio of the samples of positive
class, and means of the positive and negative classes. We now
will prove the main theorem. The following lemma is critical for
proving Theorem 4.1.
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Lemma 4.1. For the updates in SPDAM, we have

(

1

m
+

1

2σm

)

E

[

‖β(t+1) − β∗‖2
]

=

(

1

2σm
+

n−m

nm

)

E

[

‖β(t) − β∗‖2
]

−
1

2σm
E

[

‖β(t+1) − β(t)‖2
]

+ E
[

〈ū(t+1), w̄(t) − w∗〉
]

, (15)

and

(

λ+
1

2τ

)

E
[

‖w(t+1) − w∗‖2
]

≤
1

2τ
E

[

‖w(t) − w∗‖2
]

−
1

2τ
E

[

‖w(t+1) − w(t)‖2
]

− E
[

〈ū(t+1),w(t+1) − w∗〉
]

. (16)

Proof: We first prove Equation (15). For any i ∈ Nn, let β̃i be
defined as

β̃i = argmax
βi∈R

{

βi〈w̄
(t), xi〉 −

|βi|
2

2
−
|βi − β

(t)
i |

2

2σ

}

.

Hence,

|β
(t)
i − β∗i |

2

2σ
+
|β∗i |

2

2
− β∗i 〈w̄

(t), xi〉 =
|β

(t)
i − β̃i|

2

2σ
+
|β̃i|

2

2

− β̃i〈w̄
(t), xi〉 +

(

1

2
+

1

2σ

)

|β̃i − β∗i |
2. (17)

Observe, by the definition of the saddle point (w∗,β∗), that

β∗ = argmax
βi

{

βi〈w
∗, xi〉 −

|βi|
2

2

}

.

Consequently, β̃i〈w
∗, xi〉−

|β̃i|
2

2 = β∗i 〈w
∗, xi〉−

|β∗i |
2

2 −
1
2 |β̃i−β∗i |

2

which implies that |β̃i|
2

2 −
|β∗i |

2

2 = (β̃i−β∗i )〈w
∗, xi〉+

1
2 |β̃i−β∗i |

2.
Putting this back into (17), we have

|β
(t)
i − β∗i |

2

2σ
+ (β̃i − β∗i )〈w̄

(t) − w∗, xi〉 =
|β

(t)
i − β̃i|

2

2σ

+

(

1+
1

2σ

)

|β̃i − β∗i |
2. (18)

Let Ft be the sigma field generated by all random variables
defined before round t. Taking expectation conditioned over Ft

implies that

E
(

|β
(t)
i − β

(t+1)
i |2|Ft

)

=
m

n
|β̃i − β

(t)
i |

2,

E
(

|β
(t+1)
i − β∗i |

2|Ft

)

=
m

n
|β̃i − β∗i |

2 +
n−m

n
|β

(t)
i − β∗i |

2,

E
(

|β
(t+1)
i |2|Ft

)

=
m

n
|β̃i|

2 +
n−m

n
|β

(t)
i |

2,

E
(

β
(t+1)
i |Ft

)

=
m

n
β̃i +

n−m

n
β
(t)
i .

Using the above equalities to represent terms involving β̃i by

β
(t+1)
i on the righthand side of (18), we have

(

1

m
+

1

2σm

)

E
[

|β
(t+1)
i − β∗i |

2|Ft

]

=

(

1

2σm
+

n−m

nm

)

|β
(t)
i − β∗i |

2 −
1

2σm
E[‖β(t+1) − β(t)‖2]

+ E
[

〈w̄(t) − w∗,
1

m
(β t+1

i − β∗i )+
1

n
(β

(t)
i − β∗i )xi〉|Ft

]

Taking the summation over i ∈ Nn and noticing that ū(t+1) =
1
m

∑

i∈Nn
(β t+1

i − β∗i )xi +
1
n

∑

i∈Nn
(β(t) − β∗i )xi, we have

(

1

m
+

1

2σm

)

E
[

|β(t+1) − β∗|2|
]

=

(

1

2σm
+

n−m

nm

)

E[‖β(t) − β∗‖2]−
1

2σm
E[‖β(t+1) − β(t)‖2]

+ E
[

〈w̄(t) − w∗, ū(t+1)
]

,

which completes the proof of the first estimation (15).
Now we turn our attention to the proof of inequality (16).

Indeed, by the definition of w(t+1) and λ-strongly convexity of
g, there holds

〈ū(t+1),w∗〉 + g(w∗)+
‖w(t) − w∗‖2

2τ
≥ 〈ū(t+1),w(t+1)〉

+ g(w(t+1))+
‖w(t+1) − w(t)‖2

2τ

+

(

λ

2
+

1

2τ

)

‖w(t+1) − w∗‖2. (19)

Let u∗ = 1
n

∑

i∈Nn
β∗i xi. By the definition of the saddle point

(w∗,β∗), there holds

〈u∗,w(t+1)〉 + g(w(t+1)) ≥ 〈u∗,w∗〉 + g(w∗)+
λ

2
‖w(t+1) − w∗‖2.

Adding the above inequality with (19) and arranging the terms
yields that

(

λ+
1

2τ

)

‖w(t+1) − w∗‖2 ≤
‖w(t) − w∗‖2

2τ
−
‖w(t+1) − w(t)‖2

2τ

− 〈w(t+1) − w∗, ū(t+1) − u∗〉.

This completes the proof of the lemma.

Now we are ready to prove Theorem 4.1 using Lemma 4.1.
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Proof: Adding (15) and (16) together, we have

(

1

m
+

1

2σm

)

E
[

‖β(t+1) − β∗‖2
]

+

(

λ+
1

2τ

)

E
[

‖w(t+1) − w∗‖2
]

≤
( 1

2σm
+

1

m
−

1

n

)

E
[

‖β(t) − β∗‖
]

+
1

2τ
E

[

‖w(t) − w∗‖2
]

−
1

2σm
E

[

‖β(t+1) − β(t)‖2
]

−
1

2τ
E

[

‖w(t+1) − w(t)‖2
]

+ E
[

〈u(t) − u∗ +
n

m
(u(t+1) − u(t)), w̄(t) − w(t+1)〉

]

. (20)

By the definition of u(t), u(t+1) and w̄(t), we have

〈u(t) − u∗ +
n

m
(u(t+1) − u(t)), w̄(t) − w(t+1)〉

= θ〈u(t) − u∗,w(t) − w(t−1)〉

− 〈u(t+1) − u∗,w(t+1) − w(t)〉

+
nθ

m
〈u(t+1) − u(t),w(t) − w(t−1)〉

+
n−m

m
〈u(t+1) − u(t),w(t) − w(t+1)〉.

By the Cauchy-Schwartz inequality, letting X = [x1, x2, . . . , xn]
⊤

and noticing that κ2σ = 1
4τ we have

n〈u(t+1) − u(t),w(t) − w(t−1)〉 =

〈

∑

i∈K

(β
(t+1)
i − β

(t)
i )xi,w

(t) − w(t−1)

〉

≤
‖β(t+1) − β(t)‖κ2m

4σκ2m
+
‖w(t) − w(t−1)‖2m

4τ

=
‖β(t+1) − β(t)‖

4σ
+
‖w(t) − w(t−1)‖2m

4τ
. (21)

Likewise,

n〈u(t+1) −u(t),w(t) − w(t+1)〉 ≤
‖β(t+1) − β(t)‖

4σ

+
‖w(t+1) − w(t)‖2m

4τ
.

Putting these estimations into (22) and arranging the terms yield
that
(

1

m
+

1

2σm

)

E
[

‖β(t+1) − β∗‖2
]

+

(

λ+
1

2τ

)

E
[

‖w(t+1) − w∗‖2
]

+
1

2τ
E

[

‖w(t+1) − w(t)‖2
]

+ E
[

〈ut+1 − u∗,w(t+1) − w(t)〉
]

≤
( 1

m
+

1

2σm
−

1

n

)

E
[

‖β(t) − β∗‖
]

+
1

2τ
E

[

‖w(t) − w∗‖2
]

+ θ

(

1

2τ
E

[

‖w(t) − w(t−1)‖2
]

+ E
[

〈ut − u∗,w(t) − w(t−1)〉
]

)

.

(22)

Choosing that σ =
(n−m)+

√
(n−m)2+4nκ2m/λ

8mκ2
, τ = 1

4σκ2
and

θ = 1− λ
λ+2σκ2

implies that

(

1

m
+

1

2σm
−

1

n

)

= θ

(

1+
1

2σ

)

and
1

2τ
= θ

(

λ+
1

2τ

)

.

(23)

Letting

△t =

(

1

m
+

1

2σm

)

E
[

‖β(t) − β∗‖2
]

+

(

λ+
1

2τ

)

E
[

‖w(t) − w∗‖2
]

+
1

2τ
E

[

‖w(t) − w(t−1)‖2
]

+ E
[

〈ut − u∗,w(t) − w(t−1)〉
]

,

we know from (22) and (23) that△t+1 ≤ θ △t . Using the exactly
argument as in (21), there holds

|〈ut − u∗,w(t) − w(t−1)〉| ≤
‖w(t) − w(t−1)‖2

4τ

+
‖(β(t) − β∗)⊤X‖2

n2/τ
≤
‖w(t) − w(t−1)‖2

4τ
+
‖(β(t) − β∗)⊤X‖

4nσκ2

≤
‖w(t) − w(t−1)‖2

4τ
+
‖β(t) − β∗‖

4nσ
, (24)

which implies, for any t, that

△t ≥

(

1

m
+

1

4σm

)

E
[

‖β(t) − β∗‖2
]

+

(

λ+
1

2τ

)

E
[

‖w(t) − w∗‖2
]

+
1

4τ
E

[

‖w(t) − w(t−1)‖2
]

≥ 0.

(25)

Consequently,

△t+1 ≤ θ t△0 = θ t
((

1

m
+

1

2σm

)

‖β(0) − β∗‖

+

(

λ+
1

2τ

)

‖w(0) − w∗‖2
)

.

Combining this with the inequality (25) yields the desired result.

5. EXPERIMENTS

In this section, we report the experimental evaluations
of SPDAM and compare it with existing state-of-
the-art learning algorithms for AUC optimization and
convergence rate.

5.1. Comparison Algorithms
We conduct comprehensive studies by comparing the proposed
algorithm with other AUC optimization algorithms for
both online and batch scenarios. Specifically, the algorithms
considered in our experiments include:

• SPDAM: The proposed stochastic primal-dual algorithm
for AUC maximization.
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• regSOLAM: The regularized online projected gradient
descent algorithm for AUC maximization.

• OPAUC: The one-pass AUC optimization algorithm with
square loss function [18].

• OAMseq: The OAM algorithm with reservoir sampling and
sequential updating method [22].

• OAMgra: The OAM algorithm with reservoir sampling and
online gradient updating method [22].

• Online Uni-Exp: Online learning algorithm which
optimizes the (weighted) univariate exponential loss [7].

• B-SVM-OR: A batch learning algorithm which optimizes
the pairwise hinge loss [32].

• B-LS-SVM: A batch learning algorithmwhich optimizes the
pairwise square loss.

It should be noted that OAMseq, OAMgra, and OPAUC are
the state-of-the-art methods for AUC maximization in online
settings. The algorithm regSOLAM is a modified version of
our previous work that includes a regularization term and it
achieves a similar convergence with only modified constants.
We also reformulate the bound R in terms of the regularization
parameter λ. Assume κ = supx∈X ‖x‖ < ∞, and recall that

TABLE 2 | Basic information about the benchmark datasets used in the

experiments.

Datasets ♯inst ♯feat Datasets ♯inst ♯feat

diabetes 768 8 fourclass 862 2

german 1,000 24 splice 3,175 60

usps 9,298 256 a9a 32,561 123

mnist 60,000 780 acoustic 78,823 50

ijcnn1 141,691 22 covtype 581,012 54

sector 9,619 55,197 news20 15,935 62,061

‖w‖ ≤ R. By assuming that w∗ is the optimal w then we have
the following:

λ

2
‖w∗‖2 ≤ E

[

(1− w⊤(x− x′))2|y = 1, y′ = −1
]

+
λ

2
‖w‖2

By letting w = 0 and recalling that ‖w‖ ≤ R, we can very

easily see that: R ≤
√

2
λ
. We make these changes to ensure a fair

comparison with SPDAM.

5.2. Experimental Testbed and Setup
To examine the performance of the proposed SPDAM algorithm
in comparison to state-of-the-art methods, we conduct
experiments on 11 benchmark datasets. Table 2 shows the
details of each of the datasets. All of these datasets are available
for download from the LIBSVM and UCI machine learning
repository. Note that some of the datasets (mnist, covtype, etc.)
are multi-class, which we converted to binary data by randomly
partitioning the data into two groups, where each group includes
the same number of classes.

For the experiments, the features were normalized by taking

xi ←
xi−mean(xi)
‖xi‖

for the large datasets and xi ←
xi
‖xi‖

for the

small datasets (diabetes, fourclass, and german). For each dataset,
the data is randomly partitioned into 5-folds (4 are for training
and 1 is for testing). We generate this partition for each dataset
5 times. This results in 25 runs for each dataset for which we
use to calculate the average AUC score and standard deviation.
To determine the proper parameter for each dataset, we conduct
5-fold cross validation on the training sets to determine the
parameter λ ∈ 10[−5 : 1] for SPDAM and for regSOLAM the
learning rate ζ ∈ [1 : 9 : 100] and the regularization parameter
λ ∈ 10[−5 : 5] were found by a grid search. The buffer size for
OAMseq and OAMgra is 100 as suggested [22]. All experiments
for SPDAM and regSOLAM were conducted with MATLAB.

5.3. Evaluation of SPDAM and
regSOLAM on Benchmark Datasets
Classification performances on the testing dataset of all methods
are given in Table 3. These results show that SPDAM and

TABLE 3 | Comparison of the testing AUC values (mean±std.) on the evaluated datasets.

Datasets SPDAM regSOLAM OPAUC OAMseq OAMgra online Uni-Exp B-SVM-OR B-LS-SVM

diabetes 0.8275 ± 0.0302 0.8140 ± 0.0330 0.8309 ± 0.0350 0.8264 ± 0.0367 0.8262 ± 0.0338 0.8215 ± 0.0309 0.8326 ± 0.0328 0.8325 ± 0.0329

fourclass 0.8223 ± 0.0275 0.8222 ± 0.0276 0.8310 ± 0.0251 0.8306 ± 0.0247 0.8295 ± 0.0251 0.8281 ± 0.0305 0.8305 ± 0.0311 0.8309 ± 0.0309

german 0.7959 ± 0.0265 0.7830 ± 0.0247 0.7978 ± 0.0347 0.7747 ± 0.0411 0.7723 ± 0.0358 0.7908 ± 0.0367 0.7935 ± 0.0348 0.7994 ± 0.0343

splice 0.9227 ± 0.0128 0.9237 ± 0.0090 0.9232 ± 0.0099 0.8594 ± 0.0194 0.8864 ± 0.0166 0.8931 ± 0.0213 0.9239 ± 0.0089 0.9245 ± 0.0092

usps 0.9854 ± 0.0019 0.9848 ± 0.0021 0.9620 ± 0.0040 0.9310 ± 0.0159 0.9348 ± 0.0122 0.9538 ± 0.0045 0.9630 ± 0.0047 0.9634 ± 0.0045

a9a 0.8967 ± 0.0032 0.8970 ± 0.0048 0.9002 ± 0.0047 0.8420 ± 0.0174 0.8571 ± 0.0173 0.9005 ± 0.0024 0.9009 ± 0.0036 0.8982 ± 0.0028

mnist 0.9552 ± 0.0011 0.9599 ± 0.0014 0.9242 ± 0.0021 0.8615 ± 0.0087 0.8643 ± 0.0112 0.7932 ± 0.0245 0.9340 ± 0.0020 0.9336 ± 0.0025

acoustic 0.8119 ± 0.0039 0.8114 ± 0.0035 0.8192 ± 0.0032 0.7113 ± 0.0590 0.7711 ± 0.0217 0.8171 ± 0.0034 0.8262 ± 0.0032 0.8210 ± 0.0033

ijcnn1 0.9132 ± 0.0016 0.9108 ± 0.0030 0.9269 ± 0.0021 0.9209 ± 0.0079 0.9100 ± 0.0092 0.9264 ± 0.0035 0.9337 ± 0.0024 0.9320 ± 0.0037

covtype 0.9409 ± 0.0011 0.9332 ± 0.0020 0.8244 ± 0.0014 0.7361 ± 0.0317 0.7403 ± 0.0289 0.8236 ± 0.0017 0.8248 ± 0.0013 0.8222 ± 0.0014

sector 0.9406 ± 0.0062 0.9734 ± 0.0036 0.9292 ± 0.0081 0.9163 ± 0.0087 0.9043 ± 0.0100 0.9215 ± 0.0034 – –

To accelerate the experiments, the value for sector was determined after five runs instead of 25 for the other data sets. The performances of OPAUC, OAMseq, OAMgra, online Uni-Exp,

B-SVM-OR, and B-LS-SVM were taken from Gao et al. [18].
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FIGURE 1 | AUC vs. Iteration curves of SPDAM against regSOLAM. For SPDAM, 10% of the data was chosen for a batch size. The optimal value of the parameter λ

from SPDAM was used in regSOLAM.

FIGURE 2 | AUC vs. Iteration curves of SPDAM algorithm for various batch sizes. The batch size is a percentage of the number of samples.

regSOLAM both achieve similar performances as other state-of-
the-art online and offline methods based on AUC maximization.
In some cases, SPDAM and regSOLAM perform better
than some of the other online learning algorithms. There is a
significant improvement in the text classification dataset mnist
and covtype. The difference in performance of SPDAM and
regSOLAM could be due to the fact since the data is randomly
partitioned into two classes, the value of p could be resulting in a
higher AUC score.

However, the main advantage of SPDAM over regSOLAM is
the running time performance. SPDAM has a linear convergence
rate while regSOLAM has aO( 1√

t
) convergence. The theory tells

us that SPDAM should be faster than regSOLAM. In Figure 1,
we show AUC vs. Iterations for SPDAM against regSOLAM
over 3 datasets. The figures show that SPDAM converges
faster in comparison to regSOLAM, while maintaining a similar
competitive performance as from Table 3.

In order to obtain this convergence rate, it is important to
pick a large enough batch size (m). As from Theorem 4.1, the
value of θ needs to be small for ensuring that SPDAM converges
quickly. To ensure a fast convergence, the relationship between
σ and θ should be examined. For θ to be small, σ should also
be small which can be made possible by increasing the batch
size m. If the batch size is too small, SPDAM will result in very
poor performance. Figure 2 demonstrates SPDAM on various

batch sizes and shows that selecting a larger batch size ensures a
faster rate of convergence. A batch size of 10% is sufficient so that
SPDAM converges faster than regSOLAM.

6. CONCLUSION

In this paper, we proposed a stochastic primal-dual algorithm
for AUC optimization [18, 22] based upon our previous work
that AUC maximization is equivalent to a stochastic saddle point
problem. By letting the distribution of ρ as in (7) be uniform,
the proposed SPDAM algorithm is shown both theoretically and
by experiments that the algorithm achieves a linear convergence
rate. This makes SPDAM, given that a large enough batch size is
used, faster than regSOLAM. If the batch size is not sufficiently
large, SPDAM has poor performance.

There are several research directions for future work. First,
the convergence was established using the duality gap associated
with the stochastic SPP formulation (7). It would be interesting
to establish the strong convergence of the output w̄T of the
regSOLAM algorithm to its optimal solution of the actual AUC
optimization problem (3). Secondly, the SPP formulation (3.1)
holds for the least square loss. We do not know if the same
formulation holds true for other loss functions such as the logistic
regression or the hinge loss.
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In this minireview we present the main results regarding the transport properties of

stochastic movement with relocations to known positions. To do so, we formulate the

problem in a general manner to see several cases extensively studied during the last years

as particular situations within a framework of random walks with memory. We focus on

(i) stochastic motion with resets to its initial position followed by a waiting period, and (ii)

diffusive motion with memory-driven relocations to previously visited positions. For both

of them we show how the overall transport regime may be actively modified by the details

of the relocation mechanism.

Keywords: stochastic movement, resets, relocations, anomalous diffusion, random walk

1. INTRODUCTION

While Brownian movement is characterized by the well-known diffusive scaling 〈x2〉 ∼ t,
alternative (anomalous) scalings can be obtained when the local motion of the particles is highly
non-stationary or somehow governed by heavy-tailed (e.g., power-law) statistics, for instance, in
the distribution of the local displacements [1]. The physical mechanisms responsible for such
non-standard statistics are wide-ranging, including interaction with the underlying media or with
an external force/field, as well as internal mechanisms. In the present mini-review, we focus in the
latter case and explore recent advances that have been achieved in exploring anomalous properties
of random walk processes when particles are assumed to possess some level of internal memory,
such that their displacements are conditioned by the information acquired during its ongoing
trajectory. While the framework of random-walks with memory includes many different models
(as self-avoiding walks [2], elephant or alzheimer random-walks [3, 4], infotactic strategies [5],...)
we focus here in the particular case where particles use their memory from time to time to relocate
to known, or familiar, positions in the domain.

As a first case of interest, relocations to the initial position (resets) have been recurrently studied
in recent years. One-dimensional unbounded diffusion with resets happening at a constant rate
was initially introduced in [6]. Originally its interest was focused on their ability to make the
mean first passage time finite, with a minimum value found for an intermediate reset rate [7–10].
However, it has been subsequently shown that their intrinsic transport properties are also of
interest. For example, as a consequence of such resetting, dispersal is asymptotically suppressed
and a steady state is reached. Thereafter, this property has been confirmed by numerous works on
Markovian resets in different contexts, as multi-dimensional diffusion [11], coagulation-diffusion
processes [12], confined diffusion [13, 14], diffusion with a refractory period after the resets [15],
anomalous subdiffusion [16, 17], monotonic stochastic motion [18, 19], continuous-time random
walk (CTRW) velocity models [20], the telegraphic process [21], and underdamped Brownian

24
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motion [22]. Likewise, in [23], a steady state is shown to appear
when a diffusion process is restarted at a time-dependent rate
and in [24] power-law reset time probability density functions
(pdf) are considered and conditions for a steady state to exist are
found. Finally, general conditions on the reset time pdf for the
appearance of a steady state have been found in [25, 26].

In contrast with the aforementioned cases, where a steady state
is reached, some works have shown that unbounded dispersal
is still possible at a population level when the reset time is
governed by heavy-tailed distributions so making resets less and
less frequent with time (see [20, 25–27]). Particularly, in [15, 27]
it is shown that the diffusivity of a walker which resets its position
followed by a residence or refractory period at the origin is
strongly dependent on the tail of the reset and residence time
pdfs. Also, asymptotic transport appears when the resetting is
soft [17], meaning that the walker is relocated to the origin but
the other properties of the motion (e.g., a dynamic diffusion
coefficient) are not renewed.

Alternatively, random walks with relocations to any
previously visited place have been seen to modify the transport
regime of a given motion process. In [28] it was proved that
if such relocations are equiprobable among all visited sites
in the past, then unbounded dispersal is not suppressed as
in the resetting case but becomes ultraslow, with a mean
squared displacement (MSD) that grows logarithmically [i.e.,
〈x2(t)〉 ∼ ln(t)], a result that is kept when relocation events
follow a time-continuous dynamics [28–30]. This can be
generalized to include a weight function for the memory to chose
the relocation position; in such case, the MSD of the process can
exhibit a range of behaviors, from diffusive or sub-diffusive to
logarithmic, as a function of the distribution [31]. Also, a rich
variety of transport regimes have been proved to arise in the
continuous time and space version of this model [29], ranging
from an ultraslow growth 〈x2(t)〉 ∼ ln(ln(t)) to the diffusive
scaling. Finally, a more specific relocation mechanism consisting
of stochastically taking the walker to the maximum position
attained in the past has also been proven to also let the motion
spread [32].

In the following, we employ a general framework that includes
these two types of models (resets and/or relocations to visited
sites) as particular cases, and so allows us to review the results
mentioned above from the unified perspective of random-
walks with memory-induced jumps, and detect opportunities of
research in the field for the near future. We focus our efforts on
recovering the different transport regimes mentioned above, so
illustrating the capacity of internal memory to modify the scaling
properties governing the transport regime of the process.

2. GENERAL FRAMEWORK

The framework we consider here follows a time dynamics based
on the alternation between two states (one for standard motion
and another for relocations), an approach which is quite usual in
models of random walks with memory [27, 33]. First, a normal
state (i = 1) where the walker motion is governed by a given by
a jump length distribution and a probability time distribution, as

in the classical CTRW. The duration of this state is determined by
a given pdf ϕ1(t). Second, a memory-induced state (i = 2) which
results from introducing a relocation to a particular position
without explicit dependence of memory and waiting there until
a new normal period is started. The relocation position is chosen
from a generalized relocation distribution p0(x, t). After the
relocation takes place, we assume that there exists a refractory, or
waiting, period during which the particle remains at the position
of relocation, governed by another pdf denoted as ϕ2(t).

If the walker starts at t = 0 from position x = 0 at state i = 1,
the transition probability j1(x, t) from state i = 2 to i = 1 at
position x and the transition probability j2(x, t) from state i = 1
to i = 2 at x will follow, respectively:

j1(x, t) = δ(x)δ(t)+

∫ t

0
j2(x, t − t′)ϕ2(t

′)dt′ (2.1)

j2(x, t) = p0(x, t)

∫ +∞

−∞

dx′
∫ t

0
j1(x

′, t − t′)ϕ1(t
′)dt′. (2.2)

Let us now introduce the spatial dynamics for both states. In
the normal state, the motion can be described by a general
propagator P(x, t; x′, t′), being the probability of finding the
walker at point x at time t if it was at point x′ at time t′. Otherwise,
in the memory-induced state the walker stays at the relocation
position x′, so its “propagator” reduces to δ(x − x′). As a whole,
the pdf of the particles in state i = 1 and i = 2 at time t,
respectively read

ρ1(x, t) =

∫ +∞

−∞

dx′
∫ t

0
dt′j1(x

′, t − t′)ϕ∗
1 (t

′)P(x, t′; x′, 0) (2.3)

ρ2(x, t) =

∫ +∞

−∞

dx′
∫ t

0
dt′j2(x

′, t − t′)ϕ∗
2 (t

′)δ(x− x′), (2.4)

where ϕ∗
i (t) ≡

∫ ∞

t ϕi(t
′)dt′, for i = {1, 2}. The meaning of the

first equation can be stated as follows: the pdf for particles in
the memory-free state (i = 1) is described by the propagator
P(x, t′; x′, 0), provided the system entered this state at time t − t′

at any position x′, and it has remained in that state (i.e., without
relocating) for the subsequent time t′. Equation (2.4) represents
the equivalent for the memory-induced state, with the position
described by the delta function δ(x−x′) instead of the propagator.

3. SPATIAL DISPERSAL WITH RESETS

Resets can be defined as relocations which are used by the particle
to come back from time to time to its initial position, an idea
which can be satisfactorily adapted to study situations like animal
foraging [10, 34], searches on the Internet [35, 36] or genetic
networks [37, 38], and the kinetics of chemical reactions [39, 40]
or molecular proofreading [41, 42]. Using the general formalism
in the previous section, this corresponds to a time-independent
relocation distribution p0(x, t) = δ(x). Also, for the sake of
simplicity we can restrict our analysis to propagators which are
space homogenous, such that motion in the memory-free state
satisfies P(x, t; x′, 0) = P(x− x′, t; 0, 0) ≡ P(x− x′, t).

Performing the Fourier-Laplace transform of the Equations
(2.1–2.4) above and solving for theMSD of the overall propagator
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as 〈x2(t)〉 ≡
∫ ∞

−∞
dx x2ρ(x, t) =

∫ ∞

−∞
dx x2

(

ρ1(x, t)+ ρ2(x, t)
)

,
it can be found that

L
[

〈x2(t)〉
]

=
L

[

ϕ∗
1 (t)〈x

2(t)〉P
]

1− ϕ̂1(s)ϕ̂2(s)
, (3.1)

where L[f (t)] = f̂ (s) ≡
∫ ∞

0 e−stf (t)dt represents the Laplace
transform of f (t), and 〈x2(t)〉P is the MSD of the propagator
P(x, t; x0, 0) by assuming that it is symmetric in space.

Seminal works on random walks with resets were focused on
the situation where the process restarts immediately after the
reset happens, i.e., ϕ2(t) = δ(t) [6, 7]. In such case, it is known
that if the memory-free propagation scales as 〈x2(t)〉P ∼ tp

and the resets are Markovian [i.e., ϕ1(t) = re−rt], a stationary
state is always reached (so, there is propagation failure), and the
relaxation to that stationary situation can be also characterized
[43]. This scenario, where the resetting is strong enough to
localize the walker around the origin, has been later studied from
different perspectives. In some cases, a modified Fokker-Planck
equation formalism [6, 11–14, 21, 22] has been employed to study
Markovian resetting in, for instance, the diffusion equation [6],
the Telegrapher’s equation [21] and the underdamped Brownian
motion equation [22]. Other works have found this same result by
interpreting resets as a renewal of the motion and consequently
building a renewal master equation for the overall pdf as done in
the general formalism herein [16–20].

Otherwise, for the same propagation scaling but a long-tailed
statistics of reset times with diverging first moment (ϕ1(t) ∼

t−1−γ1 , with 0 < γ1 < 1), the overall MSD scales also as 〈x2(t)〉 ∼
tp. Therefore, the properties of the memory-free movement can
be modified or not depending on the specific properties of the
refractory or waiting time. This was found in [25] for diffusive
motion (i.e., p = 1) and later in [26] for the general case.

The model turns out to be more interesting, however, when
the resting time after the resets is non-zero, this is, for a non-
trivial choice of the waiting time pdf as ϕ2(t) ∼ t−1−γ2 .
This scenario, which has been recently studied in [10, 15, 27]
from a renewal perspective, yields a wide range of situations
for the asymptotic behavior of the overall MSD in the case
when memory-free propagation scales again as 〈x2(t)〉P ∼ tp.
Depending on the finiteness/infiniteness of the moments of ϕ1(t)
and ϕ2(t), the following cases can be identified:

(i) γ1 > 1, γ2 > 1. The propagation ceases and a stationary state
is reached as for the non-resting period case, yielding

〈x2(t)〉 ∼ const.

(ii) γ1 > 1, 0 < γ2 < 1. The propagation ceases and the system
tends to collapse toward the origin.

〈x2(t)〉 ∼ tγ2−1

(iii) 0 < γ1 < 1, γ2 > 1. The propagation is only affected by the
resetting mechanism in a multiplicative factor, but it does not
affect the scaling:

〈x2(t)〉 ∼ tp

FIGURE 1 | Schematic plot of the different overall transport regimes in terms

of the transport regime of the movement process p and the difference

between the decaying exponents of the reset and residence time pdfs γ1 − γ2,

corresponding to case (iv) in the main text. In the blue region the overall

behavior is super-diffusive. In the yellow region it is sub-diffusive and the green

represents the values for which we have transport failure. We can see that, for

instance, an originally super-diffusive process (p > 1) can become

sub-diffusive (yellow region) with the properly chosen tail exponents.

(iv) 0 < γ1 < 1, 0 < γ2 < 1. The propagation is actively
modified by the resetting mechanism when the tail of ϕ2 ∼

t−1−γ2 is longer than the tail of ϕ1 ∼ t−1−γ1 , i.e., γ2 < γ1.
Otherwise, when γ2 ≥ γ1, the overall process behaves as in
case iii). In short,

〈x2(t)〉 ∼ tp−(γ1−γ2)θ(γ1−γ2),

where θ(γ1 − γ2) denotes the Heaviside function.

According to this, scenario iv) turns out to be particularly
interesting and all its casuistic is visually summarized in Figure 1.
When the resting period is asymptotically longer than the active
period, the diffusivity of the propagation is reduced by a factor
γ1 − γ2 as a result of the competition between the heavy-tailed
effects of the movement and the refractory period. This, for
instance, may turn a superdiffusive (or diffusive) process into
subdiffusive by only tuning the asymptotic decay of the active and
resting times pdf.

In the light of what we have seen in this section, some
questions regarding the asymptotic transport properties of
motion with resetting remain still unanswered. For instance,
without the residence time after the resetting, it seems that
resetting either leaves the transport regim unaltered or it makes
the transport cease and a stationary state is reached. Is there
any resetting mechanism able to smoothly modify the transport
regime of the motion? Also, resetting has been mainly treated as
an internal mechanism of the motion. What would be the overall
dynamics of a set of walkers which interact to suddenly reset their
individual position? Despite this has been shown to be hard from
an analytical point of view [44], it would be extremely interesting
for the description of many ecological systems.
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4. SPATIAL DISPERSAL WITH
RELOCATIONS TO VISITED PLACES

Relocation processes in which particles are allowed to return to
already visited places is another case of interest for which the
properties of the overall MSD have been recurrently explored
[28, 30, 31, 45]. If expressed in terms of the general framework
presented in section II, this case would correspond to a relocation
distribution of the type

p0(x, t) =

∫ t
0 φ(t′)ρ(x, t′)
∫ t
0 φ(t′)dt′

, (4.1)

where φ(t) is a memory function which weights all possible
relocation places as a function of the time elapsed since they were
visited. This is, if φ(t) is an increasing function, then relocation
to recent positions is more likely to occur, which would implicitly
assume that memory is a vanishing process. On the other hand,
if φ(t) is a decreasing function of time then the initial positions
are the most probable ones. Finally, one could even recover the
resetting mechanism by choosing φ(t) ∼ δ(t).

Since the mathematical treatment for a general situation
as a function of φ(t) becomes cumbersome, we can restrict
ourselves to Markovian relocations [so ϕ1(t) = re−rt] and
mule resting times after the relocation, ϕ2(t) = δ(t). For this
particularly simple case, the four general Equations (2.1–2.4) lead
to the following implicit solution for the overall MSD; if the
propagation is diffusive with 〈x2(t)〉P = 2Dt, we get

L
[

x2(t)
]

=
2D

s(r + s)
+

r

r + s
L

[

∫ t
0 φ(t′)〈x2(t′)〉
∫ t
0 φ(t′)dt′

]

. (4.2)

From this expression, the long time behavior of the MSD can
be deduced for different weight functions for the memory; this
has been done, using a relatively different perspective, in [29].
There it is shown that up to five different regimes emerge, which
illustrates the rich variety of the model:

i) φ(t) ∼ t−a, with a > 1. The transport ceases and a stationary
state is reached.

〈x2(t)〉 ∼ const.

ii) φ(t) ∼ t−a, with a = 1. The transport becomes
extremely slow.

〈x2(t)〉 ∼ ln(ln(t))

iii) φ(t) ∼ t−a, with a < 1. The transport becomes ultra slow.

〈x2(t)〉 ∼ ln(t)

iv) φ(t) ∼ et
b
, with 0 < b ≤ 1. The transport becomes sub-

diffusive when b < 1 and it is not affected by the memory for
b = 1.

〈x2(t)〉 ∼ tb

v) φ(t) ∼ et
b
, with 1 < b. The transport is not qualitatively

affected by the memory, so it remains diffusive.

〈x2(t)〉 ∼ t.

These results have progressively been found during the last
years. While case (iii) was originally found in [28] and later
in [30], scalings (iv) and (iv) were found in [31] and, finally,
all the asymptotic scalings derived herein were found in [29].
Likewise, transitions between different transport regimes have
can possibly emerge as a consequence of spatial [46] or temporal
[45] heterogeneities in the resetting process.

This range of situations is already obtained for fixed (and
particularly simple) forms of ϕ1(t) and ϕ2(t), while the situation
is susceptible to become evenmore complex as more general pdfs
are taken into account. All this enlights the theoretical interest of
the memory-induced mechanism as a way to reproduce different
propagation regimes.

5. FUTURE PERSPECTIVES

Mostly inspired by the movement of biological individuals
and other systems of intelligent walkers, random-walk models
with memory-induced relocations (either resets or relocation to
visited places) have been widely explored in recent years. In this
minireview we have tried to condense the current knowledge
we have about their transport properties in order to illustrate
the richness of macroscopic transport properties they are able
to yield. New situations of interest can arise in the future as
long as different choices for the relocation distribution p0(x, t) in
Equation (2.2) are explored instead of the two (resetting, uniform
relocation) reviewed here. This may include the case of resetting
to a distribution of fixed points, visited or not (a topic which
has also received attention in the biological literature [47, 48]),
or a relocation dynamics based on returns to those sites that
were more beneficial in the past (so introducing an additional
variable representing food available or assigning a value to the
visited sites). As long as more general models and conclusions
are obtained, a meaningful comparison to real data from animals
or other organisms can represent a promising way to explore
memory capacities in these living systems; or, alternatively, they
can also become a useful tool to study the properties of active
matter when subject to memory effects [49]. So, we envision that
the following years will probably witness an increasing interest
of researchers for the intricate interplays between memory and
transport properties.
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This work provides an analytical model for the diffusive motion of particles in a

heterogeneous environment where the diffusivity varies with position. The model for

diffusivity describes the environment as being homogeneous with randomly positioned

pockets of larger diffusivity. This general framework for heterogeneity is amenable to a

systematic expansion of the Green’s function, and we employ a diagrammatic approach

to identify common terms in this expansion. Upon collecting a common family of these

diagrams, we arrive at an analytical expression for the particle Green’s function that

captures the spatially varying diffusivity. The resulting Green’s function is used to analyze

anomalous diffusion and kurtosis for varying levels of heterogeneity, and we compare

these results with numerical simulations to confirm their validity. These results act as

a basis for analysis of a range of diffusive phenomena in heterogeneous materials and

living cells.

Keywords: diffusion, heterogeneity, non-Gaussian statistics, soft materials, transport in living cells

INTRODUCTION

Brownian motion of microscopic objects [1–3] is a ubiquitous phenomenon that plays a significant
role in virtually all molecular processes. Predictive understanding of the statistical behavior of
objects undergoing Brownian motion is essential to our ability to determine and control the
outcome of processes that fundamentally rely on stochastic motion at the molecular level. Given
the general nature of Brownian motion, it is essential to establish a mathematical framework that is
transferable to a diverse range of materials with varying microscopic structural characteristics.

Foundational studies of Brownian motion [1, 2, 4] establish a mathematical approach
for predicting trajectory statistics in a homogeneous environment, thus capturing diffusive
random-walk processes described by Gaussian statistics. However, all materials exhibit microscopic
heterogeneity at length scales approaching that of individual chemical units (i.e., approaching
atomic scales), and a broad range of materials, including glasses, gels, and other amorphous solids,
exhibit heterogeneity across a broad range of length scales [5–11]. Furthermore, experimental
measurements of particle motion in living cells reveal anomalous diffusive transport [12–25] that is
tied to a range of physical effects, including heterogeneity and cell-to-cell variability [26] as well
as viscoelasticity [26–29], dynamic arrest due to glassy disorder [11, 19], and active biological
processes [9, 17, 25, 30]. Heterogeneity in soft materials and living cells results in non-Gaussian
statistics for the step distribution over a range of time scales [8, 9, 26, 31–33], which acts as a
signature for heterogeneous diffusion.

Theoretical modeling of heterogeneous diffusion provides fundamental insight into the impact
of spatially varying diffusivity. Homogenization [34–38] and effective medium theory [39–47]
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are powerful analytical approaches to modeling spatially varying
diffusivity. Such approaches leverage a systematic averaging of
the microscopic heterogeneity as an effective large-scale medium,
resulting in predictions for the effective diffusion at large length
scales. However, the initial diffusive transport is distinct from
the behavior in this effective medium. Thus, the behavior across
broad time scales exhibits both the initial sampling of the local
environment and the long-time sampling of the surrounding
effective medium.

To capture this temporal evolution of the effective diffusivity,
theoretical approaches employ frameworks that allow the
diffusivity to stochastically change with time, dubbed a “diffusing
diffusivity” [48–51]. This approach has been valuable in
interpreting particle dynamics in living cells across a broad range
of time scales, where the particles generally transition from
complex heavy-tailed statistics to effective Gaussian behavior [8,
9, 26, 31–33]. However, the microscopic interpretation of the
diffusing diffusivity picture is not straightforward. Thus, an
analytical treatment that directly relates the specific microscopic
structural heterogeneity to particle diffusion across all time scales
would be valuable in establishing a fundamental understanding
of heterogeneous transport. Such a development would impact
a broad range of soft-materials and biological phenomena with
varying microscopic structural characteristics.

Our work provides an analytical approach to determining the
Green’s function for diffusion in a spatially varying environment.
We present an exact solution for the Green’s function for
an arbitrary spatial diffusivity function. We then define a
heterogeneous diffusivity model with randomly positioned
pockets of large diffusivity in an otherwise homogeneous
background. Based on this model, we develop a systematic
approach to determining the diffusivity-averaged Green’s
function over a range of degrees of heterogeneity. This
approach applies a diagrammatic representation of the
terms in the exact solution. We exploit this diagrammatic
representation to collect like-powered terms in the strength
of heterogeneity, resulting in an analytical expression for the
Green’s function.

Our solution is then used to analyze the transient anomalous
diffusion of particles in a heterogeneous environment. We
also analyze the temporal evolution of the kurtosis as a
signature of the underlying non-Gaussian nature of the step
distribution. These results demonstrate the signature feature
of heterogeneous diffusion, where a particle transitions from
sampling its local environment before transitioning to exploring
the surrounding effective medium. These results provide a
new framework for interpreting the temporal evolution of
diffusive transport in complex heterogeneous materials and
living cells.

THEORY

We consider the diffusion of a particle in a heterogeneous
environment (in d dimensions) with a spatially varying diffusivity
D(Er). The transport of the particle is defined by the Green’s
function G(Er|Er0; t), which gives the probability that a particle that

begins at position Er0 and time t = 0 is located at Er at time t. The
Green’s function G is governed by the Smoluchowski equation

∂G(Er|Er0; t)

∂t
= E∇ ·

[

D(Er) E∇G(Er|Er0; t)
]

(1)

with the initial condition

G(Er|Er0; t = 0) = δ(Er − Er0). (2)

We perform a Laplace transform from time t to the Laplace
variable s and a Fourier transform from position Er to Fourier

variable Ek. We then arrive at the expression

ˆ̃G(Ek; s) =
exp(iEk · Er0)

s
−

1

(2π)d
1

s

∫

dEk1(Ek · Ek1)D̃(Ek− Ek1)
ˆ̃G(Ek1; s),

(3)
where the tilde indicates a Fourier-transformed function and the
hat indicates a Laplace-transformed function.

The current form of ˆ̃G is transcendental (i.e., ˆ̃G is a function

of ˆ̃G), and an explicit expression for ˆ̃G(Ek; s) requires recursive
insertion of Equation (3) into itself. This leads to a general form

ˆ̃G(Ek; s) = exp(iEk · Er0)

∞
∑

n=0

(−1)n

sn+1
Dn(Ek). (4)

The k-dependent terms Dn represent the contributions from

spatially varying diffusivity at various powers of D̃. The
expressions for Dn up to n = 3 are given by

D0 = 1, (5)

D1 =
1

(2π)d

∫

dEk1(Ek · Ek1)D̃(Ek− Ek1), (6)

D2 =
1

(2π)2d

∫

dEk1dEk2(Ek · Ek1)(Ek1 · Ek2)D̃(Ek− Ek1)D̃(Ek1 − Ek2) (7)

D3 =
1

(2π)3d

∫

dEk1dEk2dEk3(Ek · Ek1)(Ek1 · Ek2)(Ek2 · Ek3)D̃(Ek− Ek1)

D̃(Ek1 − Ek2)D̃(Ek2 − Ek3), (8)

and the general expression for Dn is given by

Dn =
1

(2π)nd

∫ n
∏

i=1

dEki(Ek · Ek1)(Ek1 · Ek2) . . . (Ekn−1 · Ekn)D̃(Ek− Ek1)

D̃(Ek1 − Ek2) . . . D̃(Ekn−1 − Ekn). (9)

Thus, the nth termDn contains n factors of D̃ and n integrals over

the Fourier variables Eki.
This result is valid for any spatially varying diffusivity D(Er).

We now specialize our discussion to a model for heterogeneity
where the diffusivity D(Er) has a homogeneous component with
M localized pockets of larger diffusivity. We focus our analysis
on the diffusivity

D(Er) = 1+

M
∑

i=1

δ exp

(

−
1

2σ 2
|Er − Eci|

2

)

, (10)
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where the ith pocket is centered at Eci. Each pocket contributes
magnitude δ to the diffusivity, and the spread σ defines
the radial size of the pocket. In this model, we assume
each pocket has the same contribution δ and spread σ .
However, variability in these parameters are easily inserted

into the model. The Fourier-transformed diffusivity D̃(Ek) is
given by

D̃(Ek) = (2π)dδ(Ek)+ (2π)d/2δσ d
M
∑

i=1

exp

(

−
1

2
σ 2k2 + iEk · Eci

)

,

(11)
and we define the rescaled magnitude δσ = (2π)d/2δσ d to

simplify our notation, and we define k =

∣

∣

∣

Ek
∣

∣

∣
. We note that our

definition of diffusivity is dimensionless, which implies that time
t and position Er are also dimensionless.

This framework provides a basis for determining the Green’s
function for a fixed system configuration, defined by Eci. We now
consider the case where we average the Green’s function over
an ensemble of system realizations, i.e., average over diffusivity
configurations Eci. In this work, we assume the configuration
is randomly distributed with no spatial correlations between
pockets. We define a diffusivity average of the quantity A to be

〈A〉D =
1

VM

∫ M
∏

i=1

dEciA(D), (12)

where V is the system volume, which is assumed to be very
large relative to the displacements that are considered. This
average is akin to determining the step distributions from
individual realizations of the heterogeneity and then averaging
these together. In this regard, the diffusivity average still captures
heterogeneity as experienced by individual trajectories. Thus,
the treatment does not assume the step distribution captures a
homogenized environment at all time scales.

The ensemble average Green’s function is written as

〈
ˆ̃G(Ek; s)〉D =

∞
∑

n=0

(−1)n

sn+1
〈Dn(Ek)〉D, (13)

where we set the initial position Er0 to the origin without loss
of generality (since the ensemble average exhibits translational

invariance).Within the nth term 〈Dn(Ek)〉D, we shift the Ek integrals

by defining Ek′i through the expression Eki = Ek +
∑i

j=1
Ek′j, which

gives Eki − Eki−1 = Ek′i. Thus, we now reset the arguments of the

spatially varying diffusivity D̃(Eki−1 − Eki) to D̃(Ek
′
i).

The ensemble average of the nth term now requires us to

evaluate 〈D̃(Ek′1)D̃(
Ek′2) . . . D̃(

Ek′n)〉D. This average involves integrals

over Eci, leading to delta functions in the Ek′i. Each factor of D̃
contains a summation over the M pockets. For example, the

n = 2 term contains the factor

〈D̃(Ek′1)D̃(
Ek′2)〉D =

1

VM

∫ M
∏

i=1

dci

[

(2π)dδ(Ek′1)

+δσ

M
∑

j=1

exp

(

−
1

2
σ 2k′21 + iEk′1 · Ecj

)





×

[

(2π)dδ(Ek′2)+ δσ

M
∑

k=1

exp

(

−
1

2
σ 2k′22 + iEk′2 · Eck

)]

= (1+ ρδσ )
2(2π)2dδ(Ek′1)δ(

Ek′2)

+ρδ2σ (2π)
dδ(Ek′1 +

Ek′2) exp
(

−σ 2k′21
)

, (14)

where k =

∣

∣

∣

Ek
∣

∣

∣
. In Equation (14), we define the pocket density

ρ = M/V as the number of pockets per unit volume. Details of
this derivation are found in theAppendix. This leads to selection
rules for the k-vectors in the integrals that simplify the evaluation
of 〈Dn〉D.

We visualize the selection rules by adopting a diagrammatic

representation. For 〈Dn〉D, the Ek
′
i are sequentially listed as dots on

a line, and an arc is drawn between each Ek′i that appear together
in a delta function. Figure 1A shows a selection diagram of the

two Ek′i that appear within 〈D2〉D, explicitly derived in Equation
(14). The first diagram shows two self loops that each contribute

a factor (1+ ρδσ )(2π)
dδ(Ek′i). The second diagram shows a single

arc between Ek′1 and
Ek′2 that contributes a factor of ρδ2σ (2π)

dδ(Ek′1+
Ek′2) exp

(

−σ 2k′21
)

.
Our diagrammatic representation provides a visual

framework for identifying all contributions that have common
factors. Figure 1B shows all of the selection diagrams that appear
in 〈D3〉D. These diagrams can be sorted according to powers of
(1+ ρδσ ), ρ, and δσ . The first diagram is order (1+ ρδσ )

3, since
there are three self loops and no arcs. The second, third, and
fourth diagrams scale as (1 + ρδσ )ρδ2σ , and the fifth diagram
scales as ρδ3σ .

We identify the irreducible diagrams as those that cannot be
decomposed into a subset of other diagrams. Within Figure 1B,
the diagrams of order (1 + ρδσ )ρδ2σ can be categorized into
whether the diagram can be split into two distinct contributions.
The second and third diagrams are both composed of a separate
arc and self loop. When represented mathematically, both of
these diagrams result in a product of terms that are separate from
each other, i.e., they are reducible. However, the fourth diagram
results in a single term that cannot be reduced into a product.

We determine the sum of all of the irreducible diagrams that
up to order ρδ2σ , which is the lowest order contribution beyond
order (1 + ρδσ ). First, we identify the sum of all self loops g0 to
be given by

g0 =

∞
∑

n=0

(−1)n

sn+1
(1+ ρδσ )

nk2n =
1

s+ (1+ ρδσ )k2
=

1

s+ D0k2
,

(15)
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FIGURE 1 | Diagrammatic representation of the expansion terms 〈Dn(Ek)〉D within the Fourier-Laplace transformed Green’s function 〈
ˆ̃
G(Ek; s)〉D (Equation 13). The

diagrams in (A) represent the selection rules for 〈D2〉D, and the diagrams in (B) identify the selection rules for 〈D3〉D. The infinite sum of diagrams found in

(C) represent the set of irreducible diagrams 1g1 (Equation 16) that form the basis for the lowest-order correction due to heterogeneity.

where we have identifiedD0 = 1+ρδσ as the zero-time diffusivity

(explained further below), and k =

∣

∣

∣

Ek
∣

∣

∣. Figure 1C shows the

sum of all diagrams at the order ρδ2σ that are irreducible.
The summation of these diagrams results in the mathematical
expression for the correction term

1g1 =

∞
∑

n=2

(−1)n

sn+1
Dn−2
0 ρδ2σ

1

(2π)d

∫

dEk′1[
Ek · (Ek+ Ek′1)]

2
∣

∣

∣

Ek+ Ek′1

∣

∣

∣

2(n−2)
exp

(

−σ 2k′21
)

=
ρδ2σ

s2
1

(2π)d

∫

dEk′1
[Ek · (Ek+ Ek′1)]

2

s+ D0

∣

∣

∣

Ek+ Ek′1

∣

∣

∣

2
exp

(

−σ 2k′21
)

.(16)

The two irreducible sets of diagrams g0 and 1g1 form the basis
for the lowest-order correction to the Green’s function due to
heterogeneity. The combination of all possible diagrams that
include both self loops and single arcs results in the approximate
expression for the Green’s function

〈
ˆ̃G〉D ≈

∞
∑

n=0

g0
(

s2g01g1
)n

=
1

s+ D0k2 − s21g1

=
1

s+ D0k2 −
ρδ2σ
(2π)d

∫

dEk′1
[Ek·(Ek+Ek′1)]

2

s+D0(Ek+Ek′1)
2
exp

(

−σ 2k′21
)

. (17)

This result forms the basis for our subsequent analyses. For this
discussion, we focus our attention on 3-dimensional diffusion.
Though, our results are amenable to analysis in arbitrary
dimensions.

The Green’s function 〈
ˆ̃G〉D adopts a form that reflects

a mathematical structure that is notably non-Gaussian. The
expansion of the Green’s function in Equation (13) is reminiscent
of a straight-forward moment-based expansion, particularly if
the expansion terms scale as 〈Dn〉D ∼ k2n. This is precisely
the outcome if only the self-loop diagrams are included (i.e.,

1g1 = 0). The resulting expression for 〈
ˆ̃G〉D is the Fourier-

Laplace transform of the Gaussian distribution. Inclusion of
the correction 1g1 results in non-Gaussian contributions to the
Green’s function that reveal the underlying role of heterogeneity
in the diffusive transport.

The Green’s function 〈
ˆ̃G〉D can be used to determine various

statistical averages of the diffusivity-averaged motion of the
particles. In other words, the statistical behavior of the particle
motion after averaging over an ensemble of heterogeneous
diffusivities. Here, we consider the 2n-th moment of the
distribution projected onto the z-axis in our 3-dimensional space,
given by

〈〈z2n〉〉D = (−1)nL−1
s→t

[

lim
k→0

∂2n〈
ˆ̃G〉D

∂k2n

]

, (18)
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where the two sets of angle brackets (〈〈z2n〉〉D) indicates a
statistical average over both an ensemble of trajectories and an
ensemble of diffusivities D. In Equation (18), the operator L−1

s→t

indicates a Laplace inversion from the Laplace variable s to time
t. From our results in Equation (17), we find the expressions for
the second and fourth moments to be

〈〈z2〉〉D = 2D0t −
1

6π3/2

ρδ2σ

σD2
0

(

τ − 1+
1

√
2τ + 1

)

, (19)

〈〈z4〉〉D = 12D2
0t
2 −

4

π3/2

σρδ2σ

D2
0

[

τ 2 −
12

5
τ −

11

5
+ 2

√
2τ + 1

+
1

2

1
√
2τ + 1

−
3

10

1

(2τ + 1)3/2

]

+
1

12π3

(

ρδ2σ

σD2
0

)2
[

τ 2 − 4τ − 2+ 2
√
2τ + 1

−
2

√
2τ + 1

+
2

(2τ + 1)3/2
+

2τ (4τ 2 + 6τ + 3)

(τ + 1)(2τ + 1)3/2

]

. (20)

We define the diffusive time τ = t/tσ , where tσ = 2σ 2/D0

gives the time scale for diffusion to a distance of order σ (i.e., the
scale of heterogeneity). Notably, corrections to normal diffusion
due to heterogeneity naturally depend on the time scale for
diffusion to a distance comparable to the length scale of the
heterogeneity. These results form the basis of our subsequent
analyses of diffusive transport in a heterogeneous environment.

RESULTS AND DISCUSSION

In this work, we explore the statistical behavior of particle motion
in a heterogeneous environment, as defined by our random
diffusivity model (Equation 10). We first consider the mean-
square displacement (MSD) of particle diffusion 〈〈r2〉〉D =

3〈〈z2〉〉D. Figure 2 shows the mean-square displacement for
diffusion in a heterogeneous environment with δ = 5, D0 = 2
(i.e., ρ = 1/δσ ), and σ = 1/2. For this set of parameters, the
heterogeneity time scale tσ = 2σ 2/D0 = 1/4 results in the
relationship τ = 4t.

To validate our analytical theory, we perform numerical
simulations of particle diffusion in a heterogeneous environment
based on our model for microscopic heterogeneity.We define the
position-dependent diffusivity D(Er) in a square box of length 1

by randomly selecting the positions Eci (for i = 1, . . . ,M) for a
given pocket density ρ = M/13, and the position-dependent
diffusivity D(Er) is defined by Equation (10). The simulations
are performed with periodic boundary conditions to capture
an effectively infinite medium, and we set 1 = 10 for our
simulations, which is determined to be adequate to capture the
long-time dynamics (i.e., all results shown are insensitive to
this choice of 1). We perform Brownian dynamics simulations
using the discrete-time algorithm for particle displacement with
time-step 1t, given by

FIGURE 2 | The mean-square displacement (MSD) for particle diffusion in a

heterogeneous environment. The top plot shows the ratio MSD/t 〈〈r2〉〉D (solid

curve) vs. time for heterogeneous diffusivity with δ = 5, D0 = 2 (i.e., ρ = 1/δσ ),

and σ = 1/2. The dotted curved indicates the short-time MSD 〈〈r2〉〉
(0)
D
, and

the dashed curve shows the long-time MSD 〈〈r2〉〉
(∞)
D

. Results from numerical

simulations are shown as dots. The inset plot shows the MSD before dividing

by time. The bottom plot shows the MSD difference 〈〈r2〉〉
(0)
D

− 〈〈r2〉〉D. The

inset image shows a realization of the diffusivity with color scaling from blue

(D = 1) to yellow (D = 5).

Er(t + 1t) = Er(t)+
[

√

2D(Er(t))1t
]

Eu+

[

1

2
Eu · E∇D(Er(t))1t

]

Eu,

(21)
where Eu is a 3-dimensional vector with components selected from
a Gaussian distribution with unit variance.

The top plot of Figure 2 shows 〈〈r2〉〉D with an inset
that shows a realization of the heterogeneous diffusivity (blue
indicating D = 1 to yellow indicating D = 5). The solid curve
shows our analytical result, given by Equation (19). Figure 2
also contains results from numerical simulations (dots). The

short-time MSD 〈〈r2〉〉
(0)
D = 6D0t is indicated by the dotted line,

where D0 = 1 + ρδσ . The long-time MSD 〈〈r2〉〉
(∞)
D = 6D∞t is
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FIGURE 3 | The long-time diffusivity D∞ and the diffusivity difference D0 − D∞ over a range of the strength of heterogeneity δ (with fixed D0 = 2 and σ = 1/2). The

solid curves show our analytical theory, and the dots give results from numerical simulations. The right images show realizations of the heterogeneous diffusivity over

the range of δ in the plots (same color scaling as Figure 2).

shown as a dashed line, where D∞ = D0 − ρδ2σ /(24π3/2σ 3D0).
The influence of heterogeneity on the mean-square displacement
is relatively modest over the broad range of timescales in

Figure 2. The bottom plot shows the MSD difference 〈〈r2〉〉
(0)
D −

〈〈r2〉〉D to clearly show the comparison between our analytical
theory and the numerical simulations over the entire range
of times.

The short-time diffusivity D0 is governed by the motion of
the particle within a local environment. Thus, the particle is
not yet able to sample the surrounding heterogeneity. In this
regard, the diffusivity difference D0 − D∞ is a measure of
the impact of heterogeneity on the particle motion. Figure 3
shows a plot of the long-time diffusivity D∞ (top plot) and the
diffusivity difference D0 − D∞ (bottom plot) over of range of
the strength of heterogeneity δ. The right images in Figure 3

show realizations of the diffusivity over the range of values of δ

within the plots. The results in Figure 3 have a fixed short-time
diffusivity D0 = 1 + ρδσ = 2. Thus, the density ρ decreases
with increasing δ to maintain an equivalent D0. In Figure 3,
the length scale of heterogeneity is σ = 1/2, and the dots
indicate results from our numerical simulations as a check of our
analytical theory.

Our results thus far suggest that our analytical results are

valid within the range of the heterogeneity parameters explored

in Figures 2, 3. However, the impact of heterogeneity on the

mean-square displacement is somewhat modest (see Figure 2).
Experimental measurements of MSD may exhibit considerable
noise due to measurement precision and insufficient sampling
over both an ensemble of trajectories and an ensemble of
diffusivity samples. In this regard, MSD may be insufficient to
characterize the heterogeneity. Furthermore, many physical or
biological processes are dependent on statistical metrics that are
not weighted heavily in the MSD. In this regard, a statistical
quantity that represents higher moments of the distribution
would better represent the impact of heterogeneity.

We turn to the kurtosis as a metric that reveals the impact
of heterogeneity on diffusive transport. The kurtosis represents
the lowest-order metric that determines to what extent the step
distribution deviates from a Gaussian distribution, which is the
expectation for diffusion in a homogeneous environment. We
define the excess kurtosis κ as

κ =
〈〈z4〉〉D

〈〈z2〉〉2D
− 3, (22)
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FIGURE 4 | The excess kurtosis κ vs. time for δ = 10, D0 = 2, and σ = 2.

The dashed curve indicates the short-time behavior of the excess kurtosis

based on our model for heterogeneity. The dotted curve gives the long-time

relaxation of the excess kurtosis to zero.

where 〈〈z2〉〉D and 〈〈z4〉〉D are given by Equations (19) and
(20), respectively. The excess kurtosis is zero for a Gaussian
distribution. Positive values of κ indicate a heavy-tailed
distribution that implies trajectories that are significantly more
mobile than a random walk with an averaged diffusivity.

Figure 4 shows the excess kurtosis vs. time for δ = 10,D0 = 2,
and σ = 2 (note, tσ = 1/4). Our results demonstrate two
regimes. At short time, the excess kurtosis κ exhibits a short-
time plateau that represents the excess kurtosis that arises from
averaging over an ensemble of quenched diffusivities that are
selected from the statistical distribution of our model (discussed
further below). At long times, the excess kurtosis κ relaxes
to zero as κ ∼ τ−1. This asymptotic behavior suggests that
individual trajectories within a fixed diffusivity realization have
sufficiently sampled their surrounding microenvironments and
now experience an effective diffusivity D∞. As a result, the
individual trajectories are random walk at long time scales, and
the D-averaged step distribution tends to a Gaussian.

At short times, the particles are unable to sufficiently explore
their surrounding environment. Thus, the diffusivity of each
particle is dictated by the random-selected diffusivity of its initial
position. The statistical distribution for the diffusivity at a fixed
point (here given by the origin) is given by

PD(D) =
1

VM

∫ M
∏

i=1

dEciδ

[

D− 1− δ

M
∑

k=1

exp

(

−
1

2σ 2
c2k

)

]

,

(23)
which captures the contributions of the pockets as a
superposition of Dirac delta distributions. We perform a Laplace
transform from D to u, and upon taking the limit M,V → ∞

such that M/V = ρ, we arrive at the Laplace-transformed
D-distribution

P̂D = exp

[

−u+ (2π)3/2ρσ 3
∞
∑

n=1

(−1)n

n!n3/2
δnun

]

. (24)

From this distribution, we determine the first two moments of
the local diffusivity, given by

〈D〉D = − lim
u→0

(

dP̂D

du

)

= 1+ ρδσ = D0, (25)

〈D2〉D = lim
u→0

(

d2P̂D

du2

)

= (1+ ρδσ )
2 + π3/2ρδ2σ 3

= D2
0 +

ρδ2σ

2π3/2σ 3
. (26)

These statistical quantities capture the instantaneous
environment that a particle experiences prior to diffusion
into a surrounding microenvironment.

The short-time behavior of the excess kurtosis is given by

κ (0) =
12〈D2〉Dt

2

(2〈D〉Dt)2
− 3 = 3

(

〈D2〉D

〈D〉2D
− 1

)

=
3ρδ2σ

2π3/2σ 3D2
0

. (27)

This short-time behavior coincides with the dashed curve in
Figure 4. For the parameters in Figure 4, the short-time excess
kurtosis is given by κ (0) = 2.652. For reference, the value of
the excess kurtosis for a Laplace distribution [52, 53] is κ =

9. The Laplace distribution is of particular interest for cellular
transport [26, 31, 32, 54], since the step distribution in both yeast
cells and bacterial cells trends from a Laplace distribution to a
Gaussian distribution with increasing time [26].

CONCLUSIONS

Our solutions for the Green’s function provide insight into the
impact of microscopic heterogeneity of diffusive transport across
a broad range of time scales. At short time scales, the particles
explore the local environment around their initial position. The
local diffusivity is randomly determined from the distribution
of diffusivities from the specific model of heterogeneity. With
increasing time, the stochastic trajectories of the particles lead to a
transition to the exploration of a spatially averaged environment.
The time scale of this transition is naturally linked to the time
scale of diffusion to a distance defined by the correlation length of
the heterogeneity. The excess kurtosis exhibits a short-time, non-
zero value that implies a heavy-tailed step distribution associated
with the distribution of initial diffusivities, and the excess kurtosis
decays to zero as the diffusive transport leads to exploration
of the surrounding effective medium, implying a Gaussian step
distribution at long times.

Further refinement of the model can be developed by
including higher order loop diagrams in the expansion. The
structure of our diagrammatic representation is akin to Feynman
diagrams commonly employed in quantum field theory and
condensed matter physics [55, 56]. Notably, one can extend
our approach to include higher-order diagrams, or alternatively,
one can employ renormalization group methods to determine
a renormalized one-loop contribution [55] based on the
structure of the solutions presented in this manuscript. These
developments would improve the level of accuracy of our
solutions, particular in the limit of large heterogeneity (δ ≫

1). However, the agreement between numerical simulations
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and our results presented in this manuscript suggest the
solutions are not limited to conditions where δ ≪ 1, and the
results presented here are not strictly limited to conditions of
weak heterogeneity.

Heterogeneity is prevalent in a range of soft materials,
particularly in living cells. We specifically note the observed
heterogeneity of the organization of chromosomal DNA
within eukaryotic nuclei [57–61]. Underlying the observed
heterogeneity is the physical segregation of chromosomes
into compartments due to epigenetic modifications to the
proteins that packaged the DNA, which is captured by
models that incorporate incompatibility between segments in a
chromosome polymer [62–68]. The connection between spatial
segregation of chromosomes and the dynamics and accessibility
of regulatory proteins [69–71] remains a challenging problem
that would shed light on the structure-function relationships in
chromosome biology. This work provides a valuable analytical
approach to analyzing heterogeneous transport in the complex
environment of the nucleus that may be valuable in establishing
these connections.
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We consider the situation in which a colloidal particle modifies locally the solvent

leading to a spatially dependent viscosity. This situation is typical for colloidal particles in

crowded environment, for example DNA-grafted particles in a polymer solution, or a hot

particle which implies a temperature gradient to a viscous liquid. By means of suitable

approximations we calculate the dependence of the friction force on the profile of the

local viscosity. Our results show that in the case of axially symmetric viscosity profile the

friction force is sensitive to the anisotropy of the viscous profile whereas it is not sensitive

to for-ahead asymmetries. Our results are crucial for active microrheology measurements

where tracer particles are pulled through complex fluids.

Keywords: crowded environments, polymer solution, drag force, anisotropic viscosity, transport phenomena and

fluid mechanics, functionalized colloids

1. INTRODUCTION

Particles in the nanometer size range coated with polymers are of growing importance for rather
diverse applications [1]. In hybrid materials such as nanocomposites, the use of polymers grafted to
nanoparticles is widely exploit to suppress aggregation of particles and to enhance their dispersion
and mixing into solvent or matrix. The nanoparticles coated with DNA are used for building highly
sensitive probes or drug carriers in biological systems [2, 3] and to assemble crystals and other
structures of numerous morphologies [4].

In the absence of external driving, the transport of nanobjects in the fluid environment is
dominated by diffusion, a process due to randommolecular motion excited by thermal fluctuations
[5–7]. Diffusion of isolated spherical nanoparticle in the simple molecular liquids is well-described
by the Fick’s law, which says that the mean-square displacement changes linearly in time. The rate
of this change, the translational diffusion coefficient Dt , is related to the macroscopic viscosity
of the solvent ηm (as measured rheometer) via Stokes-Sutherland-Einstein (SSE) relation [6, 8];
Dt = kBT/ζm where ζm is the hydrodynamic drag coefficient given by the Stokes equation
ζm = 6πηmR. In this equation R is the hydrodynamic radius of diffusing particle, kB is the
Boltzmann constant and T is the temperature.

However, various experiments [9–20] and simulation studies [21–23] show that diffusion of
nano-sized particles in complex fluids is not accurately described by Fick’s law and that the SSE
relation is violated in certain regimes of parameters. For polymer solutions, these parameters
involve the size of the particle and the polymer length scales [24, 25]. For example, if the particle size
is comparable to or smaller than the characteristic length scale in a polymer solution, its diffusion
is significantly faster than the one predicted based on the macroscopic viscosity [13, 17, 18]. This is
because on such length scales the nanoparticle does not experience the homogeneous continuum
medium with high viscosity, rather, the individual polymer chains or blobs and their fluctuations
as well as entanglements influence its dynamics.
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Grafting nanoparticles with macromolecules, such as
polymers or DNA, complicates their interactions with the
complex medium and, therefore, stronger deviations from the
SSE relation are expected. These deviations can be tested in
rheological experiments [26] by measuring the drag force. The
experiments for a bare (non-grafted) colloid in DNA solutions
demonstrated that by using optical tweezers it is possible to move
a particle through a highly monodispersed polymer solution at a
given velocity as well as to measure the drag force on the colloid
with piconewton resolution at the same time [26].

Here we provide a theoretical prediction for a drag force based
on the assumption that interactions between grafted particle and
the complex medium result in an effective spatially dependent
viscosity. A similar idea was used by Tuinier et al. [27], Fan
et al. [28, 29], and Feng et al. [30] to calculate the hydrodynamic
resistance force for a bare spherical particle in a non-adsorbing
polymer solution, where polymer depletion results in a reduced
polymer concentration near the particle surface. Using the
concept of local viscosity [31], the polymer concentration profile
was related to the viscosity profile near a spherical particle.
Hydrodynamics was formulated by the modified Stokes equation
with non-uniform spherically symmetric viscosity, which was
solved by a regular perturbation approximation using the Green
function method.

In the present paper, we extend this analysis to account for
anisotropic viscosity profile around a spherical particle, which
may result from anisotropically grafted nanoparticles in a non-
adsorbing polymer solution (see Figure 1). Such anisotropically
grafted nanoparticles, e.g., DNA-grafted Janus particles can be
manufactured [33–35]. They provide a basic structural element
that can be used to produce useful nanoparticle clusters of
different topologies through DNA-based self-assembly [33–35].
The concept of anisotropic viscosity might also be applicable
for describing the transport of protein through the nuclear
pore complex, where the transporting protein encounters
heterogeneous polymer brush or gel like environment [36–38].

Because the concentration profile of free polymers in the
solution depends on the length of grafted macromolecules and
on the grafting density [32], an anisotropic grafting changes the
depletion zone around the particle, which leads to anisotropic
polymer concentration and thus to anisotropic effective viscosity.
We assume that the particle is dragged slow enough such that
the polymer solution can adiabatically follow the motion of the
colloid. This means that the advective transport rate must be
smaller than the diffusive transport rate of the polymers, which
can be expressed via the Peclét number Pe = lpu/Dp ≪ 1,
where lp is the characteristic length scale of the polymer, u
the characteristic velocity of the solvent u, and Dp diffusivity
of the polymers. Further, we assume that the characteristic
length scale of the variation of polymer concentration is bigger
than the length of an effective statistical chain element. This
assures a sufficiently large number of chain elements in small
volume element to apply the concept of local viscosity [31].
Solving the modified Stokes equations with a spatial-dependent
viscosity of a general form is not easy—even within a regular
perturbation approximation. However, for the axisymmetric
systems some simplifications occur. For axisymmetric Stokes

equations with constant viscosity, translational and rotational
motion are decoupled. For translational motion a scalar stream
function, which transforms vectorial equations to the scalar
ones is well-established. We demonstrate that these properties
also hold for the modified Stokes equations with axisymmetric
viscosity profile and provide a formalism to calculate the drag
force experienced by a translating particle.

Our paper is structured as follows. In section 2, we present
the extended Stokes equations with the spatially dependent
viscosity and introduce the perturbation calculation scheme.
In section 3 the drag force for the axisymmetric systems
is calculated and analyzed for various grafting geometries.
We conclude in section 5.

2. MODEL

2.1. Extended Stokes Equation
The Stokes equations are valid for small Reynolds numbers
Re = ρul/η ≪ 1, where ρ is the density of the fluid, u is the
characteristic velocity of the flow, and l is the characteristic length
scale of the particle. This assures that viscous forces dominate the
inertial forces. The stationary incompressible Stokes equations
with spatially dependent viscosity η(r) are given by

∇ · τ = 0 , ∇ · v = 0 , (1)

where τ = −p I + 2η(r)1 the stress tensor, p is a pressure
and 1 =

[

∇v + (∇v)T
]

/2 is the strain rate. The superscript
T denotes the transposed of a tensor, I is the identity matrix.
Expanding the divergence in the momentum equation one
obtains an additional term, which is proportional to the gradient
of the viscosity

0 = −∇p+ η(∇2v)+ (∇η) ·
[

∇v + (∇v)T
]

. (2)

We consider a quiescent, unbounded fluid which is dragged by a
particle with no-slip and vanishing far-field boundary conditions:

v = U + � × (rp − rc) , r ∈ 6p (3a)

v → 0 , p → 0 , |r| → ∞ . (3b)

where 6p is the particle surface and rp is a point on the particle
surface 6p. The particle is translating with velocity U and
rotating with angular velocity �, which requires a force F and a
torqueT acting on the particle. The angularmotion of the particle
is described in a coordinate system fixed to the particle at rc.

The drag force on the particle is determined by the force acting
on the particle surface 6p, which corresponds to the momentum
flux through the surface

F =

∫

6p

dS τ · n , (4)

where n is the surface normal vector. In the following all
quantities are represented in dimensionless units: v ∝ U, � ∝

U/a, τ ∝ η̄U/a and p ∝ η̄U/a, where a is the particle radius and
η̄ is the bulk viscosity. Accordingly, the drag force and viscosity
are also dimensionless.
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FIGURE 1 | Sketch of an anisotropic polymer concentration profile around a DNA-grafted colloid in a non-adsorbing polymer solution. The concentration profile of the

free polymers depends on the grafting density and length of the DNA strings [32]. The anisotropic concentration profile leads to a non-uniform viscosity variation. We

want to stress that the system is in equilibrium and there is no netforce.

2.2. Small Viscosity Variations
We consider an expansion of the system in small viscosity
perturbations of orderO(ǫ)

η = 1+ ǫη1 + ǫ
2η2 +O(ǫ3) (5a)

v = v0 + ǫv1 + ǫ
2v2 +O(ǫ3) (5b)

p = p0 + ǫp1 + ǫ
2p2 +O(ǫ3). (5c)

The fluid velocity at the surface of the particle is determined by
the leading order velocity field v0. Thus, the higher order fluid
velocity fields at the surface must vanish. The far-field condition
of the quiescent fluid requires that both the pressure and the
velocity fields have to vanish at infinity.

We expand the stationary Stokes equations in small viscosity
variations of order ǫ. The leading order systemO(ǫ0) is given by

−∇p0 + ∇
2v0 = 0 , 0 = ∇ · v0 (6a)

v0 = U + � × (rp − rc) , r ∈ 6p (6b)

v0, p0 → 0 , |r| → ∞ (6c)

and the first order systemO(ǫ1)

−∇p1 + ∇
2v1 = −η1∇

2v0 + ∇η1 ·
[

∇v0 + (∇v0)
T
]

(7a)

0 = ∇ · v1 (7b)

v1 = 0 , r ∈ 6p (7c)

v1, p1 → 0 , |r| → ∞ (7d)

The leading order solutions fulfill common Stokes equations with
constant viscosity.

3. AXISYMMETRIC SYSTEMS

Axisymmetric systems possess at least one axis of rotational
symmetry, which we choose to be parallel to ez . We use spherical
coordinates {r, θ ,φ} with the corresponding orthonormal basis
{r̂, eθ , eφ} and the origin located at the center of the particle.
Due to the rotational symmetry the system is independent of
the azimuthal angle φ. Thus, the viscosity η(r, θ) is a function of
radial distance r and the polar angle θ . Accordingly, the r̂- and
eθ -components of the extended Stokes equations Equation (1)
depend on the components vr and vθ of the fluid velocity, whereas

the eφ-component of Equation (1) depends only on vφ . The
velocity field of the fluid for translational motion of the particle
U ‖ ez is determined by {vr , vθ } and for rotational motion
� ‖ ez is determined by vφ . These properties are summarized
in Figure 2.

For axisymmetric Stokes equations translational and
rotational motion are decoupled. For translational motion a
scalar stream function formalism is well-established to simplify
the vectorial equation to a scalar one (see, e.g., Happel and
Brenner [39]). This formalism can be extended to a non-uniform
viscosity as long as it is axisymmetric (see Appendix A). In
the following we focus on translational motion of a particle in
an axisymmetric system which is characterized by the particle
velocity U .

3.1. Leading Order Solution
The leading order axisymmetric momentum equation [see (A5)
in the Appendix A] is the same as for the homogeneous system.
So the stream function (see Equation A1) for the leading order
system is [39]

ψ0(r, θ) =
1

4
r2 sin2 θ

[

(

1

r

)3

−
3

r

]

. (8)

The corresponding velocity field is given by

vr0 = cos θ

[

3

2r
−

1

2

(

1

r

)3
]

(9a)

vθ0 = − sin θ

[

3

4r
+

1

4

(

1

r

)3
]

. (9b)

As expected, the leading order decay of the velocity is∝ 1/r. The
pressure is determined by integration

∇p0 = ∇
2v0 , ⇒ p0(r, θ) =

3

2

cos θ

r2
.

3.2. First Order Solution
For the first order velocity field we use Equations (B3) (see
Appendix B), which correspond to the stream function ansatz
(B2). In order to determine the first order pressure contribution
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FIGURE 2 | Short summary of the decoupling of translational and rotational motion of the extended Stokes equations for an axisymmetric system. The velocity field of

the fluid for translational motion of the particle U ‖ ez is determined by {vr , vθ } and for rotational motion � ‖ ez is determined by vφ .

p1(r = 1, θ) at the particle surface, we exploit the eθ -component
of the stationary Stokes equation

∇ · τ |eθ = 0 ⇒
1

r

∂p

∂θ
= ∇ ·

(

η(r = 1, θ)[∇v + (∇v)T]
)

|eθ
.

(10)

Using the stream function relations for v0 (9) and v1 (B3) we
integrate over θ to obtain the pressure at the surface r = 1

p1(r = 1, θ) =
∑

n≥3

f (3)n (r = 1)

∫

In

sin θ
dθ −

1

2
f
(3)
2 (r = 1) cos θ

−
3

2

∫ (

η1(r = 1, θ)−
∂η1(r, θ)

∂r

)

r=1

sin θdθ + c(r) .

(11)

The integration constant c(r) does not contribute to the drag
force. Here, superscript (i) defines the ith derivative.

3.3. Drag Force
The drag force on the particle is calculated by integrating the
stress tensor over the particle surface (see Equation 4). First,
we derive an expression for the forces f s(r, θ) at the particle
surface r = 1

fs(r = 1, θ) = τ · r̂ = −p r̂ + 2 η(r = 1, θ)1 · r̂ (12)

(r̂ is a vector normal to the surface denoted in Equation 4 by
n). Up to the first order, the surface force can be expressed as
f s = f s0 + ǫf s1. Using solutions for zero and first order velocities
and pressures derived above, we find

fs |r̂ = f 0s |r̂ −ǫ
{

vanish under surface integration
︷ ︸︸ ︷

∑

n≥3

f (3)n (r = 1)

∫

In

sin θ
dθ +

1

2
f
(3)
2 (r = 1) cos θ

+
3

2

∫ (

η1(r = 1, θ)−
∂η1(r, θ)

∂r
|r=1

)

sin θdθ

}

(13a)

fs |eθ = f 0s |eθ +ǫ
{

vanish under surface integration
︷ ︸︸ ︷

∑

n≥3

f (2)n (r = 1)
In

sin θ

+
1

2
f
(2)
2 (r = 1) sin θ +

3

2
η1(r = 1, θ) sin θ

}

. (13b)

In the leading order, f s0 |r̂ = −3/2 cos θ and f 0s |eθ= 3/2 sin θ . It
turns out that the orthogonal component f s · r̂ of the surface force
is determined by the pressure whereas the tangential component
f s · eθ is determined by the shear force contribution.

The last step to calculate the drag force F is to integrate the
surface forces over the whole surface of the particle F =

∫

6p
dS f s.

Due to the symmetry of the system the drag force is aligned
parallel to the symmetry axis ez . The resolved part of the surface
force f s in ez direction is obtained by using ez = r̂ cos θ and
ez = −eθ sin θ . Performing partial integration and applying the
orthogonality of Gegenbauer functions (C2) as well as relation
(C3) (see Appendix C) the drag force can be expressed as

⇒ Fz =− 6π + ǫ2π
{ f

(3)
2 (r = 1)

3
(14a)

−
3

4

θ
∫

0

(

η1(r = 1, θ)−
∂η1(r, θ)

∂r

∣

∣

∣

r=1

)

sin3 θdθ

(14b)

+ǫ2π
{

−
2f

(2)
2 (r = 1)

3
−

3

2

π
∫

0

η1(r = 1, θ) sin3 θdθ
}

(14c)

The first line (14a) is the leading order drag force corresponding
to a sphere and a homogeneous viscosity. The negative sign shows
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that the force is opposite to the particle moving direction. It turns
out that in the leading order, the pressure contributes 1/3 and the
shear force 2/3 of the total drag force. The last two lines (14b)
and (14c), give the first order correction to the drag force. The
contribution of the first order pressure at the surface is shown in
line (14b) and the first order shear force contribution is shown in
line (14c). Equation (13) implies that only the secondGegenbauer
coefficient f2 is needed to calculate the first order drag force. A
general solution for f2 can be provided by the Green function of
the ODE (14) with n = 2, which has a form

(

∂4

∂r4
−

4

r2
∂2

∂r2
+

8

r3
∂

∂r
−

12

r4
+

4

r4

)

f2(r) = R2(r). (15)

For a sphere in an unbounded quiescent fluid with vanishing
velocity at the sphere surface, this Green function has been
calculated by Tuinier et al. [28]:

G1(r, r
′) =

(

−r′4

30r
+

r

6
r′2 +

1

12

(

r′

r
+

r

r′

)

−
r r′

4
−

1

20r r′

)

, 1 < r′ < r

G2(r, r
′) =

(

−r4

30r′
+

r′

6
r2 +

1

12

(

r

r′
+

r′

r

)

−
r′ r

4
−

1

20r′ r

)

, r < r′ <∞. (16)

The coefficient f2 is obtained via integration of the Green function
and the second Gegenbauer mode of the inhomogeneity R2(r)

f2(r) =

∫ r

1
G1(r, r

′)R2(r
′)dr′ +

∫ ∞

r
G2(r, r

′)R2(r
′)dr′. (17)

It satisfies the following boundary conditions: at the sphere

surface f2(r = 1) = 0, f
(1)
2 (r = 1) = 0, and in far-

field lim
r→∞

: f2(r)/r
2 = 0, f

(1)
2 (r)/r = 0. All integrands in (17)

are smooth functions, therefore, even if for a given r-dependence
of the viscosity an analytical solution does not exist, the integrals
can be easily calculated using the standard quadrature method.
For the first order drag force, also the derivatives f (2)(r = 1) and
f (3)(r = 1) at the surface of the sphere are needed. Considering
the Leibnitz rule and the continuity of the given Green function
up to the second derivative, the derivatives of f2 at the surface are

lim
r→1

f
(k)
2 (r) =

∫ ∞

1
G
(k)
2 (r = 1, r′)R2(r

′)dr′ (18)

G
(3)
2 (r = 1, r′) = −

1

2r′
−

r′

2
, G

(2)
2 (r = 1, r′) = −

1

2r′
+

r′

2

3.3.1. Multipol Representation

In order to proceed, we represent the first order viscosity
variation in Equation (5a) as a multipole expansion with r-
dependent coefficients

η1(r) =m(r)+ d(r) · r̂ + Q(r) :
3r̂r̂ − I

2
+ . . . . (19)

In the above, the symbol “:” denotes the double dot product. The
projections of the viscosity variation are: the monopole m(r) =
1
4π

∫

sin θdθdφ η1(r), the dipole d(r) = 3
4π

∫

sin θdθdφ r̂η1(r)

and the quadrupole Q(r) = 5
8π

∫

sin θdθdφ η1(r)(3r̂r̂ − I). The
quadrupole matrix Q is traceless and symmetric by definition.
It follows that the second Gegenbauer coefficient R2(r) of
the inhomogeneity h1(r, θ) in Equation (B4) depends on the
monopole and quadrupole contributions to the axisymmetric
viscosity but does not depend on the dipole contribution. Thus,
for the total drag force F one has

Fz = −6π

{

1+ ǫ

[

1

2
m(r = 1)−

1

6
m(1)(r = 1)

]

−
ǫ

6

[

Q33(r = 1)− Q
(1)
33 (r = 1)

]

+
ǫ

12

∫ ∞

1
dr′G (r′)

[

− r′
(

1+ 3r′2
)

m(1)(r′)+ r′2Q
(2)
33 (r

′)
]

+
ǫ

12

∫ ∞

1
dr′G (r′)

[

r′
(

1+ 3r′2
)

Q
(1)
33 (r

′)− r′2Q
(2)
33 (r

′)

−18Q33(r
′)+ 9r′(1− r′2)Q

(1)
33 (r

′)
]}

. (20)

In the above

G (r′) ≡

(

1

r′6
−

3

r′4

)

,

∫ ∞

1
dr′G (r′) = −

4

5
.

This result includes the solution of Tuinier et al. [28] for isotropic
viscosity variations η1(r).

4. ANALYSIS

We start the analysis of our result for the drag force with the
general case of viscosity variations that decay beyond a certain
length scale. The decay of viscosity variations is expected because
the overall polymer concentration profile approaches its bulk
value sufficiently far away from the grafted particle. Specifically,
we assume that each multipole mode n of η1 decays beyond the
(possibly different) length scale dn. Since merely the first three
multipoles are relevant, we have

m(r) = Z0(r; d0) ·m (21)

d(r) = Z1(r; d1) · d (22)

Q(r) = Z2(r; d2) · Q . (23)

In order to grasp the basics of the role of the viscosity profile
on the drag force on the colloid, we follow Tuinier and
Taniguchi [31] and consider the decay profile of the following
functional form:

Zn(r; dn) = 1− tanh2
(

r − 1

dn

)

, (24)

with the properties Zn(r = 1; dn) = 1, Z
(1)
n (r = 1; dn) = 0, and

lim
r→∞

Zn(r; dn) = 0. An example of the decay profile is shown in

Figure 3 for different values of d.
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FIGURE 3 | The decay profile Z(r;d) next to the particle surface r = 1 is

plotted for different d ∈ {0.1, 0.6, 1, 8, 20}. d < 1 corresponds to a fast decay

compared to the particle size and d > 1 corresponds to a slow decay.

The drag force can be represented in terms of an isotropic
viscosity contribution ǫmαi(d) and the anisotropic viscosity
contributions ǫQ33 αa(d) as follows:

Fz

−6π
= 1+ ǫ

[

mαi(d0)+ Q33 αa(d2)
]

(25)

with

αi(d) =
1

2
+

1

12

∫ ∞

1
dr′G (r′)

[

− r′
(

1+ 3r′2
)

Z
(1)
0 (r′, d) (26)

+ r′2Z
(2)
0 (r′, d)

]

αa(d) = −
1

6
+

1

12

∫ ∞

1
dr′G (r′)

[

r′
(

10− 6r′2
)

Z
(1)
2 (r′, d) (27)

− r′2Z
(1)
2 (r′, d)− 18Z2(r

′, d)
]

.

In Figure 4 we plot the forces αi and αa as function of the decay
length d ∈ [10−3, 103]. As expected, for variations very quickly
decaying with the distance from the sphere, i.e., for (d ≪ 1),
both functions vanish and the drag force is similar to a particle
in a homogeneous solution. Thus, in this limit the viscosity
variation is negligible. On the other hand, in the limit of very slow
decays (d≫ 1)

lim
d→∞

αi = 1 , lim
d→∞

αa =
7

25
(28)

the solution correspond to the case of viscosity variations that
depend only on the angle θ .

In between there is a transition region from short length scales
to long length scales. The isotropic viscosity variation is the
main contribution to the drag force. The contribution from the
anisotropic viscosity variation is weaker. At d ≈ 1 the anisotropic
contribution becomes negligibly small because αa shows a zero
crossing in that region. Thus, up to the first order the drag force is
independent of anisotropic viscosity variations that decay on the
length scale of the particle. In order to get a better understanding

FIGURE 4 | Dimensionless drag force due to a solely monopole contribution,

αi (see Equation 27), and solely due to quadrupole contribution, αa (see

Equation 29), as a function of the dimensionless decay length, d2.

of the zero crossing we look at the specific quadrupole like
viscosity variation Q = [(−1, 0, 0), (0,−1, 0), (0, 0, 2)]/2, which
is shown in Figure 5 for d2 ∈ {0.3, 7}. This specific viscosity
variation does not change the net viscosity. The viscosity in front
and at the back of the particle is increased whereas at the waist
it is decreased. The corresponding drag force is increased for
d2 > 1 and decreased for d2 < 1. In a more general context this
indicates that higher viscosity at the back and front of a particle
leads to larger drag force if the viscosity variation decays on a
longer length scale compared to the length scale of the particle
and to a weaker drag force if the variation decays on a shorter
length scale compared to the length scale of the particle.

4.1. Analysis of the Velocity Mode vd
Our formalism allows us to analyze how the velocity field adapts
to modulations in the local viscosity. In the following we focus
on the dependence of the local velocity field on the local viscosity
for anisotropic viscosity profiles (isotropic profiles have been
analyzed in Fan et al. [28]). In this case only the quadrupolar
component of the viscosity profile (with magnitude given by
Q33 = l2, where l2 is the coefficient of the projection of η1 on the
second Legendre mode1) affects the translational friction, thus
we study the velocity field variations which are related to those
viscosity variations and call them vd ∝ ǫl2.

In Figure 7 we show the velocity field variation vd (calculated
using Equation 16) for different decay length of the quadrupolar
contribution d2 ∈ {0.1, 1, 8, 20} (in units of ǫl2). For each
decay d2 two figures are shown. The semi-logarithmic plot gives
information about the long ranged velocity field vdz along the
lines θ = 0 and θ = π/2 whereas the vector-density-plot
indicates the absolute value of the velocity component |vd| and
the arrows give additional information about the direction of the
velocity variation. For comparison the leading order velocity field
is shown in Figure 6.

1A function f defined on the interval [−1, 1] can be represented in Legendre’s

polynomials f (x) =
∑

n≥0 lnPn(x). The coefficients ln are the projections onto the

corresponding Legendre’s mode 2n+1
2 〈f | Pn〉P = ln.
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FIGURE 5 | Axisymmetric, quadrupolar viscosity variation Q = [(−1, 0, 0), (0,−1, 0), (0, 0, 2)]/2 around a spherical particle with length scale decay (A) d2 = 0.3 and

(B) d2 = 7.

FIGURE 6 | Velocity profiles. The leading order velocity field is shown in two plots. The first one is a semi-logarithmic plot which gives information about the long

ranged velocity field v0 decay parallel to the symmetry axis. Therefore we calculated v0 along the lines θ = 0 and θ = π/2. The second one is a vector-density-plot

which indicates the absolute value of |v0| and the arrows give additional information about the direction of the velocity field. The particle is denoted by the white

sphere in the middle of the plot and it is moving to the right parallel to ez .

In the semi-logarithmic plot we see the algebraic decay of
the velocity field and at the surface r = 1 the dimensionless
velocity of the particle v ∝ 1. Thus, a positive sign in the semi-
logarithmic plot as well as arrows with positive z-component
corresponds to an increase of the velocity field. On the other
hand, a negative sign in the semi-logarithmic plot as well as
arrows with negative z-component corresponds to a decrease of
the velocity field. For short ranged viscosity variations d2 . 1 the
semi-logarithmic plot is negative as shown in the top right panel
of Figure 7. Thus, the velocity variation decreases the velocity
field. For viscosity variations of the particle length scale d2 ≈

1 (middle left panel of Figure 7) the semi-logarithmic plot is
mainly positive except close to the particle surface. Hence, the
velocity variation increases the velocity field. This property is
maintained in the far-field for long ranged viscosity variations.
Finally, in the bottom right panel of Figure 7 the vector-density-
plot shows two velocity regions which are separated by a
crossover area (blue area) with very small velocity variations. The
first region is close to the particle surface. Here the fluid velocity is
reduced compared to the homogeneous case. The second region

is outside the crossover area and increases the velocity field.

With increasing length scale of the viscosity variation d the layers
get stretched.

4.2. Janus and Quadrupole Particles
We consider a spherical particle that is anisotropically grafted
with polymer chains in a polymer suspension. The grafted
polymers induce an anisotropic depletion zone of suspended
polymers whose width is controlled by the mutual interaction
between the grafted and suspended polymers. In the following
we assume that the motion of the particle occurs on time scales
τparticle that are much larger than the relaxation time of the
polymers (τparticle ≫ τpolymer), i.e., the Peclét number Pe =

lpu/Dp ≪ 1.
Under these conditions the semi empirical Martin

Equation [40] can be used to relate the local polymer
concentration to a local viscosity:

ηp/ηs = 1+ [η]cbρ(r) e
kH [η]cbρ(r) . (29)

where ρ is the dimensionless, normalized total polymer (i.e.,
grafted plus suspended polymers) concentration profile, ηs is
the viscosity of the solvent, kH is the Huggins coefficient,
which is specific for a given polymer-solvent combination. The
intrinsic viscosity [η] is approximately the inverse of the polymer
overlap concentration 1/c∗

b
in the bulk, which corresponds to the

hydrodynamic volume of a polymer chain in solution per unit
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FIGURE 7 | Velocity profiles. The velocity field variation vd is shown for different decays of the viscosity variation d2 ∈ {0.1, 1, 8} top to bottom, respectively. Each

velocity field is shown in two plots. The first one is a semi-logarithmic plot which gives information about the long ranged velocity field vdz decay parallel to the

symmetry axis. Therefore we calculated vdz along the lines θ = 0 and θ = π/2. The second one is a vector-density-plot which indicates the absolute value of |vd | and

the arrows give additional information about the direction of the velocity variation. The particle is denoted by the white sphere in the middle of the plot and it is moving

to the right parallel to ez .

mass. We expand the Martin equation for small variations of
the polymer concentration profile cbρ(r), which is in the dilute
regime ǫ = cb[η]≪ 1

ηp/ηs = 1+ ǫρ(r)+ ǫ2kH ρ(r)
2 . (30)

We identify η1 = ρ.
Now, we discuss the following (physically realizable) grafting

geometries [33–35]:

• isotropic: bare particle – index ′i′;
• dipolar grafting: a Janus like particle – index ′j′;
• quadrupolar grafting two cases

– dominant length scale at back and front – index ′q′;
– dominant length scale at the waist – index ′q′2;

which are defined by the following concentration profiles

ρi = R(r, d) (31)

ρj =

(

R(r, d1)+ R(r, d)
)

2
+

(

R(r, d)− R(r, d1)
)

2
cos θ (32)

ρq =

(

R(r, d1)+ R(r, d)
)

2
+

R(r, d)− R(r, d1)

2
(3 cos2 θ − 1)/2

(33)

ρq2 =

(

R(r, d1)+ R(r, d)
)

2
+

R(r, d1)− R(r, d)

2
(3 cos2 θ − 1)/2 .

(34)

The lowest monopoles of the viscosity corresponding to these
concentration profiles are:

mi(r) = R(r, d) (35)
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mj,q(r) =

(

R(r, d1)+ R(r, d)
)

2
(36)

dj(r) =
R(r, d)− R(r, d1)

2
· d (37)

Qq(r) =
R(r, d)− R(r, d1)

2
· Q (38)

Qq2(r) =
R(r, d1)− R(r, d)

2
· Q . (39)

We assume that near a surface of the bare particle polymers
are depleted, which corresponds to the polymer concentration
profile [41]

R(r, d) = tanh2
(

r − 1

d

)

. (40)

The polymer concentration profile ρj next to a Janus like colloidal
particle is shown in Figure 8A. The polymer concentration
profile for the two cases ρq, ρq2 of quadrupolar grafting are shown
in Figures 8A,C.

We calculate the drag force for different length scales d ∈

[0.01, 50] of the depletion zone at the grafted sides and compare
it to the isotropic case. The length scale of the depletion zone
at one hemisphere of the dipolar grafted particle, the waist of
the quadrupolar back-front grafted particle ′q′ as well as the
back and front of the waist grafted particle (′q′2) are fixed at
d1 = 1 or at d1 = 0.01.

The results for the first order correction to the drag force
Fz,1 = (Fz − 1)/(−6π) (in units of ǫ) are shown in Figure 9

for two cases: (1) d1 = 1 and (2) d1 = 0.01. One can see
that for all cases Fz,1 is positive, i.e., the total drag force always
increase, and that the first order correction decays monotonically
upon increasing the decay length d. Because the dipolar part
of the axisymmetric viscosity variations does not contribute
to the first order correction to the drag force, for the Janus
like grafting Fz,1 is determined by the monopol part (36).
For the quadrupolar grafting both monopol and quadrupole
viscosity variations contribute to Fz,1. By the choice of the
polymer concentration profiles, at d1 = d the drag force Fz,1
for all cases of grafted particles equals the one for the bare
particle. If d1 < d, i.e., when the grafting induce a larger
depletion zone, the first order correction to the drag force is

smaller than that for a bare particle. If d1 or d are <1, Fz,1
is almost the same for all three cases of grafting. For d >

d1, the back-front grafting leads to a weaker Fz,1 than the
waist grafting.

5. CONCLUSIONS

We have characterized the friction force of colloidal particles
dragged across a fluid that show an inhomogeneous and
anisotropic viscosity profile. We have derived closed formulas
for both the drag force as well as for the velocity profile. In
order to rationalize our results we have expressed the local
viscosity profile in terms of its multipole expansion. As expected,
we found that the drag force is sensitive to the amplitude of
the monopole, i.e., the drag force increases upon increasing
the average viscosity. Interestingly, higher order multipoles
have quite different roles. In fact, our results show that the
drag force is insensitive to the amplitude of the dipole, i.e.,
for a fore-and-aft asymmetric particle pulling it back and
forwards leads to the same drag force. In contrast, the drag
force is sensitive to the amplitude of the quadrupole. In
particular, we found that a proper choice of the quadrupole
orientation (i.e., with higher viscosity on the waist and lower
on the axis of motion) with a long decay, d ≫ 1 leads to
a net reduction of the drag force. We emphasize that such a
reduction occurs with “fixed” average viscosity, i.e., at fixed
monopole contribution. Hence this is a genuine effect of the
anisotropic viscosity distribution and cannot be reduced to a
simple reduction of the average drag. Moreover, the sign of this
contribution can be switched by changing either the sign of the
quadrupole, i.e., moving the higher viscosity from the waist of
the particle to the axis of motion, or by reducing the decay
length, d≪ 1.

We have analyzed the cases of physically plausible grafting
shown in Figure 7 in more detail. Interestingly, we found
that the net drag force can be controlled by tuning the
relativemagnitude of themonopole and quadrupole contribution
to the density of the grafted polymers (see Figure 8). In
particular, our results show that for the Janus grafting the
anisotropic grafting can both reduce and enhance the drag
force as compared to the isotropic case. In contrast, for the

FIGURE 8 | Concentration profile ρ (see Equation 32) next to a dipolar grafted (Janus-like) colloidal particle (A), next to a quadrupolar back-front grafted colloidal

particle (B), and a quadrupolar waist grafted particle (C). The length scale of the depletion zone at one hemisphere of the dipolar grafted particle and at the waist

(back front) of the quadrupolar grafted particle is fixed at (d1 = 1) whereas at the other parts of the particle it is fixed at d = 10.
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FIGURE 9 | The first order correction to the drag force Fz,1 = (Fz − 1)/(−6π ) (see Equation 25) for three cases of the grafting geometry as defined by

Equations (32–34) compared to the case of isotropic (bare) particle Equation (31). Polymer concentration profiles corresponding to the drag force for the Janus and

back-front quadrupolar grafting in (A) are shown, respectively, in panels (A,B) in Figure 8.

case of back-front grafting the net effect of the anisotropic
contribution is to enhance the drag force as compared to the
isotropic case.

Concerning the velocity profile, we have shown that the
inhomogeneous and anisotropic viscosity profile induces quite
involved modulations in the velocity field. Interestingly, the
modulations of the velocity profile can oppose t the main
flow. Due to our perturbation approach, the magnitude of
these modulations are tiny. In this perspective, our results are
pinpointing the relevance of the modulations in the viscosity
that, possibly, may persist also for stronger variations of the
viscosity. We have truncated our expansion at first order since,
typically, this is also the leading order when the perturbation
parameter is small. Indeed this is the case for monopole and
quadrupole contributions to the density of grafted polymers.
Interestingly, dipole contributions to the density distribution, at
linear order, do not affect the effective friction. Therefore, for
the dipolar contribution a higher order expansion is required.
Since this quadratic contribution is relevant only when the
monopole and quadrupole are vanishing small, we have decided
to disregard this contribution in the present manuscript and
to focus on the leading contributions, namely monopole and
quadrupole. We plan to investigate higher order contribution
(and hence also dipole ones) in forthcoming works. Results of

Fan et al. [28] suggest that they may be relevant for variations at
short length scales.
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Normal or Brownian diffusion is historically identified by the linear growth in time of

the variance and by a Gaussian shape of the displacement distribution. Processes

departing from the at least one of the above conditions defines anomalous diffusion,

thus a nonlinear growth in time of the variance and/or a non-Gaussian displacement

distribution. Motivated by the idea that anomalous diffusion emerges from standard

diffusion when it occurs in a complex medium, we discuss a number of anomalous

diffusion models for strongly heterogeneous systems. These models are based on

Gaussian processes and characterized by a population of scales, population that takes

into account the medium heterogeneity. In particular, we discuss diffusion processes

whose probability density function solves space- and time-fractional diffusion equations

through a proper population of time-scales or a proper population of length-scales. The

considered modeling approaches are: the continuous time random walk, the generalized

gray Brownian motion, and the time-subordinated process. The results show that the

same fractional diffusion follows from different populations when different Gaussian

processes are considered. The different populations have the common feature of a large

spreading in the scale values, related to power-law decay in the distribution of population

itself. This suggests the key role of medium properties, embodied in the population

of scales, in the determination of the proper stochastic process underlying the given

heterogeneous medium.

Keywords: anomalous diffusion, fractional diffusion, complex medium, Gaussian process, heterogeneity,

continuous time random walk, generalized gray Brownian motion, time-subordinated process

1. INTRODUCTION

Normal diffusion has been widely investigated by means of different modeling approaches, such as:
conservation of mass, constitutive laws, random walks based on central limit theorem (CLT),

stochastic models, i.e., Wiener process, Langevin equation, Fokker–Planck equation, and other
Markovian Master equations [1–3]. The adjective normal highlights that a Gaussian-based process
is considered.

However, many natural phenomena show a diffusive behavior that cannot be modeled by
classical methods based on the CLT or linear and/or local constitutive laws. This is a ubiquitous
observation in life sciences, soft condensed matter, geophysics and ecology, among others. These
phenomena are generally labeled with the term anomalous diffusion in order to distinguish
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them from normal diffusion. In this last case, when assumptions
of the CLT are satisfied, i.e., independence of random variables
and finiteness of variances, the mean square displacement (MSD)
of diffusing particles increases linearly in time. Conversely,
departures from the CLT determine the emergence of anomalous
diffusion. There are numerous experimental measurements in
which theMSD scales with a non-linear power-law in time. These
processes are successfully modeled through Fractional Calculus
(see, e.g., [4–6]), so that the corresponding processes are referred
to as Fractional Diffusion [7–16].

Anomalous diffusion is ubiquitously observed in many
complex systems, ranging from turbulence [17, 18], plasma
physics [19, 20] to soft matter, e.g., the cell cytoplasm, membrane,
and nucleus [21–30] and neuro-physiological systems [31, 32]. In
particular, the analysis of highly accurate data of single particle
tracking (SPT), which are nowadays available thanks to the great
instrumental advancement in fluorescence-based microscopy
[33], has allowed to reveal the clear emergence of anomalous
diffusion in many biological systems [27, 34–37].

As a consequence, the debate on the understanding of
the most suitable microscopic model explaining the observed
statistical features of SPT has taken momentum in the scientific
community. The emergence of long-range correlations and
anomalous diffusion asks for stochastic models departing from
the classical Brownian motion based on the Gaussian-Wiener
process and the standard random walk [1, 3]. At first, the
main debate has been focused on whether the best stochastic
approach should be one based on time-continuous trajectories,
i.e., fractional Brownian motion (FBM), or to discontinuous
trajectories characterized by jump events, i.e., continuous time
random walk (CTRW) (see, e.g., [38] for a short discussion).
However, both stochastic models, FBM and CTRW, do not
describe the observed features of the SPT data. As a consequence,
this implies that the above two minimal models (FBM and
CTRW) do not take into account some microscopic dynamics
affecting the particle motion and determining the emergence
of long-range correlations, anomalous diffusion, non-Gaussian
power-law distributions, ergodicity breaking, and aging [38].

For this reason, the scientific community is now focusing on
the role of the system’s heterogeneity, which was at first neglected
in the above mentioned modeling approaches. Superstatistics
[39–43] is probably the first model where heterogeneity is
taken into account through a time modulation of a fast
relaxing variable by a slow, adiabatic, variable. Many authors
follow the main idea of superstatistics, developing stochastic
models that try to go beyond superstatistics itself. This is
obtained by developing an explicit stochastic dynamics for the
adiabatic modulating variables characterizing the superstatistical
models [44, 45]. Along this line, an interesting approach is the
recently proposed diffusing diffusivity model (DDM) [46–50].
Approaches similar to superstatistics have also been proposed to
model the inter-event times in point processes [51–54], which
describe the intermittent events at the basis of event-driven
diffusion processes, e.g., CTRWs where the inter-event time
distribution is modulated by an external perturbation [41, 54, 55].

Other authors follow a somewhat different approach based on
random-scaled Gaussian processes (RSGPs) [38, 56–59], which

are physically based on a recently proposed model where inter-
particle heterogeneity is explicity described through a population
of scales characterizing the dynamical parameters of particle
diffusive motion. This modeling approach has been denoted
as heterogeneous ensemble of Brownian particles (HEBP) and
has been developed on the basis of a Langevin model [57–
59]. The HEBP model is then based on the Gaussian-Wiener
process and, thus, on trajectories that are strongly continuous
in the stochastic sense [60], while anomalous diffusion emerge
as a consequence of heterogeneity. Fractional diffusion can be
also interpreted as a consequence of complex heterogeneity in
the underlying medium, where a classical diffusion takes place
for the single particle. According to this approach, fractional
diffusion emerges from the population of scales characterizing
the medium. Interestingly, for a given stationary Gaussian
process, the displacement distribution is uniquely related to the
distribution of scales in the considered population. Thus, the
observed diffusion properties can be used to guess the properties
of the underlying diffusing medium.

All the above mentioned stochastic models where fractional
diffusion follows from medium heterogeneity are essentially
based on processes with continuous trajectories. Conversely,
sudden transition events play a crucial role in the diffusing
dynamics in many complex systems. Further, the role of
microscopic models with smooth trajectories (Gaussian-based
processes) and of event-based models with discontinuous
trajectories in biological diffusion is not yet clear.

For this reason, we here propose, discuss, and review different
models based on different Gaussian processes, whose parameters
are characterized by a population of time or length scales. These
models include stochastic processes with both time-continuous
single particle trajectories and discontinuous trajectories with
crucial jump events. We show that proper choices of the
populations lead to space- or time-fractional diffusion. In this
paper we propose and discuss a further development of the
Master thesis by FDT [61].

The paper is organized as follows. In section 6 we propose
and discuss two different Markovian CTRWs with population of
time or length scales. In sections 3 and 4 we discuss RSGPs and
subordination processes, respectively. Finally, in section 5 we give
a brief discussion and draw some conclusions.

2. CONTINUOUS TIME RANDOM WALK
(CTRW)

2.1. The Approach of Continuous Time
Random Walk to Study Diffusion Processes
2.1.1. Basic Formulation of the CTRW

For the purposes of the present paper we briefly report some
fundamentals on the CTRW. It is well-known that the CTRW is a
successful approach to study diffusion processes. It considers the
trajectories of discrete particles within a discrete space, according
to the original formulation [7, 62, 63], or within a continuous
underlying space, according to more recent studies [64, 65].

The trajectory of each particle is considered to be governed by
the joint probability density function (PDF) ϕ(δr, δt) of making
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a jump of length δr in the time interval δt. If the particle is
located in r′ at time t′ and the position r is the particle position
after a inter-event time (IET) δt, then: r = r′ + δr, and t =

t′ + δt. The times t and t′ are occurrence times of crucial jump
events. In the basic theory of CTRW, these events are mutually
independent and, thus, the IETs are statistically independent
random variables whose features are described in the framework
of renewal theory [51–54]. The marginal jump PDF λ(δr) and the
marginal waiting-time PDF ψ(τ ) are, respectively

λ(δr) =

∫ ∞

0
ϕ(δr, τ ) dτ , ψ(τ ) =

∑

δr

ϕ(δr, τ ) . (1)

The integral

∫ τ

0
ψ(ξ ) dξ is the probability that at least one step

is made (0, τ ) [64, 66]. Therefore, the probability that a given
waiting time between two consecutive jumps is greater or equal
to τ is:

9(τ ) = 1−

∫ τ

0
ψ(ξ ) dξ =

∫ ∞

τ

ψ(ξ ) dξ , (2)

and upon differentiation: [64, 66]

d9

dτ
=

d

dτ

(

1−

∫ τ

0
ψ(ξ ) dξ

)

= −ψ(τ ) . (3)

Following Klafter et al. [62], the PDF η(r, t) for a particle to
arriving in r in the time interval from t to t + δt is

η(r, t) =
∑

r′

∫ t

0
η(r′, t′)ϕ(r − r′, t − t′) dt′ + δ(t)δ(r) , (4)

where the initial condition is stated at t = 0 in r = 0. Hence, the
PDF for a particle to be in r at time t is [62, 63]

p(r, t) =

∫ t

0
η(r, t − t′)9(t′) dt′ =

∫ t

0
η(r, ζ )9(t − ζ ) dζ . (5)

Finally, by using (4), the PDF p(r, t) is given by the following
integral equation [62]

p(r; t) = δ(r)9(t)+
∑

r′

∫ t

0

∫ τ

0
η(r′, τ − t′)ϕ(r − r′, t − τ )9(t′) dt′dτ

= δ(r)9(t)+
∑

r′

∫ t

0
p(r′, τ )ϕ(r − r′, t − τ ) dτ . (6)

2.1.2. The Uncoupled Case and the Memory Effects

The simplest case of the CTRW modeling is the uncoupled case,
i.e., the case when the jumps and the waiting times are statistically
independent and it holds ϕ(δr, τ ) = λ(δr)ψ(τ ). In this case
Equation (6) can be re-arranged as [7]

p(r, t) = δ(r)9(t)+

∫ t

0
ψ(t − τ )

∑

r′

λ(r − r′)p(r′, τ ) dτ . (7)

For our purposes we rewrite Equation (7) in the Fourier–
Laplace domain. The standard Laplace and Fourier transforms
for sufficiently well-behaved functions are, respectively

g̃(s) =

∫ ∞

0
e−stg(t) dt , ̂f (k) =

∑

r

ei k·rf (r) . (8)

Then the Laplace transform of formula (6) is

p̃(r, s) =
1− ψ̃(s)

s
+ ˜ψ(s)

∑

r′

λ(r − r′)p̃(r′, s) . (9)

Now, after Fourier transform, we have that the Fourier–Laplace
transform of the solution of (6) is

̂p̃(k, s) =
1− ψ̃(s)

s
+ ˜ψ(s)̂λ(k)̂p̃(k, s) , (10)

and then, after re-arrangement, the above equation becomes

̂p̃(k, s) =
1− ˜ψ(s)

s [1−̂λ(k)˜ψ(s)]
. (11)

According to Mainardi et al. [64], formula (11) can be written in
the alternative form

˜8(s)
[

ŝp̃(k, s)− 1
]

=
[

̂λ(k)− 1
]

̂p̃(k, s) , (12)

where

˜8(s) =
1− ˜ψ(s)

s ˜ψ(s)
=

˜9(s)

˜ψ(s)
=

˜9(s)

1− s ˜9(s)
. (13)

After Fourier–Laplace anti-transforming, relation (12) gives

∫ t

0
8(t − τ )

∂p

∂τ
dτ = −p(r, t)+

∑

r′

λ(r − r′)p(r′, t) , (14)

where it is evident the memory effect due to the auxiliary
function8(τ ).

2.1.3. The Markovian CTRW Model

A Markovian model is obtained from (14) when 8(τ ) = δ(τ ).
This implies that ˜8(s) = 1 and, from the second equality in (13),
it holds ˜9(s) = ˜ψ(s) and 9(τ ) = ψ(τ ). The functions 9(τ ) and
ψ(τ ) are related by (3), then a CTRWmodel is Markovian if

9(τ ) = e−τ , (15)

and the resulting Markovian master equation is

∂p

∂t
= −p(r, t)+

∑

r′

λ(r − r′)p(r′, t) , p(r, 0) = δ(r) . (16)

On the contrary, when 9(τ ) is not an exponential function the
resulting CTRWmodel is non-Markovian.
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2.2. Markovian CTRW Model With a
Population of Time-Scales
Let the functions λn(δr) and ψn(τ ) be the n-fold convolutions of
the jump and of the waiting-time PDFs, respectively. The most
general solution of (6) can be written as [63, 65]

p(r, t) =

∞
∑

n=0

P(n, t)λn(r) , (17)

where P(n, t) is the probability of n jumps occurring up to time t:

P(n, t) =

∫ t

0
ψn(t − τ )9(τ ) dτ . (18)

In particular, since 9(τ ) is, by definition, the probability that the
particle remains fixed (0, τ ), then it holds ψ0(τ ) = δ(τ ) and [63]

P(0, t) =

∫ t

0
δ(τ )9(τ ) dτ = 9(t) . (19)

Let us consider a heterogeneous condition. Hence, for any
Markovian trajectory, the waiting-time τ is scaled by a proper
timescale T. This timescale is taken to be a random variable
following a proper distribution. In particular, the survival
probability9(τ ) for each single Markovian trajectory is:

9M(τ/T) = e−τ/T , (20)

where the index M has been added to remark that it is the
survival probability corresponding to the Markovian case. In
this case the random walk goes on according to the standard
iteration procedure with the same meaning for the symbols, but
the random waiting time τ is driven by the rescaled PDF ψ(τ ).
The characteristic function of the particle PDF turns out to be

p̂(k, t/T0) =

∫ ∞

0
p̂M(k, t/T)f (T/T0, t) dT/T0 , (21)

where pM(r, t) refers to the Markovian PDF, and f (T/T0, t)/T0

is the distribution of the random timescale T such that
∫ ∞

0
f (T/T0, t) dT/T0 = 1 and T0 is the effective observed

timescale. The single timescale case is recovered when
f (T/T0, t)/T0 = δ(T − T0).

Hence, by Fourier inversion and by using formula (17) for the
Markovian PDF pM(r, t), it follows

p(r, t/T0) =

∞
∑

n=0

[∫ ∞

0
PM(n, t/T0)f (T/T0, t) dT/T0

]

λn(r) .

(22)
To conclude, the combination of (17) and (22) gives

P(n, t/T0) =

∫ ∞

0
PM(n, t/T)f (T/T0, t) dT/T0 , (23)

and setting n = 0 it holds the following

P(0, t/T0) =

∫ ∞

0
PM(0, t/T)f (T/T0, t) dT/T0

=

∫ ∞

0

∫ t

0
ψ0(t − τ )9M(t/T)dτ f (T/T0, t) dT/T0

=

∫ ∞

0

∫ t

0
δ0(t − τ )9M(t/T)dτ f (T/T0, t) dT/T0

=

∫ ∞

0
9M(t/T)f (T/T0, t) dT/T0 = 9(t/T0) . (24)

Let hereinafter be T0 = 1 for simplicity. In their pioneering work
[7], derived the following fundamental result:
if the survival probability9(τ ) is a function of the Mittag–Leffler
type, i.e.

9(τ ) = Eβ (−τ
β ) =

∞
∑

n=0

(−1)nτβn

Ŵ(βn+ 1)
, 0 < β < 1 , (25)

the particle PDF p(r; t) solves the time-fractional diffusion
equation, i.e., equation (A.1) with α = 2. Therefore, from (24)
and (25) it follows that, for any T-distribution f (T, t) such that
the following integral holds

∫ ∞

0
e−t/T f (T, t) dT = Eβ (−tβ ) , 0 < β < 1 , (26)

the resulting process is a time-fractional diffusion process.
In particular, in the stationary case there is a unique the time-

scale distribution, i.e., f (T, t) = fS(T). In fact, it is well-known
that it holds [6]

∫ ∞

0
e−ty Kβ (y) dy = Eβ (−tβ ) , 0 < β < 1 , (27)

where

Kβ (y) =
1

π

yβ−1 sin(βπ)

1+ 2yβ cos(βπ)+ y2β
, (28)

and, by comparing of (26) and (27), the stationary timescale
distribution fS(T) turns out to be [67]

fS(T) =
1

T2
Kβ

(

1

T

)

. (29)

It is worth noting that the Kβ , defined in (28), is the fundamental
solution of the space-time fractional diffusion equation (A.1)
when space and time fractional orders of derivation are equal
each other and equal to β and when the asymmetry parameter
assumes the extremal value, in which case the distribution has
support solely on the positive real axis [11]. This case is also
known as neutral diffusion [68, 69]. In the Markovian limit, i.e.,
β = 1, it holds Kβ (y) = sinπ/[π (y − 1)2] → δ(y − 1) and a
single timescale follows.
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Concerning the waiting time PDF ψ(t), we observe that, from
formula (24) for the survival probability 9(t) and from (3),
we have

ψ(t) = −
d9(t)

dt
= −

d

dt

( ∫ ∞

0
9M(t/T)fs(T)dT

)

. (30)

By the fact that the involved functions are the exponential
function9M and the normalized distribution fS(T), the following
equality holds

d

dt

( ∫ ∞

0
9M(t/T)fS(T) dT

)

=

∫ ∞

0

d

dt
9M(t/T)fS(T) dT . (31)

Finally, we can write the rescaled PDF ψ(t) as.

ψ(t) = −
d9(t)

dt
= −

d

dt

( ∫ ∞

0
9M(t/T)fS(T) dT

)

= −

∫ ∞

0

d

dt
9M(t/T)fS(T) dT = −

∫ ∞

0

d

dt
e−t/T fS(T) dT

=

∫ ∞

0

1

T
e−t/T fS(T) dT

=

∫ ∞

0
9M(t/T)fS(T)

dT

T
. (32)

2.3. Markovian CTRW Model With a
Population of Length-Scales
In this section we consider the case of a Markovian CTRWmodel
with a population of length-scales. Hence, the space variable r is
scaled by a proper distributed length-scale ℓ and the ratio r/ℓ
is a distributed variable because ℓ is a distributed variable. The
characteristic function of the particle PDF turns out to be

p̂(k/ℓ0, t) =

∫ ∞

0
p̂G(kℓ, t)q(ℓ/ℓ0) dℓ/ℓ0 , (33)

where pG(r, t) is the PDF of the Gaussian CTRW model and
q(ℓ/ℓ0)/ℓ0 is the distribution of the length-scale ℓ such that

∫ ∞

0
q(ℓ/ℓ0) dℓ/ℓ0 = 1 , (34)

and ℓ0 is the effective observed length-scale. The case with a
single length-scale is recovered when q(ℓ/ℓ0)/ℓ0 = δ(ℓ − ℓ0).
Hereinafter we consider ℓ0 = 1.

Let the jump PDF be

λ(r − r′) =
∂

∂r
3(r − r′) , (35)

where3(r− r′) is the cumulative distribution function of jumps,
then we have

3(r − r′) =

∫ ∞

0
3G

(

r − r′

ℓ

)

q(ℓ) dℓ , (36)

where q(ℓ) is the distribution of the length-scale and 3G(r −
r′) is the cumulative distribution function of Gaussian jumps.

Assuming q(ℓ) such that 3G((r − r′)/ℓ)q(ℓ) is integrable and

differentiable and it holds

∣

∣

∣

∣

∂

∂r
3G((r − r′)/ℓ)q(ℓ)/ℓ

∣

∣

∣

∣

≤ g(ℓ), with

g(ℓ) integrable, then we have

λ(r − r′) =
∂

∂r
3(r − r′) =

∫ ∞

0

∂

∂r
3G

(

r − r′

ℓ

)

q(ℓ) dℓ

=

∫ ∞

0
λG

(

r − r′

ℓ

)

q(ℓ)
dℓ

ℓ
. (37)

The PDF p(r; t) of the process under consideration results to be

p(r; t) = δ(r)9(t)+
∑

r′

∫ t

0
p(r′, τ )λ(r − r′)ψM(t − τ ) dτ

= δ(r)9(t)+
∑

r′

∫ t

0
p(r′, τ )

[∫ ∞

0
λG

(

r − r′

ℓ

)

q(ℓ)

ℓ
dℓ

]

ψM(t − τ ) dτ .

(38)

Now, we want to find an explicit formula for q(ℓ) and we proceed
considering the Fourier transform of the above equation, i.e.,

p̂(k, t) = 9M(t)+

∫ t

0
p̂(k, τ )̂λ(k)ψM(t − τ ) dτ , (39)

or analogously

p̂(k, t) = 9(t)+

∫ t

0
p̂(k, τ )

[ ∫ ∞

0

̂λG(kℓ) q(ℓ) dℓ

]

ψM(t − τ ) dτ .

(40)
Reminding that in the Markovian case the survival probability
is 9M(t) = e−t and the waiting time PDF ψ(t) = e−t , Equation
(40) becomes

p̂(k, t) = e−t +̂λ(k)e−t

∫ t

0
eτ p̂(k, τ ) dτ , (41)

and the following relation holds

̂λ(k) =
p̂(k, t)− e−t

e−t

∫ t

0
eτ p̂(k, τ ) dτ

. (42)

Considering Equation (11) in the Markovian case (that is β = 1),
we have

̂p̃(k, s) =
1

1+ s−̂λ(k)
, (43)

and after Laplace anti-transforming we obtain

p̂(k, t) = e−(1−̂λ(k))t , (44)

that is the general expression for p̂(k, t). Since |̂λG(k)| ≤ 1 from
the proprieties of characteristic functions, then also |̂λ(k)| ≤

1, i.e.,

|̂λ(k)| ≤

∫ ∞

0
|̂λG(k)|q(ℓ) dℓ ≤

∫ ∞

0
q(ℓ) dℓ = 1 . (45)
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Hence, the above general representation of p̂(k, t) shows that
p̂(k, t) is a characteristic function for all t ∈ R

+ and k ∈ R

because it holds

e−(1−̂λ(k))t ≤ 1 . (46)

The explicit expression of ̂λ(k) can also be obtained. We know
that the Gaussian density for jumps λG comes from an unbiased
random walk in one-dimension. In this random walk, a particle
starts from the origin and, at each time step 1t, makes a jump
±1x to the left or the right with equal probability. We call Ph,n
the probability that the particle will be in point x = h σG at the
time t = n1t. In this simple case we have

Ph,n =
1

2
Ph−1,n−1 +

1

2
Ph+1,n−1 , (47)

assuming P0,0 = 1. The characteristic function for this binomial
formulation is

̂λG(k) =

n
∑

h=−n

P(X = σG h) eikσGh , (48)

that n even becomes

̂λG(k) =

n/2
∑

h=− n
2

P(X = σG 2h)eikσG2h

=

n/2
∑

h=− n
2

n!
(

n+2h
2

)

!
(

n−2h
2

)

!

(

1

2

)
n+2h
2

(

1

2

)
n−2h
2

eikσG2h

=
1

2n

n/2
∑

h=− n
2

(

n
n+2h
2

)

eikσG2h =
1

2n

n
∑

k=0

(

n

k

)

eikσG(2k−n)

=
1

2n

n
∑

k=0

(

n

k

)

eikσGke−ikσG(n−k) =

(

eikσG + e−ikσG

2

)n

= cos(σGk)
n . (49)

Finally, the characteristic function̂λ(k) turns out to be.

̂λ(k) =

∫ ∞

0
cos(σGkℓ)q(ℓ) dℓ =

∫ ∞

0
cos(kℓ)

1

σG
q

(

ℓ

σG

)

dℓ .

(50)

2.3.1. Comparison With the Green Function of the

Space-Fractional Diffusion Equation

We recall that the Fourier transform of the Lévy stable density
L0α(x; t) that solves the space-fractional diffusion equation, i.e.,
Equation (A.1) with β = 1, is

̂L0α(kt
1/α) =

∫ ∞

−∞

eikt
1/αζL0α(ζ ) dζ

= 2

∫ ∞

0
cos(kt1/αζ )L0α(ζ ) dζ = e−|k|α t . (51)

If we compare the above relation with Equation (50), we obtain
also the following consistent pair̂λ(k) and q(ℓ):

̂λ(k) =̂L0α(k) ,
1

σG
q

(

ℓ

σG

)

= 2L0α(ℓ) . (52)

Moreover, this choice is consistent also with the proprieties
of unitary initial value for the characteristic function and of
normalization for the PDF, i.e.,

̂λ(k)

∣

∣

∣

∣

k=0

= e−|k|α
∣

∣

∣

∣

k=0

= 1 , (53)

and

̂λ(k)

∣

∣

∣

∣

k=0

=

∫ ∞

0
cos(σGkℓ)q(ℓ)dℓ

∣

∣

∣

∣

k=0

=

∫ ∞

0
q(ℓ)dℓ

=

∫ ∞

0
cos(kℓ)

1

σG
q

(

ℓ

σG

)

dℓ

∣

∣

∣

∣

k=0

=

∫ ∞

0

1

σG
q

(

ℓ

σG

)

dℓ

= 2

∫ ∞

0
L0α(x) =

∫ ∞

−∞

L0α(x) = 1 . (54)

In general for k ∈ R it holds

p̂(k, t) = e−(1−̂λ(k))t = e−(1−e−|k|α )t

= exp

{

t

∞
∑

n=1

(−1)n

n!
|k|αn

}

=

∞
∏

n=1

e
(−1)n

n! |k|αnt . (55)

In the limit |k|≪ 1 the characteristic function p̂(k, t) results to be

p̂(k, t) = e−(1−̂λ(k))t

= e−(|k|α− |k|2α

2 +
|k|3α

6 +...)t ≃ e−|k|α t(1+ O(t|k|2α)).(56)

Then, for |k| ≪ 1, it holds

p̂(k; t) ≃̂L0α(kt
1/α). (57)

Hence the characteristic function of the considered process is a
Lévy stable density, that is the fundamental solution of the space-
fractional diffusion equation. To conclude, since a characteristic
function corresponds to a unique distribution and vice versa,
in the considered limit (k ≪ 1) the PDF p(r − r′; t) is a Lévy
stable density.

3. RANDOMLY-SCALED GAUSSIAN
PROCESSES

Let us denote a randomly-scaled Gaussian process (RSGP) as a
stochastic process defined by the product of a Gaussian process
times a non-negative random variable. In general, the one-
point one-time PDF is not sufficient to characterize a stochastic
process. There are infinitelymany stochastic processes that follow
the same one-dimensional distribution and, thus, solve the same
Cauchy problem for the associated diffusion/master equation
describing the time evolution of the PDF. However, in RSGPs,
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this indeterminacy is solved by the choice of the Gaussian process
that is fully characterized for given first and second moments.

In this paper we consider a special class of RSGPs called
generalized gray Brownian motion (ggBm), that is defined by
using the fractional Brownian motion as Gaussian process [70–
75]. For other form of randomly-scaled Gaussian process we
refer the reader to Sliusarenko et al. [59]. Hence, we consider the
following class of processes:

Xα,β (t) = ℓBH(t) , 0 < β ≤ 1 , 0 < α ≤ 2 , (58)

where BH(t) is the fBm process with Hurst exponent 0 < H < 1,
and then with power law variance t2H .

The application of this approach to fractional diffusion is
based on the correspondence of the PDFs resulting from the
product of two independent random variables with the PDFs
resulting from the integral representation formula (A.10).

Let define Z1 and Z2 as two real independent random
variables: z1 ∈ R and z2 ∈ R

+. The associated PDFs are p1(z1)
and p2(z2), respectively. Let Z be the random variable obtained
by the product of Z1 and Z

γ
2 , i.e., Z = Z1Z

γ
2 . Denoting with p(z)

the PDF of Z, it results:

p(z) =

∫ ∞

0
p1

(

z

λγ

)

p2(λ)
dλ

λγ
. (59)

Comparing the above formula with the integral representation
formula (A.10), and applying the change of variables z = xt−γω

and λ = τ t−ω, the integral representation (71) is recovered from
(59) by setting:

1

tγω
p

(

x

tγω

)

≡ p(x; t) ,
1

τ γ
p1

(

x

τ γ

)

≡ ψ(x; τ )

1

tω
p2

(

τ

tω

)

≡ ϕ(τ ; t) . (60)

Then, by identifying functions and parameters as

p(z) ≡ K0
α,β (z) , p1(z1) ≡ G(z1) , p2(z2) ≡ K

−α/2
α/2,β (z2) ,

(61)

γ =
1

2
, ω =

2β

α
, γω =

β

α
, (62)

formula (59) reduces to the integral formula (A.10) for the
symmetric space-time fractional diffusion equation. In terms of
random variables it follows that [56]

Z = Xt−β/α and Z = Z1Z
1/2
2 , (63)

hence it holds

X = Ztβ/α = Z1t
β/αZ

1/2
2 . (64)

Since p1(z1) ≡ G(z1), Z1 is a Gaussian random variable.
Consequently, the variable Z1t

β/α is Gaussian with variance
proportional to t2β/α . Hence, we chose the fBm with 0 < H =

β/α < 1 as a Gaussian process with consistent power law
variance. Furthermore, the random variable Z2 = 3α/2,β is

distributed according to p2(z2) ≡ K
−α/2
α/2,β (z2). Finally, we have

the process

Xα,β (t) =
√

3α/2,β B
H(t) , 0 < β < 1 , 0 < α < 2 ,

0 < H = β/α < 1 . (65)

where ℓ =
√

3α/2,β is an independent constant non-negative

random variable distributed according to the PDF K
−α/2
α/2,β (λ), λ ≥

0, that is a special case of (A.7). The process defined above is the
solution of the space-time fractional diffusion Equation (A.1) in
the symmetric case. This means that the one-time one-point PDF
of Xα,β (t) is the fundamental solution of Equation (A.1) in the
symmetric case, namely the PDF K0

α,β (x; t) defined in (A.10).
The space-fractional diffusion is recovered when β = 1, in fact

by using formula (A.7) with t = 1, we have

K
−α/2
α/2,1 (λ) =

∫ ∞

0
M1(τ )L

−α/2
α/2 (λ; τ ) dτ

=

∫ ∞

0
δ(1− τ )L

−α/2
α/2 (λ; τ ) dτ = L

−α/2
α/2 (λ) . (66)

Here we are interested in the distribution of ℓ =
√

3α/2,1 then,
by normalization condition, the PDF of ℓ results to be

q(ℓ) = 2ℓL
−α/2
α/2 (ℓ2) . (67)

Analogously, the time-fractional diffusion is recovered when α =

2, in fact by using formula (A.7) with t = 1, we have

K−1
1,β (λ) =

∫ ∞

0
Mβ (τ )L

−1
1 (λ; τ ) dτ

=

∫ ∞

0
Mβ (τ )δ(λ− τ ) dτ = Mβ (λ) , (68)

and the corresponding PDF of ℓ is

q(ℓ) = 2ℓMβ (ℓ
2) . (69)

4. TIME-SUBORDINATION FOR GAUSSIAN
PROCESSES

Another approach proposed tomodel the emergence of fractional
and, more in general, anomalous diffusion in complex media
is the time-subordination of a otherwise standard diffusion
process (see, e.g., [15, 76, 77]). Even when the time-subordination
procedure is applied to a Gaussian process, the PDF of the
resulting process is no longer Gaussian, and the particle MSD
has a non-linear time dependence. Let Y(τ ), τ > 0, be
a stochastic process. Time-subordination is defined by the
following expression:

X(t) = Y(Q(t)) . (70)

Thus, time-subordination follows from the randomization of
the time clock in a stochastic process Y(τ ), i.e., by using a
new clock τ = Q(t), being Q(t) a random process with non-
negative increments. The resulting process Y(Q(t)) is said to be
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subordinated to Y(τ ). This is called the parent process, while Q(t)
is called the directing process, so that it is said that Y(τ ) it is
directed by Q(t) [78].

In diffusion processes, the parameter τ is named operational
time. The process t = t(τ ), which is the inverse of τ = Q(t),
is called the leading process [15, 79]. It is worth noting that, in
general, X(t) is non-Markovian, even when the parent process
Y(τ ) is Markovian. At the macroscopic level, i.e., in terms of the
particle PDF, the subordination process X(t) is described by the
following expression:

p(x; t) =

∫ ∞

0
ψ(x; τ )ϕ(τ ; t) dτ , (71)

where p(x; t) is the PDF of X(t), ψ(x; τ ) the PDF of Y(τ ) and
ϕ(τ ; t) the PDF of Q(t). In the following, the PDFs are self-
similar, i.e., have a scaling property. Similarly to the approaches
previously described, we introduce a population of time-scales
T with distribution function f (T) for the subordinated process
Y(τ ). Then parameter τ is now determined by the process
Q(t/T).

By comparing (71) and (A.10) we have

p(x; t) ≡ K0
α,β (x; t) , ψ(x; τ ) ≡ G(x; τ ) =

1

τ 1/2
G

( x

τ 1/2

)

,

ϕ(τ ; t) ≡ K
−α/2
α/2,β (τ ; t) . (72)

Hence, the integral representation (71) turns out to be

K0
2,β (x; t) =

∫ ∞

0

1

Q(t/T)1/2
G

(

x

Q(t/T)1/2

)

K
−α/2
α/2,β (Q(t/τ ); t)

dQ

dT
dT . (73)

In the case of space-fractional diffusion, from formula (A.11) we
observe that the scaling property gives Q(t/T) = (t/T)1/α , and
f (T) results to be

f (T) = L
−α/2
α/2

(

1

T1/α

)

1

αT1/α+1
. (74)

Analogously, in the case of time-fractional diffusion,
from formula (A.12) we observe that the scaling

FIGURE 1 | Schematic picture of the three stochastic processes in heterogenous media leading to the same space-fractional diffusion equation for the 1-point

1-time PDF.

FIGURE 2 | Schematic picture of the three stochastic processes in heterogenous media leading to the same time-fractional diffusion equation for the 1-point

1-time PDF.
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property gives Q(t/T) = (t/T)β , and f (T) results
to be

f (T) = Mβ

(

1

Tβ

)

β

Tβ+1
. (75)

5. CONCLUSIONS

In this paper we studied a framework for explaining the
emergence of anomalous diffusion in media characterized by
random structures. In particular, we considered three different
modeling approaches based on Gaussian processes but displaying
a population of scales. The main idea is that the deviation
from Gaussianity is indeed an indirect estimation of the
population of the scales that characterize the medium where
the diffusion takes place. We discussed the cases of space- and
time-fractional diffusion through the CTRW, the ggBm and
time-subordinated process.

The introduction of a population of scales significantly
affects the particle PDF. The same fractional diffusion
follows from different populations of scales when different
Gaussian processes are considered. This suggests that the same
macroscopic fractional process can be experimentally observed
in different systems displaying different populations of scales
and, consequently, driven by different underlying mesoscopic
Gaussian processes. In Figures 1, 2 we give a synthetic picture of
the three processes here described, all leading to the macroscopic
space- or time-fractional diffusion equations.

When a macroscopic fractional process is experimentally
observed, the simultaneous measurement of the population of
scales embodies a selection criterion for the corresponding
mesoscopic (and maybe not experimentally detectable)
underlying Gaussian process. The same holds in the other way
round, when a macroscopic fractional process is experimentally
observed in place of a specific Gaussian process theoretically
and/or experimentally expected, and then the deviation from
Gaussianity embodies an indirect measurement of the population
of the scales.

In general, this framework can be adopted for studying the
presence and the characterization of impurities, as well as of
obstacles, in a given complex medium. These results highlight
the key role of the properties of the medium, embodied by the
population of the scales, in the determination of the proper

stochastic process for a given medium. The present research and
our final claim aim to analyze and provide an explanation to the
role and the effects of the system’s configuration (environment

plus particles) on the emergence of deviations from Gaussianity.
In this respect, the present results add a contribution to similar
existing literature concerning, for example, the dependence
on system’s configuration of the emergence of nonextensive
statistical mechanics in confined granular media [80], or the
emergence of processes modeled by fractional linear diffusion or
by integer non-linear diffusion accordingly to different settings of
CTRW simulations [81].
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Animal territoriality is a widespread phenomena in many vertebrate species. In mammals

it is often associated with territorial marking with which individuals make their presence

conspicuous to others by leaving trace of their passage, often in the form of deposited

scent. A simple interaction mechanism consisting of retreating upon the encounter

of a foreign scent is sufficient to observe the emergence of territorial patterns at the

population level. With the introduction of the so-called territorial random walk model

this local avoidance mechanism coupled with a simple diffusive movement of the

individuals has been shown to generate long-lasting patterns of segregation at much

larger spatial scales. To shed further light on the micro-to-macro connection of this

collective movement model we study how the movement statistics of the individuals

affect the formation of the segregated scented territories. We represent individual animals

as correlated random walkers and we analyse the spatial ordering of the population as

a function of the length of time a scent mark remains active after deposition and as a

function of the degree of correlation of the movement steps. For low and intermediate

correlation strength we find that territories undergo a liquid-hexatic-solid transition as

active scent time is increased. Increased spatial order also appears by increasing

the correlation strength but only if well away from the ballistic limit. We ascribe this

non-monotonic dependence to the coverage efficiency of the individual walkers mainly

controlled by the correlation and the mobility of the territories mainly controlled by the

active scent time.

Keywords: territorial random walk, correlated random walk, KTHNY melting, topological defects, animal

territoriality

1. INTRODUCTION AND BACKGROUND

In biology it is rather common to find a system in which the underlying movement of its
constituent parts is not diffusive, often owed to the out-of-equilibrium nature of the processes
involved. Examples of anomalous transport can be found at all scales: from the active and passive
microrheology of various nanoparticles inside the molecularly crowded environment of cells [1]
and the two stage diffusion of macromolecules on cell membranes [2, 3] to the superdiffusive
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displacement of epithelial cells [4], and all the way to
the anomalous dynamics of whole organism while foraging
randomly [5] or during memory biased search [6, 7].

Among the cited biological examples characterized by
anomalous diffusion we have focused for this special issue on
the movement of whole organisms and on the collective effects
of many such organisms spatially excluding one another. Our
interest here lies in understanding how the local statistical
features of the movement of individual animals affect the
emergence of the collective patterns at the population level.
We choose a movement statistics that becomes random at
long time scales, but retains a degree of persistence at shorter
time scales, the so-called correlated random walker [8], a
paradigmatic movement model in animal ecology [9, 10]. Among
the forms of spatial exclusion or avoidance we are particularly
interested in a very common behavior of vertebrate populations
in 2D: the subdivision of the terrain into spatially segregated
regions [11]. When these regions are of exclusive ownership
of a single individual or a single family unit they are called
territories [12, 13].

The purposes of territoriality change from species to species or
even throughout the year [14]. These include, roosting, mating,
nesting, and harboring resources. Accordingly the interaction
mechanisms that animals rely upon to form and maintain these
territories are quite rich and depend on the type of signals
that animals exchange. Broadly speaking one may distinguish
them between direct and indirect, that is whether the time
scale for the signals to travel from the emitter to the receiver
is short or long relative to the time scale for the emitter
to move. Examples of direct interactions, often employed by
birds [15], is the use of visual displays and audio calls. In
this case the signal of the emitter is detected by the receiver
nearly instantaneously. Examples of indirect interaction, used
by a large number of mammals [16], is the use of olfactory
cues. In this case the scent that an animal deposits is nearly
static. For the period over which the scent remains detectable,
which could be a long time after deposition, the environment
retains the memory of the passage of the emitter. Any individual
that comes in close proximity to the deposited scent becomes a
receiver and acquires information about the (past) presence of
the emitter.

In this study we analyse a specific case of olfactory-based
territorial formation, often called conspecific avoidance, whereby
animals mark the terrain wherever they go, and other individuals
passing by respond to these olfactory cues by retreating from the
region or area where foreign scent was encountered. This indirect
animal interaction, that occurs through the modification of the
environment, is called stigmergy [17]. It is a common form of
interaction in eusocial insects [18], but it has been shown to occur
also in territorial animals [19].

The mathematical study of scent-marked territorial patterns
has a relatively long history dating back to the early ’90s
when the first reaction-diffusion model representing a pair of
animals avoiding each other scent was formulated [20]. This
model coupled the occupation probability of two Brownian
walkers tethered to their respective den or burrow and their
scent profiles. It was later generalized to include the effects of

landscape heterogeneity and animal movement responses and
applied to movement data on wolves and coyotes [21].

In subsequent modeling studies on the formation of scented
territories a different approach was followed [22]. That approach
becomes necessary when one aims to account for the sharp spatial
dependence of the interaction. In these cases the field nature of
the interaction potentials (or forces), which tacitly assumes that
they are defined at every point in space, may not be adequate.
It is more convenient to account for the interaction dynamics
through localized walls or spatial partitions representing the
deposited scent [23]. By doing so one remains faithful to the
biology of scent-marking species for which individuals react to
the encounter of foreign scent only if it is informative, that is only
if the deposition occurred before a certain time in the past [see
e.g., Alberts [24]].

As this approach requires tracking the movement and
interaction of the entire population to determine the time-
dependent position of each animal and the age of the scent
deposited, it was formulated as an individual based model [22].
This increased complexity, however, allows to consider animals
that do not have a den or a burrow as well as to study the
emergence of territorial patterns as a collective phenomena rather
than a two-body problem between neighboring individuals.

The collective movement model of territory formation,
termed the territorial random walk (TRW) model [23], lends
itself naturally to questions on the nature of the emerging
patterns, e.g., if macroscopic order and/or disorder phases appear
and how the microscopy of the movement and interaction rules
influence the emergence of themacroscopic patterns. Along these
lines a very recent investigation on the presence of order-disorder
phase transitions in the TRW model as a function of the scent
decay time and the population density has been conducted [25].
In that study it has been shown that the emerging territorial
patterns display a solid to liquid melting scenario analogous to
the one supported by the Kosterlitz-Thouless-Halperin-Nelson-
Young (KTHNY) theory of melting [26–28], with the appearance
of an intermediate partially ordered phase, called hexatic, due
to the importance of geometrical arrangements of the first
six neighbors.

Here we extend that analysis by considering a more realistic
movement model for the individual animals. We modify the
movement statistics of the animal by representing them as
correlated random walkers and we ask how the “microscopic”
movement of the individuals alters the collective dynamics of the
system and the order-disorder scenario.

The paper is organized as follows. In section 2 we introduce
themodel andwe present details of the stochastic simulations and
the thermalization of the system. The analysis has two parts to it.
At the “microscopic” level, that is at the level of the individuals,
we study the influence of the persistence of the walk on the
variance of the occupation probability, that is the mean square
displacement (MSD). This is presented in section 3 together with
an analysis of the spatial coverage of each walker in its own
territory. As we scale up to the level of the territories, we analyse
the effects of the animal movement statistics on the appearance
of ordered phases in the system. This is dealt with in section 4.
And finally section 5 presents concluding remarks.
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2. THE CORRELATED TERRITORIAL
RANDOM WALKER MODEL

The correlated territorial random walker (cTRW) model, an
extension of the TRW model, is a lattice-based collective
movement model where individuals move with some degree
of persistence, that is the movement direction at each time
step depends on the previous step direction. The model can be
run in any dimension and in discrete or continuous time. For
computational efficiency we have run it in discrete time and
we have only analyzed the 2D case. To study the structure of
the emerging territories it is important not to introduce spatial
frustration effects and we have thus used a triangular lattice with
periodic boundary conditions.

In the absence of interactions a walker’s steps are correlated.
To model the persistent random walk on a triangular lattice
we start from a continuous turning angle variable θ ∈

(−π ,π], and we create six bins of width π
3 for each of

the turns a walker can make. The angle θ is then drawn
randomly from a wrapped Cauchy distribution, C(θ) =
(

1− ρ2
) [

2π
(

1+ ρ2 − 2ρ cos(θ)
)]−1

where −π ≤ θ < π

and ρ is the persistence parameter, or the mean cosine of the
distribution. It indicates the tendency of a walker to continue
to move in the same direction from where it came from at the
previous step. In the limit ρ → 0, the distribution reduces to
C(θ) = 1

2π i.e., the turning angles are uniformly distributed and
the movement of the walker becomes random. The opposite limit
corresponds to the ballistic case C(θ) → δ(θ), where δ(θ) is the
Dirac delta function as ρ → 1.

Avoidance between individuals occurs as follows. As animals
deposit marks wherever they go, at each time step any individual
may encounter one of its own marks or may step on a lattice site
with one or multiple foreign marks. When an animal encounters
its own marks, no interaction occurs. On the other hand upon
encountering a foreign mark within a time period shorter or
equal to the so called active scent time TA from when it was
deposited, an interaction occurs. In order to avoid intruding
further into neighboring territories. An interaction consists of
one of three types of retreat at the following time step. These
are in order of preference, first toward a neighboring site with no
scent marks, second toward a neighboring site with the animal’s
own scent and lastly in the rare case where neither of the previous
options are available the animal moves randomly to one of the
six neighboring sites. At the subsequent step the animal reorients
itself with a new direction chosen at random between the six
potential choices.

As a result of the above interactions, foreign scents serve
as spatial barriers effectively making individuals avoid entering
further into others’ territories. At any given time t a territory
is represented by all the sites that contain an active scent
of a specific animal. Alternatively it represents the sites an
individual has visited within the interval (t − TA, t). Except at
the boundaries, where a given territory may overlap with one or
more neighboring ones, the avoidance of region recently visited
by other individuals create spatially segregated areas of exclusive
ownership for each animal.

The spatio-temporal dynamics of the territories can be fast
and slow depending on the choice of parameters, which are,
respectively, the inverse of the population density or specific
volume ν = L2/N where L2 is the domain size, the active
scent time TA and the persistence parameter ρ. With small
TA and large ν one observes highly mobile and morphing
territories as exclusion interactions are not very frequent. The
opposite happens with large TA and small ν as interactions occur
more frequently.

The dependence on the initial condition of the system
is dealt with by running simulations and waiting for the
system to thermalize before making any spatial and/or temporal
measurement on appropriate quantities of the system. The
thermalization is performed as follows. Two different initial
conditions are used. The first is initialized with the scent profile
tessellating the available space, i.e., the territory of each walker
is a perfect hexagon with all boundary lattice sites overlapping
with the neighboring territories. The second is initialized with
randomly distributed walkers with no scent profile. The two
are left to run until the standard deviation of the territory size
across the entire population converges to the same value in
the two cases. When that happens the system is deemed to
be thermalized.

Rather than exploring the dynamics for different population
density we have selected an intermediate value of ν, namely ν =

48 for multiple reasons. On one hand the rich (slow and fast)
dynamics can be attained within a limited range of TA values
so that disordered and ordered phases of the system could be
observed and studied as a function of ρ. For smaller population
densities, as interactions become more infrequent, it becomes
harder to observe spatial ordering and we have thus not explored
the regime with larger ν. On the other hand smaller values of ν
makes the computation very expensive and makes it harder to
reach thermalization except for very small values of TA.

The specific range and resolution of the parameter space ρ −

TA with ν = 48 has been as follows. The active scent time TA has
been chosen in the range between 89 and 1,424 with a resolution
of 89, except for specific cases detailed in the figure captions.
For the correlation parameter ρ we have used the values 0, 0.15,
0.35, 0.55, 0.75, and 0.95. To ensure that the territories, with
the appropriate choice of TA, can tessellate with equal hexagons
the 2D domain, the linear domain size (with periodic boundary
conditions) is set to L = 1200 with N = 3 × 104, which
corresponds to ν = 48, although we have also used smaller
domains e.g., in section 3.

3. PARTIAL “CAGING” AND SPATIAL
COVERAGE OF THE INDIVIDUAL
WALKERS

The spatial exclusion of the scented territories is a complex
collective phenomenon whereby an animal remains confined in
certain region of space depending on when and where foreign
marks as well as its own marks have been deposited. But this
confinement is only partial since a mark has a lifetime and
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FIGURE 1 | MSD 1(t) of a walker in a system with ν = 48 and L = 120, where each curve is a snapshot average. The active scent times (TA) for panels (A–C) are

712, 1,068, and 1,424, respectively. At short timescale the walkers tend to exhibit superdiffusion indicated by the 1(t) ∝ tα relationship where α > 1. For intermediate

timescales the dynamics of the walkers are governed by the mobility of their territories. High values of TA yield slowly moving territories and increase in caging caused

by neighbors. This caging saturation is highly sensitive to the correlation of the walkers (see Figure A2) while the time spent at the caging saturation before increasing

again is related to the coverage efficiency of the walker.

disappears unless an animal remarks that same location within
TA steps. Animals may thus be trapped for some time before
escaping. It is possible to observe such partial “caging” by plotting
the MSD as a function of time. We do so in Figure 1 where
we draw the normalized MSD for TA = 712, 1,068, and 1,424
for various values of ρ by averaging over all individuals in one
simulation (after the system has thermalized). The MSD plots for
TA = 1 and TA = 89 are additionally shown in Figure A1. We
term these snapshot averages to distinguish them from ensemble
averages when multiple copies of the system are run.

In moving from panel (a) to (b) and (c) in the figure, that is
by increasing TA, one clearly observes a reduced growth of the
curves at intermediate times for each value of ρ. Since a long-
time saturating MSD is expected whenever a walker roams inside
a finite domain [29], the flattening of the MSD at intermediate
times is a manifestation of increased caging from the neighbors.
As marks remain active for longer they make the territories
progressively less mobile and the MSD curves start increasing
again at later times.

A comparison of different values of ρ within the same panel
shows that this caging effect becomes stronger—curves remain
flat for longer time—for larger ρ except when one approaches
the ballistic regime. This is clearly visible in panel (c) when
TA = 1, 424 where this non-monotonicity as a function of
ρ can be seen more clearly. There also appears some non-
monotonic dependence of the intermediate-time saturation value
of the MSD, but this non-monotonicity is only apparent. As
we have verified and shown in Figure A2 in the appendix, the
intermediate saturation of the MSD is highly erratic as it is very
sensitive to the actual shape of the occupation probability for each
animal. We consider the time it takes the MSD curve to start
increasing again the more significant feature, and to understand
the non-monotonicity as a function of ρ we look in detail at the
walker spatial coverage.

Considering initially a fixed finite domain, for a walk to
improve spatial coverage it needs to reduce spatial oversampling,
which clearly happens by increasing ρ. However, in a confined
domain, when the degree of correlation is too large, the walker

would retrace back its steps thus increasing again the sampling of
lattice sites already visited. It is well known in fact that the mean
coverage time of an independent walker in a finite domain can be
minimized for intermediate values of walk persistence [30, 31].

To test whether this understanding suffices to explain the
non-monotonic ρ dependence of the caging effect, we study
the walkers’ spatial coverage in the cTRW model. As territories
are mobile and change shape, we cannot compare values of
coverage time for each walker. However, it is possible to obtain
information about the efficiency of spatial coverage by plotting
the average number of sites an individual covers in a time TA

as a function of ρ. The outcome is shown in Figure 2 where we
have plotted Cp, the fraction of sites covered in a time TA, for
different values of ρ and TA. From the figure it is evident that
the partial coverage of the terrain is maximal for intermediate
values of ρ and for TA sufficiently large. As TA affects the
size of the confining domain, the correlation parameter that
maximizes coverage depends on how long marks remain on
the terrain.

4. SPATIAL ORDERING OF THE EMERGING
TERRITORIES

The interaction dynamics of the individual walkers have a
long lasting effects on the spatial structure that emerges in the
population, as was shown in the case of the simpler TRW model
[25]. The spatial ordering of the emerging territories is dictated
by the “caging” effect whose size corresponds to the size of the
territory. To analyse the spatial ordering as a function of ρ and
TA we look at the system with a coarser temporal and spatial
resolution because no order is present at distances smaller than
the size of the territory. We neglect the dynamics of the walkers
and look at the territory centroids over a TA time resolution.
As territorial centroids are calculated only by considering the
mean position of all lattice sites with active scent every TA

steps, we obtain a coarse-grained (continuous-space) mesoscopic
time-dependent description of the cTRWmodel.

Frontiers in Physics | www.frontiersin.org 4 September 2019 | Volume 7 | Article 12964

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Sarvaharman et al. Spatial Ordering and cTRW Model

FIGURE 2 | The fraction of the territory defined at time t covered within TA
time steps by walkers as a function of the correlation parameter ρ, and the

active scent time TA. For each pair of ρ and TA a snapshot average is taken

on a thermalized system with L = 120 and ν = 48. For very low TA the

territories are highly volatile, i.e., within a TA time window the territories are no

longer the ones defined at time t which results in low Cp independent of ρ. For

higher values of TA the territories are less mobile and we see the maximization

of territory coverage for an intermediate values of ρ.

4.1. The Pair Correlation Function
For a coarse measure of spatial ordering, we plot in Figure 3 the
pair correlation function [32], g(r) = ν〈

∑

i6=0 δ(|Er − Eri|)〉, where
δ(z) is the Dirac delta function, as a function of the centroid
distance r = |Er| for different ρ and TA values. In particle systems
the pair correlation function gives the likelihood of finding a
neighboring particle as a function of distance relative to the ideal
gas case. In an ideal gas, g(r) equals 1 for any r as individual
particles do not interact with each other and are equally likely
to be anywhere in space. A value of zero indicates instead
the impossibility of having another particle at that distance in
space, e.g., for hard-core interaction of particles of radius σ , g(r)
remains zero for all distances up to r = 2σ . Except for extremely
small values of TA, the emerging territories in our model have
an effective hard core interaction as can be observed for any of
the curves in Figure 3. Those curves remain close to zero up to
2σ where σ = a

√
ν/2, with a the lattice spacing, represents the

distance between two evenly spaced centroids when hexagonal
territories tessellate the entire domain (see explicit calculation for
σ in Heiblum Robles and Giuggioli [25]). A rise from zero to
the value one with no evident oscillations would be indicative
of a gas with purely hard-core particles. On the other hand a
rise beyond the value one with subsequent damped oscillations
toward one represents the arrangement of other particles into
“shells” of neighbors with the decay pointing to the radial
distance over which such spatial ordering persists. Two phases
may have qualitatively these characteristics: a liquid but also a
hexatic phase. While it is not possible to distinguish a liquid

from a hexatic phase from a pair correlation plot, it is possible
to determine the appearance of a solid phase because the shells of
neighbors are not arranged anymore radially. As a solid possesses
hexagonally arranged particles, the radial symmetry is not present
anymore and the smoothness of peaks and troughs in the pair
correlation function is lost.

A feature that can be evinced by looking at Figure 3 is that
the solid phase for sufficiently large TA appears for intermediate
values of persistence ρ. This is particularly evident in panel (b)
where the system has radial symmetry at ρ = 0, but then loses it
as it approaches ρ = 0.3, and then regains it beyond ρ = 0.55. In
panel (c) although the system is already in a solid phase at ρ = 0,
the shape of the various g(r) plots also points to a progressive loss,
even though only slightly, of radial symmetry as ρ is increased
to 0.55, whereas radial symmetry is present when ρ = 0.75.
This interesting dependence of the appearance of a solid phase
depending both on the value of ρ and TA matches qualitatively
the region in parameter space where the coverage efficiency of an
individual is maximized, displayed earlier in Figure 2.

The partial coverage analysis in conjunction with the pair
correlation plots indicate that an animal, for a given size of its
own territory, that is for a given value of the active scent time
TA, may select the most appropriate correlation statistics to be
able to remark the majority of the scented terrain in TA steps.
When that occurs, it implies that the neighbors are kept outside
of the terrain that the animal defends. This in turns makes the
territories less mobile, reducing the chance of having territory
shape far from hexagonal and with large variability in sizes, and
the entire population possess a bigger spatial order.

While Figures 2, 3 brings good evidence on how the
microscopy of the movement statistics affect the emerging spatial
order of the territories for small and intermediate ρ values, it does
not seem a viable explanation for large values of ρ. From Figure 2

one would expect in fact a very high order also for ρ = 0.95 and
high TA, but that does not appear to be the case in Figure 3C.
However, the system may still possess a great degree of order if
it were in an hexatic phase. To determine if that is the case, we
first try to use appropriate order parameters that should help us
to map out more precisely when the system is in a solid phase as
well as to distinguish between a liquid and a hexatic phase as a
function of ρ and TA.

4.2. Order Parameters
In Heiblum Robles and Giuggioli [25] some of the present
authors have brought support for a continuous solid-hexatic-
liquid transition akin to the KTHNY theory of melting as a
function of TA in the TRWmodel. Starting from a very highTA in
a perfect crystal configuration, by decreasing TA below a certain
value makes the system loose translational order even though
it retains orientational order and no phase coexistence has
been observed, the transition being continuous. With a further
decrease of TA the system looses also the orientational order to
become liquid. We have extended these results by constructing
the orientational and translational order parameters as a function
both of ρ and TA.

We use the so-called local bond-orientational parameter [32]

ψ6(ℓ) =
1
Nℓ

∑Nℓ
j exp(i 6θℓ,j), where θℓ,j is the angle that particle ℓ,
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FIGURE 3 | The pair correlation function g(r) for a system with L = 1, 200, ν = 48. Moving from panel (A–C), the TA values are 712, 1,068, and 1,424, respectively.

Within each panel, the g(r) function has been shifted upwards from zero for visualization purposes. For the case ρ = 0 we have used the results from a previous study

and as such the TA values are not precisely the same as the one used for the cases when ρ 6= 0; they are 707, 1,070, and 1,409 for panels (A–C), respectively. These

differences do not take away from the qualitative differences presented here.

FIGURE 4 | Change in the local bond orientational parameter ψ6(ℓ) for each territory centroid located at Erℓ as a function of ρ and TA. The color of the centroid is

determined by arg(ψ6(ℓ)), while the size of each centroid is proportional to the size of its territory. The system parameters are L = 1, 200 and ν = 48. Each subplot

represents subdomain with width Ls = 50, a small fraction of the L2 domain, taken at a random location and at some random time after thermalization.

located at Erℓ, makes with the j-th neighbor relative to a reference
axis, and the j-summation is over the Nℓ neighbors, the latter
obtained through the Voronoi construction [33]. In a perfect
crystal, Nℓ = 6 and θℓ,j = π

6 , hence ψ6(ℓ) = 1. In Figure 4

we visualize qualitatively the changes in orientational order of
the system by plotting the argument of the orientational order
parameter, arg(ψ6), for each territory centroid. The orientational
ordering of the system, that is when ψ6 → 1, corresponds

to when arg(ψ6) → 0. From the various subplots one
clearly notices that for a given ρ, if one increases TA, the
hexatic phase does not always appear. It is also evident that
for TA < 800 the system cannot reach the hexatic phase
independently of the correlation parameter. On the other hand
for intermediate values of TA, e.g., for a given TA in the range
800–1,100, the system is in a liquid state but then becomes
eventually hexatic with sufficiently large ρ, and then liquid again
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FIGURE 5 | Change in the local translational order parameter ψt (ℓ) for each territory centroid located at Erℓ as a function of ρ and TA for the system parameters utilized

in Figure 4. The color of the centroid is determined by arg(ψt (ℓ)), while the size of each centroid is proportional to the size of its territory. Each subplot represents

subdomain with width Ls = 50, a small fraction of the L2 domain, taken at a random location and at some random time after thermalization.

with further increase in ρ. These findings support the pair
correlation analysis depicted in Figure 3 and, in addition, they
might also give a better idea of whether the system is in an
hexatic or a liquid phase, which was not possible by looking
only at g(r).

Within the range of where the bond-orientational parameter
appears to indicate a hexatic phase, the system may actually be
in a solid phase. This can be determined by analyzing the local
translational order parameter ψt(ℓ) = exp(i EG ·1Erℓ), where EG is
one of the two reciprocal vectors of the simple hexagonal lattice
and 1Erℓ is the displacement of the ℓ-th territorial centroid from
its ideal lattice site if it were a perfect crystal (ψt(ℓ) = 1). The
result of such an analysis is shown in Figure 5 where we plot the
argument of the local translational order parameter arg(ψt(Erℓ))
for each territory. The subplots point to the appearance of a
solid phase for intermediate values of ρ and sufficiently large
values of TA, which is when the system is also hexatic when one
compares (Figure 4).

Given the limited resolution we have employed for the
parameters of the system, ρ in particular, it is hard to identify
the precise region in parameter space where phase transitions
occur. However, by comparing Figures 4, 5 a small hexatic region
may exist in a narrow region of parameter space, potentially
for 1, 100 . TA . 1, 300 when ρ = 0.15, for 900 .

TA . 1, 200 when ρ = 0.35, and for 900 . TA . 1, 200
when ρ = 0.55. This hexatic region should thus be limited on
the left by the liquid-hexatic transition and on the right by an
hexatic-solid transition.

To try to confirm these qualitative findings we
construct the global bond-orientational order parameter
96 =

∣

∣(1/N)
∑

ℓ ψ6(ℓ)
∣

∣ and the global translational order
parameter 9t =

∣

∣(1/N)
∑

ℓ ψt(ℓ)
∣

∣ and calculate their

susceptibility, χ6 = N〈(96 − 〈96〉)
2〉 and χt = N〈(9t − 〈9t〉)

2〉

[32, 34], respectively, as a function of TA. In Figure 6 we show
the outcome of that analysis, which does not, however, help us
to identify precisely the transition points. We thus turn to the
analysis of topological defects to help us pinpoint the hexatic
region in phase space.

4.3. Topological Defect Analysis
Two types of topological defects accompany the KTHNY
melting scenario, namely dislocations and disclinations.
Dislocations are translational defects, which destroy long range
translational order when are isolated or free. On the other hand,
disclinations are orientational defects, which destroy the long
range orientational order when they are free. In a perfect 2D
hexagonal crystal all atoms have six neighbors. Disclination cores
have only 7 or more neighbors whereas antidisclination cores
have 5 or less neighbors [35, 36]. For a 2D crystal, an isolated
tightly bound 5–7 fold disclination pair is a dislocation [32].
In an imperfect solid, dislocation defects are always found in
pairs because they do not destroy long range order as shown in
Figure C1 for our cTRWmodel.

According to the KTHNY theory of defect inducedmelting, by
increasing temperature the system first undergoes a continuous
transition from a solid where only pairs of dislocations are
possible, to a hexatic phase where the pairs of dislocations
“unbind” spawning free dislocations (see in Figure C1 an
example of how a free disclination destroys the orientational
order in the cTRW model). These free dislocations result in
the loss of long range translational order found in crystals.
With further increase in temperature the system then undergoes
another continuous transition from hexatic to liquid where the
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FIGURE 6 | The susceptibilities χ6 and χt of the global order parameters 96, 9t, respectively. A system with parameters L = 1, 200 and ν = 48 was subdivided into

square subdomains of widths Lw. For each of these subdomains the global order parameters and the susceptibilities are computed and then a variance of those

measurements is taken.

dislocations themselves unbind resulting in free disclinations and
the loss of long range orientational order [37, 38].

We analyse these topological defects in our cTRW model by
considering their fraction λ in the system shown in Figure 7.
For each type of defect λ is their number relative to the total
number of centroids. Looking sequentially at panels (a) to (d) in
Figure 7 one can see that as free disclinations drop significantly
there is a sharp increase of dislocations signaling the onset of
the liquid-hexatic transition at around, respectively, TA = 870,
890, 712, and 712. The hexatic phase appears once there are
no free disclinations in the system. The faster decay of the
free dislocations vs. the dislocation pairs that is observed by
increasing TA is indicative of the fact that free dislocations
are binding together to form pairs of dislocations. Once free
dislocations disappear the system has entered the solid phase. By
looking at these values of TA when free disclinations disappear
(hexatic) and free dislocations disappear (solid) we are able to
identify the hexatic region in theTA−ρ parameter space as shown
in Table 1.

Once in the solid phase with further increase of TA the system
approaches progressively the perfect crystalline arrangement by
shedding paired dislocations. For the case ρ = 0.75 there is the
possibility that ordered phases exist but one ought to look at
values of TA beyond those considered here. On the other hand,
when ρ = 0.95 the defects show no sign of decaying. This results
from the breaking down of the centroid coarse-graining analysis,
which is further discussed in the following section.

4.4. Territory Fragmentation
While the previous sections have shed light on the links between
the movement statistics of the walkers and the phases of the
territorial system for ρ ≤ 0.55, we have a less clear picture
of what occurs for large ρ. While stronger correlation implies
that an animal would cross its own territory more quickly, it
does not necessarily mean that the terrain is covered more
efficiently. On the contrary the coverage efficiency is expected
to decrease beyond a certain value of ρ as demonstrated in the
ideal scenario of Figure B1. With neighboring individuals not
covering efficiently their own territories, an animal spending
more time at the boundaries has more chance to carve away
part of the terrain recently occupied by its own neighbors. In
so doing the territorial shapes become less and less convex as ρ
is increased.

With further increase in ρ at any given time an animal
may have its own scented territory separated into multiple
islands, which are sets of contiguous lattice sites that contain
the scent of one walker only. Those islands where a walker is
not present are cut off quickly from its owner and get absorbed
by neighboring territories. While islands get created and decay
away continuously, we expect the rate at which they form to
become larger than the rate at which they dissolve beyond a
certain value of ρ. When that happens the centroid of an animal
territory could easily be located in between multiple islands, in
areas that are also covered by the scent of other individuals, or
even outside its own scented region when the territory shape
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FIGURE 7 | The fraction, λ of each of the defect types considered as a function of TA for thermalized systems with parameters L = 1, 200 and ν = 48. The absence

of free disclinations marks the transition from liquid to hexatic phase, while the absence of free dislocations is indicative of the system having transitioned into the solid

phase from the hexatic phase. The panels (A–F) correspond, respectively, to ρ = 0.00, 0.15, 0.35, 0.55, 0.75, and 0.95. Defects with different number of neighbors

are at least two orders of magnitude smaller than the ones drawn and we have omitted plotting them.

TABLE 1 | Approximate phase regions in TA for each value of ρ extracted from

the appearance/disappearance of topological defects (see Figure 7).

ρ Hexatic region (TA) Solid region (TA)

0.00 1273–1409 >1409

0.15 1157–1335 >1335

0.35 1068–1157 >1157

0.55 979–1157 >1157

Within the hexatic region there are free dislocation defects but no free disclination defects,

whereas in the solid region there are pairs of dislocation defects but no free dislocation

defects.

is highly concave. In these cases the centroid analysis, utilized
in previous sections to identify the phases of the system, is not
appropriate any more and there are no biological meaningful
ways to define a territorial centroid.

We can, however, quantify the degree of fragmentation as
a function of the system parameters by considering the ratio
κ = N/I where N is the number animals in the system and
I is the total number of islands. This fragmentation index is
plotted in Figure 8. For low TA values, traces of past presence
of an individual get lost quickly, and thus it is not so frequent
for an animal to encounter foreign scent. While such encounters
increase as TA gets larger, potentially reducing I, they are rare
and are thus relatively independent of how straight the animal
movement trajectories are. Beyond a certain value of TA foreign
scent encounter events become very frequent and the rate of
increase is affected by the shape of the territories. For ρ .

0.75 the encounters occur mainly at boundary sites and thus
further increase in TA does not change the number of islands
in the system, which remains at κ = 1 when the number of

FIGURE 8 | The fragmentation index κ as a function of the active scent time

TA for thermalized systems with parameters L = 1, 200 and ν = 48. With

ρ . 0.75, at low TA values the territories are concave and as a result are more

prone to fragmentation resulting in low κ. As the TA is increased, the territories

become more convex becoming more resistant to fragmentation resulting in

κ = 1 for TA & 800. On the other hand, for ρ & 0.75 fragmentation persists in

the system regardless of TA.

islands corresponds to the number of territories. This is not
the case for ρ > 0.75 where the number of islands becomes
larger than N.

The appearance of fragmented territories for ρ & 0.75 as
shown in Figure 8 helps us interpret Figures 4, 5 when ρ ≥ 0.5,
which indicated the presence of a fluid for any TA. In light of
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Figure 8 it is clear that we cannot conclude that for larger TA

no ordered phase appears because the territory centroids are
not an appropriate coarse grained representation of the animal
scented territories. Although we believe that an analysis that
takes into account the actual shape of the territories might
help us develop other ways to identify order in fragmented
terrain, we have decided not to perform such investigation
here given the heavy computational cost that such a study
would entail.

5. CONCLUSIONS

Territoriality is a common behavior in natural populations as
it allows individual animals or family units to defend resources
being food, shelter, or mates.We have studied here the case where
the mechanisms through which animals defend their resources
is via leaving trace of their passage on the terrain. For our
theoretical analysis we have used a collective movement model
recently employed to study red foxmovement data [39] called the
territorial random walk model. We have extended its prediction
by determining how the individual movement statistics affect
territory formation at the population level. And we have focused
in particular on relaxing the diffusive assumption allowing
the walkers to have a variable degree of correlation in their
movement steps.

By studying the main parameters of the systems, namely the
degree of correlation of the walk ρ and the active scent time
TA, we have brought evidence pointing to the existence of the
KTHNY melting scenario with liquid, hexatic and solid phases.
We have identified the coverage efficiency of an individual
territory, which is controlled by ρ and TA, as the micro level
behavior that explains why different phases of territories are
present at the macro level.

As the movement of the individuals becomes more correlated
i.e., by increasing ρ from 0, they increase territory coverage.
Individuals are able to re-scent more quickly and more readily
defend their territory from neighbors. Territories are less mobile
and the whole system becomes more ordered.

Beyond an intermediate degree of correlation, that is for
high values of ρ, the walkers are not only inefficient at
covering their own territory, but also spend more time at the
borders. Their increased presence at the borders gives them
more opportunities to take over neighboring territories. This

results in large variation in the shape and size of territories
and ultimately their fragmentation. In this scenario, the coarse
grained approximation is no longer suitable to determine the
spatial ordering.

Moreover, we have demonstrated how it may be useful to look
at the presence of different types of topological defects to pinpoint
phase transitions in the correlated territorial randomwalkmodel.
As thermodynamic limits represent a big abstraction from the
realm of biological systems we believe that this latter part of our
analysis will be instrumental to determine empirically the spatial
order of an actual population of territorial animals. With the
recent development in animal tracking [40] it is in fact realistic to
have in the near future simultaneous highly resolved movement
data of neighboring territorial individuals from which defect
densities and movement correlation statistics can be extracted.

Applications of this study extend beyond an ecological
context. For example, in multi-robot online area coverage [31]
tasks such as surveillance, search and harvesting [41–44] involve
coordinating a large number of robots. In such cases the
natural approach is to use a decentralized controller [45]. The
observations and insights of this study may help refine stigmergic
control systems that have been successfully demonstrated in
previous studies [46, 47]. As an avenue for future research,
it might be interesting to study the difference of the cTRW
model on scale-free and small-world networks and compare
it the bioinspired machine learning models used for semi-
supervised learning [48, 49].

DATA AVAILABILITY

The datasets generated for this study are available on request
to the corresponding author. Data used can be found at
https://www.dropbox.com/sh/06ts5rwb922yqwk/AADeY66Q_
7fqn5axMKcCK-Tra?dl=0.

AUTHOR CONTRIBUTIONS

LG designed the study and wrote the paper. SS and AH created
the computational code. SS analyzed the data.

FUNDING

LG and SS acknowledge funding from, respectively, the
Engineering and Physical Research Council Grant nos.
EP/I013717/1 and S108151-111.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphy.
2019.00129/full#supplementary-material

REFERENCES

1. Goychuk I, Kharchenko VO, Metzler R. How molecular motors work

in the crowded environment of living cells: coexistence and efficiency

of normal and anomalous transport. PLoS ONE. (2014) 9:e91700.

doi: 10.1371/journal.pone.0091700

2. Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi

H, et al. Paradigm shift of the plasma membrane concept from the

two-dimensional continuum fluid to the partitioned fluid: high-speed

single-molecule tracking of membrane molecules. Annu Rev Biophys

Biomol Struct. (2005) 34:351–78. doi: 10.1146/annurev.biophys.34.040204.

144637

3. Kenkre VM, Giuggioli L, Kalay Z. Molecular motion in cell

membranes: analytic study of fence-hindered random walks.

Phys Rev E. (2008) 77:051907. doi: 10.1103/PhysRevE.77.

051907

Frontiers in Physics | www.frontiersin.org 10 September 2019 | Volume 7 | Article 12970

https://www.dropbox.com/sh/06ts5rwb922yqwk/AADeY66Q_7fqn5axMKcCK-Tra?dl=0
https://www.dropbox.com/sh/06ts5rwb922yqwk/AADeY66Q_7fqn5axMKcCK-Tra?dl=0
https://www.frontiersin.org/articles/10.3389/fphy.2019.00129/full#supplementary-material
https://doi.org/10.1371/journal.pone.0091700
https://doi.org/10.1146/annurev.biophys.34.040204.144637
https://doi.org/10.1103/PhysRevE.77.051907
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Sarvaharman et al. Spatial Ordering and cTRW Model

4. Dieterich P, Klages R, Preuss R, Schwab A. Anomalous dynamics

of cell migration. Proc Natl Acad Sci USA. (2008) 105:459–63.

doi: 10.1073/pnas.0707603105

5. Viswanathan GM, da Luz MGE, Raposo EP, Stanley HE. The Physics of

Foraging: An Introduction to Random Searches and Biological Encounters.

Carmbridge: Cambridge Univ. Press (2011).

6. Boyer D, Crofoot MC, Walsh PD. Non-random walks in monkeys and

humans. J Roy Soc Interface. (2011) 9:842–7. doi: 10.1098/rsif.2011.0582

7. Falcón-Cortés A, Boyer D, Giuggioli L, Majumdar SN. Localization transition

induced by learning in random searches. Phys Rev Lett. (2017) 119:140603.

doi: 10.1103/PhysRevLett.119.140603

8. Goldstein S. On diffusion by discontinuous movements, and on the telegraph

equation. Q J Mech Appl Math. (1951) 4:129–56. doi: 10.1093/qjmam/4.2.129

9. Codling EA, Planck MJ, Benhamou S. Random walk models in biology. J Roy

Soc Interface. (2008) 95:813–34. doi: 10.1098/rsif.2008.0014

10. Benhamou S. Of scales and stationarity in animalmovements. Ecol Lett. (2014)

17:261–72. doi: 10.1111/ele.12225

11. Brown JL, Orians GH. Spacing patterns in mobile animals. Ann Rev Ecol Syst.

(1970) 1:239–62. doi: 10.1146/annurev.es.01.110170.001323

12. Burt WH. Territoriality and home range concepts as applied to mammals. J

Mammal. (1943) 24:346–52.

13. Maher CA, Lott DF. Definitions of territoriality used in the study of variation

in vertebrate spacing systems. Anim Behav. (1995) 49:1581–97.

14. Adams ES. Approaches to the study of territory size and shape. Ann Rev Ecol

Syst. (2001) 32:277–303. doi: 10.1146/annurev.ecolsys.32.081501.114034

15. Davies NB, Houston AI. Territory economics. In: Krebs JR, Davies NB,

editors. Behavioural Ecology: An Evolutionary Approach, 2nd ed. Oxford:

Blackwell Sci. (1984). p. 148–69.

16. Gosling LM, Roberts SC. Scent-marking by male mammals: cheat-proof

signals to competitors and mates. Adv Stud Behav. (2001) 30:169–217.

doi: 10.1016/S0065-3454(01)80007-3

17. Grassé PP. La reconstruction du nid et les coordinations interindividuelles

chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie:

essai dÕinterprétation du comportement des termites constructeurs. Insec

Soc. (1959) 6:41–83.

18. Theraulaz G, Bonabeau E. A brief history of stigmergy. Artificial Life. (1999)

5:97–116.

19. Giuggioli L, Potts JR, Rubenstein DI, Levin SA. Stigmergy, collective actions,

and animal social spacing. Proc Natl Acad Sci USA. (2013) 110:16904–9.

doi: 10.1073/pnas.1307071110

20. Lewis MA, Murray JD. Modelling territoriality and wolf-deer interactions.

Ecology. (1993) 366:738–40.

21. Moorcroft PR, Lewis MA. Mechanistic Home Range Analysis. Princeton, NJ:

Princeton University Press (2006).

22. Giuggioli L, Potts JR, Harris S. Animal interactions and the

emergence of territoriality. PLoS Comput Biol. (2011) 7:e1002008.

doi: 10.1371/journal.pcbi.1002008

23. Giuggioli L, Kenkre VM. Consequences of animal interactions on their

dynamics: emergence of home ranges and territoriality.Mov Ecol. (2014) 2:20.

doi: 10.1186/s40462-014-0020-7

24. Alberts AC. Constraints on the design of chemical communication systems in

terrestrial vertebrates. Am Nat. (1992) 139:S62–89.

25. Heiblum Robles A, Giuggioli L. Phase transitions in stigmergic territorial

systems. Phys Rev E. (2018) 98:042115. doi: 10.1103/PhysRevE.98.042115

26. Halperin BI, Nelson DR. Theory of two-dimensional melting. Phys Rev Lett.

(1978) 41:121–4.

27. Kosterllitz DJ, Thouless JM. Ordering, metastability and phase transitions in

two-dimensional systems. J Phys C Solid State Phys. (1973) 1181:1181–203.

28. Young AP. Melting and the vector Coulomb gas in two dimensions. Phys Rev

B. (1979) 19:1855–66.

29. Giuggioli L, Abramson G, Kenkre VM, Parmenter RR, Yates TL. Theory

of home range estimation from displacement measurements of animal

populations. J Theor Biol. (2006) 240:126–35. doi: 10.1016/j.jtbi.2005.09.002

30. Chupeau M, Bénichou O, Voituriez R. Cover times of random searches. Nat

Phys. (2015) 11:844. doi: 10.1038/nphys3413

31. Giuggioli L, Arye I, Heiblum Robles A, Kaminka GA. From ants to birds:

a novel bio-inspired approach to online area coverage. In: Groß R, Kolling

A, Berman S, Frazzoli E, Martinoli A, Matsuno F, et al., editors. Distributed

Autonomous Robotic Systems: The 13th International Symposium. Cham:

Springer International Publishing (2018). p. 31–43.

32. Binder K, Kob W. Glassy Materials and Disordered Solids: An Introduction to

Their Statistical Mechanics. Singapore: World scientific (2011).

33. Fraser DP, Zuckermann MJ, Mouritsen OG. Simulation technique for hard-

disk models in two dimensions. Phys Rev A. (1990) 42:3186.

34. Jaster A. Computer simulations of the two-dimensional melting transition

using hard disks. Phys Rev E. (1999) 59:2594.

35. Harris WF. Disclinations. Sci Ame. (1977) 237:130–45.

36. DeWit R. Relation between dislocations and disclinations. J Appl Phys. (1971)

42:3304–8.

37. Qi W, Gantapara AP, Dijkstra M. Two-stage melting induced by dislocations

and grain boundaries in monolayers of hard spheres. Soft Matter. (2014)

10:5449. doi: 10.1039/C4SM00125G

38. Quinn RA, Goree J. Experimental test of two-dimensional melting

through disclination unbinding. Phys Rev E. (2001) 64:051404.

doi: 10.1103/PhysRevE.64.051404

39. Potts JR, Harris S, Giuggioli L. Quantifying behavioral changes in territorial

animals caused by sudden population declines. Am Nat. (2013) 182:E73–82.

doi: 10.1086/671260

40. Nathan RM, Giuggioli L. A milestone for movement ecology research. Move

Ecol. (2013) 1:1. doi: 10.1186/2051-3933-1-1
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Transient Anomalous Diffusion in
Run-and-Tumble Dynamics
M. Reza Shaebani* and Heiko Rieger*

Department of Theoretical Physics, Center for Biophysics, Saarland University, Saarbrücken, Germany

We study the stochastic dynamics of a particle with two distinct motility states. Each one

is characterized by two parameters: one represents the average speed and the other

represents the persistence quantifying the tendency to maintain the current direction of

motion. We consider a run-and-tumble process, which is a combination of an active

fast motility mode (persistent motion) and a passive slow mode (diffusion). Assuming

stochastic transitions between the two motility states, we derive an analytical expression

for the time evolution of the mean square displacement. The interplay of the key

parameters and the initial conditions as for instance the probability of initially starting in

the run or tumble state leads to a variety of transient regimes of anomalous transport on

different time scales before approaching the asymptotic diffusive dynamics. We estimate

the crossover time to the long-term diffusive regime and prove that the asymptotic

diffusion constant is independent of initially starting in the run or tumble state.

Keywords: anomalous diffusion, run-and-tumble, persistent random walk, active motion, transient dynamics

1. INTRODUCTION

Many transport processes in nature involve distinct motility states. Of particular interest is the
run-and-tumble process, which consists of alternating phases of fast active and slow passive
motion. Prominent examples are bacterial species that swim when their flagella form a bundle and
synchronize their rotation. The bundle is disrupted and swimming stops when some of the flagella
stochastically change their rotational direction. In the absence of rotating bundle, the bacterium
moves diffusively until it manages to re-form the bundle and activelymove forward again [1, 2]. The
run-and-tumble dynamics is beneficial for bacteria as it allows them to react to the environmental
changes by adjusting their average run time or speed [3], change their direction of motion, perform
an efficient search [4–7], or optimize their navigation [8, 9].

Another example is the motion of molecular motors along cytoskeletal filaments. When motor
proteins bind to filaments, they perform a number of steps until they randomly unbind and
experience diffusion in the crowded cytoplasm.While the efficiency of long-distance cargo delivery
requires high motor processivity (i.e., the tendency to continue the motion along the filament), the
slow diffusive mode during unbinding periods is also vital for cellular functions which depend on
the localization of the reactants [10–13]. The processivity of the motors (and thus the unbinding
probability) depends on the type of motor and filament [14, 15] and the presence of particular
proteins or binding domains in the surrounding medium [16–18]. On the other hand other factors,
such as cell crowding, may affect the binding probability. Therefore, the switching probabilities
between active run and tumble states are generally asymmetric. By ignoring the microscopic details
of stepping on filaments, coarse-grained random walk models have been employed to study the
two-state dynamics of molecular motors [19–22]. Dentritic immune cells also move persistently
(migration phase) interrupted by slow phases for antigen uptake [23]. There have been many other
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locomotive patterns in biological and non-living systems
investigated via models with distinct states of motility [24–33].
For instance, the problem of searcher proteins finding a specific
target site over a DNA strand has been studied by multi-state
stochastic processes [34–36].

The particle trajectories obtained from experiments often
comprise a set of recorded positions of the particle, from
which the successive directions of motion can be deduced.
These directions are correlated on short time scales for active
motions. However, the trajectory eventually gets randomized and
the asymptotic dynamics is diffusive, with a diffusion constant
Dasymp that depends on the particle velocity and persistency
[37, 38]. One expects a similar long-term behavior for a mixture
of run and tumble dynamics as well. The question arises how the
transient short time dynamics, the crossover time to asymptotic
diffusion, and Dasymp depend on the run and tumble velocities
and the switching probabilities between the two states. It is also
unclear how the overall dynamics is influenced by the choice of
the initial conditions, like the probabilities to start either in the
run or tumble state, which are parameters that can be extracted
from experimental data.

Here, we present a two-state model for the run-and-tumble
dynamics with spontaneous switchings between the states of
motility. By deriving an analytical expression for the time
evolution of the mean square displacement, we show how
the interplay between the run and tumble velocities, the
transition probabilities, and the initial conditions leads to various
anomalous transport regimes on short and intermediate time
scales.We particularly clarify how the probability of starting from
run or tumble state diversifies the transient anomalous regimes of
motion, and verify that the long-term diffusion constant Dasymp

does not depend on the choice of the initial conditions.

2. MODEL

We develop a stochastic model for the run-and-tumble dynamics
with spontaneous transitions between the motility states. We
consider a two-state random walk in discrete time and
continuous space with the following characteristics: The run
phase is a persistent random walk with persistency p and
mean speed vR . The dynamics in the tumble phase is an
ordinary diffusion with the mean speed vT . The asymmetric
transition probabilities from run to tumble phase and vice
versa are denoted, respectively, by f

R→T
and f

T→R
. As a result

of constant transition probabilities, the run and tumble times
are exponentially distributed in our model. This restriction
can be relaxed by introducing time-dependent transition
probabilities (Shaebani and Sadjadi, submitted). To characterize
the persistency of the run phase, we use the probability
distribution FR (θ) of directional changes along the trajectory in
the run phase. The directional persistence can be characterized
by the persistency parameter p=

∫ π

−π
dθ eiθFR (θ), which

leads to p=〈cos θ〉 for symmetric distributions with respect
to the arrival direction. Thus, p ranges from 0 for pure
diffusion to 1 for ballistic motion and reflects the average
curvature of the run trajectories. Similarly, we define FT (θ) for

the probability distribution of directional changes along the
trajectory in the tumble phase, and F

R→T
(θ) and F

T→R
(θ) for

the directional changes when switching between the states occurs
(see Figure 1A). In the tumble phase (i.e., an ordinary diffusion),
the probability distribution of directional changes is isotropically
distributed (FT (θ)=

1
2π ), leading to a zero persistency.

The run-and-tumble stochastic process can be described in
discrete time by introducing the probability densities PRt (x, y|α)
and PTt (x, y|α) to find the particle at position (x, y) arriving
along the direction α at time t in the run and tumble states,
respectively. α is defined with respect to a given reference
direction, as shown in Figure 1B. Denoting the time interval
between consecutive recorded positions of the particle by 1t,
the following set of master equations describe the dynamical
evolution of the probability densities

PR
t+1t

(x, y|α) =

(1−f
R→T

)

∫ π

−π

dγ FR (α−γ )PRt (x−vR1t cosα, y−vR1t sinα|γ )

+f
T→R

∫ π

−π

dγ F
T→R

(α−γ )PTt (x−vR1t cosα, y−vR1t sinα|γ ),

PT
t+1t

(x, y|α) =

(1−f
T→R

)

∫ π

−π

dγ FT (α−γ )PTt (x−vT1t cosα, y−vT1t sinα|γ )

+f
R→T

∫ π

−π

dγ F
R→T

PRt (x−vT1t cosα, y−vT1t sinα|γ ).

(1)
Each of the two terms on the right-hand side of the equations
represents the possibility of being in one of the two states in
the previous time step (see Figure 1B for the particle trajectory
during two successive steps). The probability of starting the
motion in the run or tumble phase is denoted by PR0 and PT0 ,
respectively (with PT0=1−PR0 ). The change in the direction of
motion θ=α−γ with respect to the arrival direction is randomly
chosen according to the turning-angle distribution FR (θ) or FT (θ)
in the run or tumble state, respectively. Both distributions are
symmetric with respect to the arrival direction (i.e., left-right
symmetric in 2D). We assume for simplicity that the directional
change during the transition between the two states follows the
turning-angle distribution of the new state, corresponding to
F
R→T

(θ)=FT (θ) and F
T→R

(θ)=FR (θ). However, in general one
should consider independent turning-angle distributions with
non-zero mean for F

R→T
(θ) and F

T→R
(θ) as, for instance, a sharp

change in the direction of motion of E. coli or Bacillus Subtilis
when switching from tumbling to running is observed [1, 2, 6].

The total probability density Pt+1t(x, y|α) to find the particle
at position (x, y) arriving along the direction α at time t+1t is
given by Pt+1t(x, y|α) = PRt+1t(x, y|α) + PTt+1t(x, y|α). Using
the Fourier transform of the probability density in each state h
(h∈{R,T}), defined as

Ph
t+1t

(k|m) ≡

∫ π

−π

dα eimα

∫

dy

∫

dx eik·rPh
t+1t

(x, y|α), (2)
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FIGURE 1 | (A) A sample trajectory with run-and-tumble dynamics. Typical turning angles for different types of turning-angle distributions introduced in the model are

shown. (B) Trajectory of the walker during two successive steps.

the Fourier transform of the total probability density is given by
Pt+1t (k|m) = PR

t+1t
(k|m) + PT

t+1t
(k|m), from which the moments

of displacement can be calculated as

〈xj1yj2〉(t+1t) ≡

∫

dα

∫

dy

∫

dx xj1yj2Pt+1t (x, y|α)

=(−i)j1+j2
∂ j1+j2Pt+1t (kx, ky|m = 0)

∂k
j1
x ∂k

j2
y

∣

∣

∣

∣

∣

(kx ,ky)=(0,0)

. (3)

By means of a Fourier-z-transform technique, it is possible to
solve the master equations (1) to obtain the time evolution of
the moments of displacement [38–40]. Here we briefly explain
the procedure to calculate the mean square displacement (MSD)
as the main quantity of interest. From Equation (3), the MSD is
given as

〈r2〉(t+1t) = (−i)2
∂2Pt+1t (k,φ=0|m=0)

∂k2

∣

∣

∣

∣

∣

k=0

, (4)

where (k,φ) is the polar representation of k. Assuming
F
R→T

(θ)=FT (θ)=
1
2π and F

T→R
(θ)=FR (θ), their Fourier

transforms are F
R→T

(m)=FT (m)= 1
2π

∫ π

−π
dθ eimθ and

F
T→R

(θ)=FR (m)=
∫ π

−π
dθ eimθFR (θ). Next we apply the Fourier

transformation on the master equations (1). For example, the
first master equation after Fourier transform reads

PR
t+1t

(k,φ|m) =

(1−f
R→T

)

∫

dα eimα

∫

dγ FR (α−γ )

∫

dy

∫

dx eik·r

PRt (x−vR1t cosα, y−vR1t sinα|γ )

+f
T→R

∫

dα eimα

∫

dγ F
T→R

(α−γ )

∫

dy

∫

dx eik·rPTt

(x−vR1t cosα, y−vR1t sinα|γ ). (5)

Then by using the qth order Bessel’s function

Jq(z) =
1

2π iq

∫ π

−π

dα eiz cosαe−iqα ,

replacing eikvR1t cos(α−φ) with
∫ π

−π
dβeikvR1t cosβδ(β−(α−φ)),

and using

δ(β−(α−φ)) =
1

2π

∞
∑

q=−∞

e−iq(β−(α−φ)),

it follows that

PR
t+1t

(k,φ|m) =

∞
∑

q=−∞

iq e−iqφJq(k vR1t)×

[

(1−f
R→T

) FR (m+q) PRt (k,φ|m+q)

+f
T→R

FR (m+q) PTt (k,φ|m+q)
]

. (6)

PR
t+1t

(k,φ|m) can be expanded as a Taylor series

PRt+1t(k,φ|m) = QR
0,t+1t(φ|m)+ i k vR 1t QR

1,t+1t(φ|m)

−
1

2
k2 v2

R
(1t)2 QR

2,t+1t(φ|m)+ · · ·. (7)

We expand both sides of Equation (6) and collect all terms with
the same power in k. As a result, recursion relations for the
Taylor expansion coefficients can be obtained. For instance, for
the terms with power 0 in k one finds

QR
0,t+1t(φ|m) = (1−f

R→T
)FR (m)QR

0,t(φ|m)

+f
T→R

FR (m)QT
0,t(φ|m). (8)

Similarly, the expansion coefficients of terms with higher powers
in k can be calculated and the procedure is repeated for
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the second master equation in (1). As a result, a set of
coupled equations is obtained for each expansion coefficient,
connecting time steps t+1t and t. Applying a z-transform
Q(z)=

∑∞
t=0 Qtz

−t enables one to solve these sets of equations.
Particularly the coefficients of terms with power 2 in k, i.e.,
QR
2 (z,φ|m) and QT

2 (z,φ|m), are useful to calculate the MSD

〈r2〉(z) = 2(1t)2
(

v2
R
QR
2 (z, 0|0)+v2

T
QT
2 (z, 0|0)

)

. (9)

Finally we obtain the following exact expression for the MSD in
z space

〈r2〉(z)=

[

z(1−f
R→T

−f
T→R

)PR0

z−1+f
R→T

+f
T→R

+
z2 f

T→R

G0(z)

][

2z2

(z−1)G1(z)
−

1

(z−1

]

v2
R
(1t)2

+

[

−z(1−f
R→T

−f
T→R

)PR0

z−1+f
R→T

+f
T→R

+
z2(1−f

T→R
)

G0(z)
−

z(1−f
T→R

−f
R→T

)

G0(z)

]

×

[

2z
[

z−(1−f
R→T

)p
]

(z−1)G1(z)
v2
T
+

2z

(z−1)G1(z)
f
T→R

p vRvT−
1

z−1
v2
T

]

(1t)2, (10)

where G0(z)=(z−1)(z−1+f
T→R

+f
R→T

) and G1(z)=z
(

z−(1−f
R→T

) p
)

. By inverse z-transforming Equation (10),

the MSD can be obtained as a function of time. The resulting
general expression for the MSD 〈r2〉(t) is lengthy and depends
on the run persistency p, the speeds vR and vT , the transition
probabilities f

R→T
and f

T→R
, and the probability of initially

starting in the run PR0 or tumble state PT0=1−PR0 . 〈r
2〉(t) typically

consists of linear and exponentially decaying terms with t as
well as time-independent terms, as shown in the following in
the special case of constant velocity and the initial condition
of starting in the run state. By choosing 1t=1, vR=vT=1,

and the initial condition PR0=1, the general expression of

〈r2〉(t) reduces to.

〈r2〉(t)=

(

p
(

(f
T→R

−1)f
R→T

+f
T→R

+f 2
R→T

)

+f
T→R

+f
R→T

)

p (f
R→T

−1)(f
T→R

+f
R→T

)+f
T→R

+f
R→T

t −

2 p (f
R→T

−1)
(

f
R→T

p(f
T→R

+f
R→T

−2)+f
T→R

+f
R→T

+p−1
)(

p(1−f
R→T

)
)t

(

p(f
R→T

−1)+1
)2
(f

T→R
−f

R→T
p+f

R→T
+p−1)

+
2 p f

R→T
(1−f

T→R
−f

R→T
)t+2

(f
T→R

+f
R→T

)2(f
T→R

−f
R→T

p+f
R→T

+p−1)
+

(

p
(

(f
T→R

−1)f
R→T

+f
T→R

+f 2
R→T

)

+f
T→R

+f
R→T

)

p (f
R→T

−1)(f
T→R

+f
R→T

)+f
T→R

+f
R→T

− (11)

2 p
(

(f
T→R

+f
R→T

)2−f
R→T

)

+(f
T→R

+f
R→T

)2

(

p (f
R→T

−1)(f
T→R

+f
R→T

)+f
T→R

+f
R→T

)2
+

p2(f
R→T

−1)
(

(f
T→R

+f
R→T

)
(

f
T→R

(f
R→T

−1)+(f
R→T

−3)f
R→T

)

+2f
R→T

)

(

p (f
R→T

−1)(f
T→R

+f
R→T

)+f
T→R

+f
R→T

)2
.

3. RESULTS AND DISCUSSION

We first investigate the time evolution of the MSD for different
values of the key parameters p, vR , vT , fR→T

, f
T→R

, and PR0 . As a

simple check, the expression (10) for f
R→T

=0, f
T→R

=1, vT=0, and

PR0=1 reduces to

〈r2〉(z)=
v2
R
z (z+p)

(z−1)2 (z−p)
(1t)2, (12)

and by inverse z-transforming, the MSD for a single-state
persistent random walk [37, 41]

〈r2〉(t) = (1t)2v2
R

[1+p

1−p
t + 2p

pt−1

(1−p)2

]

(13)

is recovered. In Figure 2, we show how the MSD evolves in time
for different values of the key parameters. We plot the general
expression of 〈r2〉(t), obtained from the inverse z-transforming
of Equation (10), and validate the analytical predictions byMonte
Carlo simulations. A wide range of different types of anomalous
dynamics can be observed on varying the parameters. While
the short-time dynamics is typically superdiffusion (due to the
combination of active and passive motion) and the long-term
dynamics is diffusion in all cases, transitions between sub-,
ordinary, and super-diffusion occur on short and intermediate
time scales. For some parameter values, the exponential terms
of the MSD rapidly decay while the linear term is not yet big
enough compared to the time-independent terms. In such a
case, the constant terms dominate at intermediate time scales
leading to the observed slow dynamics in this regime. The
asymptotic dynamics is however diffusive since the linear term
eventually dominates. It can also be seen that the crossover time
to asymptotic diffusion varies by several orders of magnitude
upon changing the parameter values. The crossover time can be
characterized as the time at which the exponentially decreasing
terms in 〈r2〉(t) become smaller than the terms which survive
at long times. We find that the convergence of the MSD to its
asymptotic diffusive form can be described by the sum of two
exponential functions

〈r2〉(t)−〈r2〉(t→∞) ∼ B1 e
−t/tc1 + B2 e

−t/tc2 , (14)

with the characteristic times tc1=
1

| ln(1−f
R→T

−f
T→R

)|
and

tc2=
1

| ln
(

p(1−f
R→T

)
)

|
. The prefactors B1 and B2 are functions

of p, vR , vT , f
R→T

, f
T→R

, and PR0 . Figure 3 shows how the
characteristic times tc1 and tc2 vary upon changing the key
parameters. Although the slopes of the exponential decays
in Equation (14) are solely determined by the transition
probabilities f

R→T
and f

T→R
and the run persistency p, the

crossover time to the asymptotic diffusive dynamics is also
influenced by the other dynamic parameters of the model
through the prefactors B1 and B2. For example, for the set
of parameter values p=0.9, vR=10, vT=0.1, f

R→T
=0.1, and

f
T→R

=0.01, the convergence time (with 5% accuracy) to the

asymptotic dynamics for PR0 = 1 is nearly twice as long as
for PR0 = 0.

Figure 2 also shows that the asymptotic diffusion constant
Dasymp varies by changing the key parameters. The differences
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A B

C

FIGURE 2 | Time evolution of the MSD for various (A) transition probabilities, (B) speeds, and (C) persistencies. The parameter values (unless varied) are taken to be

p=0.9, vR=10, vT=1, 1t=1, f
R→T

=0.5, f
T→R

=0.5, and PR0=0.5. The lines are obtained from the inverse z-transform of Equation (10) and symbols denote simulation

results. The dashed lines represent the asymptotic diffusion regime.

FIGURE 3 | Characteristic times tc1 and tc2 in terms of the transition probabilities f
R→T

and f
T→R

and run persistency p.

in the y-intercept of the dashed (asymptotic) lines in log-log
plots reflect the sensitivity of Dasymp to the model parameters.
By inverse z-transforming of Equation (10) and taking the limit
t→∞, we obtain Dasymp (i.e., the coefficient of the term linear in
time) in the general form as

Dasymp =

1

4
1t

2f
T→R

f
R→T

p vT vR+f
T→R

v2
R

(

1+p(1−f
R→T

)
)

+f
R→T

v2
T

(

1−p(1−f
R→T

)
)

(f
T→R

+f
R→T

)
(

1−p(1−f
R→T

)
) .(15)

While the diffusion coefficient trivially increases with the speed,
its dependency on f

R→T
, f

T→R
, and p is more complicated and

shown in Figure 4. Dasymp varies by several orders of magnitude
as a function of these parameters. Under the specific condition
F
R→T

(θ)=F
T
(θ)=δ(θ) and F

T→R
(θ)=F

R
(θ) and vT=0, the walker

stops when entering the tumble phase without changing its
arrival direction and it returns smoothly to the run phase without
experiencing a kick (i.e., a sharp change in the direction of
motion). Motor-driven transport along cytoskeletal filaments

in crowded cytoplasm exhibits such a run-and-pause dynamics
[21, 42]. In this case, one obtains

D
run-pause
asymp =

1

4
1t v2

R

1+p

1−p

f
T→R

f
T→R

+f
R→T

. (16)

In the limit p→1 the trajectory becomes nearly straight implying
that the randomization time and the covered area until reaching
the asymptotic diffusive regime (and thus Dasymp) diverge.

Interestingly, Dasymp in Equation (15) is independent of PR0
and PT0 , i.e., the initial condition of starting the motion in the
run or tumble state. Thus, the analytical results predict that
the asymptotic diffusive dynamics, characterized by the linear
time-dependence

〈r2〉(t→∞) = 4Dasymp t, (17)

does not depend on the initial conditions. In Figure 5 we present
the simulation results for several values of PR0 . At long times, all
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FIGURE 4 | (A) Asymptotic diffusion coefficient Dasymp as a function of the run persistency p for vR=10, vT=1, 1t=1, f
R→T

=0.001, and f
T→R

=0.9. (B) Dasymp in the

space of transition probabilities f
R→T

and f
T→R

for vR=10, vT=1, 1t=1, and p=0.9.

FIGURE 5 | The mean square displacement as a function of time for different

values of the probability PR0 of initially starting in the run state in simulations

(from top to bottom: PR0=1.0, 0.5, 0.1, 0.0). Other parameter values: p=0.9,

vR=10, vT=0.1, f
R→T

=0.1, and f
T→R

=0.01. The dashed line represents the

analytical prediction via Equation (17) for the same parameter values.

curves merge and follow the analytical prediction Equation (17).
Note that only the linear term in time is independent of PR0 and
the exponentially decaying and time-independent terms in the
MSD depend on the initial conditions (see e.g., Equation 12).
The walker keeps initially for some time its memory of the initial
direction and state of motion. However, the influence of the
PR0 -dependent terms vanishes in the limit t→∞ and the time
dependence of the MSD approaches the asymptotic linear form
Equation (17).

The short time dynamics is, however, strongly influenced by
the choice of the initial conditions. Figure 5 shows that the initial
slope of the MSD curve varies with PR0 . One can assign an initial
anomalous exponent κ to the MSD curve by fitting the power-
law 〈r2〉∼tκ . By choosing the first two data points of the MSD
curve, the fitting leads to 〈r2〉(t=2)/〈r2〉(t=1)=2κ . Thus, the
initial anomalous exponent κ can be deduced from the MSD at
t=1, 2 as

κ = ln

[

〈r2〉(t=2)

〈r2〉(t=1)

]

/ ln 2, (18)

After replacing the MSD at t=1, 2 obtained from Equation (10)
we get

κ = ln

[

[(

2−2PR0+(3−f
T→R

−f
R→T

)
(

f
T→R

(PR0−1)+f
R→T

PR0
)

)

v2
T

+2f
T→R

(

1−f
T→R

+(f
T→R

+f
R→T

−1)PR0
)

p vT vR (19)

+
(

2PR0+(−3+f
T→R

+f
R→T

)
(

f
T→R

(PR0−1)+f
R→T

PR0
)

+2(f
R→T

−1)
(

− f
T→R

+(f
T→R

+f
R→T

−1)PR0
)

p
)

v2
R

]

/

[

(

1−f
T→R

−(1−f
T→R

−f
R→T

)PR0
)

v2
T
+

(

f
T→R

+(1−f
T→R

−f
R→T

)PR0
)

v2
R

]

]

/ ln 2.

Figure 6A shows the influence of the initial conditions on the
initial anomalous exponent for a given set of parameters. Note
that the monotonic growth of κ with PR0 does not hold in
general, as we observed decreasing as well as non-monotonic
dependencies by varying other parameter values. However, κ

increases monotonically with p in all parameter regimes as shown
in Figure 6B. Moreover, Figures 6C,D show that κ also varies
widely with the speed and transition probabilities. Because of
combining an active run state (0<p<1) and normal diffusion
(tumble state), κ remains above 1 (superdiffusion). However, by
generalizing the run state to include subdiffusive motion (i.e.,
when−1<p<1), κ can decrease below 1.

To better understand the role of the initial conditions, we
note that the steady probabilities PR

steady
and PT

steady
of finding

the particle in each of the two states are determined by the
transition probabilities f

R→T
and f

T→R
. Therefore, the influence of

the initial condition of starting themotion in any of the two states
gradually vanishes as the probabilities PR(t) and PT(t) of finding
the particle in the run or tumble state gradually approach their
steady values. By considering a discrete timeMarkov process with
transition probabilities f

R→T
and f

T→R
, the probabilities at time t

can be obtained from those at time t−1 as

(

PR(t), PT(t)
)

=
(

PR(t−1), PT(t−1)
)[1−f

R→T
f
R→T

f
T→R

1−f
T→R

]

. (20)

Frontiers in Physics | www.frontiersin.org 6 September 2019 | Volume 7 | Article 12077

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Shaebani and Rieger Transient Regimes in Run-and-Tumble Dynamics

FIGURE 6 | The anomalous exponent κ vs. (A) the initial condition of motion PR0 , (B) run persistency p, (C) transition probabilities f
R→T

and f
T→R

, and (D) speeds vR

and vT via Equation (19). The parameter values (unless varied) are taken to be p=0.9, vR=10, vT=1, 1t=1, f
R→T

=0.3, f
T→R

=0.5, and PR0=0.5.

By applying this relation recursively, one can derive the
probabilities at time t based on the initial probabilities

(

PR(t), PT(t)
)

=
(

PR0 , P
T
0

)[ 1−f
R→T

f
R→T

f
T→R

1−f
T→R

]t
(21)

=
(

PR0 , P
T
0

) 1

f
R→T

+f
T→R

[

f
T→R

+f
R→T

(1−f
T→R

−f
R→T

)t f
R→T

(

1−(1−f
T→R

−f
R→T

)t
)

f
T→R

(

1−(1−f
T→R

−f
R→T

)t
)

f
R→T

+f
T→R

(1−f
T→R

−f
R→T

)t

]

.

Thus the evolution of PR(t) and PT(t) obeys

PR(t) =
f
T→R

f
T→R

+ f
R→T

+

(

1− f
T→R

− f
R→T

)t

f
T→R

+ f
R→T

(

f
R→T

PR0 − f
T→R

(1− PR0 )
)

,

PT(t) =
f
R→T

f
T→R

+ f
R→T

−

(

1− f
T→R

− f
R→T

)t

f
T→R

+ f
R→T

(

f
R→T

PR0 − f
T→R

(1− PR0 )
)

, (22)

leading to the steady probabilities PR
steady

=
f
T→R

f
T→R

+f
R→T

and

PT
steady

=
f
R→T

f
T→R

+f
R→T

. If one starts with the initial condition

PR0=PR
steady

, the system is immediately equilibrated. Otherwise,

the choice of the initial conditions affects the short-time
dynamics and diversifies the transient anomalous diffusive
regimes. According to Equation (22), the relaxation of the
probabilities toward their steady values follow an exponential

decay PR(t), PT(t) ∼ e−t/tm with tm=
1

| ln(1−f
R→T

−f
T→R

)|
.

While the characteristic relaxation time of the probabilities solely
depends on the transition probabilities, the characteristic time for
the crossover to asymptotic dynamics is influenced additionally
by the run persistency, as we showed previously in Equation (14).

Therefore, there are two independent relaxation times
tm(=tc1 ) and tc2 . In case these differ substantially, two distinct
crossovers in the time evolution of the MSD may be observed in
general as can be seen in Figure 2A.

4. CONCLUSION

We presented a persistent random walk model to study the
stochastic dynamics of particles with active fast and passive
slow motility modes. We derived an exact analytical expression
for the mean square displacement, which allows to analyze the
transient anomalous transport regimes on short time scales and
also to extract the characteristics of the asymptotic diffusive
motion such as the crossover time and the long-term diffusion
constant. In particular we showed that while the choice of the
initial conditions influences the anomalous diffusion at short
times, the asymptotic behavior remains independent of it and is
entirely controlled by the run persistency, the velocities of the
run and tumble states and the transition probabilities between
the two states.
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Recent theoretical modeling offers a unified picture for the description of stochastic

processes characterized by a crossover from anomalous to normal behavior. This is

particularly welcome, as a growing number of experiments suggest the crossover to

be a common feature shared by many systems: in some cases the anomalous part of

the dynamics amounts to a Brownian yet non-Gaussian diffusion; more generally, both

the diffusion exponent and the distribution may deviate from normal behavior in the initial

part of the process. Since proposed theories work at a mesoscopic scale invoking the

subordination of diffusivities, it is of primary importance to bridge these representations

with a more fundamental, “microscopic” description. We argue that the dynamical

behavior of macromolecules during simple polymerization processes provide suitable

setups in which analytic, numerical, and particle-tracking experiments can be contrasted

at such a scope. Specifically, we demonstrate that Brownian yet non-Gaussian diffusion

of the center of mass of a polymer is a direct consequence of the polymerization process.

Through the kurtosis, we characterize the early-stage non-Gaussian behavior within a

phase diagram, and we also put forward an estimation for the crossover time to ordinary

Brownian motion.

Keywords: polymer dynamics, polymerization process, anomalous diffusion, non-Gaussian, crossover toGaussian

1. INTRODUCTION

Diffusion in crowded and complex systems such as biological cells is usually very heterogeneous,
and anomalous behavior—where the mean square displacement of tracers varies non linearly with
time—is envisaged [1–3]. Over the last few years a new class of diffusive processes has been
reported, where the mean square displacement is found to grow linearly in time like in standard,
Brownian diffusion, but with a corresponding probability density function (PDF) which is strongly
non-Gaussian [4–16]. This behavior, termed Brownian yet non-Gaussian diffusion [6, 8], occurs
quite robustly in a wide range of systems, including beads diffusing on lipid tubes [6] or in
networks [6, 7], the motion of tracers in colloidal, polymeric or active suspensions [4, 17–19] and
in biological cells [12, 20, 21], as well as the motion of individuals in heterogeneous populations
such as nematodes [5]. Similar effects on the PDF are also observed in the anomalous diffusion [22]
of labeled messenger RNAmolecules in living E.coli and S.cervisiae cells. In the majority of cases, at
larger time the form of the PDF crosses over to the normal, Gaussian one. Therefore, such change
cannot be simply due to the heterogeneity of the tracers, unless some of their properties vary
with time. More plausibly, the anomalous-to-Gaussian transition might be induced by temporal
fluctuations of the diffusion coefficient, due to rearrangements of properties of tracers or of the
surrounding medium. To mimic such behaviors, models in which the diffusion varies with time by
obeying a stochastic equation have been introduced and solved both analytically and numerically.
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Thesemodels are referred in the literature as “diffusing diffusivity
models” [23–32], and it has been shown that for short times
they are intimately related to the idea of superstatistics [33].
In the latter approach, an ensemble of particles is assumed
to be characterized by different diffusion coefficients and it
is then described as a mixture of Gaussian PDFs, weighted
by the distribution of the diffusivities. As a result, the
ensemble dynamics is still Brownian, yet the PDF of particle
displacements corresponds to a Gaussian mixture and it is thus
not Gaussian anymore.

Although diffusing diffusivity models qualitatively reproduce
the experimental observations, they work at a mesoscopic scale
and without a visible connection to the underlying molecular
processes. It is therefore becoming increasingly relevant to
find strategies that bridge the gap between the paradigm of
diffusing diffusivity and the microscopic realm, in order to
fully understand this form of anomalous diffusion. In this
paper we show how the diffusion of polymers during a
polymerization process offers one possible mechanism to realize
this connection1. It is well known from polymer theory [36] that
themotion of the center of mass of a linear chain is Brownian, but
with a diffusivity constant which is inversely proportional to Nα ,
where N is the number of monomers and α an exponent ranging
from 1/2 (Rouse model) to 2 (reptation model). During an
equilibrated polymerization processes the number N fluctuates
in time and its statistics can be obtained through the exact
solution of its stationary master equation. By using a continuous
approximation for this temporally homogeneous birth-death
Markov process [37], it emerges that in the limit of large
systems such process converges to anOrnstein-Uhlenbeck, as it is
assumed inmost of the diffusing diffusivity models [24]. The time
scale of the Ornstein-Uhlenbeck process is linearly proportional
to the volume of the system and this guarantees that the non-
Gaussian behavior can be accessible experimentally by tuning
such parameter.

2. POLYMERIZATION PROCESS

Polymers are made of relatively simple subunits (monomers)
assembled with one another through different mechanisms and
geometries. The result is a macromolecule which may contain
from a few tens (in the case oligomers), to several thousand
monomer units [38], or even millions as in the case of DNA
and RNA molecules. From a biological point of view, the
polymerization process occurs regularly either within or outside
the cell [39]. In particular, cells might trigger polymerization
by several mechanisms such as the de novo nucleation of new
filaments, the uncapping of existing barbed ends (actin) and
rescuing a depolymerizing filament (commonly observed for
microtubules).

In order to guarantee the existence of equilibrium conditions,
here we consider a polymerization process occurring in a closed
volume with a fixed total number of monomers Nt. For sake of

1Along different lines, connections between polymerization processes and

anomalous diffusion have been pointed out in Oshanin and Moreau [34] and

Sposini et al. [35].

simplicity, in what follows we suppose that one filament only can
nucleate and that subunits may bind reversibly onto both ends of
the chain. At each end, the addition and deletion of monomers
can be represented as [40]

AN + A1

k+
−⇀↽−
k−

AN+1 , (1)

where AN is the filament with N subunits, and k+, k− are the rate
constants for association and dissociation, respectively. Hence,

Nt = N(t)+M(t) , (2)

where M(t) = c(t)V is the number of monomeric subunits, c
its concentration and V the system volume. The probability of
a filament with n monomers at time t given n0 units at time
t0, PN(n, t|n0, t0) satisfies the (forward) master equation of a
temporally homogeneous birth-death Markov process [37]:

∂tPN(n, t|n0, t0) =
[

W−(n+ 1) PN(n+ 1, t|n0, t0)
−W+(n) PN(n, t|n0, t0)

]

+
[

W+(n− 1) PN(n− 1, t|n0, t0)
−W−(n) PN(n, t|n0, t0)

]

, (3)

with stepping functions

W+(n) = 2k+ c(n) (1 ≤ n ≤ Nt) ,
W−(1) = 0 , W−(2) = k− , W−(n) = 2k− (3 ≤ n ≤ Nt) ,

(4)
and c(n) = (Nt − n)/V . Through these choices, we are assuming
with certainty the existence in solution of a filament with at least
one monomer. The factor 2 in W+ models a linear polymer
which grows at both ends without developing branching; W−

is instead concerned with the possible bonds which may break
down. Equilibrium is reached under detailed balance W−(n) =

W+(n) (3 ≤ n ≤ Nt), corresponding to a polymer composed by

Neq = Nt −
k−

k+
V ≡ λNt (5)

monomers, and to a number

Meq =
k−

k+
V ≡ (1− λ)Nt (6)

of single monomers in solution. We remark that the rate
constants k+, k− are specific to the polymerization chemical
reactions. Given a certain kind of polymer, the average polymer
size and the average number of single monomers in solution are
thus controlled by the total number of subunits Nt and by the
volume of the system V , which are quantities easily controlled
in experiments. In the following analysis, we find it convenient
to replace the volume with the fraction 0 < λ < 1 of Nt

that compose the polymer at equilibrium; clearly, V = (1 −

λ)Nt k+/k−.
As we prove in the Appendix, for any given Nt and

independently from n0, the stationary solution PN(n) ≡
limt→∞ PN(n, t|n0, t0) reads
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PN (1) =
1

N (Nt, λ)

(1− λ)Nt

2 (Nt − 1)

PN (2) =
1

N (Nt, λ)

PN (n) =
2

N (Nt, λ)

(Nt − 2)!
[

(1− λ)Nt
]Nt−2

[

(1− λ)Nt
]Nt−n

(Nt − n)!
(3 ≤ n ≤ Nt),

(7)

with a normalization factor

N (Nt, λ) =
Nt [(11− 4λ) λ − 9]+ 2

2(Nt − 1)

+
2 (Nt − 2)!

[

(1− λ)Nt

]Nt−2

Ŵ(Nt + 1, (1− λ)Nt)

Ŵ(Nt + 1)
e(1−λ)Nt , (8)

Ŵ(·, ·) being the upper incomplete gamma function [41],

Ŵ(Nt + 1, (1− λ)Nt) ≡

∫ ∞

(1−λ)Nt

dt tNt e−t , (9)

and Ŵ(·) the Euler gamma function. We may observe that with
(1 − λ)Nt → 0 the two Gamma functions in the normalization
factor become equal and simplify to 1; in this limit, probabilities
for small n are suppressed. Indeed, in section 4 we show that
PN(n) becomes close to a Gaussian for large λ and Nt. In view
of the inverse power-law relation with the diffusion coefficient of
the center of mass, it is however the behavior for small n which
affects the probability of large diffusivities, triggering in turn
strong deviations from ordinary diffusion which are described in
the following Section.

3. BROWNIAN YET NON-GAUSSIAN
DIFFUSION OF THE CENTER OF MASS

From polymer physics we know that the center of mass RG of
a macromolecules with N subunits diffuses with a coefficient
D(N) = D0/N

α , D0 being a diffusion coefficient specific of the
considered subunit. This means

dRG(t) =
√

6D(N(t)) dB(t) , (10)

with B(t) a (three-dimensional) Wiener process (Brownian
motion). Reference values for the exponent α are:

• α = 1/2 in the Rouse model [36, 42], where the polymer
is composed of N equivalent beads with neither excluded-
volume nor hydrodynamic interaction;

• α = 1 for the Zimm model [36, 43], where hydrodynamic is
taken into account;

• α = 2 for the reptation model which describes tagged polymer
motion in entangled polymer solutions [36, 44].

In view of the previous analysis, we understand that
polymerization confers a random character to RG, providing a
clear microscopic origin to the “diffusing diffusivity” process we
are going to detail next.

From Equation (7) we readily obtain the stationary
distribution for the diffusion coefficient of the polymer’s
center of mass,

PD(Dn) =

Nt
∑

n′=1

PN(n
′) δ

Dn ,
D0
n′α

(11)

= PN

(

Dα
0

Dα
n

)

(1 ≤ n ≤ Nt, Dn = D0/n
α) ,

and its first moment

Dav ≡ E[Dn] =

Nt
∑

n=1

PD(Dn) Dn . (12)

Imagine now to perform a particle-tracking experiment at
constantNt andV and tomonitor the position ofRG in stationary
conditions. At a given initial instant the polymer possesses a
size n, and thus a diffusion coefficient Dn = D0/n

α with
probability given by Equation (12). For time smaller than the
characteristic decay τ of the autocorrelation of the process N(t),
the experimental PDF amounts then to a Gaussian mixture (also
called “superstatistics”) [6, 23, 33] weighted by Equation (12). In
addition, its second moment grows linearly with time as in the
ordinary Brownian motion. Such a phenomenon of “Brownian
yet non Gaussian diffusion” [6, 8] has been recently modeled at
a mesoscopic scale in terms of diffusing diffusivity models [23–
32]. It is only at time larger than τ that ordinary (Gaussian)
Brownian motion is recovered, with a diffusion coefficient Dav.
Before giving an estimate of τ for our model (see next section),
we study the early time non-Gaussianity in the full phase diagram
[Nt, λ], together with its dependence on α.

The non-Gaussian behavior distinctive of RG(t) at time 0 ≤

t ≪ τ can be properly characterized by referring to one of its
Cartesian coordinates, say x. The PDF of the x-displacements
takes the form

pX(x, t) =

Nt
∑

n=1

PN

(

Dα
0

Dα
n

) exp
(

− x2

4π Dnt

)

√
4πDnt

. (13)

In Figure 1 we plot Equation (13) for α = 1 and different
values of λ and Nt. At first sight, non-Gaussianity increases with
decreasing Nt and λ; below we however show that the behavior
is not monotonic. To measure deviations from Gaussianity we
consider the kurtosis of pX(x, t),

κ ≡
E
[

(X − E[X])4
]

(

E
[

(X − E[X])2
])2

(14)

(κ = 3 for anyGaussian variable). In our case it is straightforward
to see that

κ = 3
E
[

D2
]

(E [D])2
= 3

E
[

N−2α
]

(

E
[

N−α
])2

, (15)

independently of D0. Notice instead the strong dependence of κ

from α; moreover, κ > 3 (positive excess kurtosis or leptokurtic
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FIGURE 1 | PDF of the x-coordinate of RG for 0 ≤ t≪ τ , at fixed Nt (A), and fixed λ (B). The PDF is rescaled such that the variance is unity; recall that in a log-linear

plot Gaussian PDFs have parabolic shape. In both cases, α = 1.

PDF). In order to illustrate regions of more pronounced non-
Gaussianity and to discuss their dependence on α in Figure 2

we draw the kurtosis level curves within a (λ,Nt)-phase diagram.
Note that, for a given pair (Nt, λ), higher values of the exponent
α give rise to larger kurtosis (compare Figures 2A,B).

As quoted, by looking at the plots in Figure 1 one may expect
the kurtosis to steadily increase by decreasing λ and Nt. The
structure of the phase diagram implies instead the existence of
a maximum kurtosis, both at given λ and Nt. Indeed, for any
horizontal or vertical line traced through the phase diagram
(Figure 2) it is possible to find a family of kurtosis level curves
each intersecting the line in two distinct points. Between each
couple of intersection points the kurtosis first raises and then
decreases, thus reaching a maximum value. This is highlighted
in Figure 3. Albeit within a small portion of the phase space,
the maximum kurtosis can be extremely high, as reported in
Figure 4; for instance, kmax ≃ 40 corresponds to an average
polymer size of order Neq ≃ 350 with Nt ≃ 104.

4. CROSSOVER TO BROWNIAN,
GAUSSIAN DIFFUSION

The stationary distribution in Equation (7) is exact, but it does
not provide information about the decay time-scale τ of initial
conditions for the process N(t). To get such an insight, we
next workout a continuous approximation for the polymerization
process. In the gedankenexperiment reported above, τ is the
persistence time scale of the randomly chosen initial diffusion
coefficient for RG, corresponding in turn to the typical duration
of the leptokurtic PDF for the diffusion of the center of mass.

We start by noticing that around equilibrium, for Nt ≫ 1 and
Neq ≫ Meq (large λ), N(t) can be approximated as a continuous
Markov process with Langevin equation [37]

dN(t) = 2
k+

V

[

Neq − N(t)
]

dt +

√

2
k+

V

[

2Nt − Neq − N(t)
]

dB(t) ,

(16)

where B(t) is a Wiener process (Brownian motion). Taking
further advantage of the largeNeq assumption, we then introduce

the rescaled quantity ˜N ≡ N/Neq, obeying

d˜N(t) = 2
k+

V

[

1− ˜N(t)
]

dt (17)

+

(

1

Neq

)1/2
√

2
k+

V

[

2
Nt

Neq
− 1− ˜N(t)

]

dB(t) ,

to which wemay apply theweak noise approximation. Indeed, one
may straightforwardly prove [37] that for largeNeq Equation (18)
is satisfied by the approximate solution

˜N(t) ≃ ñ(t)+

(

1

Neq

)1/2

Y(t) , (18)

with ñ(t) a deterministic process satisfying

d̃n(t)

dt
= 2

k+

V

[

1− ñ(t)
]

, (19)

and Y(t) the stochastic process defined by the Langevin equation

dY(t) = −2
k+

V
Y(t) dt+

√

2
k+

V

[

2
Nt

Neq
− 1− ñ(t)

]

dB(t) . (20)

The solution of the deterministic process,

ñ(t) = 1+ [̃n(0)− 1] e−
t
τ , (21)

asymptotically tends to 1 with a characteristic decay time

τ ≡
V

2k+
=

(1− λ)Nt

2k−
. (22)

Correspondingly, the long-time behavior of Y(t) is that of an
Ornstein-Uhlenbeck process:

Y(t → ∞) = N

(

0,
Nt

Neq
− 1

)

, (23)
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FIGURE 2 | Phase diagram of the early-stage non-Gaussianity for (A) α = 1 and (B) α = 1/2. The thick, violet, line at the right end of both plots corresponds to

τ k− = 1 (please refer to text for details).

FIGURE 3 | Kurtosis as a function of: (A) λ; (B) Nt. In both cases, α = 1.

FIGURE 4 | Maximum kurtosis as a function of: (A) λ; (B) Nt. In both cases, α = 1.

where N(µ, σ 2) is a Gaussian variable with mean µ and variance
σ 2. Hence, the stationary solution of ˜N is

˜N(t → ∞) = N

(

1,
Meq

N2
eq

)

. (24)

For the polymer size N = ˜N Neq, this implies

N(t → ∞) = N
(

Neq,Meq

)

. (25)

We thus appreciate that, to be self consistent, the
continuous approximation requires large values of Nt

to blur out discreteness, and Neq ≫ Meq so that the
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FIGURE 5 | Stationary PDF of the polymerization process. Comparison between the exact PDF in Equation (7) (symbols) and the continuous, weak noise

approximation associated to Equation (25) (curves). Values for the parameters Nt and λ have been chosen to facilitate comparison with Figure 1. Specifically,

continuous red curves correspond to choices in Figure 1. By decreasing either λ at fixed Nt (A) or Nt at fixed λ (B) the weak noise approximation breaks down.

negative support of the Gaussian PDF corresponds to a
negligible probability. Figure 5 shows that when Nt and
λ are both large the weak noise approximation of the
stationary distribution PN(n) is almost indistinguishable
from the exact solution. On the other hand, decreasing
either Nt or λ the approximation fails concomitantly with
the fact that the Gaussian probability of negative n-values
becomes significant. Depending on the specific cut in phase-
space, the approximation may or may not work well in
correspondence to the maximum kurtosis (compare red full lines
in Figures 5A,B).

When applicable, the important result conveyed by the
continuous, weak noise approximation is that through
Equation (22) it establishes the time scale of the decay of
the autocorrelation of N(t). It would be nice to give an explicit
representation of τ in terms of the control parameters (λ,Nt);
however, Equation (22) shows that it further depends on the
dissociation rate constant k−, which is specific to the chosen
polymer. To get a qualitative insight, in Figure 2 we have added
the line

τ k− =
(1− λ)Nt

2
= 1 , (26)

representing the locus of points for which τ is equal to the inverse
of k−. Notice that the largest kurtosis level curve lay at the left
of the line, a region which is also characterized by τ > 1/k−.
Hence, the farther left of the line the longer lasts the Brownian
yet non-Gaussian diffusion stage.

5. CONCLUSIONS

We have been able to analytically characterize the stochastic
motion of the center of mass of a fluctuating filament undergoing
a simple polymerization process. Depending on experimentally
accessible parameters such as the the total monomers in the
solution Nt and the system volume V (equivalently, the fraction
λ of total monomers composing the filament in equilibrium),
the center of mass displays at early times a Brownian, yet
non-Gaussian, diffusion. To our knowledge, this is one of the

first example in which this anomalous behavior is directly
linked to a microscopic prototype: the effect originates from the
fluctuations of N (due to polymerization) and from the relation
D(N) = D0/N

α which distinguishes many microscopic models
of polymeric diffusion. By studying the kurtosis of the early-
time displacement PDF along the x-coordinate we quantified
deviations from Gaussian behavior in the phase diagram (λ,Nt),
highlighting the dependence on the exponent α. Remarkably, the
kurtosis is not monotonic and displays a maximum at either λ

or Nt fixed. Finally, on the basis of a continuum (weak noise)
approximation for the stochastic process N(t), we put forward
an estimation for the time τ (λ,Nt) at which the anomalous
behavior crosses over to ordinary Brownian motion. Since the
weak noise approximation is not applicable in the whole (λ,Nt)
phase diagram, and also in view of the non-monotonic behavior
of the kurtosis, further studies approaching the determination of
τ are welcome.

In parallel with the analytical results, we proposed a
gedankenexperiment in which the anomalous behavior could be
detected. As a further perspective, we may notice that if we shift
the focus on the diffusion of a tagged monomer (in place of the
center of mass of the polymer), in the early stage of the process
a subdiffusive behavior coupled to non-Gaussianity is expected
to be observed, with a crossover to a Brownian regime at the
Rouse time [36]. This analysis is intended to be the subject of
future work.

In conclusion, we believe that this work provides a valuable
analytical backdrop to Brownian yet non-Gaussian diffusion, a
fascinating phenomenon reported to occur in many physical
systems. To fully understand this anomalous behavior, it is
essential to ground it on a microscopic spring. This is the case
for the presented model, but we are confident than others more
will come along these lines.
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In nature as well as in the context of infection and medical applications, bacteria often

have to move in highly complex environments such as soil or tissues. Previous studies

have shown that bacteria strongly interact with their surroundings and are often guided

by confinements. Here, we investigate theoretically how the dispersal of swimming

bacteria can be augmented by microfluidic environments and validate our theoretical

predictions experimentally. We consider a system of bacteria performing the prototypical

run-and-tumble motion inside a labyrinth with square lattice geometry. Narrow channels

between the square obstacles limit the possibility of bacteria to reorient during tumbling

events to an area where channels cross. Thus, by varying the geometry of the lattice

it might be possible to control the dispersal of cells. We present a theoretical model

quantifying diffusive spreading of a run-and-tumble random walker in a square lattice.

Numerical simulations validate our theoretical predictions for the dependence of the

diffusion coefficient on the lattice geometry. We show that bacteria moving in square

labyrinths exhibit enhanced dispersal as compared to unconfined cells. Importantly,

confinement significantly extends the duration of the phase with strongly non-Gaussian

diffusion, when the geometry of channels is imprinted in the density profiles of spreading

cells. Finally, in good agreement with our theoretical findings, we observe the predicted

behaviors in experiments with E. coli bacteria swimming in a square lattice labyrinth

created in amicrofluidic device. Altogether, our comprehensive understanding of bacterial

dispersal in a simple two-dimensional labyrinth makes the first step toward the analysis

of more complex geometries relevant for real world applications.

Keywords: diffusion, rectification, random walk, bacteria, confinement

1. INTRODUCTION

Bacteria are ubiquitous on our planet. They inhabit diverse environments such as soil, oceans,
hot springs and the human body, where they may cause infections or serve to establish a natural
flora [1]. Being adapted to such a broad spectrum of habitats, bacteria show different forms of
locomotion, depending on their specific needs [2, 3]. The motility apparatus and patterns of many
different bacterial species have been described and extensively analyzed [4–6]. This experimental
work has also been accompanied by theoretical efforts abstracting the motion of cells to random
walks or modeling it as diffusion of active particles [7–9]. A significant number of studies exists on
how bacteria move, by which mechanic and hydrodynamic forces the motility is driven and what
the underlying molecular mechanisms are [10–12]. However, the motion of bacteria is strongly
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influenced by their surroundings, which often spatially restrict
their spreading in natural habitats. Therefore, the behavior
of bacteria in confinement has also been investigated [13],
for example bacteria moving through narrow channels [14–
18] or porous media [19, 20]. For active particles moving in
channel confinements [21] or obstacle lattices [22, 23] theoretical
models also exist. In specific confinements, these studies reported
more persistent motion of bacteria and thus an enhanced
diffusion [23].

Studying bacterial behaviors in narrow channels or complex
labyrinths is of great medicinal relevance. It can help to better
understand the spreading of bacteria during infection, where cells
have to move inside of the body through natural constrictions
with narrow spacing like blood vessels or the extracellular matrix
[24]. On the other hand, it can also help in the design and
evaluation of new therapeutic methods like targeted treatment
of cancer by genetically modified bacteria, which are used
to transport the drugs to the tumor or synthesize the drug
on-site [25, 26].

In general, dispersal of bacteria in a complex environment is
a result of an intricate interplay of confinement geometry and
cell motility pattern. Here, we study the diffusive spreading of
swimming bacteria with the well-known run-and-tumble pattern
in a square labyrinth. This is probably the simplest possible
geometry, which allows for analytical treatment and at the
same time provides interesting and nontrivial results. Results
obtained from this simplifiedmodel will complement the existing
literature by offering possible reasoning for previously reported
properties of bacterial motion in confinement. Constituting
the first step in understanding the spreading of bacteria in
complex environments, these results can be applied to problems
in various areas dealing with directed transport of bacteria.
Microbial enhanced oil recovery, for example, relies on the
ability of bacteria to penetrate porous media. To optimize
the recovery process, the spreading of the bacteria through
the corresponding environment has to be optimal [27, 28].
Also, in ecological sciences, more precisely in the process
of bioremediation by bioaugmentation, bacteria have to pass
through complex environments to remove organic contaminants
from soil and ground water [29]. In medicine, furthermore,
quantifying the spreading of bacteria inside the human body—
a complex network of tissue as well as lymphatic and blood
vessels—helps to better understand the spreading of infections
[24] and also to develop new therapies [30], as for example the
targeted treatment of cancer [26].

Bacteria performing run-and-tumble motion alternate phases
of almost straight swimming with tumbling events, when the
cell turns and reorients its swimming direction [31]. On a
macroscopic scale, that leads to a random walk like behavior
and diffusive spreading of cells. By putting cells in a labyrinth,
we anticipate that the reorientation process may be hindered
when bacteria are in the channels between the obstacles [32].
However, in the crossings, there is more room available to tumble
and cells may choose a new random direction. This provides
a mechanism of how the labyrinth can rectify the diffusion
of bacteria, which we aim to investigate in this paper. Using
theoretical estimates, simulations and experimental data, we are

able to show that bacteria disperse faster inside the labyrinth than
in a spatially unrestricted environment. For the spreading inside
the labyrinth, the diffusion coefficient depends in a nontrivial
way on the parameters of the underlying lattice structure. For
small times, the bacteria show a pronounced ballistic-like, non-
Gaussian dispersal. In this regime, which lasts longer than for
unrestricted motion, the bacterial density keeps memory of
the underlying lattice geometry. At larger times, the memory
of the geometry is lost and the density of bacteria attains an
isotropic Gaussian profile. Thus, the underlying geometry of the
labyrinth can greatly influence the dispersal of the bacteria on
experimentally relevant time scales.

The paper is organized as follows. We start by describing
our model system of E. coli bacteria swimming in a labyrinth.
We then introduce a theoretical model and derive the
estimates for the diffusion coefficient in a labyrinth with
square lattice geometry (for a detailed derivation please
refer to the Supplementary Material). After validating the
theoretical predictions by numerical simulations we compare
our results with experimental data on E. coli swimming in
microfluidic labyrinths.

2. MODEL SETUP

2.1. Swimming Bacteria in a Labyrinth
In this work, we consider E. coli bacteria as a well studied model
organism but also as a widely used model in synthetic biology
and thus in applications, for example, for the on-site synthesis
of anti-cancer drugs. E. coli swim in a fluid environment by
means of flagella and perform the well known run-and-tumble
motion. This motion consists of periods of almost straight runs,
interrupted by tumbles. The times between consecutive tumbling
events follow an exponential distribution [7]. During the runs,
multiple flagella, rotating in the same direction, are arranged
as a bundle and push the cell forward. If at least one flagellum
starts to rotate in the opposite direction and dissociates from
the bundle, the run is shortly interrupted and the tumbling
bacterium chooses a new random direction for the next run
[31, 33]. Since the flagella have the length of several cell-bodies
[33], the bacterium needs enough space to enable the dissociation
and rearrangement of the flagellar bundle as well as the cell
reorientation. Thus, in a lattice structure with sufficiently narrow
channels, the bacteria may not be able to change their direction
during the tumble, but continue to swim forward [32, 34]. This
behavior is illustrated in Figure 1. The lattice is defined by the
parameters b, w and h, being the side length of the square
obstacles, the width of the channels between two obstacles and
the height of the channels, respectively. By using a sufficiently
small channel width w and height h, we can potentially forbid
tumble events with a change of the swimming direction inside
of the channels between the obstacles and reduce the effective
spreading of the bacteria to two dimensions of the x/y-plane.
Thus, in theoretical considerations and simulations, we disregard
the z-direction. In the model, bacteria move inside of a square
lattice defined by b and w, in which they are only able to change
their moving direction in the crossings of two channels. If a
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FIGURE 1 | Model system: An illustration of the bacterial motility pattern within

a lattice with channel width w, height h and side length of obstacles b (upper

row) and a trajectory, marked in green, of a tracked bacterium inside a

labyrinth with b = 20 µm and w = 8 µm (lower row). The scale bar in the lower

row corresponds to 10 µm. In experiments, w and h are equal, restricting the

effective spreading of bacteria to two dimensions. Times between consecutive

tumble events follow an exponential distribution with mean τ0. In the model,

tumbling events may lead to directional change only within crossings of two

channels separating the squares.

tumbling event happens in a crossing, the bacteria can turn right,
left, backward or continue their path forward.

2.2. Run-and-Tumble Pattern
Generally, when modeling the run-and-tumble motion, the
bacteria are assumed to move in straight lines with constant
velocity v0 during runs. Here, we will neglect rotational diffusion
as the channel confinement naturally limits its effect (see,
however, section 5). During tumbling events, the bacterium
changes its direction by turning at a random angle with respect
to its prior running direction. Usually, the bacteria turn left
or right with equal probability and thus, the turning angle
distribution considers only angles between 0◦ and 180◦ [7]. In
the simplest case, the turning angle distribution is considered to
be uniform. The free-swimming E. coli bacteria, however, have
a tendency toward smaller turning angles φ, with an average
φ0 ≈ 70◦ [35], resulting in a more persistent motion. The
time between consecutive tumbling events is random and well
approximated by an exponential distribution with the mean τ0 ≈

1 s [36]. The duration of tumbles is one order of magnitude
shorter than that of runs [35] and is usually neglected in the
modeling. The run-and-tumble motion for large times, due to the

exponential distribution of run times, is a memoryless random
walk. Therefore, on time scales much larger than the mean run
time, the mean squared displacement (MSD) of an ensemble of
swimming bacteria is linearly proportional to time and can be
quantified by the diffusion coefficient D. In the diffusive regime
of the dispersal, the MSD 〈r(t)2〉 in two dimensions can be
written as [7]

〈r(t)2〉 = 4D0t, with D0 =
〈r2〉

4〈τ 〉
. (1)

Here, 〈r2〉 is the mean squared run length and 〈τ 〉 is the mean
run time. As runs happen with constant velocity v0 (for freely
swimming E. coli v0 ≈ 20 µm s−1), we have 〈r2〉 = v20〈τ

2〉.
Thus, the diffusion coefficient depends on the first and the second
moment of the run time distribution. For the unconstrained but
two-dimensional run-and-tumble motion, bacteria are assumed
to move freely without spatial restrictions. If they also show no
bias in the choice of the turning angle during a reorientation
event, we have 〈τ 〉 = τ0 and 〈τ 2〉 = 2τ 20 , due to the exponential
distribution of run times with mean τ0. Thus, the diffusion
coefficient D0 for this case becomes

D0 =
v20τ0

2
. (2)

When generalizing this result to the run-and-tumble motion of
E. coli, the directional persistence exhibited by the bacterium has
to be taken into account. This persistence can be incorporated by
rescaling the average run time with the factor (1− cosφ0)

−1 (see
[37] and Supplementary Material for details) resulting in

〈τ 〉 = τ̃ =
τ0

1− cosφ0
.

Thus, the diffusion coefficientDe for the dispersal of E. coli in two
dimensions is

De =
v20τ0

2 (1− cosφ0)
, (3)

which for the above mentioned parameters results in De ≈

300 µm2 s−1. Moreover, an analytical description of the MSD,
valid also for small times, can be calculated in this general case
by using the Green-Kubo relation [37, 38] yielding

〈r(t)2〉 = 2v20τ̃
2

(

t

τ̃
− 1+ e−

t
τ̃

)

. (4)

This result describes ballistic-like dispersal of cells for times
comparable to τ̃ and diffusive motion at larger times.

3. THEORETICAL ESTIMATES OF
DIFFUSION PROPERTIES

3.1. Run-and-Tumble in a Lattice With
Uniform Turning Angle Distribution
We now consider the movement of run-and-tumbling bacteria
in a labyrinth with square lattice geometry– the two-dimensional
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equivalent of the system illustrated in Figure 1. Here, we assume
the width of the channel between two obstacles w to be
small enough to inhibit reorientation events in the channels.
Therefore, the bacteria can only change their swimming direction
inside of the crossings. Since bacteria swimming without
spatial confinement exhibit run times following an exponential
distribution with mean τ0, we can calculate the probability to
tumble inside of a crossing of width w, Pw, as:

Pw =
1

τ0

∫ w
v0

0
e
− τ

τ0 dτ = 1− e
− w

v0τ0 .

Correspondingly, the probability of not tumbling in the crossing
is 1 − Pw. Thus, the probability of the first tumble to occur in
the k-th crossing is given by the product of the probability not to
tumble in the first k − 1 crossings and the probability to tumble
in the k-th:

Pk = e
−

(k−1)w
v0τ0

(

1− e
− w

v0τ0

)

.

In the model, we assume that in each crossing only one tumbling
event can occur (see below). As for the unrestricted case, we still
expect the dispersal to become a diffusive process after multiple
reorientation events. However, this now takes much longer time,
as reorientations are only possible in the crossings.

We first consider the tumbling process with uniform turning
angle distribution, where all four possible directions (forward,
right, backward and left) are equally probable after a tumbling
event in a crossing. To determine the diffusion coefficient D, as
defined in Equation (1), the first two moments of the run time
distribution have to be calculated. Since the bacteria are only able
to perform reorientation events inside of the crossings and not
in the channels connecting them, the relation 〈τ 〉 = τ0 of the
unrestricted case does not hold anymore. Assuming the bacteria
to start in the middle of one crossing at t = 0 and tumbling
events to occur on average also in the middle of crossings, the run
times now have to be multiples of the time needed to travel from
the center of one crossing to the next, τbw = b+w

v0
, with lattice

parameters b and w. Thus, the moments of the run time can be
calculated as

〈τ 〉 =

∞
∑

k=1

kτbwPk =

∞
∑

k=1

kτbwe
−

(k−1)w
v0τ0

(

1− e
− w

v0τ0

)

=
τbw

1− e
− w

v0τ0

,

〈

τ 2
〉

=

∞
∑

k=1

k2τ 2bwPk =

∞
∑

k=1

k2τ 2bwe
−

(k−1)w
v0τ0

(

1− e
− w

v0τ0

)

=
τ 2
bw
e

w
v0τ0

(

1+ e
w

v0τ0

)

(

e
w

v0τ0 − 1
)2

.

Plugging the above expressions into Equation (1) the diffusion
coefficient Dl in the labyrinth becomes

Dl =
1

4
τbwv

2
0 coth

[

w

2v0τ0

]

. (5)

Comparing the diffusion coefficient of the spatially unrestricted
walk, given in Equation (2), to our estimate of the walk inside the
labyrinth in Equation (5), we see that the ratio

Dl

D0
=

τbw

2τ0
coth

[

w

2v0τ0

]

depends on the lattice and motility parameters. The ratio
becomes larger for smaller channel width w and bigger side
length of the obstacles b. This behavior is also emphasized in the
approximation of the ratio for small channel widths w with w≪

v0τ0, where
Dl
D0

≈ 1 + b
w . Thus, in the model, for relevant lattice

and motility parameters, we get a higher diffusion coefficient in
the labyrinth and consequently faster spreading.

3.2. Run-and-Tumble in a Lattice With
Nonuniform Turning Angle Distribution
To consider bacteria exhibiting a nonuniform distribution of
turning angles after a tumbling event, the diffusion coefficient
has to be modified to include a term accounting for the
nonuniformity, similarly to what was done in Equation (3) for the
spatially unrestricted walk. For the motion inside the labyrinth,
this can be performed as follows. By considering the walk as steps
from one crossing to the next, the mean run time 〈τ 〉 becomes

〈τ 〉 = τbw =
b+ w

v0

and 〈τ 2〉 = τ 2
bw
. To account for the nonuniform turning

angle distribution, we introduce an additional factor B to the
formula of the diffusion coefficient. In the square labyrinth, the
bacterium can only go in four different directions (forward, right,
backward and left), therefore this factor will depend on the four
corresponding probabilities pf , pr , pb and pl, determined by the
turning angle distribution. The probability to go forward after
a tumbling event pf , for example, will be the probability that
a bacterium swimming outside the labyrinth turns in an angle
between 0◦ and 45◦ after a tumble. However, as we defined the
run time in a crossing-oriented way, to calculate the factor B,
we need to consider the bacterial behavior in each crossing, not
only in the crossings in which a tumbling event happens. Given
the probabilities pf , pr , pb and pl after a tumbling event and the
exponentially distributed run time, the corresponding turning
probabilities defined for every passed crossing are

p̃f = e
− w

v0τ0 +
(

1− e
− w

v0τ0

)

pf , (6)

p̃r =
(

1− e
− w

v0τ0

)

pr , (7)

p̃b =
(

1− e
− w

v0τ0

)

pb, (8)

p̃l =
(

1− e
− w

v0τ0

)

pl. (9)

Assuming the probability to go right and left to be the same, as
done by considering only angles between 0◦ and 180◦, we find B
to depend only on p̃f and p̃b as

B(̃pf , p̃b) =
1+ p̃f − p̃b

1− p̃f + p̃b
.
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With this, the diffusion coefficient Dlb can be written down:

Dlb =
1

4
τbwv

2
0

1+ p̃f − p̃b

1− p̃f + p̃b
.

Here too, by comparing this result to the diffusion coefficient
for the unrestricted walk, Equation (3), we see that the bacteria
swimming inside the lattice structure are spreading faster. We
can also evaluate the effect of the nonuniformity of the turning
angle distribution on the diffusion inside the labyrinth, by
looking at the ratio

Dlb

Dl
=

1+ p̃f − p̃b
(

1− p̃f + p̃b
)

coth
[

w
2v0τ0

] =
1+

(

pf − pb
)

tanh
[

w
2v0τ0

]

1− pf + pb
.

Here, v0, τ0 and w are the same for both systems. Thus, the ratio
depends on the two probabilities pf and pb. As expected, for the
case with uniform turning angle distribution, i.e., pf = pb, the
ratio becomes one. For a higher probability to go forward, pf >

pb, it will, in contrast, become greater than one, corresponding to
facilitated diffusion through directional persistence. If pf < pb
instead, the dispersal with uniform turning angle distribution
is faster.

It is important to note here, that our theoretical predictions
are made for the long-time asymptotics of the diffusive regime. In
principle, Equation (4) could have been used with themean of the
run time calculated for the labyrinth as an approximation of the
ballistic regime of the dispersal. However, it is derived under
the assumption of exponentially distributed run times, which, in
the case of the random walk in the labyrinth, is not fulfilled. It
might give a much better agreement to the actual MSDmeasured
in computer simulations or in the experiment for small times, but
it would still not be exact. That is why, for the remaining of the
paper, we will primarily focus on the asymptotic diffusive regime.

Now that we quantitatively understand the properties of the
long-time diffusion, we turn to numerical simulations to test our
predictions. In particular, it is interesting to see how the dispersal
process occurs at shorter times and what the effect of several
simplifying assumptions of the analytical approach is.

4. SIMULATIONS OF 2D BACTERIAL
DISPERSAL IN LATTICE

In the simulations, all bacteria generally start their walk at
the origin (0, 0), which is located in the middle of the same
crossing. However, in section 5 we will also consider random
starting points. To facilitate computations we use an event-driven
algorithm. At each step, a random variable representing the run
time is drawn from an exponential distribution with mean τ0,
which is used to determine the position of the next tumble.
However, the directional change of the tumbling event happens
only if the bacterium is inside of a crossing, as depicted in
Figure 1. In the case of a uniform turning angle distribution, all
four directions are chosen with equal probability. In contrast to
the theoretical derivation, multiple tumbles in one crossing are
allowed in simulations. For a quantitative evaluation of the effect
of multiple tumbles on the diffusion coefficient (see Figure S2).

4.1. Diffusive Properties
The results of the simulations are summarized in Figure 2. As can
be seen in Figures 2A,B, the trajectories and bacterial densities
have a pronounced square outline at small times (upper row),
while acquiring a circular shape at larger times (lower row). This
indicates that at the beginning, the bacterial motion is greatly
influenced by the geometry of the labyrinth. The clearly seen
boundary of the density profile is the ballistic front determined
by the constant and finite velocity of the bacteria v0 as |x| + |y| =
v0T, where T is the measurement time. At a given moment in
time, the total distance traveled along the x- and y-directions of
the labyrinth cannot exceed the value of v0T. Trajectories which
end up at the front are those where no two steps were done in
opposite directions. The effect of ballistic fronts is not frequently
mentioned in the context of normal diffusion. However, as this
example shows (see also experimental results below), the density
of diffusing particles may carry on the information about the
underlying lattice for an extended period of time. This effect
can be even more dramatic in the case of anomalous diffusion
[39]. This behavior is also illustrated in the x-projection of the
2D density of the bacteria shown in Figure 2C. The density of
the bacteria keeps memory of the underlying geometry at small
times but then loses it at larger times and becomes isotropic
after many reorientation events. In this diffusive regime, at large
times, the bacterial density also quantitatively agrees with the
analytical prediction of a Gaussian distribution, shown as red
dashed line, validating the theoretical description for the long-
time diffusion in the labyrinth. In Figure 2D, presenting the
mean squared displacement of the bacteria as a function of time,
it can be seen that the bacteria indeed exhibit nearly ballistic
motion with 〈r(t)2〉 ∝ t2 at the beginning and then switch to a
diffusive regime with 〈r(t)2〉 ∝ t, where the derived estimates for
the diffusion coefficient are confirmed. At large times, numerical
and theoretical curves for theMSD are linear with the same slope,
which directly corresponds to the diffusion coefficient. We also
clearly see that the slope of the MSD of the walk within the
labyrinth is higher than for a walk without spatial restrictions,
thus further confirming the hypothesis of facilitated diffusion in
the lattice.

4.2. Dependence of Diffusion Coefficient
on Lattice Parameters
To further test the level of agreement between our theoretical
estimates for the diffusion coefficient and the simulation
results, we compared these for a range of different parameters
determining the geometry of the lattice and evaluated the
dependence of the diffusion coefficient on b—the side length of
the obstacles—and on w—the width of the channels between
two obstacles. In Figure 3A, it can be seen that for three
different channel widthsw the diffusion coefficient shows a linear
dependence on the side length b and can be rescaled onto a single
master curve (see inset) with ˜D being

˜Dl(b) =
Dl(b)

coth
[

w
2v0τ0

] −
wv0

4
=

bv0

4
. (10)
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FIGURE 2 | Results of the simulations with uniform turning angle distribution in a lattice with b = 20 µm and w = 5 µm: (A) depicts the trajectories of 500 bacteria for

small times, t = 50 s (upper row), and large times, t = 500 s (lower row). In (B) the two-dimensional histograms of the particle density for the same time scales used in

(A) for 105 bacteria are shown. The particle density projected on the x-axis, also for 105 bacteria, is plotted in (C) with the red dashed line representing the analytical

solution P(x) =
(

4πDlbt
)−1/2

exp

(

−x2/4Dlbt
)

. For small times the underlying geometry has strong influence on the bacterial spreading, while for large times the

distribution becomes isotropic. In (D) the mean squared displacement of 105 bacteria is shown in linear scale, while the inset shows the double logarithmic plot. The

red dashed line represents the theoretical estimate introduced in section 3.1 and the green line the empirical MSD of the simulated bacteria. The blue dashed line

corresponds to the same random walk without spatial restrictions, which can be described by Equation (4), where φ0 = 90◦ due to the uniform turning angle

distribution. The theoretical estimates match the simulated MSD for large times. Guiding the bacteria through a lattice of channels significantly enhances the dispersal

as compared to an unrestricted motion.
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FIGURE 3 | Dependence of the diffusion coefficient on lattice parameters: (A)

depicts the dependence of the diffusion coefficient in the labyrinth Dl on the

side length b of the obstacles for three different channel widths w, (B) the

dependence on w for three different values of b. Both insets show the rescaled

diffusion coefficients as given by Equation (10) for (A), and by Equation (11) for

(B). The red dashed line shows the corresponding analytical expression. For

each measurement 5,000 bacteria were each simulated to perform 2,000

tumbling events.

As shown in the inset, the rescaled curves of the simulated
diffusion coefficients all coincide with the analytical expression.
Similarly, for the dependence on the channel width w,
the predicted diffusion coefficient matches—as presented in
Figure 3B—the simulation results for three different side lengths
b and can also be rescaled to one master curve, shown as inset.
Here, the scaled diffusion coefficient ˜D is defined as:

˜Dl(w) =
Dl(w)

b
=

1

4
v0 coth

[

w

2v0τ0

]

+
w

4b
v0 coth

[

w

2v0τ0

]

≃
1

4
v0 coth

[

w

2v0τ0

]

.

In the expression for ˜Dl(w) a factor of w
b

is still included,
which makes it not completely independent of the parameter

b. However, for w/b ≪ 1 this term becomes small and can
be neglected. Thus, with increasing b, the rescaled curves for
the simulations shown in the inset of Figure 3B converge to
the analytical expression, so that the curve for b = 100 µm
already agrees with the theoretical prediction. This very good
agreement between simulation results and analytical expressions
also suggests that multiple tumbles in the crossing included
in simulations but neglected in theory are not making a
significant contribution for the range of tested parameters (see
also Figure S2).

5. INTRODUCING A NONUNIFORM
TURNING ANGLE DISTRIBUTION:
COMPARISON OF SIMULATIONS AND
EXPERIMENTS

After verifying the analytical solutions for the case with a uniform
turning angle distribution during tumbles, we now switch to the
system with a nonuniform turning angle distribution. To test
our theory and its practical applicability we implemented the
nonuniformity of the turning angle distribution after a tumbling
event in a crossing in simulations and compared these results to
experimental data [40].

The experiments were performed by using microfluidic
devices with a lattice geometry of obstacles with a side length
b = 20 µm and with two channel widths w and heights h of
5 µm and 8 µm. For these dimensions, some tumbling events
of the bacteria inside the channels between two obstacles were
observed. Fluorescently labeled E. coli were imaged with an
inverted fluorescence microscope. Thereby, trajectories in the
range of 2.5–20 s could be recorded and analyzed. An example
trajectory of one E. coli bacterium swimming in a labyrinth
with w = 5 µm can be seen in the Supplementary Movie.
The simulation parameters were adjusted to the experimentally
observed values. More precisely, the turning angle distribution
after a reorientation event and the mean run time were taken
from measurements of bacteria moving without geometric
restrictions in the x/y-plane but with a vertical constraint at
a height of h = 5 µm or h = 8 µm, respectively. This
confinement to effectively two dimensions changes the motility
parameters, e.g., the velocity v0 and turning angle distribution,
compared to bacteria freely swimming in three dimensions. In
the 5 µm channels the bacteria swim with a mean run time
τ0 = 1.8 s, while in the 8 µm channels with τ0 = 1.7 s.
For both channel widths a velocity v0 ≈ 10 µm s−1 was
measured. By splitting the histogram of turning angles (see
Supplementary Material) into the domains 0◦-45◦, 45◦-135◦

and 135◦-180◦, we determine the turning probabilities in the
labyrinth pf ≈ 0.1, pr ≈ 0.3, pl ≈ 0.3, pb ≈ 0.3. Further
information on how the experiments and simulations were
performed can be found in the section 7. In Figure 4, side-
by-side comparisons between simulations and experiments for
w = 8 µm are shown (for w = 5 µm see Figure S3). As basis
for the comparisons, we chose the trajectories themselves, the
MSD and the decision making behavior at the crossings. Since
the longest trajectory length measured in the experiments was
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FIGURE 4 | Comparison between simulation results (upper row) and experiments (lower row) for a lattice with b = 20 µm and w = 8 µm: (A) compares the trajectories,

starting at a random position in the lattice, which are centered to the zero point. (B) Shows the mean squared displacements in double logarithmic plots, where the

green line displays the simulated and measured MSD while the red dashed line corresponds to the analytical prediction. (C) Displays the probabilities for turning

decisions at each crossing. Parameters of simulations are chosen to match experimental data as discussed in the section 7.

around 20 s, the time scale of the comparisons lies, according to
our estimates, in the regime of ballistic motion with 〈r(t)2〉 ∝

t2. Contrasting both sets of trajectories, shown in Figure 4A, it
can be observed that both simulations and experiments show
evidence of the underlying geometry resembling a ballistic front
with the typical |x|+ |y| = v0T shape. In experiments, hence also
in simulations, the trajectories are of different lengths and start
at an arbitrary point in the labyrinth. Because of this, both the
outlines of obstacles and the ballistic fronts are smeared out in
comparison to Figure 2A. The distance traveled by the bacteria
is quantified by the MSD and shown in double logarithmic
display in Figure 4B. Here, it can be seen that the simulated
curve reproduces the overall trend of the experimental curve
and also quantitatively agrees with the experimental data. This
becomes even more evident in the direct comparison between
the simulated and experimental MSD shown in Figures S4, S5.
Interestingly, in the experiments, we can track bacterial decisions
at every crossing, plot the histogram of the chosen directions
and compare it to simulation results, as shown in Figure 4C.
Here, we see that the simulations reproduce the overall tendency
of the decision distributions measured in the experiments.
The smaller probability to go forward paired with the higher

probability to go right or left in experiments compared to the
simulations, can be attributed to smooth directional changes
in the crossings due to rotational diffusion, without tumbling
events happening. Thus, it would be predicted that in narrower
channels the effect of rotational diffusion deflecting the cell
from straight motion should be weaker. Indeed, we see that
in 5 µm channels (see Figure S3), the probability to continue
forward approaches the theoretical value. The otherwise good
agreement between experiments and simulations suggests that
by taking the angle distribution of x/y-unrestricted motion we
can reproduce the behavior inside the labyrinth. Here, we should
note that the numerical simulations achieve good agreement with
experimental data without any fitting parameters. All values and
distributions were obtained directly from experiments. Finally,
we provide the results of a control experiment, comparing the
dispersal of bacteria in the labyrinth and outside the labyrinth.
We see a clear effect of enhanced diffusion in agreement with
the predictions of the model, see Figure S5. Thus, our theoretical
model of the diffusion through a square lattice of channels proves
to be a reasonable simplification covering the most significant
features of experimentally observed bacterial behavior inside of
a microfluidic labyrinth.
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6. DISCUSSION

We analyzed the process of bacterial dispersal in a labyrinth of
channels with square geometry. Narrow channels between the
obstacles guide the motion of bacteria and prevent them from
changing the swimming direction. The reorientation events can,
however, happen in the channel crossings. By modeling this
system as a two-dimensional random walk with exponentially
distributed run times we provided analytical expressions for
the diffusion constants quantifying large time asymptotics
of bacterial dispersal in the labyrinth. The main theoretical
predictions are an enhanced diffusion constant for smaller
channel widths and larger obstacle sizes and a prolonged regime
of non-Gaussian diffusion where the geometry of the channels is
imprinted in the density of bacteria spreading in the labyrinth.
Here, we focused on the two-dimensional geometry to be able to
compare our results to experiments. However, a generalization
of the developed theoretical and numerical approaches to higher
dimensions is rather straightforward.

To assess the practical applicability of themodel we specialized
it to describe the run-and-tumble motion of E. coli with a
nonuniform turning angle distribution. We then compared
both simulations and theory to experimental data, collected
by tracking E. coli bacteria in microfluidic labyrinths with
lattice geometry. Thereby, we were able to quantitatively verify
our theoretical results and demonstrate that our approach can
serve as an adequate model of bacterial dispersal in simple
labyrinth geometries.

Our results suggest that the developed model can be used to
theoretically analyze the behavior of bacteria in an environment
with lattice structure. Understanding the dispersal of bacteria
in these rather simple geometries can help to evaluate the
usability of E. coli as a transport bacterium for on-site treatments
in more complex environments as well as in other fields like
ecology and industrial processes. Our future work will include
the analysis of other geometries, for example a hexagonal
lattice, and the evaluation of different bacteria species and
motility patterns, for example the run-and-reverse pattern of
Pseudomonas putida or run-reverse-flick of Vibrio alginolyticus
bacteria. Another interesting task will be the analysis of the
effects of different chemical landscapes, e.g., a concentration
gradient of a chemoattractant, on the diffusive properties of the
bacteria. Additionally, in the future, the diffusion mechanism
of bacteria in lattice structures can be further extended to
interpret the evolution of game strategies in square lattices
[41, 42].

7. MATERIALS AND METHODS

7.1. Microfluidic Experiments
7.1.1. Cell Culturing
The GFP-expressing E.coli AW405 strain was cultured overnight
in rich liquid LB medium (10 g L−1 Tryptone, 5 g L−1 NaCl,
5 g L−1 Yeast Extract, pH 7.0) including 100 µgml−1 ampicillin at
37 ◦C on a rotary shaker at 200 rpm. The cell suspension from the
overnight culture was diluted 1:100 with fresh LB, and grown to
an OD600 of 0.6. The cells were washed by centrifugation (1500 g

at 20 ◦C for 2min) and resuspended in motility buffer (11.2 g L−1

K2HPO4, 4.8 g L
−1 KH2PO4, 3.93 g L

−1 NaCl, 0.029 g L−1 EDTA
and 0.5 g L−1 glucose; pH 7.0).

7.1.2. Cell Imaging and Tracking
The cells were infused into microfluidic chips (for details about
the fabrication see Supplementary Material). The chips had
two wide chambers connected by a maze-like mid-section (see
Figure S1). This region was made of periodically arranged square
structures with a side-length of 20 µm. In this study, two different
chips were fabricated with different widths of the channels in
the maze (5 µm and 8 µm). The cells freely swam in the wide
chambers and occasionally entered the maze and explored this
region as well. The GFP-expressing cells were visualized in the
chips using an IX71 inverted microscope equipped with a 20X
UPLFLN-PH objective (both Olympus, Japan) and an Orca Flash
4.0 CMOS camera (Hamamatsu Photonics, Japan). Two image
stacks were acquired at 10 fps over 3min for each chip. The
5 µm data set contains 45 trajectories with a total length of 409 s.
The 8 µm data set consists of 346 trajectories with a total length
of 2,231 s.

A custom Matlab program based on the Image Processing
Toolbox (version R2015a, The MathWorks, USA) together with
the open source image analysis platform Fiji were used to process
the image sequences. For each image stack, the images projected
into a single image by taking the median value for each pixel
over stack. The median image was subtracted from each frame to
eliminate non-moving objects including dead cells. A despeckle
filter was then applied to correct the noise at the CMOS-sensor
of the camera. Afterward, the high frequency noise in the images
was filtered out by a Gaussian blur filter. The filtered images were
binarized by using maximum entropy thresholding following
Kapur et al. [43]. The binary images were further processed to
find connected regions in the images using the built-in function
bwconncomp. The regionprops function was used to determine
the size and centroid of the objects. Finally, the centroid
position was tracked utilizing the algorithms by Crocker and
Grier [44].

7.2. Simulation
All simulations have been implemented as event-driven
algorithms in Python 3.7 using the freely available packages
NumPy and matplotlib. Simulations used in section 4 were
performed on an unbounded domain with channels being
located on the intervals [k(b+w)−sign(k)w2 , k(b+w)+sign(k)w2 ]
with k ∈ Z in x- as well as in y-direction. Therein all bacteria
start their walk at zero at time t = 0 positioned in the middle

of the same crossing in a random direction Ed taken from a
uniform distribution. For each bacterium, N tumbling events
are simulated. At each step a random variable τ is drawn from
an exponential distribution with mean τ0 representing the run
time until the next tumbling event. Using the constant speed
v0 the new position Exi of the bacterium is determined from its

prior position Exi−1 as Exi = Exi−1 + Edτv0. Only if this lies inside

a crossing, a new walking direction Ed (forward, right, backward,
left) is randomly drawn from a uniform distribution and used as
the direction of the next step. The variable parameters are set to
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be equal to the experimentally determined values. These are in
the two-dimensional confinement a mean run time τ0 = 1.8 s,
a constant speed v0 = 10 µm s−1 and a side length b = 20 µm
of the obstacles for a width w = 5 µm of the channels, and
τ0 = 1.7 s, v0 = 10 µm s−1, b = 20 µm for a channel width
w = 8 µm. In Section 5, instead of a uniform distribution,
the experimentally determined turning angle distribution (see
Figure S6) for bacterial movement with spatial restrictions
only in the z-plane has been used. By taking the probability to
turn in an angle between 0◦ and 45◦ in the two-dimensional
unrestricted case, the probability to go forward pf is set to be
pf = 0.1. For the probability to go right pr and to go left pl
the relation pr = pl = 0.3 holds, being each approximately
half of the probability to take an angle between 45◦ and 135◦

in the unrestricted experiments. Finally, the probability to turn
backwards pb is pb = 0.3, corresponding to the probability to
turn in an angle between 135◦ and 180◦. Also, here the simulated
bacteria do not start in the middle of one crossing at t = 0, but
at a random place inside the lattice. To plot the trajectories—as
done in Figure 4A—the trajectories were centered to the zero
position. For both comparisons, i.e., forw = 5 µm andw = 8 µm,
the same number of trajectories and same trajectory lengths were
simulated as were tracked in experiments.
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Self-propelled or active particles are referred to as the entities which exhibit anomalous

transport violating the fluctuation-dissipation theorem by means of taking up an athermal

energy source from the environment. Currently, a variety of active particles and their

transport patterns have been quantified based on novel experimental tools such as

single-particle tracking. However, the comprehensive theoretical understanding for these

processes remains challenging. Effectively the stochastic dynamics of these active

particles can be modeled as a Langevin dynamics driven by a particular class of

active noise. In this work, we investigate the corresponding Langevin dynamics under

a telegraphic active noise. By both analytical and computational approaches, we study

in detail the transport and nonequilibrium properties of this process in terms of physical

observables such as the velocity autocorrelation, heat current, and the mean squared

displacement. It is shown that depending on the properties of the amplitude and duration

time of the telegraphic noise various transport patterns emerge. Comparison with other

active dynamics models such as the run-and-tumble and Lévy walks is also presented.

Keywords: active bath, anomalous diffusion, Langevin dynamics, telegraphic noise, Lévy walks, run-and-tumble

1. INTRODUCTION

Anomalous diffusion disobeying the fluctuation-dissipation theorem has been widely observed in
active systems. Prominent examples are the motor-driven transport in living cells, crawling and
swimming dynamics of a cell in free or confined space, the motion of artificial micro-swimmers
like Janus particles, and the diffusion of an enzyme during catalysis [1–3]. It can be understood
that these active dynamics, typically observed on a mesoscopic time & length scale, are collective
phenomena resulted from complicated,myriad interactions among the components comprising the
system in the presence of nonequilibrium energy sources. A currently attracting issue is to model
the stochastic dynamics of individual active (self-propelled) particles at a coarse-grained level, in
which a physical picture is that a single particle is immersed in an active bath, i.e., a heat bath in
the presence of an extra nonequilibrium noise [4–8]. A closely connected issue to this problem
in other fields is the study of quantifying superdiffusion in the complex (biological) systems [9].
Examples include the motor-driven transport of bio-materials in a cell [10, 11], the run-and-
tumble motion of a bacterium [12], foraging motion of motile cells and animals [13], anomalous
diffusion of ultracold atoms [14], and the dispersal of a banknote [15]. It has been shown that the
displacement distributions often follow a (truncated) Lévy distribution and, thus, the models in the
class of continuous-time random walks such as the Lévy flights and Lévy walks explain essential
features of the observed stochastic dynamics [16]. In this description, the effect of the active or out-
of-equilibrium noise is implicitly taken into account in the PDFs of displacement lengths and/or
sojourn times.
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In the above studies of the active anomalous diffusion, its
stochastic dynamics is often modeled by the Langevin equation
of the following form:

mv̇ = −γ v+ ξ (t)+ f (t). (1)

This equation describes the dynamics of a particle ofmassm(= 1)
in a viscous heat bath comprised of passive and active noises. ξ (t)
is a thermal (gaussian) noise satisfying the zero mean (〈ξ 〉 = 0)
and the variance 〈ξ (t)ξ (t′)〉 = 2γβ−1δ(t − t′) [γ : frictional
coefficient, β = 1/kBT the inverse temperature where kB is
the Boltzmann constant and T is the absolute temperature].
The active noise f (t) is responsible for the nonequilibrium
source in the system, of which statistical properties characterize
the nature of active dynamics under consideration. Here, it
is assumed that the two noises are independent each other
such that the nonequilibrium environment caused by the active
noise does not seriously change the characteristics of ξ (t).
For a representative example, the tracer dynamics in an active
bath containing E Coli micro-swimmers was modeled with
the gaussian colored noise fOU(t), often referred to as the
Ornstein-Ulenbeck noise, characterized by 〈fOU〉 = 0 and
〈fOU(t

′)fOU(t
′ + t)〉 ∝ exp(−t/tc) [17]. Regarding subdiffusive or

superdiffusive dynamics of the particles embedded in a crowded,
viscoelastic medium, their stochastic dynamics can be modeled
with fractional gaussian noise fH(t) [18] having a power-law
decaying autocorrelation 〈fH(t

′)fH(t
′ + t)〉 ∝ (2H − 1)t−1+2H

with the Hurst exponent H (0 < H < 1) [19–23]. For
animal or self-propelled particles (e.g., molecular-motor-driven
cargo) exhibiting Lévy statistics, the f is a Lévy noise having the
characteristics P(f ) ∝ 1/f 1+µ [24, 25].

In this work, we investigate the stochastic dynamics of single
particles governed by Equation 1 with a telegraphic (i.e., step-
like) noise f (t) as illustrated in Figure 1. Here the characteristics
of the noise is described by its PDFs of noise amplitude P(f ) and
of duration time P(τ ). It is noted that by adjusting the PDFs P(τ )
and P(f ) our nonequilibrium noise f (t) can become a shot-noise
[26, 27] as well as a dichotomous noise [26, 28]. Hence, in general
our model links these two distinct noises. Furthermore, we show
that our model with P(τ ) ∼ 1/τ 1+α (0 < α < 2) serves a model
for a Lévy walk superimposed with the thermal noise.

The current paper is organized as follows. In section 2
we present our path integral approach to solve the Langevin
equation 1with a telegraphic active force f (t). Dynamic quantities
such as the velocity autocorrelation, heat rate, and the mean-
square displacement (MSD) are derived in the underdamped
level. Then we introduce the overdamped version of Equation 1
and investigate in detail the long-time dynamics of the particle.
In section 3 complementary numerical study is provided. Here
we generate the active force f (t) for a few distinct cases of
P(τ ) and simulate the corresponding Langevin equations. The
results are compared and explained with the analytic studies in
section 2. Lastly, in section 4, we summarize themain results with
a discussion on the connection between our Langevin model and
other active dynamics models.

FIGURE 1 | The schematic description of the telegraphic active noise f (t)

considered in our Langevin equation 1. The protocol of the noise is given by

f (t) = fi for t ∈ [ti , ti+1], where the noise strength fi and the duration time

τi ≡ ti+1 − ti are random variables specifying the statistical properties of f (t). It

is a renewal process such that the sequences of {fi} and {τi} are i.i.d.s

obtained from the PDF P (f ) and P(τ ), respectively.

2. LANGEVIN DYNAMICS

In section 2 we analytically investigate the active dynamics of
our Langevin model 1 under a telegraphic noise f (t). Prior to
this, we briefly look at the autocorrelation property of f (t) and
also introduce useful truncated statistics that used throughout the
paper. In section 2.2 our path integral formalism to the Langevin
equation 1 is presented with several analytic main results. In
section 2.3 we propose the overdamped version of the original
Langevin equation 1 and explicitly derive transport quantities for
the three distinct types of f (t) (introduced in Table 1).

2.1. Noise Correlation of f(t)
A given time series of a telegraphic noise f (t) can be uniquely
defined by its duration time sequence {τi} and the amplitude
{fi}, see Figure 1. First, let us consider the ensemble-averaged
autocorrelation of f (t), denoted as 〈f (t)f (t + 1t)〉fi ,τi . In this
expression, the symbol of 〈·〉fi ,τi represents the average over the
active noise f (t) for the noise amplitudes fi and the duration
times τi. Since the PDFs P(f ) and P(τ ) are independent, the
corresponding two averages are independent. Exploiting this
property, let us first calculate the fi-averaged autocorrelation
function 〈f (t)f (t+1t)〉fi for a given sequence {τi}. In this case, the
corresponding active noise f (t)s have the same transition events,
given by the {τi}, so that the number of transitions n until T
is determined by the inequality

∑n−1
i=0 τi < T <

∑n
i=0 τi. For

this set of f (t)s, the noise-amplitude averaged autocorrelation is
given by

〈f (t)f (t + 1t)〉fi = σ

n−1
∑

i=0

2(t − ti)2(ti+1 − t − 1t)

+σ2(t − tn)2(T − t − 1t) (2)

where 2(x) is the Heaviside step function [2(x) = 1 for x > 0,
otherwise zero] and 〈flfm〉fi = σδlm is used.

To get the full ensemble-averaged autocorrelation, one has
to average Equation 2 over all possible sequences of {τi}.
This average can be effectively obtained by performing the
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TABLE 1 | The three duration time PDFs considered in our telegraphic noise f (t) and their statistical properties.

Statistics PT (τ ) [τ ]T 〈f(t)f(t + 1)〉 (T → ∞)

Poissonian 1
τc(1−e−T/τc )

e−τ/τc τc −
T

(eT/τc−1)
σe−1/τc

Gaussian τc −

√

2σ2
τ

πA20
e−(T−τc )

2/2σ2
τ σB0

√

π
2 e

−τ2c /2σ2
τ Erfc[ 1−τc√

2σ2
τ

](τc − 1)

√

2
πσ2

τ A
2
0

e−(τ−τc )
2/2σ2

τ −

√

+
2σ2

τ

πA20
e−τ2c /2σ2

τ + σστB0e
−1(1−2τc )/2σ2

τ

Power-law α

(τ−α
m −T−α)

τ−(1+α) α
α−1 τm

[

1−
(

τm
T

)α−1
]

σ
α

(

τm
1

)α−1

In the above expressions, A0 = Erf

[

(T − τc )/
√

2σ 2
τ

]

+ Erf

[

τc/

√

2σ 2
τ

]

, B0 = 2/

[

2στ +

√

2πτ2c e
τ2c /2σ2

τ

(

1+ Erf[τc/
√

2σ 2
τ ]

)]

.

time average of Equation 2 with an assumption that T is
sufficiently large enough to have many transition events (n is
large). For nonequilibrium systems this ergodic relation may
not be generally guaranteed [1, 4, 29], but we have numerically
confirmed this for the telegraphic active noises investigated in
this study. We leave the ergodicity test and further discussions
in the Appendix A2.C. Accordingly, we obtain the expression

〈f (t)f (t + 1t)〉fi =
σ

T − 1t

∫ T−1t

0
dt 〈f (t)f (t + 1t)〉fi ,

=
σ

T − 1t

[

n−1
∑

i=0

(τi − 1t)2(τi − 1t)

+ (η − 1t) 2(η − 1t)
]

, (3)

where η = T −
∑n−1

i=0 τi. To evaluate the finite summation in
the above expression, we define the average number of events
N(≫ 1) in the time window [0, T] where N = T/[τ ]T and
[τ ]T is the mean duration time of τi in [0, T], given by the
self-consistent equation

[τ ]T =

∫ T

0
dτ τPT(τ ) . (4)

Here, PT(τ ) is the truncated PDF defined in the interval [0, T]

from the original one P(τ ), i.e., PT(τ ) = P(τ )/
[

∫ T
0 dτ P(τ )

]

.

Note that N (or n) is large, so we are allowed to replace the

summation in Equation 3 by 1
n

∑n−1
i=0 →

∫ T
0 dτPT(τ ). Then,

using n ≈ N and 1t/[τ ]T ≪ N, we obtain the time-averaged
autocorrelation function

〈f (t)f (t + 1t)〉fi =
σ

[τ ]T

∫ T

1t
dτ (τ − 1t)PT(τ ) . (5)

For the definition and the autocorrelation properties of the three
types of f (t) considered in this work, refer to Table 1. It is noted
that the time-averaged expression 5 is valid and fulfills ergodicity
since the duration time PDF of f (t) in our study has a finite mean.
Our study below is restricted to this case.

2.2. Path Integral Formalism and the
Underdamped Langevin Dynamics
Analogously to section 2.1, let us start to solve the Langevin
equation 1 with f (t) observed in [0, T] under the condition that
the sequences of {fi} and {τi} were predetermined.

First, consider the particle dynamics for an infinitesimal time
interval δt(≪1) during which the f (t) is a constant. In this case,
according to Onsager and Machlup [30], the propagator of v is
given by

5
[

v′|v
]

=

√

β

4πγ δt
exp

[

−

(

v′ − v+ γ vδt − fiδt
)2

4γβ−1δt

]

(6)

where v = v(t), v′ = v(t+δt), and f (t) = fi. Next, we look for the
propagator 5 of v(t) and v(t + 1t) for an arbitrary time interval
1t during which f (t) is allowed to havemultiple transitions.With
a given f (t), it can be shown that the propagator is written as [31]

5
[

v′|v
]

=

√

β

2πw(1t)
exp

[

−

(

v′ − e−γ1tv− λ(t′, t)
)2

2β−1w(1t)

]

(7)

where w(1t) =
(

1− e−2γ1t
)

and λ(t′, t) is the convolution
integral of f (t), given by

λ(t′, t) =

∫ t′

t
ds e−γ (t′−s)f (s) . (8)

The derivation of Equation 7 is described in the Appendix A1.
For example, when ti < t < ti+1 and tj < t′ < tj+1 (i < j),
λ(t′, t) reads

λ(t′, t) = λi(t)e
−γ (t′−ti+1) + e−γ (t′−tj)

j−1
∑

k=i+1

λk

j−1
∏

l=k+1

e−γ τl

+
fj

γ

(

1− e−γ (t′−tj)
)

, (9)

where λk = λk(tk) is given by

λk =
fk

γ

(

1− e−γ (tk+1−tk)
)

=
fk

γ

(

1− e−γ τk
)

(10)
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and λi(t) =
fi
γ

(

1− e−γ (ti+1−t)
)

. If f (t) has no transition event

in [t, t′] where ti < t < t′ < ti+1, Equation 9 is reduced to

λ(t′, t) =
fi
γ

(

1− e−γ (t′−t)
)

. Given λ(t, t0), the conditional PDF

of v is similarly obtained with the initial condition p(v0|λ) =

δ(v0) as

p
(

v|λ(t, t0)
)

=

√

β

2πw(t − t0)
exp

[

−

(

v− λ(t, t0)
)2

2β−1w(t − t0)

]

. (11)

Heat is defined as the energy gain from a heat bath to the particle.
Heat rate is given by [32]

Q̇ = −(−γ v+ ξ ) ◦ v , (12)

where ◦ denotes the Stratonovich calculus. Using (−γ v+ξ )◦v =
(−γ v + ξ )(v + (1/2)v̇ dt) and averaging over the thermal noise,
we obtain the conditional heat rate, 〈Q̇〉ξ , where 〈·〉ξ stands for
the thermal average over ξ for given protocol f (t),

〈Q̇〉ξ = γ 〈v2〉ξ −
1

2
〈ξ 2〉ξ dt = γ

(

〈v2〉ξ − β−1
)

. (13)

Here, the equal-time correlation function in Equation 13 is given
by 〈v2〉ξ =

∫

dv v2p
(

v|λ(t, t0)
)

, which reads

〈v2(t)〉ξ = β−1w(t − t0)+ [λ(t, t0)]
2 . (14)

In R.H.S, the first term explains the relaxation kinetics toward
thermal equilibrium and the second term describes the energy
input from the active force f (t). In the limit of t → ∞, w(t −

t0) → 1 at which the heat rate 〈Q̇〉ξ becomes γ
[

λ(t, t0)
]2
.

The average over the noise amplitude (fi) can be further
evaluated on the condition that the sequence {τi} is quenched.
About the active force term λ2(t, t0), its averaged quantity over
P(f ) is calculated to

〈
[

λ(t, t0)
]2
〉ξ ,fi =

σ

γ 2
e−2γ (t−ti)

i−1
∑

k=0

(

1− e−γ τk
)2

i−1
∏

l=k+1

e−2γ τl

+
σ

γ 2

(

1− e−γ (t−ti)
)2

, (15)

where the index i represents the transition time (of f (t))
specifying ti < t < ti+1. The notation 〈·〉ξ ,fi denotes the average
over both the thermal noise ξ (t) and the amplitude fi of f (t),
henceforth. From this relation, we identify that the averaged heat
rate has the relation

〈Q̇(t → ∞)〉ξ ,fi = lim
t→∞

γ 〈
[

λ(t, t0)
]2
〉ξ ,fi . (16)

This relation tells that the system has a non-vanishing heat
rate (at t → ∞) from the telegraphic noise; it acts as a non-
conservative force to the system, driving the particle out of
equilibrium constantly and leading to a non-vanishing heat rate.
According to Equation 15, however, there is an exceptional case
where the heat rate can be vanishing. This happens in the limit

of [τ ]T → 0 where all the exponential terms in Equation 15 are
unity (τk, τl, and t − ti go to zero). In this case, the telegraphic
noise is no longer telegraphic and the effect of f (t) to the system
is negligible compared to the thermal noise.

Using Equation 15, the noise-amplitude averaged v2 is
given by

〈v2(t)〉ξ ,fi = β−1w(t − t0)+ 〈[λ(t, t0)]
2〉ξ ,fi . (17)

As time is increased to infinity, both terms of w(t − t0) and
λ2(t, t0) decay out and v2 reaches a stationary value. This
value can be evaluated in the limit of t − t0 → ∞ where, in
Equation 15, τi in the exponential terms are approximated

to [τ ]T , yielding
∑i−1

k=0

(

1− e−γ τk
)2∏i−1

l=k+1 e
−2γ τl ≈

(

1− e−γ [τ ]T
)2∑∞

k=0 e
−2kγ [τ ]T = (1 − e−γ [τ ]T )/(1 + e−γ [τ ]T ).

Subsequently, we further perform the average over the duration
time {τi} by way of time-averaging and finally obtain the

time-averaged 〈v2〉ξ ,fi at t → ∞

〈v2〉ξ ,fi = β−1 +
σ

γ 2

(

1−
1− e−γ [τ ]T

γ [τ ]T

)

. (18)

This result will be confirmed in section 3 by the numerical study.
Velocity autocorrelation function (VACF) for v = v(t) and

v′ = v(t + 1t) for a given f (t) can be obtained from the
propagator (Equation 7), which is

〈vv′〉ξ = e−γ1t〈v2〉ξ + λ(t′, t)λ(t, t0) . (19)

The noise-amplitude averaged VACF is then found to be

〈v′v〉ξ ,fi = e−γ1t
[

β−1w(t − t0)

+〈
[

λ(t, t0)
]2
〉ξ ,fi

]

+ 〈λ(t′, t)λ(t, t0)〉ξ ,fi (20)

where 〈λ(t′, t)λ(t, t0)〉means

〈λ(t′, t)λ(t, t0)〉ξ ,fi =
σ

γ 2
e−γ (t′−ti+1)

(

1− e−γ (ti+1−t)
) (

1− e−γ (t−ti)
)

(21)

for ti < t < ti+1 < t′ and

〈λ(t′, t)λ(t, t0)〉ξ ,fi =
σ

γ 2

(

1− e−γ (t′−t)
) (

1− e−γ (t−ti)
)

(22)

for ti < t < t′ < ti+1.
The mean squared displacement (MSD) of the particle in the

interval [t, t + 1t] can be obtained via the double integral
of VACF

〈[1x(1t; t)]2〉ξ ,fi =

∫ t+1t

t
ds

∫ t+1t

t
du 〈v(s)v(u)〉ξ ,fi . (23)

Within a short time interval 1t ≪ 1, Equation 23 can be
expanded to

〈1x2〉ξ ,fi ≈

〈

(

v(t)+ v(t + 1t)

2

)2
〉

ξ ,fi

1t2 . (24)
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Using
[

v(t)+ v(t + 1t)
]

/2 ≈ v+ v̇1t/2, we obtain the MSD up
to the next leading order,

〈1x2〉ξ ,fi ≈ 〈v2〉ξ ,fi1t2

+

[

〈λ(t, t0)f (t)〉ξ ,fi
2

+ γβ−1 − γ 〈v2〉ξ ,fi

]

1t3. (25)

This result suggests that the MSD always starts to grow
ballistically in the beginning where the amplitude 〈v2〉ξ ,fi is given
by Equation 18.

For the other extreme limit of 1t → ∞ together with t ≫ t0,
we find that up to the order of 1/γ 3 the MSD, Equation 23, grows
with 1t in the form of

〈1x2〉ξ ,fi ≈
2β−1

γ
1t−

2β−1

γ 2
+

σ

γ 2

n
∑

i=1

[

τ 2i +
4τi

γ
e−γ τi

]

. (26)

Here, the boundary terms are neglected and n is the number
of events in [t, t + 1t]. This is the expression for a quenched
sequence of {τi}. Equation 26 suggests that in the long-time
limit where 1t ≫ γ−1 (which is the momentum relaxation
time m/γ ) the MSD dynamics is eventually determined by the
first linear term (thermal) and the sum of τ 2i (active). The
active part term can be reasonably rewritten as

∑n
i=1 τ 2i →

n[τ 2]T ≈ ([τ 2]T/[τ ]T)1t. Therefore, the second moment of
duration time plays a crucial role in the long-time transport.
Further development will be presented in the following
section 2.3.

Equation 26 also suggests that the long-time limit dynamics of
our underdamped Langevin model can be alternatively obtained
by taking the overdamped limit: γ → ∞ (or m/γ →

0) while 1/[βγ ] and σ/γ 2 keep finite. It is shown below
that the MSD Equation 26 in this limit is identical to the
MSD (Equation 35) of the overdamped version of the original
underdamped Langevin equation 1. In the following section, we
introduce this overdamped Langevin equation and investigate its
MSD dynamics in a precise manner.

2.3. Overdamped Limit
Using the rescaled noises, ξ̃ = ξ/γ and f̃ (t) = f (t)/γ , from our
Langevin equation 1 we obtain the equation of motion for the
overdamped dynamics as such

ẋ = ξ̃ + f̃ (t) , (27)

where the gaussian white noise has the autocorrelation property
〈ξ̃ (t)ξ̃ (t′)〉 = 2Dδ(t− t′) withD = β−1/γ . Akin to the v(t) in the
underdamped case, when the time series of f̃ (t) is given, the PDF
for x(t) is evaluated to

p
(

x|λ̃(t, t0)
)

=

√

1

4πDt
exp






−

(

x− λ̃(t, t0)
)2

4Dt






, (28)

where x(t0) = 0 and

λ̃(t, t0) =

∫ t

t0

ds f̃ (s) . (29)

Therefore, λ̃(t, t0) means the mean drifted distance for given
f (t) and the PDF of x(t) is a gaussian distribution centered at
λ̃(t, t0). However, the noise-averaged PDF of x has a complicated
structure beyond the simple gaussian. This will be discussed with
the simulation in the next section. In the special case where

P(τ ) = e−τ/τc/τc and the two-state amplitudeP(f̃ ) = 1
2δ(f̃−f̃0)+

1
2δ(f̃ + f̃0), f̃ (t) can be treated as a dichotomous noise switching
between the two states with a constant transition rate (2τc)

−1.
This model was analytically studied in a recent work [33] within
the approach using a generalized telegrapher’s equation.

In the limit of γ /m ≫ 1 (while 1/[βγ ] and σ/γ 2 are finite),
we find that the heat rate 〈Q̇〉ξ ,fi in Equation 16 is reduced

to 〈Q̇〉ξ ,fi = γ σ̃ . The same conclusion is drawn from the
overdamped equation, Equation 27, yielding

〈Q̇〉
ξ̃ ,f̃i

=
〈(

γ ẋ− γ ξ̃

)

◦ ẋ
〉

ξ̃ ,f̃i
= γ σ̃ (30)

where 〈·〉
ξ̃ ,f̃i

denotes the double average over the thermal noise ξ̃

and the amplitude f̃i of the active noise f̃ (t). The PDF Equation 28
tells that the MSD is given by

〈1x2(1t; t)〉ξ̃ = 2D1t +
[

λ̃(t′, t)
]2

, (31)

where t′ = t+1t. By performing the average of Equation 31 over
the noise amplitude P(f ), we obtain

〈1x2〉
ξ̃ ,f̃i

= 2D1t + σ̃



(t′ − tj)
2 +

j−1
∑

k=i+1

τ 2k + (ti+1 − t)2





(32)
where ti < t < ti+1 and tj < t′ < tj+1 (i < j); for ti = tj,
〈1x2〉

ξ̃ ,f̃i
= 2D1t + σ̃1t2.

From Equation 32, we finally find the analytic form of
MSD averaged over the noise duration time with P(τ ). Direct
evaluation of the τ -average on Equation 32 is, however, not
straightforward. In this work, we obtain this average by self-
averaging Equation 32 over time at the large-T limit. This
task is essentially same as finding the time-averaged MSD of
Equation 32

〈1x2〉
ξ̃ ,f̃i

=
1

T − 1t

∫ T−1t

0
dt〈[1x(1t; t)]2〉

ξ̃ ,f̃i
. (33)

To calculate this, we follow the trick used in finding the
autocorrelation of f (t). Consider a sequence {τ0, . . . , τn} where
n is the last event satisfying

∑n−1
i=0 τi < T <

∑n
i=0 τi. In the

assumption of periodic B.C. (where the sequence of τi in [0, 1t]
appears again in [T − 1t, T]), we find that Equation 33 is
evaluated to

〈1x2〉
ξ̃ ,f̃i

≡ 〈1x2〉 = 2D1t +
σ̃

T − 1t





∑

τi<1t

(

τ 2i 1t −
τ 3i

3

)

+
∑

τi>1t

(

τi1t2 −
1t3

3

)



 . (34)
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From now on, for simplicity, we drop the subscript ξ̃ , f̃i in
expressing the multiple average of 〈·〉

ξ̃ ,f̃i
. In the long observation

time limit where n ≫ 1, the statistics is sufficient enough so as
to replace the summation above by integral with the truncated
PDF PT(τ ) defined in [0, T], see Table 1. Using this, we obtain
the expression of the fully averaged MSD in terms of PT(τ ) as

〈1x2〉 = 2D1t +
σ̃

[τ ]T

[∫ 1t

0
dτ PT(τ )

(

τ 21t −
τ 3

3

)

+

∫ T

1t
dτ PT(τ )

(

τ1t2 −
1t3

3

)

]

(35)

where [τ ]T =
∫ T
0 dτ τ PT(τ ) is the average duration time

observed in [0, T].

2.3.1. Poissonian and Gaussian PDFs

Plugging the corresponding PT(τ )s in Table 1 into Equation 35
we can in principle obtain the explicit form of the time-averaged
MSDs (not shown). For P(τ )s having a well-defined time scale
τs(∼ [τ ]T), the MSD is shown to have the following universal
structures at the two extreme time scales:

〈1x2〉 ≈

{

2D1t + σ̃1t2 − σ̃
3[τ ]T

1t3 , 1t ≪ τs

2D1t + σ̃ [τ 2]T
[τ ]T

1t − σ̃ [τ 3]T
3[τ ]T

, 1t ≫ τs
. (36)

The result suggests that the overdamped dynamics have the
Fickian behavior at both limiting time scales, with different
diffusivities. For1t≪ τs, the active noise effects negligibly, where
the particle has the bare diffusivity D. For the opposite limit of
1t ≫ τs, the particle ultimately attains a larger Fickian transport
with an apparent diffusivity

DL = D+
σ̃ [τ 2]T

2[τ ]T
. (37)

Detailed information about the profile of P(τ ) is irrelevant for
the nature of long-time transport; it only affects DL through the
first and second moments of the duration time. An example
belonging to this class is the two-state active system with a
constant transition rate (2τc)

−1 introduced in Malakar et al. [33].
This system can be modeled in our Langevin description with

P(τ ) = τ−1
c e−τ/τc and f̃i = ±f̃0. For this model, we analytically

evaluate the MSD 35 with T → ∞ and obtain the identical form
of MSD reported in Malakar et al. [33]

〈1x2〉 = 2(D+ τc f̃
2
0 )1t − 2τ 2c f̃

2
0 (1− e−1t/τc ). (38)

This expression shows that, for 1t ≪ τc, 〈1x2〉 = 2D1t +

f̃ 20 1t2 −
f̃ 20
3τc

1t3 while, for 1t ≫ τc, 〈1x2〉 = 2(D+ τc f̃
2
0 )1t −

2τ 2c f̃
2
0 where the apparent diffusivity is D + τc f̃

2
0 . These results

are reproduced by plugging [τ q]T→∞ = τ−1
c

∫∞

0 τ qe−t/τc into
Equations 36 and 37.

2.3.2. Power-Law PDFs

Considering PT(τ ) ∝ τ−1−α in [τm, T], the finite-time
expectations, [τ ]T and [τ 2]T , are obtained in terms of α, T, and
τm (Table 1). For the large-time limit of 1t → ∞, we obtain the
asymptotic scaling relations of MSD depending on α:

〈1x2〉 ≈















a1 + a21tα + a31t + a41t2 , 0 < α ≤ 1
b1 + b21t + b31t3−α , 1 < α ≤ 2
c1 + c21t3−α + c31t , 2 < α ≤ 3

d1 + d21t , 3 < α

. (39)

Here, {ai}, {bi}, {ci}, and {di} are constants expressed with α,
D, and other time constants (we omit providing these lengthy
expressions except for c3 = d2 = 2DL). The above expression
explains that the long-time motion is akin to that of the Lévy
walk [9], sensitively depending on the value of α. For a heavy-
tailed PDF of a diverging mean [τ ]T ∼ T1−α (0 < α < 1),
the ballistic dynamics dominates over the other corrections as
1t approaches to T. For 1 < α ≤ 2, the mean duration time
is finite ([τ ]T = ατm/(α − 1)), but the second moment is
diverging ([τ 2]T ∼ T2−α). In this case, the long-time dynamics
is ultimately governed by the sub-ballistic superdiffusion term of
1t3−α . These superdiffusive dynamics in the range of α between
0 and 2 can emerge for a particle in a fluid in the hydrodynamic
regime [9, 34, 35]. For all α > 2, the first and second moments
of τ are all finite, which, thus, results in the Fickian long-time
dynamics (∼ 1t) as in the cases of poissonian and gaussian PDFs.
In this case, the long-time diffusivity DL has exactly the same
expression in Equation 37. As a special case, for α in between 2
and 3, the divergence of [τ 3]T gives the nonvanishing correction
term c21t3−α (see Equation 36); however, this term is sublinear
and negligible compared to the Fickian term 1t at large times.

3. NUMERICAL RESULTS

In this section, we perform the Langevin dynamics simulation
of Equation 1 and elucidate the transport dynamics with
the theoretical expectations presented in the previous section.
In our simulation study, we consider the three distinct f (t)
governed by P(τ ) of a poissonian, gaussian, and of a power-law,
respectively. The specific functional form of these PDFs used in
our study is presented in Table 1, with information about their
autocorrelation properties. Figure 2 shows sample time series
of f (t) generated in our simulation where the noise amplitude
was chosen from a uniform P(f ) in the interval [−f0, f0] for
all simulations, otherwise specified. Further information on the
simulation procedure is provided in the Appendices A2, A3.

3.1. Dynamics of v2(t)
In Figure 3 we plot the relaxation of 〈v2(t)〉ξ ,fi ,τi (black) from

105 sample trajectories of the Langevin equation 1 for the
three distinct f (t) (see the Caption for further information).
Here, in simulation, the full ensemble-averaged v2, 〈v2(t)〉ξ ,fi,τi ,
is evaluated via the average over the thermal noise as well
as the amplitude and duration time of f (t).The data is
compared with the theoretical curve (red) of 〈v2(t)〉ξ ,fi ,τi , which
is computationally obtained from Equation (17) with the average
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FIGURE 2 | Time trace of the telegraphic noise f (t) generated in simulation.

From Top to Bottom the sample noise was generated from the duration time

PDFs: poissonian P(τ ) ∝ e−τ/τc , gaussian P(τ ) ∝ e−(τ−τc )
2/2σ2

τ , and

power-lawed P(τ ) ∝ τ−(1+α). The parameters we used are τc = 5, στ = 0.5,

α = 1.2, and the unit time step 0.01, which gives the theoretical values for

[τ ]T→∞(≡
∫ T→∞

0 dττP(τ )) = 5 (poissonian, gaussian) and 6 (power-law). The

noise strength fi was chosen from a uniform distribution in the interval of

[−0.5, 0.5].

over {τi}. The stationary value of 〈v2(t → ∞)〉ξ ,fi ,τi is
approximately given by Equation 18 (blue). For all cases, the data
are excellently explained by our analytical counterparts.

3.2. MSD
In Figure 4 we plot the full ensemble-averaged MSDs over
random realizations of the noise strength {fi} as well as the
duration time {τi} for the three cases of f . At the underdamped
timescale, as predicted in Equation 25, the MSDs have the
ballistic scaling with the same amplitude for all cases.We confirm

that this amplitude corresponds to 〈v2〉ξ ,fi given by the formula
(Equation 18), cyan line. For comparison, in this plot, the
ordinary Langevin dynamics at f = 0 is added (dashed). It is seen
that the particle under f of the poissonian and gaussian PDFs
has the Fickian dynamics at large times (after the momentum
relaxation). This is explained by Equation 18. Compared to the
ordinary Langevin particle at f = 0 the long-time diffusivity
is increased to DL (Equation 18). Under the f (t) of a power-
law, the particle is shown to eventually attain a sub-ballistic
superdiffusion of the anomaly exponent 3 − α in the range of
α in (1, 2). This is expected in our analysis (Equation 39) for the
overdamped dynamics of the particle.

Additionally, we simulate the overdamped Langevin equation
27 and obtain, in Figure 5, the fully averaged MSDs for the three
cases of f . In the plot, the gray dots show sample time-averaged
MSDs from individual trajectories and their average curve over
106 ensemble is depicted with solid red line. This MSD is
overlaid with our theoretical expression (Equation 35) explaining
the full-time (overdamped) dynamics with information of P(τ ).
It confirms that our analytic theory correctly explains the
overdamped dynamics in the full range of time. Here, the

FIGURE 3 | Relaxation dynamics of 〈v2 (t)〉ξ ,fi ,τi . From Top to Bottom they are

the cases with f (t) of a poissonian, gaussian, and a power-law P(τ ),

respectively. The simulation data (black) were obtained by solving the Langevin

Equation 1 with timestep δt = 0.01, v0 = 0, and the total observation window

T = 2000. Two theoretical lines are compared to the data: 〈v2 (t)〉ξ ,fi ,τi (red)

obtained from Equation 17 with the additional numerical average over {τi} and

the stationary value (blue) Equation 18. In the simulation, we used the

parameters: m = β = γ = 1, τc = 10 and στ = 1 for the poissonian and

gaussian PDFs, and α = 1.2 (producing [τ ]T = 5.7) for the power-law PDF. For

all cases, P (f ) is a uniform distribution in [−
√
3,

√
3]. The units in our Langevin

simulation of Equation 1 are: [x] = 1/
√

βσ , [t] =
√

m/(βσ ).

FIGURE 4 | Time-averaged MSDs. The three solid curves correspond to the

case of P(τ ), respectively, the poissonian (black), gaussian (red), and the

power-law (blue). For reference, the underdamped Brownian particle with

f (t) = 0 is plotted together (dashed). Additionally, the theoretical expectation

(thick cyan) of 〈v2〉1t2, Equation 18, is overlaid with the simulation data. The

simulations were carried out based on the equation of motion 1 with v0 = 0,

timestep δt = 0.01, and with 105 random realizations of f (t). The same

parameter values used in Figure 3. The basic units are: [x] = 1/
√

βσ ,

[t] =
√

m/(βσ ).

MSD initially grows as 2D1t (plotted as cyan). Then the MSD
has a cross-over at 1t ∼ [τ ]T and beyond it reaches the
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FIGURE 5 | Time-averaged MSDs for the overdamped Langevin dynamics

from Equation 27. From Top to Bottom the cases for the poissonian, gaussian,

and the power-law PDFs of P(τ ), respectively. Gray dots show the

time-averaged MSD curves from single trajectories generated from simulation

and the solid (red) line represents their average over 106 realizations. Blue lines

are the theoretical curves of Equation 35. The Langevin simulation was carried

out with timestep δt = 0.01, D = 1, and T = 105. For the f (t) the same PDFs

of P (f ) and P(τ ) informed in Figures 3, 4 were used. The units in our

overdamped Langevin simulation (Equation 27) are: [x] = D/
√

σ̃ , [t] = D/σ̃ .

large-time limit. For the poissonian and gaussian PDFs the
large-time motion is Fickian with the increased diffusivity DL.
Consistently with Figure 4, for the overdamped Langevin model
of Equation (27) a superdiffusion of 1t3−α is observed for the
power-law PDF.

3.3. Displacement PDFs and Gaussianity
In Figure 6 (Bottom) we present the displacement PDFs, p(x, t),
for the active dynamics shown in our overdamped Langevin
model Equation 27. The PDFs are obtained for the three distinct
P(τ )s and for three MSD regimes (Left: short-time, Middle:
cross-over, Right: long-time). Top panel in Figure 6 shows the
evolution of the non-gaussian parameter E[x4(t)]/(3E[x2(t)]2)
(where E[xm(t)] ≡

∫

dxxmp(x, t)) [1], which is zero for a gaussian
process. Comparing with the MSD in Figure 5, we see that the
displacement PDF has the unique feature in each regime: Namely,
when the particle dynamics is Fickian with D, the displacement
PDF is gaussian. Entering the cross-over regime, the MSD has
a transient superdiffusion where the p(x, t) most deviates from
the gaussianity. In the long-time regime, interestingly, the p(x, t)
recovers the gaussian property for the poissonian and gaussian
P(τ )s which exhibits the Fickian dynamics with DL, although
the particle is constantly under a nonequilibrium state due to
f (t). For the power-law P(τ ) (α = 1.2), leading to the long-
time superdiffusion inMSD, the displacement is severely deviated
from gaussianity because of the violation of the central limit
theorem (CLT). Note that our power-law P(τ ), different from
the former two PDFs, is a heavy-tailed PDF having the diverging

FIGURE 6 | Gaussianity test (Top) and the corresponding displacement PDFs

p(x, t) (Bottom) for the overdamped Langevin motion of Equation (27). In the

panels, each line represents, respectively, the result for the poissonian (red),

gaussian (black), and the power-law (green) PDF of P(τ ). Parameters in P(τ )

were used as in the previous simulation for MSDs. The displacement PDFs

were obtained from 108 simulation runs with T = 104, δt = 0.001, and

D = σ̃ = 1. The basic units are: [x] = D/
√

σ̃ , [t] = D/σ̃ .

second moment
∫

dττ 2P(τ ) = ∞. Thus, the variance of typical

displacement due to f (t) over one event, λ̃(t, t + τ ) =
f
γ
τ ,

diverges (see Equation 29) and breaks down the CLT. We learn
from this result that the P(τ ) not only determines the long-time
dynamics but also affects the gaussianity.

We investigate the effect of P(f ) on the gaussianity. For this
purpose, we simulate the cases where P(f )s are two-stated and
gaussian under the three P(τ )s considered. Figure 7 presents the
evolution of the non-gaussian parameter for the corresponding
Langevin dynamics. From Top to Bottom, the panels show the
results for the poissonian, gaussian, and the power-law P(τ ),
respectively. In each panel, the three curves indicate those
from a uniform (red), a two-state (green), and a gaussian
(black) P(f ). The figure shows two interesting observations. The
Langevin dynamics (Equation 27) is always gaussian for all times,
irrespective of P(τ ), if P(f ) is gaussian; otherwise, it exhibits
qualitatively the same feature shown in Figure 6, where the long-
time motion eventually attains gaussianity for the poissonian and
gaussian P(τ ) while it is non-gaussian for the heavy-tailed P(τ ).
Previously, similar studies on the gaussianity for the processes
described by a generalized Langevin equation were reported in
Oliveira et al. [29] and Lapas et al. [36].

4. DISCUSSION AND CONCLUSIONS

In this work, we investigated the dynamics of a Brownian particle
in the presence of a telegraphic random force f (t), which acts
as a nonequilibrium noise from the environment and mimics
the active force experienced in an active bath. We presented an
analytic method to solve the Langevin equation 1 for a given
telegraphic time series of f (t) and theoretically studied the active
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dynamics of the particle in terms of the velocity autocorrelation,
heat rate, and theMSD. Analytic expressions of these observables
were derived within a proper approximation for three distinct
types of f (t) having a poissonian, gaussian, and a power-law PDFs
of the noise duration time P(τ ). To complement this analytic
study, we simulated the corresponding Langevin active systems
and computationally investigated the same physical observables
that fully averaged over the noise amplitude and duration time. It
was validated that the numerically observed dynamic behaviors
are quantitatively well explained by the analytic results.

It turns out that in the presence of the telegraphic f (t) the heat
rate is nonzero for all times, which implies the imbalance between
thermal fluctuation and dissipation due to the f (t). The effect
of the active noise is present not only in the FDT violation but
also in the long-time apparent diffusivity DL. It was shown that
DL > D(= β−1/γ ) (see Equation 37) where the differenceDL−D
is proportional to the strength of f (t) as shown in 〈Q̇〉, as long as
the variance of duration time is finite: If this diverges,DL diverges
as well and the transport becomes anomalous (superdiffusive).

4.1. Active Particle Under Confinement
We emphasize that our current model essentially describes the
transport dynamics of an active particle under confinement.
Consider the overdamped Langevin dynamics of a particle under
a confining harmonic potential in the presence of the active
telegraphic force f (t). The equation of motion reads

γ ẋ = −κx+ ξ (t)+ f (t) , (40)

where κ is the stiffness constant of the harmonic potential such
as the optical trap. By replacing v → x, γ → κ/γ , σ → σ/γ 2,
and β → κβ , our original Langevin equation 1 is mapped

FIGURE 7 | The effect of P (f ) on the gaussianity of the overdamped Langevin

dynamics Equation (27). Three models of P (f ) are the uniform distribution

P (f ) = 1/(2
√
3) in [−

√
3,

√
3] (red), the gaussian P (f ) = exp(−f2/2)/

√
2π

(black), and the two-state P (f ) = 1
2 δ(f + 1)+ 1

2 δ(f − 1) (green). From Top to

Bottom, the panels show the non-gaussian parameters for the three models

under the P(τ ): poissonian (Top), gaussian (Middle), and the power-law

(Bottom). The simulation parameters are same as in Figure 6.

to Equation 40. Therefore, by analogy, all the analytic results
presented in our work can be applied to this problem. For
instance, the autocorrelation of x(t) can be directly read off from
Equations 14 and 19. It is inferred that the MSD grows linearly as

〈1x2〉 ∼ 1t at the beginning, approaching to

〈1x2〉 ≈ 2(βκ)−1 + 2
σ

κ2

(

1−
1− e−κ[τ ]T/γ

κ[τ ]T/γ

)

(41)

as 1t → ∞.

4.2. The Run-and-Tumble Dynamics
The locomotion dynamics of bacterial micro-swimmers has
been investigated with great interest in the viewpoint of a
self-propelled particle [2, 19, 33, 37–40]. Our Langevin model
and the presented study of the model provide an insight
into the so-called run-and-tumble dynamics of bacteria. In
our model, the run and tumble states can be represented by
a telegraphic noise f (t) having the zero state of fi = 0.
The simplest case is the three-state model allowing only the
discrete amplitudes fi = −f0, 0, +f0. A continuous model
expanding the three-state model can be P(f ) = qδ(f ) +

(1 − q)Pr(f ) with a ratio q (0 < q < 1). Pr(f ) is a
normalized bimodal PDF for the run states. With a proper
P(f ) and P(τ ), the experimentally observed run-and-tumble
dynamics can be quantitatively explained. Typically, the run-and-
tumble dynamics is modeled with a time-independent constant
transition rate between the two phases [41, 42]. In our model,
this is the case governed by the poissonian P(τ ). It is inferred
from our study that this type of run-and-tumble dynamics
eventually reaches the Fickian regime, as consistent with previous
experimental and theoretical studies [42–44]. We also anticipate
that even if the transition rate is weakly time-dependent (i.e., the
gaussian P(τ ) in our model) the long-time Fickian dynamics is
still present. Namely, for any P(τ ) having a well-defined cutoff
timescale, the Fickian dynamics is universal. Another interesting
feature is that before this Fickian nonequilibrium state is reached
a superdiffusive dynamics can be transiently observed, as seen

FIGURE 8 | MSD (Left) and p(x, t) (Right) of the overdamped Langevin model

Equation 27 for the two-state model of fi (= ±1). The p(x, t) are plotted at t =

8,000 (black), 9,000 (red), and 10,000 (green). For the duration time, the

power-law PDF with α = 1.2 was used. The simulation details were same as in

Figure 5. The data were obtained from 105 simulation runs. The basic units

are: [x] = D/
√

σ̃ , [t] = D/σ̃ .
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in Figure 5. For the power-law PDFs of the run and tumble
times, their long-time dynamics may vary from the ballistic over
a sub-ballistic superdiffusion to the Fickian depending on the
power-law exponent α. A superdiffusive dynamics of swarming

B. subtilis, 〈1x2〉 ∼ 1t1.6, reported in [45] may be an example of
this type.

4.3. Connection to Lévy Walks
As commented above and also seen in Equation 39, our Langevin
model with a power-law P(τ ) are intimately related to the
Lévy walk model. Especially, if the active force only has two
states (fi = −f0, +f0), our overdamped Langevin model
Equation 27 describes a Lévy walk in the presence of thermal
noise. Conceptually, this model can be understood as a noisy
continuous-time random walks introduced in Song et al. [4]
and Jeon et al. [46]. The thermal effect yields the linear growth
of MSD (∼ 1t) at the beginning, otherwise absent, before the
ballistic regime appears in the intermediate regime. At large
times the thermal noise will be ignored and the well-known
Lévy walk dynamics emerge. In Figure 8, we simulate this noisy
Lévy walk process in our overdamped Langevin model with the
power-law P(τ ) of α = 1.2. The simulation procedure is the
same as that of our overdamped model with the power-law P(τ )
(in Figures 5, 6) but the continuous amplitude PDF is replaced
to P(f ) = 1

2δ(f + f0) +
1
2δ(f − f0). Further information on

the simulation is provided in the Appendix and the Caption in
Figure 8. The simulated Langevin process is consistent with a
sub-ballistic Lévy walk with the sojourn time power-law PDF of
1 < α < 2 [9]. The MSD at large times grows as ∼ 1t3−α

expected in the sub-ballistic Lévy walk [9, 45, 47]. The p(x, t)s
exhibit the sharp peaks at the end of the distribution, which
originates from the ballistic front of a Lévy walk representing
the cases that the first active noise remains survived until the
measurement time t [9]. A small difference is the spread of the
ballistic front shown in p(x, t) (Figure 8, Right). This broadening
is the outcome of thermal noise. The survival probability of the
ballistic front 9s(t) =

∫∞

t P(τ )dτ decays as a power-law of t−α .
The average survival time of the first active noise

∫

dtt9s(t) is
finite for all α>1. Thus, the peaks eventually decay out with time,
as seen in Figure 8 (Right), and the p(x, t) becomes a unimodal

distribution. It is worths comparing our noisy Lévy walk with
the two-state transition model introduced by Malakar et al. [33].
The latter model can be understood as a variant of our noisy
Lévy walk where the power-law P(τ ) is replaced to the poissonian
PDF. In this case, as shown in section 2.3, the long-time diffusion
dynamics becomes Fickian with an apparent diffusivity 37 after
the cross-over superdiffusive regime. The p(x, t) of this model can
have the sharp peaks (the ballistic front) at the tails in the cross-
over regime if the thermal noise is sufficiently weak. The multi-
modal distribution eventually returns to a gaussian distribution
in the long-time Fickian regime [33]. This is in agreement with
the gaussianity behavior of our corresponding model shown in
Figure 7 [the two-state P(f ) & poissonian P(τ )].

Finally, we note in passing that for the power-law PDFs our
active process will suffer the aging dynamics. This aging effect
will be investigated in depth as further work.

DATA AVAILABILITY STATEMENT

The appendix of this paper is included in the
manuscript/Supplementary Files.

AUTHOR CONTRIBUTIONS

JU, TS, and J-HJ designed the model, performed the analytic and
computational invetigations, and wrote the paper together.

FUNDING

This work was supported by the National Research Foundation
(NRF) of Korea through No. 2017R1D1A1B03030872
(JU), No. 2017R1D1A1B03034600 (TS), and No.
2017R1C1B2007555 (J-HJ).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphy.
2019.00143/full#supplementary-material

REFERENCES

1. Metzler R, Jeon JH, Cherstvy AG, Barkai E. Anomalous diffusion models and

their properties: non-stationarity, non-ergodicity, and ageing at the centenary

of single particle tracking. Phys Chem Chem Phys. (2014) 16:24128–64.

doi: 10.1039/C4CP03465A

2. Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G,

Volpe G. Active particles in complex and crowded environments.

Rev Mod Phys. (2016) 88:045006. doi: 10.1103/RevModPhys.88.

045006

3. Riedel C, Gabizon R, Wilson CAM, Hamadani K, Tsekouras K, Marqusee

S, et al. The heat released during catalytic turnover enhances the

diffusion of an enzyme. Nature. (2014) 517:227–30. doi: 10.1038/nature

14043

4. Song MS, Moon HC, Jeon JH, Park HY. Neuronal messenger

ribonucleoprotein transport follows an aging Lévy walk. Nat Commun.

(2018) 9:344. doi: 10.1038/s41467-017-02700-z

5. Wu XL, Libchaber A. Particle Diffusion in a Quasi-Two-

Dimensional Bacterial Bath. Phys Rev Lett. (2000) 84:3017–20.

doi: 10.1103/PhysRevLett.84.3017

6. Fodor E, Hayakawa H, Tailleur J, van Wijland F. Non-Gaussian noise

without memory in active matter. Phys Rev E. (2018) 98:062610.

doi: 10.1103/PhysRevE.98.062610

7. Chen DTN, Lau AWC, Hough LA, Islam MF, Goulian M, Lubensky TC,

et al. Fluctuations and rheology in active bacterial suspensions. Phys Rev Lett.

(2007) 99:148302. doi: 10.1103/PhysRevLett.99.148302

8. Dev S, Chatterjee S. Run-and-tumble motion with steplike

responses to a stochastic input. Phys Rev E. (2019) 99:012402.

doi: 10.1103/PhysRevE.99.012402

9. Zaburdaev V, Denisov S, Klafter J. Lévy walks. Rev Mod Phys. (2015) 87:483–

530. doi: 10.1103/RevModPhys.87.483

10. Gal N, Weihs D. Experimental evidence of strong anomalous diffusion

in living cells. Phys Rev E. (2010) 81:020903. doi: 10.1103/PhysRevE.81.

020903

Frontiers in Physics | www.frontiersin.org 10 October 2019 | Volume 7 | Article 143109

https://www.frontiersin.org/articles/10.3389/fphy.2019.00143/full#supplementary-material
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1038/nature14043
https://doi.org/10.1038/s41467-017-02700-z
https://doi.org/10.1103/PhysRevLett.84.3017
https://doi.org/10.1103/PhysRevE.98.062610
https://doi.org/10.1103/PhysRevLett.99.148302
https://doi.org/10.1103/PhysRevE.99.012402
https://doi.org/10.1103/RevModPhys.87.483
https://doi.org/10.1103/PhysRevE.81.020903
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Um et al. Telegraphic Active Noise

11. Chen K, Wang B, Granick S. Memoryless self-reinforcing directionality in

endosomal active transport within living cells. Nat Mater. (2015) 14:589–93.

doi: 10.1038/nmat4239

12. Berg HC, Borowski A, De Vivie ER. E. coli in Motion. In: Biological and

Medical Physics, Biomedical Engineering. Springer (2004).

13. Ramos-Fernandez G, Mateos J, Miramontes O, Germinal C, Larralde

H, Ayala-Orozco B. Lévy walk patterns in the foraging movements of

spider monkeys (Ateles geoffroyi). Behav Ecol Sociobiol. (2003) 55:223–30.

doi: 10.1007/s00265-003-0700-6

14. Sagi Y, Brook M, Almog I, Davidson N. Observation of anomalous diffusion

and fractional self-similarity in one dimension. Phys Rev Lett. (2012)

108:093002. doi: 10.1103/PhysRevLett.108.093002

15. Brockmann D, Hufnagel L, Geisel T. The scaling laws of human travel.Nature.

(2006) 439:462–5. doi: 10.1038/nature04292

16. Reynolds AM, Rhodes CJ. The Lévy flight paradigm: random search patterns

and mechanisms. Ecology. (2009) 90:877–87. doi: 10.1890/08-0153.1

17. Chaki S, Chakrabarti R. Enhanced diffusion, swelling, and slow

reconfiguration of a single chain in non-Gaussian active bath. J Chem

Phys. (2019) 150:094902. doi: 10.1063/1.5086152

18. Mandelbrot B, Van Ness J. Fractional brownian motions, fractional noises and

applications. SIAM Rev. (1968) 10:422–37. doi: 10.1137/1010093

19. Barthelemy P, Bertolotti J, Wiersma DS. A Lévy flight for light. Nature. (2008)

453:495–8. doi: 10.1038/nature06948

20. Jeon JH, Monne HMS, Javanainen M, Metzler R. Anomalous diffusion of

phospholipids and cholesterols in a lipid bilayer and its origins. Phys Rev Lett.

(2012) 109:188103. doi: 10.1103/PhysRevLett.109.188103

21. Ernst D, Hellmann M, Köhler J, Weiss M. Fractional Brownian motion in

crowded fluids. Soft Matt. (2012) 8:4886–9. doi: 10.1039/c2sm25220a

22. Weiss M. Single-particle tracking data reveal anticorrelated fractional

Brownian motion in crowded fluids. Phys Rev E. (2013) 88:010101.

doi: 10.1103/PhysRevE.88.010101

23. Weber SC, Spakowitz AJ, Theriot JA. Bacterial chromosomal loci move

subdiffusively through a viscoelastic cytoplasm. Phys Rev Lett. (2010)

104:238102. doi: 10.1103/PhysRevLett.104.238102

24. Jespersen S, Metzler R, Fogedby HC. Lévy flights in external force fields:

langevin and fractional Fokker-Planck equations and their solutions. Phys Rev

E. (1999) 59:2736. doi: 10.1103/PhysRevE.59.2736

25. Lisowski B, Valenti D, Spagnolo B, Bier M, Gudowska-Nowak E. Stepping

molecular motor amid Lévy white noise. Phys Rev E. (2015) 91:042713.

doi: 10.1103/PhysRevE.91.042713

26. Van Den Broeck C. On the relation between white shot noise, Gaussian white

noise, and the dichotomic Markov process. J Stat Phys. (1983) 31:467–83.

doi: 10.1007/BF01019494

27. Luczka J. Non-Markovian stochastic processes: colored noise. Chaos. (2005)

15:026107. doi: 10.1063/1.1860471

28. Barik D, Ghosh PK, Ray DS. Langevin dynamics with dichotomous

noise: direct simulation and applications. J Stat Mech. (2006) 2006:P03010.

doi: 10.1088/1742-5468/2006/03/P03010

29. Oliveira FA, Ferreira RMS, Lapas LC, Vainstein MH. Anomalous diffusion:

a basic mechanism for the evolution of inhomogeneous systems. Front Phys.

(2019) 7:18. doi: 10.3389/fphy.2019.00018

30. Onsager L, Machlup S. Fluctuations and irreversible processes. Phys Rev.

(1953) 91:1505–12. doi: 10.1103/PhysRev.91.1505

31. Kwon C, Um J, Park H. Information thermodynamics for a multi-

feedback process with time delay. Europhys Lett. (2017) 117:10011.

doi: 10.1209/0295-5075/117/10011

32. Sekimoto K. Langevin equation and thermodynamics. Prog Theor Phys Suppl.

(1998) 130:17–27. doi: 10.1143/PTPS.130.17

33. Malakar K, Jemseena V, Kundu A, Kumar V, Sabhapandit S, Majumdar

SN, et al. Steady state, relaxation and first-passage properties of a

run-and-tumble particle in one-dimension. J Stat Mech. (2018) 043215.

doi: 10.1088/1742-5468/aab84f

34. Hayot F. Lévy walk in lattice-gas hydrodynamics. Phys Rev A. (1991) 43:806–

10. doi: 10.1103/PhysRevA.43.806

35. Solomon TH, Weeks ER, Swinney HL. Observation of anomalous diffusion

and Lévy flights in a two-dimensional rotating flow. Phys Rev Lett. (1993)

71:3975–8. doi: 10.1103/PhysRevLett.71.3975

36. Lapas LC, Costa IVL, VainsteinMH, Oliveira FA. Entropy, non-ergodicity and

non-Gaussian behaviour in ballistic transport. Europhys Lett. (2007) 77:37004.

doi: 10.1209/0295-5075/77/37004

37. Cates ME, Tailleur J. Motility-induced phase separation.

Annu Rev Condens Matt Phys. (2015) 6:219–44.

doi: 10.1146/annurev-conmatphys-031214-014710

38. DarntonNC, Turner L, Rojevsky S, BergHC. Dynamics of bacterial swarming.

Biophys J. (2010) 98:2082–90. doi: 10.1016/j.bpj.2010.01.053

39. Di Leonardo R, Angelani L, Dell’Arciprete D, Ruocco G, Iebba V, Schippa S,

et al. Bacterial ratchet motors. Proc Natl Acad Sci USA. (2010) 107:9541–5.

doi: 10.1073/pnas.0910426107

40. Saragosti J, Calvez V, Bournaveas N, Perthame B, Buguin A, Silberzan

P. Directional persistence of chemotactic bacteria in a traveling

concentration wave. Proc Natl Acad Sci USA. (2011) 108:16235–40.

doi: 10.1073/pnas.1101996108

41. Najafi J, Shaebani MR, John T, Altegoer F, Bange G, Wagner C. Flagellar

number governs bacterial spreading and transport efficiency. Sci Adv. (2018)

4:eaar6425. doi: 10.1126/sciadv.aar6425

42. Lee M, Szuttor K, Holm C. A computational model for bacterial run-and-

tumble motion. J Chem Phys. (2019) 150:174111. doi: 10.1063/1.5085836

43. Thiel F, Schimansky-Geier L, Sokolov IM. Anomalous diffusion

in run-and-tumble motion. Phys Rev E. (2012) 86:021117.

doi: 10.1103/PhysRevE.86.021117

44. Fier G, Hansmann D, Buceta RC. Langevin equations for the run-

and-tumble of swimming bacteria. Soft Matt. (2018) 14:3945–54.

doi: 10.1039/C8SM00252E

45. Ariel G, Rabani A, Benisty S, Partridge JD, Harshey RM, Be’er A.

Swarming bacteria migrate by Lévy Walk. Nat Commun. (2015) 6:8396.

doi: 10.1038/ncomms9396

46. Jeon JH, Barkai E, Metzler R. Noisy continuous time random walks. J Chem

Phys. (2013) 139:121916. doi: 10.1063/1.4816635

47. Froemberg D, Barkai E. Time-averaged Einstein relation and fluctuating

diffusivities for the Lévy walk. Phys Rev E. (2013) 87:030104.

doi: 10.1103/PhysRevE.87.030104

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Um, Song and Jeon. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org 11 October 2019 | Volume 7 | Article 143110

https://doi.org/10.1038/nmat4239
https://doi.org/10.1007/s00265-003-0700-6
https://doi.org/10.1103/PhysRevLett.108.093002
https://doi.org/10.1038/nature04292
https://doi.org/10.1890/08-0153.1
https://doi.org/10.1063/1.5086152
https://doi.org/10.1137/1010093
https://doi.org/10.1038/nature06948
https://doi.org/10.1103/PhysRevLett.109.188103
https://doi.org/10.1039/c2sm25220a
https://doi.org/10.1103/PhysRevE.88.010101
https://doi.org/10.1103/PhysRevLett.104.238102
https://doi.org/10.1103/PhysRevE.59.2736
https://doi.org/10.1103/PhysRevE.91.042713
https://doi.org/10.1007/BF01019494
https://doi.org/10.1063/1.1860471
https://doi.org/10.1088/1742-5468/2006/03/P03010
https://doi.org/10.3389/fphy.2019.00018
https://doi.org/10.1103/PhysRev.91.1505
https://doi.org/10.1209/0295-5075/117/10011
https://doi.org/10.1143/PTPS.130.17
https://doi.org/10.1088/1742-5468/aab84f
https://doi.org/10.1103/PhysRevA.43.806
https://doi.org/10.1103/PhysRevLett.71.3975
https://doi.org/10.1209/0295-5075/77/37004
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1016/j.bpj.2010.01.053
https://doi.org/10.1073/pnas.0910426107
https://doi.org/10.1073/pnas.1101996108
https://doi.org/10.1126/sciadv.aar6425
https://doi.org/10.1063/1.5085836
https://doi.org/10.1103/PhysRevE.86.021117
https://doi.org/10.1039/C8SM00252E
https://doi.org/10.1038/ncomms9396
https://doi.org/10.1063/1.4816635
https://doi.org/10.1103/PhysRevE.87.030104
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


REVIEW
published: 05 November 2019
doi: 10.3389/fphy.2019.00159

Frontiers in Physics | www.frontiersin.org 1 November 2019 | Volume 7 | Article 159

Edited by:

Carlos Mejía-Monasterio,

Polytechnic University of Madrid,

Spain

Reviewed by:

Stefano Lepri,

Italian National Research Council

(CNR), Italy

Tarcísio Marciano Rocha Filho,

University of Brasilia, Brazil

*Correspondence:

Anupam Kundu

anupam.kundu@icts.res.in

Specialty section:

This article was submitted to

Interdisciplinary Physics,

a section of the journal

Frontiers in Physics

Received: 18 June 2019

Accepted: 30 September 2019

Published: 05 November 2019

Citation:

Dhar A, Kundu A and Kundu A (2019)

Anomalous Heat Transport in One

Dimensional Systems: A Description

Using Non-local Fractional-Type

Diffusion Equation. Front. Phys. 7:159.

doi: 10.3389/fphy.2019.00159

Anomalous Heat Transport in One
Dimensional Systems: A Description
Using Non-local Fractional-Type
Diffusion Equation
Abhishek Dhar 1, Anupam Kundu 1* and Aritra Kundu 2

1 International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India, 2 Raman Research

Institute, Bengaluru, India

It has been observed in many numerical simulations, experiments and from various

theoretical treatments that heat transport in one-dimensional systems of interacting

particles cannot be described by the phenomenological Fourier’s law. The picture that

has emerged from studies over the last few years is that Fourier’s law gets replaced

by a spatially non-local linear equation wherein the current at a point gets contributions

from temperature gradients in other parts of the system. Correspondingly the usual heat

diffusion equation gets replaced by a non-local fractional-type diffusion equation. In this

review, we describe the various theoretical approaches which lead to this framework and

also discuss recent progress on this problem.

Keywords: fractional diffusion equation, Levy walks, anomalous heat transport, fluctuating hydrodynamics, heat

conduction

1. INTRODUCTION

Transport of heat through materials is a paradigmatic example of non-equilibrium phenomena [1–
3]. When an extended system is attached to two reservoirs of different temperatures at its two ends,
an energy current flows through the body from hot region to cold region. At the macroscopic level
this phenomena is described by the phenomenological Fourier’s law. Considering transport in one
dimensional systems, Fourier’s law states that the local heat current density j(x, t) inside a system at
point x at time t is proportional to the gradient of the local temperature T(x, t):

j = −κ
∂T(x, t)

∂x
(1)

where κ is referred to as the thermal conductivity of the material. This law implies diffusive
transfer of energy. To see this we note that the local energy density e(x, t) in a one dimensional
system satisfies the continuity equation ∂e(x, t)/∂t = −∂ j(x, t)/∂x. Inserting Equation (1) in
this continuity equation, and using the relation between the local energy density and the local
temperature cv = ∂e/∂T (where cv represents the specific heat per unit volume), one finds the
heat diffusion equation

∂T(x, t)

∂t
=
κ

cv

∂2T(x, t)

∂x2
, (2)

where we assume (for simplicity) no variation of κ with temperature. In usual three dimensional
systems, the heat diffusion equation takes the form ∂tT(x, t) = (κ/cv)∇

2T(x, t) and describes the

111
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evolution of the temperature field in bulk systems. The
phenomenological macroscopic description provided by the
equations in (1) and (2) has been used extensively to describe heat
transfer phenomena in a wide class of physical systems.

A natural question is to ask if it is possible to derive or establish
Fourier’s phenomenological law theoretically, starting from a
complete microscopic description. The issue of deriving Fourier’s
law has been a long standing question and a very active field of
research [1]. Several theoretical as well as large scale numerical
studies have been performed on different mathematical model
systems to understand the necessary and sufficient conditions
needed in the microscopic description to validate Fourier’s law
at the macroscopic level [2–4]. Surprisingly, these studies suggest
that Fourier’s law is probably not valid in many one-dimensional
systems and one finds that the thermal conductivity κ diverges
with system size N as κ ∼ Nα where 0 < α < 1 [2–12]. This
is referred to as anomalous heat transport (AHT). For α = 0,
the transport is classified as being diffusive while α = 1 is
referred to as ballistic transport [2, 3]. Recent developments in
technology hasmade it possible to verify some of these theoretical
predictions experimentally as well as numerically in real physical
systems, such as nano-structures, polymers, semiconductor films
etc. [13–20], and these have provided further motivation and new
directions of study.

Two approaches have mainly been used to look for signatures
of anomalous heat transport (AHT): (i) the open system set-up
in which a system is connected to heat reservoirs at different
temperatures TL and TR at the two ends and (ii) the closed
system set-up in which the isolated system is prepared in
thermal equilibrium at temperature T and evolves according to
Hamiltonian dynamics (or sometimes stochastic dynamics with
same conservation laws). In the open system set-up, one usually
considers the non-equilibrium steady state (NESS) and measures
directly the steady state heat current j and the temperature profile
T(x) in a finite system of N particles. For small 1T = TL − TR,
one finds the system size scaling j ∼ Nα−1 (implying κ ∼

Nα) and a non-linear temperature profile. These are in contrast
with Fourier’s law which would predict j ∼ N−1 and a linear
temperature profile. In the closed system set-up the idea is to
look at the spreading of a heat pulse in a system in equilibrium.
From linear response theory we expect that this would evolve in
the same way as dynamical correlations of energy fluctuations
in equilibrium. Studies on spreading of pulses and energy
correlations in systems with AHT show that the process is super-
diffusive, with scaling functions described by Lévy distributions
[8, 21, 22]. This contrasts systems described by Fourier’s law
where we expect diffusion and Gaussian propagators. Note that
we expect in fact that the thermal conductivity κ obtained in
non-equilibrium measurements should be related to equilibrium
energy current auto-correlation functions via the Green-Kubo
formula [3, 23, 24]. This leads to the understanding of AHT
as arising from the fact that the non-integrable long time tails
in the auto-correlation function of the total current lead to the
divergence of the thermal conductivity.

The natural question that arises for understanding systems
with AHT is to find the replacements of Fourier’s law in
Equation (1) and the heat diffusion equation in Equation (2).

The picture that has emerged from studies over the last few years
[4, 25–37] is that Fourier’s law gets replaced by a spatially non-
local but linear equation wherein the current at a point gets
contributions from temperature gradients in other parts of the
system. This has the form

j(x, t) = −

∫

dx′ K(x, x′)
∂T(x′, t)

∂x′
, (3)

where now the thermal conductivity is replaced by the non-
local kernel K(x, x′). This then leads to a corresponding non-
local fractional-type equation for the time evolution of T(x, t).
An important difference from the heat diffusion equation is
that the fractional-type equation takes different forms in the
closed system set-up (infinite domain) and the open system
set-up (finite domain). In the infinite domain the evolution of
a localized temperature pulse is described by a fractional-type
diffusion equation

∂tT(x, t) = −κ̄(−1)ν/2T(x, t), (4)

where the fractional operator should be interpreted by its action
on plane wave basis states: (−1)ν/2eikx = |k|ν eikx, with 1 <

ν < 2. However it should be noted that the corresponding Lévy-
stable distribution is valid only over the scale x . t1/ν . As we
will see, the evolution of a heat pulse is restricted to a domain
|x| < ct, determined by the sound speed c. For the open system,
the precise form of the fractional equation is dependent on the
details of boundary conditions. In this review we discuss these
developments as well as open questions.

The plan of the review is as follows. In section 2 we discuss
the various signatures of AHT in the closed and open set-ups.
In section 3 we discuss two theoretical approaches that have
been used to understand various aspects of anomalous transport.
One of these is a phenomenological approach based on the idea
that the heat carriers perform Lévy walks instead of random
walk. The second approach is a microscopic one, though still
phenomenological, and is based on fluctuating hydrodynamics
and applicable to Hamiltonian systems. For a class of stochastic
models, it has been possible to provide a complete microscopic
derivation of the fractional heat equation in the context of both
the closed and open system set-ups. These results are described
in section 4. In the last part of this section we address the
difficult issue of treating arbitrary boundary conditions and
discuss a heuristic formulation that uses linear response ideas
and fluctuating hydrodynamics to arrive at a general form of
the kernel K(x, x′) in Equation (3). Finally we conclude in
section 5 with a summary of the results presented and some of
the outstanding open questions.

2. SIGNATURES OF ANOMALOUS HEAT
TRANSPORT

In the theoretical study of anomalous energy transport in one
dimension, one usually considers simple yet non-trivial model
systems of interacting particles. Let us consider N particles of
unit masses, with positions and momenta given respectively, by
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FIGURE 1 | Schematic illustration of the (A) closed system set-up and the

(B) open system set-up, commonly used to study heat transport. In (A), a

localized heat pulse is introduced at some point in a system in thermal

equilibrium and its subsequent time-evolution is observed. In (B), the system is

attached to two heat reservoirs at different temperatures and the NESS

properties, such as current and temperature profile are studied.

qℓ and pℓ, for ℓ = 1, 2, . . . ,N. One often starts with the following
microscopic Hamiltonian:

H =

N
∑

ℓ=1

p2ℓ
2

+

N
∑

ℓ=0

V(qℓ+1 − qℓ), (5)

where V(r) is a nearest neighbor interaction potential, and
the extra variables q0 and qN+1 are introduced to incorporate
different boundary conditions (BC). For example, fixed BC
corresponds to q0 = 0, qN+1 = 0 while free BC corresponds
to setting q0 = q1, qN+1 = qN . The particles in the bulk of the
system satisfy Hamiltonian equations of motion

q̇ℓ = ∂pℓH, ṗℓ = −∂qℓH , ℓ = 1, 2, . . .N. (6)

One of the well-studied choices for the potential is to take
V(r) = k2r

2/2 + k3r
3/3 + k4r

4/4 which leads to the Fermi-
Pasta-Ulam-Tsingou (FPUT) model. Another popular choice is
the alternate mass hard particle gas which is not in the standard
form of Equation (5). In this model one considers a chain
of point particles with masses which alternate between two
fixed values, say m1,m2, and which collide via elastic collisions
conserving energy and momentum. For generic interaction
potentials V(r) it is expected that the system has three conserved
quantities, namely volume of the system (alternatively the
total number of particles), total momentum and total energy.
Corresponding to each conserved quantity one can write a local
continuity equation. For instance, the local energy defined on
bulk points as

e(ℓ, t) =
p2ℓ
2

+
1

2
[V(qℓ+1 − qℓ)+ V(qℓ − qℓ−1)], (7)

satisfies a continuity equation

∂te(ℓ, t) = j(ℓ, t)− j(ℓ+ 1, t),

where jℓ(t) = −
1

2
(pℓ−1 + pℓ)V

′(qℓ − qℓ−1) . (8)

This equation gives a microscopic definition of the energy
current. For quadratic V(r), i.e., harmonic chains, there are
a macroscopic number of conserved quantities and transport
becomes ballistic. In this case a number of studies have
considered augmenting the Hamiltonian dynamics with a
stochastic component such that the system again has only three
conserved quantities [9, 29–31]. In this case one again recovers
the typical features of anomalous transport and several exact
results are possible. In this review we will discuss results for both
Hamiltonian and stochastic systems.

There are two possible approaches for studying transport
properties of a system [3, 4]. A schematic of the two set-ups is
shown in Figure 1:

A. Closed system set-up—in this case, an isolated system is
prepared in thermal equilibrium at some temperature T
described by the canonical distribution

P(q, p) =
e−H(q,p)/T

Z
, (9)

where Z =
∫

dqdpe−H/T is the partition function. For any
initial condition chosen from this distribution the system
evolves according to the pure Hamiltonian dynamics (or
the conservative stochastic dynamics). Transport properties
are usually probed by studying the form of spatio-temporal
correlation functions of the conserved quantities (volume,
momentum, energy) or the decay with time of the energy
current auto-correlation function. Another approach that has
been used is to study the spreading of an initially localized
perturbation in the equilibrated system (see Figure 1A). In
the closed system set-up one takes the system to be infinite
or, in numerical studies, N to be sufficiently large such that
the correlations are not affected by the boundaries at the
maximum observation times.

B. Open system set-up—in this case, one considers finite systems
attached at the two boundaries to heat reservoirs at different
temperatures (see Figure 1B). The heat reservoirs aremodeled
by adding extra force terms to the usual Hamiltonian
equations of motion of the boundary particles. One of the
standard choices is to consider Langevin type baths, wherein
the additional forces consist of a dissipative term and a white
noise term, which are related via a fluctuation-dissipation
relation. The system is “open” in the sense that energy can
flow in and out of the system, though we note that locally
in the bulk we still have energy conservation. When the
temperatures of the heat reservoirs are different, the system
eventually reaches a NESS in which a heat current flows across
the system. Themain focus of this approach has been to search
for anomalous features in the NESS by looking at observables,
such as the heat current j = 〈j(x, t)〉

neq
open and temperature

profile obtained from T(x) = 〈p2x〉
neq
open (the averages are

computed in the NESS). There have also been attempts to
understand the relaxation to NESS and look at correlations
and large deviation properties of the NESS.

In the following sub-sections, we describe various signatures of
AHT observed in both these set-ups.
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FIGURE 2 | Total scaled heat current auto-correlation, t0.66N−1〈J(t)J(0)〉, in the

alternate mass hard particle gas for mass ratio 2.2 and T = 2.0 (adapted from

Grassberger et al. with permission from [7] Copyright (2002) by American

Physical Society).

2.1. Signatures in the Closed System
Set-Up
• Slowdecay of energy current auto-correlations: A commonly

followed approach for determining the N dependence of j or
equivalently the thermal conductivity κ , is to use the closed

system Green-Kubo (GK) formula [23, 24]:

κ =
1

kBT2
lim
τ→∞

lim
N→∞

1

N

∫ τ

0
dt 〈J(t)J(0)〉

eq

closed
, (10)

where J(t) =
∑

x j(x, t), with j(x, t) defined in Equation (8),
is the total current in the system. The average 〈. . . 〉

eq

closed
is evaluated with initial conditions chosen from a thermal
distribution and time-evolution given by the closed system
dynamics. This formula relates the thermal conductivity κ to
the integral of the equilibrium heat current auto-correlation
function CJ(t) = N−1〈J(t)J(0)〉

eq

closed
. Numerical simulations

as well as several theoretical treatments find that CJ(t) in a
closed system generically decays with time as a power law
CJ(t) ∼ tα−1 with 0 ≤ α ≤ 1 [2, 3, 7, 9, 12, 33, 38–51].
As an example we show in Figure 2 data from simulations
[7] of the alternate mass hard particle gas, where we see a
decay with α ≈ 0.33. Such a power-law time dependence
implies, from Equation (10), a divergent thermal conductivity.
To see the dependence on system size one heuristically puts
a cutoff tN ∼ N in the upper limit of the time integral, the
argument being that this is the time taken by sound modes to
explore the full system of size N. Performing the time integral
in Equation (10) with this cut-off, one finally gets κ ∼ Nα .
An interesting example where this procedure fails has been
pointed out in a recent work [52, 53].

• Super-diffusive spreading of initially localized energy pulse:
Here one looks at the spreading of a localized energy pulse
in a thermally equilibrated system. One takes an initial
configuration chosen from a thermal distribution with average
local energy e0 = 〈e(x)〉

eq

closed
, uniform across the system.

FIGURE 3 | Scaled perturbation profiles at times

t = 40, 80, 160, 320, 640, 1, 280, 2, 560, and 3, 840, with γ = 3/5. The profiles

have been obtained by averaging over large number of realizations. In the

inset, the profile at t = 640 (solid line) is compared with the propagators of a

Lévy walk with an exponent ν = 5/3 with a fixed velocity v = 1 (dotted line) or

with velocity chosen from a Gaussian distribution with mean 1 and variance

0.036 (dashed line) (adapted from Cipriani et al. with permission from [8]

Copyright (2005) by American Physical Society).

Imagine putting an extra amount of energy ǫ0 to a few particles
in a region inside the bulk to create a pulse of excess energy
locally. As the system evolves according to the closed system
dynamics, this localized energy perturbation starts spreading
across the system. Let ǫ(x, t) represent the excess energy
density (above e0) at the point x and at time t (averaged over
the initial distribution). This quantity starts as a δ-function
at t = 0 and then starts spreading with time. Note that
∫

dx ǫ(x, t) = ǫ0, the total injected energy is conserved
under the closed system dynamics. For a diffusive system, the
perturbation would evolve according to the diffusion equation
∂ǫ(x, t)/∂t = D∂2ǫ(x, t)/∂x2 and in macroscopic length-time
scales, the perturbation profile at time t would be given by
a Gaussian

ǫ(x, t) = ǫ0
e−x2/4Dt

√
4πDt

. (11)

For a system with AHT, one instead finds the following scaling
form [4, 8]

ǫ(x, t) =
1

tγ
G

( x

tγ

)

, for x . t, (12)

with a scaling exponent 1/2 < γ < 1. The two limits
γ = 1/2 and 1 correspond respectively to diffusive and
ballistic transport. In Figure 3we show results for energy pulse
spreading obtained in [8] for the alternate mass hard particle
gas model. The main plot shows the scaling x ∼ tγ , with
γ = 3/5 of the central part of the distribution. The central
part of the distribution was found to fit to the Lévy function
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which is the propagator of Equation (4) with µ = 1/γ . The
mean square deviation (MSD) defined as

σ 2
e (t) =

∫

dx x2 ǫ(x, t), (13)

with mean taken as zero, was seen to scale as σ 2
e (t) ∼ tβ ,

with β = 4/3, as opposed to a diffusive system with β = 1.
It was also noted that the MSD width exponent, β , is related
to the thermal conductivity exponent α as β = 1 + α (see
section 3.1.2 for details). To compute the MSD and relate the
exponents β and γ is a somewhat subtle issue and requires one
to note that the scaling function is valid in the bulk region
|x| . t, beyond which ǫ(x, t) decays rapidly (see discussion
in section (3.1.1) in the context of Lévy-walk model). From
properties of the Lévy distribution one gets, in the regime
tγ << x . t, the scaling form G(u) ∼ 1/u1+1/γ . Using these

asymptotics and computing σ 2
e (t) =

∫ t
0 dx x2 t−γ G(x/tγ )

gives us the leading behavior σ 2(t) ∼ t3−1/γ which then
leads to the relation β = 3 − 1/γ . Observations from
several other numerical simulations have confirmed the super-
diffusive behavior [8, 54–59].

• Super-diffusive evolution of density correlations: The
anomalous signature discussed in the previous point can also
be observed alternatively by looking at the spreading of the
equilibrium spatio-temporal correlation function of the energy
density e(x, t) defined as

Ce(x, t) = 〈e(x, t)e(0, 0)〉 − 〈e(x, t)〉〈e(0, 0)〉, (14)

where the average is taken over the equilibrium initial
conditions. For diffusive systems this correlation has the
Gaussian form in Equation (11), while for systems with AHT
this has the scaling form in Equation (12) and one again has
super-diffusive growth of the MSD [21], now defined as

σ 2
c (t) =

1

kBT

∫

dx x2 Ce(x, t). (15)

This MSD can be related to σ 2
e (t) defined above, using

linear response theory and both have ∼ tβ scaling. In the
case of AHT, observing the scaling form in Equation (12)
usually requires one to subtract contributions of sound modes
which travel ballistically. The theory of non-linear fluctuating
hydrodynamics (NFH) provides a framework in which one
can systematically describe the super-diffusive scaling of the
correlation [22, 47, 60–63]. This theory is based on writing
hydrodynamic equations for the conserved quantities in the
system which for the Hamiltonian in Equation (5) are the total
energy, total momentum and the total number of particles
(or volume). This framework of NFH is discussed in detail
in section 3.2. A connection can be made between the super-
diffusive scaling (σ 2

c (t) ∼ tβ ) of the energy correlations
and the power-law decay, ∼ tα−1, of the current-current
correlations [4, 58, 59], which can be seen as follows. Starting
from the continuity equation for energy, one can obtain the
relation [61, 62] on the infinite line

∂2Ce(x, t)

∂t2
=
∂2〈j(x, t)j(0, 0)〉

∂x2
. (16)

Multiplying by x2 on both sides and integrating over all the
range of x one gets

d2σ 2
c (t)

dt2
=

1

kBT
〈J(t)j(0, 0)〉 =

CJ(t)

kBT
. (17)

Assuming the expected forms σ 2(t) ∼ tβ and CJ(t) ∼ tα−1 we
get the relation α = β − 1.

2.2. Signatures in the Open System Set-Up
• Diverging thermal conductivity: As discussed above in the

open system set-up, one connects the system at the two
boundaries to heat reservoirs at unequal temperatures Tℓ 6=

Tr . A common model for baths is to write Langevin dynamics
for the boundary particles involving dissipation and noise
term satisfying the fluctuation-dissipation relation. For a
chain of interacting particles described by the Hamiltonian
in Equation (5) the equations of motion for the boundary
particles would read

ṗ1 = f1 − λp1 + ξℓ(t), (18)

ṗN = fN − λpN + ξr(t), (19)

where fi = −∂H/∂qi. The noise terms ξℓ,r are Gaussian white
noise terms, with zero mean and correlations 〈ξℓ(t)ξℓ(t

′) =

2λTℓδ(t − t′) and 〈ξr(t)ξr(t
′) = 2λTrδ(t − t′). The remaining

particles evolve according to Equation (6). After a long time
the system reaches a non-equilibrium steady state (NESS) and
we canmeasure the steady state current j as average of the local
current j(x, t) defined through Equation (8). In the steady state
this will be independent of time as well as the bond where we
measure the current. One can then check if the system size
N scaling of this steady state current j has the expected form
j ∼ Nα−1, where α < 1 for anomalous systems. Alternatively
one can define the κ = jN/(Tℓ − Tr) and see how this scales
with N. For a large class of non-linear interaction potentials, it
has been observed that the thermal conductivity κ ∼ Nα with
0 < α < 1 for large N [6, 7, 10, 11, 63, 64]. As an example, we
show in Figure 4 data from [10] for the FPUT-β chain, where
one finds α ≈ 0.33.

• Non-linear temperature profile: The local temperature at
a site on the lattice can be defined through the relation
Ti = 〈p2i /m〉, where the average is taken in the NESS. For
diffusive systems, the temperature profile obtained would be
linear for small 1T = Tℓ − Tr , as expected from solving
Fourier’s law with a constant κ . It is important to note
that non-linear temperature profiles can also be obtained in
case of diffusive transport if the thermal conductivity κ is
temperature-dependent and 1T is large. On the other hand,
for many systems with AHT, one finds a strongly non-linear
temperature profile even when 1T is made arbitrary small [5,
10, 11, 26, 34, 36, 65]. Quite often the profiles are characterized
by divergent slopes at the boundaries. In Figure 5 we show
the temperature profile in the FPUT-β model and one can see
the characteristic non-linear nature. Note that the definition
of local temperature makes sense (and is useful) only if this
temperature predicts correctly other local observables, for
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FIGURE 4 | FPUT-β model: Results for conductivity κ vs. N for Tℓ = 2.0 and

Tr = 0.5. The last five points fit to a slope of 0.333± 0.004 (adapted from Mai

et al. with permission from [10] Copyright (2007) by American Physical

Society).

example higher moments of the velocity. This was also verified
in [10] and also shown in Figure 5. Typically one finds that
the temperature difference δT(x) = |Tℓ − T(x)| scales as
(δx)µ, with distance δx from the boundary, where 0 < µ ≤

1. The exponent µ has been referred to as the meniscus
exponent [66]. This exponent is non-universal in the sense
that it depends on details of boundary conditions, unlike the
conductivity exponent α.

• Green-Kubo-type relation for open systems: Analogous to
the Green-Kubo formula in the closed system set-up given
by Equation (10), an exact formula exists in the open system
set-up that relates the current response to a small temperature
difference1T = Tℓ − Tr . This is given by [67]

lim
1T→0

j

1T
=

1

KBT2N2

∫ ∞

0
dt 〈J(t)J(0)〉

eq
open . (20)

The time auto-correlation 〈J(t)J(0)〉
eq
open is computed by

averaging over equilibrium initial conditions as well as the
open system dynamics which includes the stochastic baths
(at equal temperatures). This formula is valid for a finite
size system. We note that for systems with AHT, unlike with
Equation (10), in the open set-up we do not require the use of
an upper cut-off tN ∼ N for estimating the size dependence
of conductivity. In this case the linear response current can be
evaluated directly from Equation (20) for any finite system of
sizeN and thereby one can verify the form j/1T ∼ Nα−1. This
approach has been discussed for example in [63, 64]. It was
observed in [64] that, for the so-called random collision model
studied by them, both 〈J(t)J(0)〉

eq

closed
and 〈J(t)J(0)〉

eq
open showed

a t−2/3 decay at times t . N. However, the exponential decay
for the open case begins at tN ∼ N while for the closed system
(with periodic boundary conditions) this begins at tN ∼ N3/2.
This was understood as arising from the time scale associated
to the spreading of sound modes. Note that if we put the
cut-off tN ∼ N3/2 as the upper limit in the time-integral
of Equation (10) then we would get the wrong conductivity
exponent. In order to get the correct exponent in the closed
system set-up, one has to by hand set the cut-off at tN ∼ N
based on consideration of the practical transport set-up which
has baths at the boundaries.

Recently, in a model system of AHT the relation in
Equation (3) has been established using the above formula

FIGURE 5 | FPUT-β model: Kinetic temperature profile for a system with

N = 16384, Tℓ = 2.0, Tr = 0.5. Assuming a Gaussian local velocity

distribution, the temperatures as defined from the first three even moments are

shown; their agreement vindicates the assumed Gaussian velocity distribution.

(Inset) Normalized temperature profiles for different N (adapted from Mai et al.

with permission from [10] Copyright (2007) by American Physical Society).

and a heuristic approach based on fluctuating hydrodynamics
[36]. An explicit expression of the kernel was obtained for a
specificmodel, using which one can understand the divergence
of κ as well as the singular features in the temperature
profile. A detailed discussion of this method is given later in
section 4.2.3.

3. PHENOMENOLOGICAL APPROACHES
FOR ANOMALOUS HEAT TRANSPORT

In this section we will discuss two different approaches that
have tried to understand the various aspects of AHT mentioned
above. The first is a completely heuristic approach where one
assumes that the heat carriers perform Lévy walks instead of
random walk which is expected for diffusive heat transfer.
This method has been used to explain spreading of localized
energy pulses, steady state properties and current fluctuations
[8, 39, 57, 66, 68–71]. The second approach is a microscopic
one where one starts by writing hydrodynamic equations for the
conserved quantities of the Hamiltonian dynamics. One then
phenomenologically adds noise and dissipation terms satisfying
fluctuation dissipation relations and this allows one to study
equilibrium fluctuations in the system. In particular, using
the formalism of fluctuating hydrodynamics, one can compute
dynamical correlation functions which contain information
on AHT.

3.1. Lévy Walk Description of Anomalous
Heat Transport
3.1.1. Lévy Walk Description in the Closed Set-Up
In this description one thinks of energy as being carried by Lévy
walkers, each of which carry a fixed amount of energy. It follows
that the local energy density and energy current at any point can
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be taken to be directly proportional to, respectively, the particle
density and current. Let us also assume that the local temperature
is proportional to the local energy density and hence to the
density of particles.

Definition of the Lévy walk [72–74]: At each step of the walk,
a particle chooses a time of flight τ from a specified distribution,
φ(τ ), and then moves a distance x = cτ at a fixed speed c,
with equal probability in either direction. More generally one
can consider the velocity c to be drawn from a distribution. Let
P(x, t)dx denote the probability that the particle is in the interval
(x, x + dx) at time t. Note that P(x, t) also includes events where
the particle is crossing the interval (x, x + dx), in addition to
the events in which the particle lands in the interval at time t.
If a particle starts at the origin at time t = 0, the probability
P(x, t) satisfies

P(x, t) =
1

2
ψ(t)δ(|x| − ct)+

1

2

∫ t

0
dτφ(τ ) [P(x− cτ , t − τ )

+ P(x+ cτ , t − τ )], (21)

where ψ(τ ) =
∫∞

τ
dτ ′ φ(τ ′) is the probability of choosing

a time of flight ≥ τ . Here we consider Lévy walkers with a
time-of-flight distribution

φ(t) =
ν

to

1

(1+ t/to)ν+1
, 1 < ν < 2, (22)

which decays, at large times, like a power law φ(t) ≃ A t−ν−1

with A = νtν0 . For this range of ν the mean flight time 〈t〉 =
∫∞

0 dt t φ(t) = t0/(ν − 1) is finite but 〈t2〉 = ∞.
Some properties of the Lévy walk: Taking the Fourier Laplace

transform˜P(k, s) =
∫∞

−∞
dx
∫∞

0 dt P(x, t) eikx−st we get

˜P(k, s) =
˜ψ(s− ick)+ ˜ψ(s+ ick)

2− ˜φ(s− ick)− ˜φ(s+ ick)
, (23)

where ˜φ(s) =
∫∞

0 dte−stφ(t) and ˜ψ(s) =
∫∞

0 dte−stψ(t) =

[1− ˜φ(s)]/s.
For asymptotic properties it is useful to find the form of˜P(k, s)

for small k, s. The Laplace transform ˜φ is given by:

˜φ(s) =

∫ ∞

0
dt e−st φ(t) = 1− 〈t〉 s+ b ν(sto)

ν + · · · ,

(24)

where b =
1

ν(ν − 1)

∫ ∞

0
dz e−zz1−ν =

1

ν(ν − 1)
Ŵ(2− ν),

and Ŵ(u) is the Gamma-function. Hence we get:

˜P(k, s) =
1− d[(s− ick)ν−1 + (s+ ick)ν−1]

s− d[(s− ick)ν + (s+ ick)ν]
, (25)

where d = bA/(2〈t〉). Taking the inverse Fourier-Laplace
transform of this gives us the propagator of the Lévy walk on
the infinite line. This corresponds to a pulse whose central region
is a Lévy-stable distribution with a scaling x ∼ t1/ν . This can
be seen by expanding Equation (25) for ck/s << 1 to get

FIGURE 6 | Plot of the scaled distribution t2/3P(x, t) vs. x/t2/3 of the Lévy walk

on the open line for ν = 3/2 at three different times. Also shown is a plot of the

Lévy-stable distribution. The inset shows a plot of the mean square

displacement and the fourth moment and a comparison with the exact

asymptotic forms (dashed lines) given by Equations (27, 28). In all plots the

time to and c are set to one.

˜P(k, s) = [s− c cos(νπ/2)(ck)ν]−1. The difference with the Lévy-
stable distribution is that the Lévy-walk propagator has ballistic
peaks of magnitude t1−ν at x = ±ct and vanishes outside this.
The overall behavior of the propagator is as follows [72]:

P(x, t) ∼ t−1/ν exp

(

−ax2

t2/ν

)

|x| . t1/ν

∼ t x−ν−1 t1/ν . |x| < ct

∼ t1−ν |x| = ct

= 0 |x| > ct. (26)

The time evolution of the Lévy-walk propagator, obtained from
direct simulations of the Lévy walk, is shown in Figure 6. We also
plot the Lévy-stable distribution obtained by taking the Fourier
transform of P(k, t) = e−c cos(νπ/2)|k|ν t .

Various moments of the distribution can be found using

the relation 〈xn〉(t) = (dn/d(ik)n)
∫∞

−∞
dkeikxP(x, t)

∣

∣

∣

k=0
, or its

Laplace transform given by 〈xn〉(s) = (dn/d(ik)n) ˜P(k, s)
∣

∣

∣

k=0
.

Using Equation (25) we get in particular the following
leading behavior

〈x2〉c ≃
2 A c2

(3− ν)(2− ν)ν 〈τ 〉
tβ , β = 3− ν , (27)

〈x4〉c ≃
4 A c4

(5− ν)(4− ν)ν 〈τ 〉
tβ+2 . (28)

We see that for 1 < ν < 2 the motion is super-diffusive [73, 74].
The most interesting characteristics to note about the Lévy walk
are the fact that the probability distribution has finite support
(|x| ≤ ct), in the bulk it coincides with the Lévy distribution
with scaling x ∼ t1/ν and finally the mean square displacement
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FIGURE 7 | (A) Temperature profile of the oscillator chain with conservative noise with free boundary condition and λ = γ = 1 (solid line) and solution of the master

equation with reflection coefficient R = −0.1 (dashed line) (reprinted from Lepri and Politi [66]). (B) Dependence of the meniscus exponent µ on the reflection

probability r for ν = 3/2. Note that r in this figure is denoted by R in this review. Full circles and stars are measures from fitting of P(x) and Q(x), respectively (see text).

The dashed line is given by formula (29) (adapted from Lepri and Politi with permission from [66] Copyright (2011) by American Physical Society).

(MSD) 〈x2〉 ∼ tβ with β = 3− ν. Note that the usual Lévy stable
distribution has a diverging second moment, however the Lévy
walk has a finite MSD and this follows from the finite support
|x| ≤ ct of the corresponding distribution. Indeed, on using this
cutoff and the power-law form of the Lévy near the cut-off (see
Equation 26) gives us the expected scaling exponent β = 3− ν.

Lévy walks and AHT: The first proposal suggesting the Lévy
walk model to describe anomalous heat transport was made in
[68]. This idea was tested for a microscopic model in [8] where
it was shown that the spreading of a heat pulse in a thermally
prepared alternate mass hard particle gas was super-diffusive and
is well-described by the Lévy walk model. In Figure 3 we show
the evolution of a localized perturbation. Themain plot shows the
x ∼ t3/5 scaling of the central part of the distribution while the
inset shows a fit to the expected Lévy distribution (for a LW with
ν = 5/3) with a single fitting parameter. It was also shown that
the MSD of the energy has the scaling ∼ t4/3 as expected from
the relation β = 3 − ν for LW. Finally it was proposed using
linear response ideas that the exponent β and the conductivity
exponent α should be related as α = β − 1 which gives α = 1/3
for the present system. This agrees with known results for the
alternate mass hard particle gas. The validity of the Lévy walk
description of pulse propagation was further verified in [39] for
a hard particle gas interacting via a square well-potential and in
[57] for the FPUT chain. All these cases were described by the
same Lévy-walk exponent ν = 5/3.

3.1.2. Lévy Walk Description of the Open Set-Up
We now discuss the case of the open system consisting of a
finite segment (0, L) that is connected to two reservoirs at the
ends. The use of the Lévy walk model to study NESS properties
in AHT was first proposed in Lepri and Politi [66] where
the authors considered a finite lattice of N sites containing a
collection of Lévy walkers. The system was connected at it’s two
ends to infinite reservoirs that contained sources emitting Lévy
walkers at fixed constant rates. A Lévy walker crosses from the
reservoir into system with probability one, but while exiting
from system into reservoir, it can get reflected with probability
R. A particle exiting the reservoir is eliminated. The authors in
Lepri and Politi [66] considered a discrete version and studied
this problem numerically. The strategy was to write appropriate
master equations for the probability evolution and obtain the

steady state solution numerically. One of the main observations
in the paper was that the NESS profile for P(x) was non-linear and
was singular at the boundaries. In Figure 7Awe show a plot of the
profile for the case R = −0.1, compared with simulation results
for the temperature profile in the momentum exchange model
(HCME), with free BC and a specific choice of exchange rate. One
sees very good agreement. As noted in section 2.2 in the context
of temperature profiles in systems with AHT, one can define
a “meniscus” exponent, µ, through the observed scaling form
P(x) ∼ (δx)µ for small distances δx from any boundary. Based
on their numerical observations (see Figure 7B) the authors in
[66] conjecture the relation

µ =
ν

2
+ R

(ν

2
− 1

)

. (29)

It was noted in [66] that the value R = −0.1 was unphysical but
made mathematical sense in the master equation (see [66] for
further discussions on this point) and gave the best agreement
with the momentum exchange simulation profile.

Some exact results were obtained for the Lévy walkmodel with
particle reservoirs, for the special case of perfectly transmitting
boundary walls (i.e., R = 0) [69] which we now describe. We
note that for the Lévy walker, at any given time, a particle could
either be passing over a point x or could have landed precisely at
the point. Hence, in addition to the probability density P(x, t), it
is convenient to define the probability Q(x, t)dxdt that a particle
lands precisely between x to x+ dx in the time interval (t, t+ dt).
We now specify the boundary conditions required to set up
a non-equilibrium current carrying steady state. For this, we
consider the region x ≤ 0 as the left reservoir with Q(x, t) = Ql

for all points in this region. Similarly, we set Q(x, t) = Qr in the
region x ≥ L corresponding to the right reservoir. In the steady
state, the distributions become time-independent and Q(x, t) =

Q(x), P(x, t) = P(x) satisfy [69]

Q(x) =

∫ L

0
dy

1

2c
φ(|x− y|/c) Q(y)+

Ql

2
ψ(x/c)

+
Qr

2
ψ[(L− x)/c], (30)

P(x) =

∫ L

0
dy

1

2c
ψ(|x− y|/c) Q(y)+

Ql

2
χ(x/c)
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+
Qr

2
χ[(L− x)/c], (31)

whereψ(t) =
∫∞

t dτ φ(τ ) and χ(t) =
∫∞

t dτψ(τ ) as mentioned
earlier after Equation (21). The terms on the right hand side of the
above equation for Q(x) represent different contributions. The
first term represents the contributions from walkers that start
from various points y and land at x. The second and the third
term represent contributions from walkers starting, respectively,
from left and right reservoirs and landing at x. Similarly, the
terms on the right hand side of Equation (31) for P(x) can also
be interpreted in the same way except now, events in which the
walkers are passing over x, in addition to the events in which they
land at x at a given time, also contribute.

Interestingly, it turns out that the problem of finding Q(x)
can be related to the problem of the escape probability [75] of a
Lévy walker on the interval (0, L). LetH(x) denote the probability
with which a Lévy walker, starting at position x, arrives at the left
reservoir (region x < 0) before arriving at the right reservoir
(region x > L). It can be shown that H(x) satisfies [69]

H(x) =

∫ L

0
dy

1

2c
φ(|x− y|/c) H(y)+

1

2
ψ(x/c). (32)

The probability Q(x) can now be expressed in terms of H(x) as
Q(x) = (Ql−Qr)H(x)+Qr , which can be checked easily to satisfy
Equation (30).

If one considers a Lévy flight with distribution ρ(z) =

[φ(z/c) + φ(−z/c]/(2c) of steps z, the probability H(x) that
starting at x, the flight hits first the left bath satisfies exactly
Equation (32). Hence by following the same mathematical steps
as in [75] to study equations, such as (30) or (32), one can show
that, in the large L limit, the solution Q(x) of (30) [and H(x) of
(32)] satisfies

∫ L

0
dy ψ(|x− y|/c) Sgn(x− y)Q′(y) = 0 . (33)

with Q(0) = Ql and Q(L) = Qr [and H(0) = 1 and H(1) = 0
for (32)] with a solution of (33), for a φ(τ ) decaying as in (22),
which satisfies

Q′(x) = −B[x(L− x)]ν/2−1 . (34)

We can integrate this equation to get Q(x), with the integration
constant and B being then determined from the boundary
conditions Q(0) = Ql and Q(L) = Qr . One finally obtains

Q(x) = Ql + (Qr − Ql)G
( x

L

)

,

whereG(z) =
2Ŵ(ν)

νŴ(ν/2)2
zν/2 2F1

(

1−
ν

2
,
ν

2
, 1+

ν

2
, z
)

, (35)

and 2F1
(

a, b, c, z
)

is the hypergeometric function. For large L,
the right hand side of Equation (31) is dominated by the range
|y− x| ≪ L and therefore

P(x) = χ(0)Q(x) = 〈τ 〉Q(x) . (36)

The exact results of Equations (34) have been verified in [69] from
direct numerical solution of Equations (30, 31) and it was noted
that the density profiles were similar to the temperature profiles
seen in AHT.

Next we discuss the steady state current j(x) which is given by

j(x) =
1

2

∫ ∞

−∞

dy Q(x− y) Sgn(y) ψ(|y|/c). (37)

This can be seen to be the difference between the flow from left
to right and from right to left. The contribution from 0 < y <
∞ to the integral corresponds to particles crossing the point x
from left to right which is obtained by multiplying the density
of particles at x − y with the probability ψ(y/c) that they have a
flight time larger than y/c. The contribution from −∞ < y <
0 to the integral corresponds to a similar right-to-left current.
After performing a partial integration and using the boundary
conditions Q(0) = Ql and Q(L) = Qr , one obtains

j(x) = −
c

2

∫ L

0
dy χ(|x− y|/c) Q′(y) . (38)

Using Equation (33) it is easy to see that dj/dx = 0 which
implies that the current in the steady state is independent of x,
as expected. Hence, evaluating the current at x = 0 and using
Equation (34), we get for large L

j ≃ (Ql − Qr)
A cν Ŵ(ν) Ŵ(1− ν

2 )

2 ν(ν − 1) Ŵ( ν2 )
Lα−1, α = 2− ν. (39)

From Equation (27) we then get the relation α = β − 1, between
the conductivity exponent of AHT and the MSD exponent for
Lévy-walk diffusion. This relation for Lévy diffusion was pointed
out in [68] and verified in simulations in 1D heat conduction
models [8, 21]. A derivation based on linear response theory
has been given in [59]. Finite size corrections to the results in
Equations (34, 39) were recently obtained in [76].

In the large L limit by using Equation (36) in Equation (38)
we obtain

j = −
c

2〈τ 〉

∫ L

0
dy χ(|x− y|/c)P′(y). (40)

Above equation is the analog of Fourier’s law Equation (1)
with the important difference that in the linear response regime
the current at a point gets contributions from the temperature
gradients at other parts of the system as well.

The above treatment can be generalized for arbitrary values of
the reflection probability R [37] and this leads to the following
general non-local form of the current

j = −
c

2〈τ 〉

∫ L

0
dy χR(x, y)P

′(y) , (41)

where χR(x, y) =

∞
∑

n=−∞

[

R|2n|χ

(

|2nL+ y− x|

c

)

−R|2n+1|χ

(

|2nL+ y+ x|

c

)]

. (42)
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Remarkably we note that for ν = 3/2 (α = 2 − ν = 1/2), the
expression above is identical to the expression for KR(v, v

′) with
v = x/L, v′ = y/L, given later in Equation (112).

3.2. Non-linear Fluctuating Hydrodynamics
Description of Anomalous Heat Transport
We now discuss a completely different approach for
understanding AHT. In this approach the starting point
is the Hamiltonian dynamics of the system. The idea is to
consider the effective dynamics of the slow conserved fields
using some coarse graining. One finds that the evolution of
small fluctuations around equilibrium can be described by
fluctuating hydrodynamics. Solving these equations using
mode coupling theory, detailed predictions can be made on the
form of equilibrium spatio-temporal correlation functions of
the conserved fields. In particular, we will see that it predicts
the super-diffusive spreading of energy perturbations with
Lévy-law scaling, and the slow decay of energy current auto-
correlation functions. We will here describe the theory for
generic anharmonic systems with three conserved quantities,
namely volume, momentum, energy [61], and present some
numerical results which verify the predictions of the theory.

Let us consider N particles of unit masses with positions and
momenta denoted by {q(ℓ), p(ℓ)}, for ℓ = 1, . . . ,N. The particles
move on a ring of size L so that we have the boundary conditions
q(N + 1) = q(1) + L and p(N + 1) = p(1). The Hamiltonian is
taken to be

H =

N
∑

ℓ=1

ǫ(ℓ), ǫ(ℓ) =
p2(ℓ)

2
+ V[r(ℓ)], (43)

where we have defined the stretch variables r(ℓ) = q(ℓ+1)−q(ℓ).
It is easy to see from the Hamiltonian equations of motion
that stretch r(ℓ), momentum p(ℓ), and energy ǫ(ℓ) are locally
conserved and hence satisfy corresponding continuity equations.
In the continuum limit, these equations take the form

∂r(x, t)

∂t
=
∂p(x, t)

∂x
,

∂p(x, t)

∂t
= −

∂P(x, t)

∂x
,

∂e(x, t)

∂t
= −

∂

∂x
[p(x, t)P(x, t)] , (44)

where the label index ℓ has been denoted by the corresponding
continuous variable x and P(x) = −V ′(x) is the local force.
Assume that the system starts in a state of thermal equilibrium at
zero total average momentum characterized by the temperature
(T = β−1) and pressure (P), which fix the the average energy and
average stretch of the chain. The distribution corresponding to
this ensemble is

P({p(x), r(x)}) =
∏

x

e−β[p
2
x/2+V(rx)+Prx]

Zx
,

Zx =

∫ ∞

−∞

dp

∫ ∞

−∞

dre−β[p
2/2+V(r)+Pr]. (45)

Since the fields r(x, t), p(x, t), and e(x, t) satisfy continuity
equations, they evolve slowly suggesting a slowly evolving local
equilibrium picture. We consider small fluctuations of the
conserved quantities about their equilibrium values, u1(x, t) =

r(x, t) − 〈r〉eq, u2(x, t) = p(x, t), and u3(x, t) = ǫ(x, t) −

〈ǫ〉eq. Inserting these into Equation (44) one obtains ∂tuα =

−∂xjα , where jα are the corresponding Euler currents which are
functions of uαs. Expanding these currents to second order in the
fields as jα =

∑

β Aαβuβ +
∑

β ,γ H
α
βγ uβuγ , and then adding

dissipation and noise terms (to ensure thermal equilibration) one
arrives at the following noisy hydrodynamic equations

∂tuα = −∂x

[

Aαβuβ +Hαβγ uβuγ − ∂x˜Dαβuβ +˜Bαβξβ

]

, (46)

where repeated indices are summed over. The noise and the
dissipation matrices, ˜B,˜D, are related to each other by the
fluctuation-dissipation relation ˜DC + C˜D = ˜B˜BT , where
the matrix C corresponds to equilibrium correlations and its
elements are Cαβ (x) = 〈uα(x, 0)uβ (0, 0)〉.

It is useful to define normal modes of the linearized equations
(dropping u2 terms in Equation 46) through the transformation
(φ−,φ0,φ+) = Eφ = REu, where the matrix R acts only
on the component index and diagonalizes A, i.e. RAR−1 =

diag(−c, 0, c). The diagonal form implies that there are two
sound modes, φ±, traveling at speed c in opposite directions
and one stationary but decaying heat mode, φ0. The quantities
of interest are the equilibrium spatio-temporal correlation
functions Css′ (x, t) = 〈φs(x, t)φs′ (0, 0)〉, where s, s′ = −, 0,+.
Because the modes separate linearly in time, one argues that at
large times the off-diagonal matrix elements of the correlator
are small compared to the diagonal ones and that the dynamics
of the diagonal terms decouples into three single component
equations. After including the non-linearity it is seen that to
leading order the equations for sound modes have self-coupling
terms of the form φ2±. These then have the structure of the
noisy Burgers equation, for which the exact scaling function,
denoted by fKPZ, are known. For the heat peak the self-coupling
coefficient vanishes for any interaction potential. Thus, one has
to study the sub-leading corrections, and calculations using
the mode-coupling approximation result in the symmetric Lévy
walk distribution, with a cut-off at x = ct. While this is an
approximation, it seems to be very accurate. For the generic case
of non-zero pressure, i.e. P 6= 0, which corresponds either to
asymmetric inter-particle potentials or to an externally applied
stress, the prediction for the left moving, resp. right moving,
sound peaks, and the heat mode are

C−−(x, t) =
1

(λst)2/3
fKPZ

[

(x+ ct)

(λst)2/3

]

,

C++(x, t) =
1

(λst)2/3
fKPZ

[

(x− ct)

(λst)2/3

]

, (47)

C00(x, t) =
1

(λet)3/5
f
5/3
LW

[

x

(λet)3/5

]

, (48)

where fKPZ(x) is the KPZ scaling function discussed in [61, 77],
and tabulated in [78]. The scaling function f νLW(x) is given by
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the Fourier transform of the Lévy characteristic function e−|k|ν ,
with a cut-off at x = ct. The scaling parameters λs and λe are
known explicitly. On the other hand for an even potential at zero
pressure, i.e., P = 0, all self-coupling coefficients vanish. As a
result the scaling solutions within mode-coupling approximation
change and one obtains

C−−(x, t) =
1

(λ0s t)
1/2

fG

[

(x+ ct)

(λ0s t)
1/2

]

,

C++(x, t) =
1

(λ0s t)
1/2

fG

[

(x− ct)

(λ0s t)
1/2

]

, (49)

C00(x, t) =
1

(λ0e t)
2/3

f
3/2
LW

[

x

(λ0e t)
2/3

]

, (50)

where fG(x) is the unit Gaussian with zero mean. The scaling
parameters λ0s is not known frommicroscopics while λ0e is known
explicitly in terms of λ0s .

Here we present molecular dynamics simulation results for
the FPUT chain that were obtained in [63] which verify the
predictions of NFH. In Figure 8, top panel, the two-point
correlation functions C00(x, t), C++(x, t) and C−−(x, t) are
plotted as a function of x for three values of time t = 800, 2, 400
and 3, 200. The parameters used in this plot are k2 = 1.0, k3 =

2.0, k4 = 1.0,T = 5.0, P = 1.0 for which one gets c = 1.80293
and we also see there is a good separation of the heat and
sound modes. In Figure 8, bottom panel we also find an excellent
collapse of the heat mode and the sound mode data with the
expected scalings. The scaled data for the heat mode fits very
well to the Lévy-scaling function whereas the same for the sound-
mode still shows some asymmetry but is quite close to the KPZ
function. The numerically estimated values of the constants λs,e
are λs = 0.46 and λe = 5.86. These are in close agreement to the
theoretically obtained values λs = 0.396 and λe = 5.89.

4. STOCHASTIC MODELS: EXACT
RESULTS ON FRACTIONAL EQUATION
DESCRIPTION

It is now well-understood that conservation laws play an
important role in observation of super-diffusive transport in one-
dimensional systems. As we saw in the previous section, NFH
provides some understanding of the emergence of Lévy-walk
behavior, which seems to capture several aspects of anomalous
transport. However, providing a completely rigorousmicroscopic
derivation of the Lévy-walk picture in a Hamiltonian model has
been difficult, though there have been some attempts [79]. While
generic non-linear Hamiltonian models are difficult to analyze,
analytical results have been obtained for harmonic chains whose
Hamiltonian dynamics is perturbed by stochastic noise that
breaks integrability of the system [9, 30, 52]. These stochastic
models attempt to mimic non-linear chains and for these models,
several exact results both in the closed system set-up and the
open system set-up have been obtained. In particular one can
rigorously establish non-local response relation Equation (3) and
the fractional diffusion equation Equation (4). There are two
widely studied stochastic models which we discuss below.

4.1. Harmonic Chain With Volume
Exchange
Thismodel is defined on a one dimensional lattice where each site
carries a “stretch” variable ηi, i ∈ Z and the energy of the system
is E =

∑

i η
2
i . The dynamics has two parts: (a) a deterministic

part given by dηi
dt

= ηi+1 − ηi−1 and (b) a stochastic exchange
part where ηs from any two randomly chosen neighboring sites,
are exchanged at a constant rate γ . We refer to this model as
Harmonic chain with volume exchange (HCVE). This model was
introduced in [30] where it was shown that the energy current
auto-correlation decays as ∼ 1/

√
t, implying super-diffusive

transport. It is easy to see that this system has only two conserved
quantities namely, the total “volume”

∑

i ηi and the total energy
∑

i η
2
i . The evolution of the density fields corresponding to these

conserved quantities at the macroscopic length and time scales
was studied in [62] using NFH, where it has been shown that this
model has two normal modes - one diffusive sound mode and
a 3

2 -asymmetric Lévy heat mode. Subsequently, it was rigorously
shown that the local energy density e(x, t) satisfies a (3/4)-skew-
fractional Equation [31]

∂te(x, t) = −
1

√
2γ

L
v
∞e(x, t), for x ∈ (−∞,∞),

where L
v
∞ = [(−1)3/4 −∇(−1)1/4], (51)

with 1 as the usual Laplacian operator. In the Fourier domain,
defined by e(k, t) =

∫∞

−∞
e(x, t)eixkdx, the above equation reads as

∂te(k, t) = −
1

√
2γ

|k|3/2[1− i sgn(k)] e(k, t). (52)

Note that for the diffusive case the analog of the above equation
would be ∂te(k, t) = −Dk2 e(k, t). The above results suggest
that, in the open set-up where the system is connected to two
reservoirs at different temperatures, this model would exhibit
anomalous scaling of the steady state current j with system
size N. In [30], it has been numerically shown that indeed
j ∼ 1/

√
N. Recently, an understanding of the open system

was achieved using the fractional equation description, which
we now discuss [34]. An aspect that we will point out here
is that the fractional-equation-type description in the open-set
up is strongly dependent on boundary conditions (fixed or free
or mixed).

For the open system case, we consider a finite lattice of size
N, connected to two thermal reservoirs at temperatures Tℓ and
Tr on the left and right boundaries. The dynamics of the ηi, i =
1, 2, . . . ,N now gets modified to

dηi

dt
= ηi+1 − ηi−1 + δi,1

(

− λη1

+
√

2λTℓξℓ(t)
)

+ δi,N

(

− ληN

+
√

2λTrξr(t)
)

+ stochastic exchange at rate γ . (53)

The Langevin terms at the boundaries i = 1 and i = N
appear due to the baths and ξℓ,r(t) are independent Gaussian
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FIGURE 8 | (Top) Plots of the heat mode correlation C00(x, t) (central peaks) and the sound mode correlations C++(x, t) and C−−(x, t) (right and left moving peaks) in

the FPUT chain, at three different times, for the parameter set with k2 = 1.0, k3 = 2.0, k4 = 1.0, T = 5.0,P = 1.0, and system size 16, 384. The speed of sound was

c = 1.80293. We see that the heat and sound modes are well-separated. The numerical data in this plot were obtained by averaging over around 106 − 107 initial

conditions. (Bottom) The heat mode (A) and the left moving sound mode (B) correlations, respectively, C00(x, t) by C−−(x, t) are plotted at different times, using a

Lévy-type-scaling for the heat mode and KPZ-type scaling for the sound mode. Here we observe a very good collapse of the data at different times. Moreover, we

observe a good fit to the Lévy-stable distribution with λe = 5.86 and a reasonable fit to the KPZ scaling function, with λs = 0.46. The parameters used in this plot are

k2 = 1.0, k3 = 2.0, k4 = 1.0, T = 5.0,P = 1.0 (adapted from Das et al. with permission from [63] Copyright (2014) by American Physical Society).

white noises with mean zero and unit variance.We consider fixed
boundary conditions η0 = ηN+1 = 0.

Our main interest is to obtain an equation in this finite
system, analogous to Equation (51), to describe the evolution
equation of the temperature profile. To do this we first define
the local temperature Ti(t) = 〈η2i (t)〉 and the off-diagonal
correlations Ci,j(t) = 〈ηi(t)ηj(t)〉, i 6= j, which characterize
the non-equilibrium state of the system. Interestingly, it turns
out that the equations for two point correlations do not
depend on higher order correlations and this property leads
to the model’s solvability. The evolution of these quantities
in the bulk (2 < i, j < N − 1) can be obtained from
Equation (53) as:

Ċij = Ci+1,j − Ci−1,j + Ci,j+1 − Ci,j−1

+γ [Ci−1,j + Ci+1,j + Ci,j−1 + Ci,j+1 − 4Ci,j],

Ċi,i+1 = Ti+1 − Ci−1,i+1 + Ci,i+2 − Ti

+γ [Ci−1,i+1 + Ci,i+2 − 2Ci,i+1],

Ṫi = 2[Ci,i+1 − Ci−1,i]+ γ [Ti+1 + Ti−1 − 2Ti]. (54)

The equations involving the boundary terms are given in
Priyanka et al. [34]. Note that in an infinite system, we get
the same set of equations with i, j ∈ Z. For the finite

open system, solving the above equations exactly seems to
be difficult. However, it was observed numerically [34] that
for large N the temperature field Ti(t) scales as Ti(t) =

T

(

i
N ,

t
N3/2

)

and the correlation field Ci,j(t) scales as Ci,j(t) =

1√
N
C

(

|i−j|
√
N
,
i+j
2N , t

N3/2

)

, i 6= j. Inserting these into (54), and

expanding in powers of 1/
√
N, we find at leading order the

following equations

∂vC(u, v, τ ) = −γ ∂2uC(u, v, τ ), (55)

∂vT (v, τ ) = −2γ
[

∂uC(u, v, τ )
]

u=0
, (56)

∂τT (v, τ ) = 2∂vC(0, v, τ ), (57)

where the scaling variables u = |i− j|/
√
N, v = (i+ j)/2N, τ =

t/N3/2 are defined over {0 ≤ u ≤ ∞; 0 ≤ v ≤ 1;
0 ≤ τ ≤ ∞}.

Note that for the isolated infinite system, one can follow the
same procedure as above, but now replacing the scale parameter
1/N → a where a is the lattice spacing, to obtain the same
set of Equations (55–57) with a different domain {−∞ ≤ u ≤

∞;−∞ ≤ v ≤ ∞}. These equations can be solved by
Fourier transforms to get a skew fractional evolution equation
for T (v, τ ) of the same form as Equation (52). Defining Fourier
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FIGURE 9 | (A) Steady state temperature of HCVE model (Tss) as given by Equation (66) (blue dashed line) is compared with numerical simulations for parameters

ω = γ = 1, Tℓ = 1.1, Tr = 0.9, and N = 1, 024, and for two different choice of λ. (B) Numerical verification of the evolution of the temperature profiles T (v, τ ) given by

Equation (71) (solid lines), starting from a non-stationary profile (dashed line). The points indicate simulation results for parameters are λ = γ = 1,Tℓ = 1.1, Tr = 0.9

and N = 2,048 (adapted from Kundu et al. with permission from [34] Copyright (2018) by American Physical Society).

transforms T (v, τ ) =
∫∞

−∞
dkT̂ (τ )e−ikv/(2π) and C(u, v, τ ) =

∫∞

−∞
dkĈk(u, τ )e

−ikv/(2π) in the variable v, we get

∂2u Ĉk(u, τ ) =
ik

γ
Ĉk(u, τ ), (58)

ikT̂k(τ ) = 2γ
[

∂uĈk(u, τ )
]

u=0
, (59)

∂τ T̂k(τ ) = −2ikĈk(0, τ ) . (60)

Solving the first Equation (58), with the condition that
correlations vanish at u = ±∞, we get

Ĉk(u, τ ) = Ak(τ ) exp

[

−(1+ iSgn(k))
|k|1/2
√
2γ

|u|

]

(61)

The Equation (59) relates the constant Ak to T̂k:

Ak(τ ) = −
ik(1− iSgn(k))

2
√

2γ |k|
T̂k. (62)

Using Equations (61, 62) in Equation (60) we get the infinite line
equation in Equation (52).

We now go back to the open system case where the solution is
more non-trivial. To solve these equations in the open set-up, we
proceed as for the regular diffusive heat equation, and write the
solution as sum of a steady state part and a relaxation part

T (v, τ ) = Tss(v)+ Tr(z, τ ) (63)

C(u, v, τ ) = Css(u, v)+ Cr(u, z, τ ), (64)

where we have defined z = 1 − v. We note that under this
transformation, the “anti-diffusion” Equation (55), becomes a
diffusion equation, with v as the time variable and z the space
variable. The relaxation part satisfies the equations given in
Equations (55, 56, 57), while the steady state part satisfies these
equations but with ∂τTss(v) = 0. The boundary conditions for
the steady state part are given by Priyanka et al. [34]

Css(u, z → 0) = 0, Css(u → ∞, z) = 0, Css(u = 0, z) = J/2.

Tss(v = 0) = Tℓ, Tss(v = 1) = Tr , (65)

where we have used Equation (57) to identify J = 2Css(u = 0, z)
as the NESS current which gets determined by the boundary
conditions for Tss(v). In terms of the original unscaled variables,
the true current is given by jss = J/

√
N. The solution of the steady

state equations is given by Priyanka et al. [34]

Tss(v) = Tr + (Tℓ − Tr)
√
1− v,

Css(u, v) = −
Tℓ − Tr

4

√

π

γ
erfc

(

u
√

4γ (1− v)

)

,

J =
Tℓ − Tr

2

√

π

γ
.

(66)

In Figure 9A, we show a comparison of the above result for
steady state temperature profile with those obtained from direct
simulations of the microscopic model, and we see very good
agreement. It is interesting to note that the temperature profile
is non-symmetric under space reversal as the microscopic model
itself does not have such symmetry. This fact is also reflected
in hydrodynamics where this shows in the existence of a single
sound mode.

For the relaxation part we look for solutions which satisfy
the initial condition Tr(z, 0), Cr(u, z, τ = 0) = 0 and boundary
conditions Cr(u, z, τ )|u→∞ = 0, Tr(0, τ ) = Tr(1, τ ) = 0.
The solution of the “anti-diffusion” Equation (55), with z as
time variable, with the boundary condition (56) can be obtained
as [34]

Cr(u, z, τ ) = −

∫ z

0

exp
(

− u2

4γ (z−z′)

)

√

4πγ (z − z′)

∂Tr(z
′, τ )

∂z′
dz′. (67)

Using this in (56) then gives finally the evolution equation for the
temperature field

∂τTr(z, τ ) =
1

√
πγ

∂z

[∫ z

0
dz′

∂z′Tr(z
′, τ )

√
z − z′

]

, (68)
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FIGURE 10 | The real and imaginary part of the alternate eigenvalues for the

matrix L
v in Equation (70). The first 4 eigenvalues are completely real and

distinct. The higher eigenvalue comes in complex conjugate pairs. For large

µn ∼ (nπ )3/2(1± i). For smaller n, there is a deviation from asymptotic scaling

due to finite definition of the operator (adapted from Kundu et al. with

permission from [34] Copyright (2018) by American Physical Society).

inside the domain 0 ≤ z ≤ 1. This is a non-local
equation which can be recognized as a continuity equation
∂τTr(z, τ ) = −∂zj(z, τ ) where the current j is precisely in the
form stated in Equation (3). This is the open-system analog of
Equation (51). For the infinite system, a similar computation
leads to Equation (68) but with the lower limit of integration
replaced by z = −∞, and by taking Fourier transforms, this can
be shown to reduce to Equation (52).

We now proceed to solve Equation (68) to find
the temperature evolution. It is natural to expand the
temperature profile Tr(z, τ ) in a basis set satisfying
Dirichlet boundary conditions, and we choose the set
αn(z) =

√
2 sin(nπz), n = 1, 2, 3 . . . . Substituting

Tr(z, τ ) =
∑

n T̂n(τ )αn(z) in Equation (68), we get

∑

n

˙̂
Tnαn(z) = κ

∑

n

T̂n(τ )(nπ)∂z

∫ z

0

φn(z
′)

√
z − z′

dz′. (69)

Further we expand the function fn(z) =

∂z
∫ z
0 φn(z

′)/
√
z − z′dz′ =

∑

l=1 ζnlαl(z) where ζnl =
∫ 1
0 dz fn(z) αl(z). Using orthogonality, we get

|
˙̂
T 〉 = κ Lv| T̂ 〉, (70)

where Lv
nl

= (nπ)ζnl and the column vector | T 〉 has elements

T̂n = 〈αn|T̂ 〉. The above equation is an infinite-dimensional
matrix representation of the non-local Equation (68). To solve
this, we diagonalize the matrix Lv as R−1

L
v
R = µ, which gives

the time dependent solution as | T̂ (τ ) 〉 = ReκµτR−1| T̂ (0) 〉

where Rn,l = 〈αn|ψl〉 denotes the n-th element of the l-th right-
eigenvector of the matrix Lv and the diagonal matrix µ contains
the corresponding eigenvalue µl. The matrix Lv is real but non-
symmetric and it has left eigenvectors 〈χl| whose elements are

given by 〈χl|αn〉 = R
−1
l,n

. The formal solution for the temperature
field Tr(z, τ ) can then be written as

Tr(z, τ ) =
∑

n

T̂n(τ )αn(z)

=
∑

n,m,l

Rn,le
κµlτR

−1
l,m

[∫ 1

0
dz′Tr(z

′, 0)αm(z
′)

]

αn(z)

=

∫ 1

0
dz′

[

∑

l

ψl(z)χl(z
′)eκµlτ

]

Tr(z
′, 0), (71)

where ψl(z) = 〈z|ψl〉 =
∑

n Rnlαn(z) and χl(z) = 〈χl|z〉 =
∑

n R
−1
ln
αn(z). Finding the eigenspectrum of the matrix L

v is
a difficult problem as the matrix is infinite-dimensional and
non-symmetric. However, one can truncate the matrix at some
order and diagonalize it numerically, assuming that the spectrum
converges with increasing truncation order. In [34] the authors
used this approach to compute the eigenspectrum and thereby
study the time evolution of the temperature profile. This is shown
in Figure 9B. The spectrum is shown in Figure 10 where it is

seen that for large n, µn ∼
√

π
2 |nπ |

3/2(1 ± i) which is similar

to the spectrum of the non-local operator Lv in Equation (52)
describing the evolution in infinite system. In Figure 11 we
show the left and right eigenvectors χn(z) =

∑

l=1 R
−1
nl
αl(z)

and ψn(z) =
∑

l=1 Rlnαl(z), respectively, corresponding to
the first eight eigenvalues. One observes that the eigenvectors
corresponding to the first four eigenvalues are real whereas the
eigenvectors corresponding to the eigenvalues with n > 4 are
complex and come in conjugate pairs.

4.2. Harmonic Chain With Momentum
Exchange
In the previous section we discussed transport in the HCVE
model which has two conserved quantities, namely volume and
energy. In this section, we discuss heat transport in the harmonic
chain momentum exchange (HCME) model which has three
conserved quantities, namely volume, momentum and energy,
that are the same as the ones in usual anharmonic chains with
Hamiltonian dynamics [3, 4]. The model consists of a harmonic
chain of particles each of unit mass and described by the degrees
of freedom qi, pi, with i ∈ Z, corresponding respectively to
position and momentum. As for the HCVE system, the dynamics
of the HCMEmodel also has two parts: (i) the usual deterministic
part given by the Hamiltonian equations q̇i = pi, ṗi =

ω2(qi+1 − 2qi + qi−1), i ∈ Z, where ω is the strength of
the harmonic interaction and (ii) a stochastic part consisting of
exchanges of momenta between neighboring particles (chosen at
random) occurring with rate γ . In the absence of the stochastic
exchange, the underlying Hamiltonian dynamics is integrable
and the transport in this system is ballistic due to the absence
of any scattering mechanism. The stochastic exchange introduces
a momentum conserving scattering mechanism, which should
make the transport behavior non-ballistic. However, it turns
out that the stochastic mixing is not sufficient to make the
transport behavior diffusive. It has been shown rigorously that
the energy current correlation in equilibrium of an infinite chain
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FIGURE 11 | Left and right eigenvectors of matrix L
v in Equation (70) for n = 1, 2, 3, 4, 5, 6, 7, 8. The real parts are indicated by blue lines while orange denotes the

imaginary part. Note that the eigenvectors corresponding to the real eigenvalues (n = 1, 2, 3, 4) are also real where the eigenvectors corresponding to complex

eigenvalues (n = 5, 6, 7, 8 . . . ) are complex (adapted from Kundu et al. with permission from [34] Copyright (2018) by American Physical Society).

decays as t−1/2 similar to that in the HCVE model [9]. This,
through the closed system GK formula in Equation (10), implies
the anomalous system size scaling of the steady state current
as j ∼ N−1/2.

The HCME dynamics conserves the following three
quantities: (a) total stretch

∑

i ri where ri = qi+1 − qi, (b)
total momentum

∑

i pi and (c) the total energy
∑

i ei with
ei = p2i /2 + ω2r2i /2. As a consequence, the corresponding local
densities evolve slowly in the macroscopic length and time scales.
In [29], it has been analytically shown that the local energy
density e(x, t) in the isolated system evolves according to the
following fractional diffusion equation

∂te(x, t) = −κ̄(−1)3/4e(x, t), −∞ < x <∞,

where κ̄ =
ω3/2

2
√
2γ

, (72)

and the fractional operator in Fourier space is represented
by (−1)3/4eikx = |k|3/2 eikx. The NESS of this system was
analyzed in detail in [26–28] where the scaling j ∼ N−1/2

and a closed form for the non-linear temperature profile
were established. More recently the fractional-equation-type
description of this system in the open set-up was further
discussed in [37]. We summarize below some of these results
for the open system. We first discuss the steady state and
relaxation properties which is followed by the discussion on the
evolution of the fluctuations and in the end we discuss the role of
boundary conditions.

4.2.1. Typical Behavior of Temperature, Current, and

Other Correlations
In the open system HCME set-up, the two ends are attached
to two reservoirs at temperatures Tℓ and Tr . The equations of
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motion are now modified by adding Langevin forces to the 1st
and the Nth particles:

q̇i = pi,

ṗi = (1− δi,1 − δi,N)ω
2(qi+1 − 2qi + qi−1)

+δi,1[ω
2(q2 − ζq1)− λp1 +

√

2λTℓξ1]

+δi,N[ω
2(qN−1 − ζqN)− λpN +

√

2λTrξN],

+stochastic exchange of momenta at rate γ , (73)

for i = 1, 2 . . . ,N, where ξ1,N are independent Gaussian
white noises with mean zero and unit variance, λ is the
friction coefficient, and the parameter ζ has been introduced
to describe different boundary conditions. Free boundary
conditions correspond to ζ = 1 while fixed boundary conditions
are given by ζ = 2. We will first discuss the fixed boundary case,
i.e., ζ = 2.

We will be interested not only in NESS properties, such as
the form of the temperature profile and the current scaling
with system size but also in the temporal evolution of the
temperature from some arbitrary initial profile to the steady
state form. As in the case of the HCVE model, the analytical
tractability of the HCME system comes from the fact that the
evolution of the two-point correlations is given by a closed set
of equations. The two point correlations include Ui,j = 〈qiqj〉,
Vi,j = 〈pipj〉, and Zi,j = 〈qipj〉 and the local temperature
defined as Ti(t) = 〈p2i 〉 consists of the diagonal elements of
V. For these, one obtains a set of coupled linear equations,
similar in form to Equation (54), which one needs to solve
with appropriate boundary and initial conditions. The number
of equations in this case is much larger than the HCVE case
and hence it is even more difficult to solve them analytically
for finite N. Observations from numerical solutions of these
equations reveal [27] that for largeN, the temperature fieldTi and
the correlations z+i,j =

(

Zi,j − Zi−1,j + Zj,i − Zj−1,i

)

/2 show the

following scaling behaviors: Ti(t) = T (i/N, t/N3/2) and z+i,j =
1√
N
C
(

(|i− j|)/N1/2, (i+ j)/2N, t/N3/2
)

. Hence, for large N it is

instructive to construct solutions of these scaling forms. Inserting
these scaling forms in the discrete equations of the two point
correlations and taking the large N limit one finds, at leading
order in 1/

√
N, the following partial differential equations [27]

γ 2∂4uC(u, v, τ ) = ω2∂2v C(u, v, τ ), (74)

∂vT(v, τ ) = −2γ ∂uC(u, v, τ )
∣

∣

u→0
, (75)

∂τT(v, τ ) = ω2∂vC(u, v, τ )|u→0, (76)

where the scaling variables u = |i− j|/
√
N, v = (i+ j)/2N, τ =

t/N3/2 are defined over the domain u ∈ [0,∞) and v ∈

[0, 1] with boundary conditions C(u, 0, τ ) = C(u, 1, τ ) =

0, C(∞, v, τ ) = 0, ∂3uC(0, v, τ ) = 0 and T(0, τ ) = Tℓ and
T(1, τ ) = Tr . We again note that for the isolated infinite system,
one can follow the same procedure as above, but now replacing
the scale parameter 1/N → a where a is the lattice spacing, to
obtain the same set of Equations (74–76) with a different domain
{−∞ ≤ u ≤ ∞; − ∞ ≤ v ≤ ∞}. Defining Fourier

transforms T (v, τ ) =
∫∞

−∞
dkT̂k(τ )e

−ikv/(2π) and C(u, τ ) =
∫∞

−∞
dkĈk(u, τ )e

−ikv/(2π) in the variable v, we get

∂4u Ĉk(u, τ ) = −
ω2k2

γ 2
Ĉk(u, τ ), (77)

ikT̂k(τ ) = 2γ ∂uĈk(u, τ )
∣

∣

u=0
, (78)

∂τ T̂k(τ ) = −ikω2
Ĉk(0, τ ) . (79)

Solving the first Equation (77), with the condition that
correlations vanish at u = ±∞, ∂3uC(u = 0, v, τ ) = 0 and

requiring that Ĉk(u, τ ) is real [since C(u, v, τ ) = C(u,−v, τ )],
we get

Ĉk(u, τ ) = Ak(τ )

[

cos

(√

ω

2γ
|k|1/2u

)

− sin

(√

ω

2γ
|k|1/2u

)]

exp

(

−

√

ω

2γ
|k|1/2|u|

)

(80)

The Equation (78) relates the constant Ak to T̂k:

Ak(τ ) = −
ik

2
√

2γω|k|
T̂k. (81)

Using Equations (80, 81) in Equation (79) we get

∂τ T̂k(τ ) = −
ω3/2

2
√
2γ

|k|3/2T̂k(τ ) , (82)

which is the Fourier representation of Equation (72), with κ̄ =

ω3/2/2
√
2γ .

We now go back to the open system case where the solution is
more non-trivial. The boundary conditions for this case are given
by C(u, 0, τ ) = C(u, 1, τ ) = 0, C(∞, v, τ ) = 0, ∂3uC(0, v, τ ) = 0
and T(0, τ ) = Tℓ and T(1, τ ) = Tr (see [27, 37]). Note that the
domain of the v variable in [27] is v ∈ (−1, 1).

In the steady state, the analytical solutions of these equations
[with ∂τT(v, τ ) = 0] were obtained in [26] and are given by

Tss(v) = T +1T2(v), where 2(v)

=
π3/2

[
√
8− 1]ζ (3/2)

∑

n odd

φn(v)

λ
3/4
n

, (83)

Css(u, v) = −
1T

√
π

2
√
ωγ [

√
8− 1]ζ (3/2)

∑

n odd

exp

(

−

√

nπω

2γ
u

)

[

cos

(√

nπω

2γ
u

)

− sin

(√

nπω

2γ
u

)]

sin(nπv)

n
, (84)

where T = (Tℓ + Tr)/2,1T = Tℓ − Tr and φn(v) = δn,0 + (1−
δn,0)

√
2 cos(nπv) for n ≥ 0. From Equation (76) we see that the

current J = −ω2C(u, v, τ )|u→0 is given by

J =
(ωπ)3/2

8
√
γ [

√
8− 1]ζ (3/2)

1T . (85)
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FIGURE 12 | (A) Comparison of temperature profiles obtained theoretically from Equation (83) (solid black line) with the same obtained from direct numerical

simulations of microscopic system for N = 128, 256, 512. The agreement between theory and numerics becomes better for larger N as can be seen in the inset where

the difference between theoretical curve (Equation 83) and simulation data are plotted for various system sizes. (B) Time evolution of temperature starting from an

initial step profile. The function 2(v, τ ) = [T (v, τ )− T̄ ]/1T, with T (v, τ ) given by Equation (93), is plotted and compared with direct numerical simulations. The dashed

lines indicate simulation results for the time-evolution in HCME at different scaled times (τ ), for system sizes N = 128 (red), N = 256 (blue), N = 512 (magenta), while

the solid lines are obtained from the theory. The boundary temperatures were fixed at Tℓ = 1.5 and Tr = 0.5 (adapted from Kundu et al. with permission from [37]

Copyright SISSA Medialab Srl, IOP Publishing).

Note that both the temperature profile and the current are
independent of the friction coefficient λ. This is true only for
the special case of fixed boundary conditions. Note also that
the temperature profile in the steady state is intrinsically non-
linear as can be seen in Figure 12A where one observes excellent
agreement with data from simulations of the microscopic
dynamics in Equation (73). It can be shown that the temperature
profile at both boundaries scales as ∼ (δv)µ with µ = 1/2 where
δv is the distance from the boundary [26]. This singular behavior
of Tss(v) is a common signature of anomalous transport and it
is characterized by the meniscus exponent µ. The value of µ
however is non-universal and depends strongly on the boundary
conditions. We will discuss this in section 4.2.3.

To solve for the approach toward the above steady state
results, we proceed as for the HCVE model. Separating the
relaxation part and the steady state part we write

C(u, v, τ ) = Css(u, v)+ Cr(u, v, τ ), (86)

T (v, τ ) = Tss(v)+ Tr(v, τ ). (87)

Since the relaxation parts satisfy Dirichlet boundary conditions
Cr(u, 0, τ ) = Cr(u, 1, τ ) = 0 and Tr(0, τ ) = Tr(1, τ ) = 0, we
expand them in the Dirichlet basis αn(v) =

√
2 sin(nπv) for

n = 1, 2, 3, . . . as

Cr(u, v, τ ) =

∞
∑

n=1

Ĉn(u, τ )αn(v), (88)

Tr(v, τ ) =

∞
∑

n=1

T̂n(τ )αn(v) . (89)

After inserting these expansions in Equations (74–76) and using
the orthogonality property of the αn(v) functions, one gets the

following (infinite order) matrix equation for the evolution of the
components T̂n:

˙̂
Tn = −κ̄

∞
∑

l=1

L
p

nl
T̂l, n = 1, 2, . . . ,∞,

where: L
p

nl
=
[

S33/4
S

†
]

nl
, (90)

with Snl = 〈αn|φl〉 =
∫ 1
0 dzαn(z)φl(z), 3nl = λnδnl is a diagonal

matrix with λn = (nπ)2 and the constant κ̄ = ω3/2/(2
√
2γ ). In

the position basis, the above equation can be written as

∂τT (v, τ ) = −κ̄Lp
T (v, τ ), (91)

where the operator Lp is represented as

L
p

nl
=
[

S33/4
S

†
]

nl

= 〈 αn |

[

∞
∑

m=0

λ3/4m | φm 〉〈 φm |

]

| αl 〉, ∀ n, l = 1, 2, . . . ,∞

From this representation one can identify the action of Lp on
the set of basis functions φm (which satisfy Neumann boundary
conditions) [4, 37].

L
p| φm 〉 = λ3/4m | φm 〉 . (92)

For the time evolution we need the eigenspectrum of L
p

with Dirichlet boundary conditions. The eigenstates ψn(y) and
eigenvalues µn can be obtained by diagonalizing the matrix L

p
nm

in Equation (90). In [27] the spectrum was obtained numerically
by diagonalizing truncated form of the infinite-dimensional
matrix L

p. An alternate method was recently proposed in [37]
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FIGURE 13 | (A) Eigenvalues of the fractional operator in Equation (90) corresponding to Dirichlet boundary conditions. For large n, the slope is seen to approach that

of n3/2 (black dashed line). For small n there is a systematic difference between the Dirichlet and Neumann eigenvalue and the inset plots the difference between the

two. For large n the difference between the two decreases inversely with n. (B) The first six eigenvectors, ψn(v) (black lines), are compared to the corresponding

Dirichlet eigenfunctions of Laplacian, i.e., sin-functions (blue dashed lines). The eigenstates are different from sin-functions, especially near the boundaries, even for

large n (adapted from Kundu et al. with permission from [37] Copyright SISSA Medialab Srl, IOP Publishing).

which gives the spectrum directly as roots of a transcendental
equation and explicit series form expressions for the wave
functions in the φn basis. The numerical values of the computed
eigenvalues are plotted in Figure 13A, where we see that for
large n the eigenvalues scale as µn ≈ (nπ)3/2. At smaller
values n there is a systematic deviation from the Neumann
spectrum, λn, for example the first three eigenvalues (µn) are
given by µ1 ≈ 2.75,µ2 ≈ 12.02,µ3 ≈ 24.22. As shown
in the inset of Figure 13A the relative difference between µn

and λn decreases as 1/n. The first few numerically computed
eigenvectors are shown in Figure 13B where they are compared
with the basis functions αn which are the Dirichlet eigenfunctions
of the usual Laplacian. We observe that they are different and
in particular show a non-analytic behavior at the boundaries.
For example near the boundaries one finds ψn(δv) ∼

√
δv,

where δv is the distance from the boundaries. The eigenspectrum
of fractional operator in a bounded domain, with different
boundary conditions, has been discussed earlier in the literature,
using somewhat heuristic approaches [75, 80–82]. However, their
connection to the spectrum of Lp defined here is unclear.

Using these Dirichlet eigenvalues and eigenfunctions, we
follow the steps leading to Equation (71) and obtain the following
for the time evolution of an arbitrary initial profile:

Tr(v, τ ) =

∫ 1

0
dv′

[

∞
∑

l=1

ψl(v)ψl(v
′)e−κ̄µlτ

]

T (v′, 0) . (93)

In Figure 12B, a numerical verification of the above time
evolution is shown. We note that Equation (91) can be cast in
the form of a continuity equation ∂τTr(v, τ ) = −∂vj(v, τ ) with j
in the form [37]

j(v, τ ) = −κ̄

∫ 1

0
dv′K(v, v′)∂v′T (v′, τ ) , (94)

where the kernelK is defined through it’s action on a test function
g(v) =

∑∞
n=1 gnαn(v)

∫ 1

0
dv′K(v, v′)g(v′) =

∞
∑

n=1

1
√
nπ

gnαn(v) . (95)

The operator Lp can be expressed in terms of K as

〈v|Lp|v′〉 = ∂vK(v, v′)∂v′ . (96)

4.2.2. Characterization of Fluctuations
The discussions till now describe only the average or typical
behavior of the conserved density fields and the associated
current fields. The equation (91) describes the evolution of
the average temperature profile as well as the evolution of
a localized energy pulse in a thermally equilibrated system.
However, other interesting aspects that characterize the NESS are
the distributions of density and current fluctuations, long range
correlations and the large deviations. To study these aspects, one
requires to have a stochastic description of the evolution at the
macroscopic length and time scales.

In the context of diffusive transport, a general framework
called the macroscopic fluctuation theory has been developed in
the last decade which allows to provide such a description for
fluctuations [83–85]. Starting from the microscopic description
of the system one can show that in the diffusive scaling limit,
the fluctuating energy density field e(x, t) and the corresponding
fluctuating current Je(x, t) still satisfy the continuity equation
but now, in addition to the regular diffusive part of the current,

there is a fluctuating part Je(x, t) = −D(e) ∂e(x,t)
∂x +

√

χ(e) η(x, t),
where χ(e(x, t)) is the mobility of the system which is related
to the diffusivity D(e(x, t)) through the fluctuation dissipation
relation and η(x, t) is a mean zero white Gaussian noise with the
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properties 〈η(x, t)〉 = 0 and 〈η(x, t)η(x′, t′)〉 = δ(x− x′)δ(t − t′).
The evolution equation for the energy density is given by

∂e(x, t)

∂t
=

∂

∂x

[

D(e)
∂

∂x
e(x, t)−

√

χ(e) η(x, t)

]

. (97)

Starting from this stochastic equation one can compute various
moments, fluctuations and correlations of e(x, t) and j(x, t) both
in stationary and non-stationary regime. This description also
allows one to compute the probabilities of observing atypical
density and current profiles which are characterized by large
deviation functions. The whole program has been established
and applied in several microscopic systems which show diffusive
behavior at macroscopic scales. We ask if a similar procedure
works for our system, displaying anomalous transport, and
described by the fractional diffusion equation. Recently such an
extension has been proposed in [37] which we now describe.
The approach in [37] is to include a noise part in the current
expression in such a way that the fluctuation-dissipation theorem
is satisfied. For a system in equilibrium at temperature T this
leads to the unique choice

∂τ e(v, τ ) = −∂vj(v, τ ),

with j(v, τ ) = −κ̄

∫ 1

0
dv′K(v, v′)∂v′e(v

′, τ )

−
√
2κ̄T

∫ 1

0
dv′B(v, v′)η(v′, τ ), (98)

where η(v, τ ) is white Gaussian noise with
〈

η(v, τ )
〉

= 0,
〈

η(v, τ )η(v′, τ ′)
〉

= δ(v − v′)δ(τ − τ ′) and the fluctuation-
dissipation theorem implies the relation

K(v, v′) = BB†(v, v′) , (99)

with B† defined as the adjoint of B. It was verified in Kundu
et al. [37] that Equation (98) reproduces correctly results on
energy correlations and current fluctuations in equilibrium.
Extending this approach to the non-equilibrium situation
was also attempted in [37] and a conjecture for long-range
correlations in the NESS was proposed.

4.2.3. Role of Boundary Conditions: Hydrodynamic

Theory
In the previous section we have mainly discussed the fixed
boundary condition, in which case we have learned that the
transport behavior in HCME model is anomalous with exponent
α = 1/2 and the Fourier’s law gets modified to a non-local
linear response relation as in the form of Equation (94) with
an explicit form for the kernel K(v, v′) given in Equation (95).
Also in this case the evolution of the temperature profile is
given by a non-local equation (91) with L

p defined through
Equations (95) and (96). In this section we would like to
understand the dependence of these results on the choice of
boundary conditions. In particular we focus on the case of free
boundary conditions, i.e., for ζ = 1 in Equation (73).

Energy transport in HCME with free boundary condition
was studied numerically in [28] where it was observed that the

system size scaling of the current j in the steady state is again
proportional to 1/

√
N, as for fixed BC. However, in contrast to

the fixed BC case, the proportionality constant depends on the
friction coefficient λ. It was also observed that the temperature
profile in this case is non-linear but the associated meniscus
exponent µ depends strongly on the relative values of λ and ω.
For this case finding the appropriate boundary conditions for
Equations (74, 75, 76) is a difficult problem [28] and has so far
not been possible. A different approach, based on linear response
theory and NFH was proposed in [36] and we present some
details here.

This approach starts with the following non-local linear
response result

j(x) = −

∫ N

0
dy KN(x, y)

dT(y)

dy
, (100)

which is based on a linear response calculation as done in [67] but
around a local equilibrium state characterized by a temperature
profile. According to this calculation the Kernel is related to the
equilibrium current-current correlation [36]

KN(x, y) =
1

T̄2

∫ aN

0
dt 〈j(x, t)j(y, 0)〉eq, (101)

where j(x, t) is the local current and a is a constant. For systems
with AHT we expect N〈j(x, t)j(y, 0)〉eq ∼ t1−α which means that
KN(x, y) should scale as Nα−1. Hence we expect that the limit

K(v, v′) = lim
N→∞

N1−αKN(vN, v′N), (102)

exists, which implies also that j = J/N1−α with J given by

J = −1T

∫ 1

0
dv′ K(v, v′) ∂v′2(v′). (103)

where the temperature profile T(x) is assumed to have the scaling
form T(x) = T̄+1T 2(x/N). This equation can then be used to
compute the NESS temperature profile and also the current. The
remaining task now is to compute the kernel K(v, v′).

For HCME, the kernel K(u, v) has recently been computed in
[36] using the techniques of NFH as introduced in section 3.2.
Following this procedure for the HCME model, one finds that
on hydrodynamic length and time scales, a random fluctuation
created inside the system decomposes into two ballistically
moving but diffusively spreading sound modes φ± and a
stationary heat mode φ0. In terms of the local stretch ri = qi+1 −

qi and energy ei = p2i /2+ ω
2r2i /2, the sound modes and the heat

mode are expressed as φ± = ωr∓p and φ0 = e, respectively. The
evolution of these modes are given by [4]

∂tφ± = −∂x[±csφ± − D∂xφ± −
√
2Dη±], (104)

∂tφ0 = −∂x[G(φ
2
+ − φ2−)− D0∂xφ0 −

√

2D0η0],

where cs = ω is the speed of sound, η+, η0 and η− are
uncorrelated Gaussian white noises, G = ω

4 and D and D0 are
phenomenological diffusion coefficients.
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The instantaneous energy current can be read from (104),

j(x, t) = G[φ2+(x, t)− φ
2
−(x, t)], (105)

neglecting the sub-dominant terms arising from the momentum
exchange and the noises η± [62]. The stochastic momentum
exchange process generate a diffusive contribution (see Equation
104) which becomes sub-leading at largeN and the noises η± also
do not contribute since their time averages vanish.

In order to compute the kernel in (101) using the form of j(x, t)
in (105), one needs to solve the equations of φ± in (104) inside
a finite domain with suitable BCs. At this point we would like
to mention that originally the NFH theory was formulated for
an infinite domain [62]. The work in [36] provides an extension
to incorporate boundary conditions for a finite domain, in the
context of the HCMEmodel. As the equations for φ+ and φ− are
independent of φ0, it is straightforward to write the solution in
terms of the appropriate Green’s function, as shown later.

We now discuss how to get the boundary conditions of fields
φ±. The strategy that has been followed in [36] is to introduce
extra stretch and momentum variables in such a way that the
equations at the boundary points (i = 1,N) are also included
into the structure of the bulk equations. This can be achieved
by introducing additional conditions, which after appropriate
coarse-graining become the hydrodynamic BCs. To explain the
procedure let us consider the free BC case as an example. We first
introduce an extra dynamical variable r0 in such a way that the
form of the equation satisfied by p1 becomes same as that of the
bulk evolution equations with the condition

ω2r0 = λp1, (106)

where we have neglected the noise terms in (73). This provides
one BC. We need another BC as the Equation (104) is of second
order in space. As before, introducing p0 in such a way that one
can make r0 to satisfy a regular equation of motion in the bulk
at the cost of an extra condition, provides the second BC. Taking
single derivative with respect to time on both sides of the first
condition yields

p1 − p0 = λ(r1 − r0). (107)

One can get two other boundary conditions by applying similar
procedure to the equations of the last (Nth) particle. Finally,
coarse-graining over space and expressing the stretch r and
momenta p in terms of the sound modes φ±, we obtain the
following BCs for free boundaries:

(∂xφ+ + w ∂xφ−)|x=0 = (φ+ − w φ−)|x=0 = 0,

(∂xφ− + w ∂xφ+)|x=N = (φ− − w φ+)|x=N = 0 (108)

where

w =
λ− ω

λ+ ω
. (109)

These BCs can be interpreted physically as some sort of partially
“reflecting” boundaries. The BCs on the first (second) line of
Equation (108) mean that when a φ+ (resp. φ−) Gaussian peak

hits the right (resp. left) boundary, it gets reflected as a φ− (resp.
φ+) Gaussian peak with area under the peak reduced by a factor
w. This feature has been observed in numerical simulations and
the validity of (108) has been confirmed [36]. There are two
interesting cases w = 0 and w → 1. In case of resonance
(also called impedance matching) λ = ω, i.e., w = 0 [66],
once a φ± peak hits the boundary nothing gets reflected because
everything gets absorbed at the boundary reservoirs. On the
other hand, w → 1 corresponds to almost perfectly reflecting
case. This situation arises for the fixed BCs in the microscopic
dynamics. Following a similar procedure as done for free BCs, it
is possible to show that one arrives at the same hydrodynamic
BCs Equation (108) except now w = 1. From Equation (109),
one can easily see that the w → 1 limit is achieved for λ →

∞. In this limit, the 1st and the Nth particles hardly move,
i.e., their positions q1 and qN stay very close to 0 for all times
due to infinite dissipation and therefore mimic the fixed BCs
for the microscopic dynamics. So for fixed BCs we have the
hydrodynamic BCs Equation (108) with w = 1.

Since the hydrodynamic equations (104) for φ+ and φ− along
with the BCs (108) are linear, it is easy to solve them for arbitrary
initial condition. The solutions are best expressed in terms of the
four Green’s functions fσ ,τ (x, y, t) for σ , τ = ±, as

φσ (x, t) =
∑

τ=±

[

∫ N

y=0
dyfσ ,τ (x, y, t)φτ (y, 0)

+
√
2D

∫ N

y=0
dy

∫ t

t′=0
dt′fσ ,τ (x, y, t − t′)∂yητ (y, t

′)

]

,

(110)

where, fσ ,τ (x, y, t) =

∞
∑

n=−∞

w2n+ σ−τ
2

exp

(

−
(x−στy+2σnN−σ cst)

2

4Dt

)

√
4πDt

,

(111)

with w = 1 for fixed BCs and w = λ−ω
λ+ω

for free BCs.
Using this expression in Equation (105) one finally gets from

Equations (101, 102) the following expression for the kernel:

K(v, v′) = A KR, where KR

=
1

√
2π

∞
∑

n=−∞

[

R|2n|
√
|2n+ v− v′|

−
R|2n+1|

√
|2n+ v+ v′|

]

, (112)

where the constant A = G2S2

T̄2
√
Dcs

with S = 〈φ+(x, 0)
2〉eq =

〈φ−(x, 0)
2〉eq = 2T̄ and R = w2. The diffusion constant

D appearing in the equation for φ± arises from the exchange
mechanism and it can be shown from a microscopic calculation
that D = γ /2. This then gives A = ω3/2/(2

√
2γ ) which we note

coincides with the expression for κ̄ in Equation (72), and so we
identify A = κ̄ . One can use this kernel in Equation (103) to
compute the current and the temperature profile2(v).
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Let us define the Greens function, GR, corresponding to the
kernel KR through the equation

∫ 1

0
dv′′KR(v, v

′′)GR(v
′′, v′) = δ(v− v′). (113)

Then Equation(103) can be inverted to give

∂v2(v) = −
J

κ̄1T

∫ 1

0
dv′GR(v, v

′) (114)

Solving this equation with the boundary conditions 2(0) =

1/2,2(1) = −1/2 gives us the expressions for the current and
temperature profile

J = κ̄1T

[∫ 1

0

∫ 1

0
dv′dv′′GR(v

′, v′′)

]−1

, (115)

2(v) =
1

2
−

∫ v
0

∫ 1
0 dv′dv′′GR(v

′, v′′)
∫ 1
0

∫ 1
0 dv′dv′′GR(v′, v′′)

. (116)

One uses this in Equation (103) to solve for the temperature
profile 2(v). The above analysis, based on linear response
calculation, assumes |1T| << T. However, for HCME, one
observes that the quadratic correlations satisfy a closed set of
linear equations with a source term proportional to 1T [26].
Hence the temperature profile 2(v) in (116) is also valid for
any1T.

It turns out the Equation (114) can be solved analytically and
exact expressions of the temperature profile2(v) can be obtained
in the following two limiting cases—

(i) Free resonant case R = 0: In this case the kernel is simply
given K0 = 1/

√
2π |v− v′| which is same as that of an infinite

system. For this kernel, the solution of Equation (103) can be
directly written using standard results on solution of integral
equations [86] as

∂v2(v) = −
J

κ̄1T

1
√
πv1/4(1− v)1/4

. (117)

This can be solved with the boundary conditions to give the
temperature profile

2R=0(v) =
1

2
−

√
πv3/42F1

(

1
4 ,

3
4 ;

7
4 ; v

)

2Ŵ
(

3
4

)

Ŵ
(

7
4

) , (118)

where 2F1 is hypergeometric function, and the current

J = κ̄1T
π

2Ŵ2(3/4)
(119)

This profile is verified numerically in Figure 14 (left panel),
where we observe diverging derivatives at the boundaries. From
the above expression it is possible to show that the meniscus
exponent is µ = 3/4.

(ii) Perfectly reflecting case R → 1: As mentioned above this
is equivalent to fixed BC for which the temperature profile, given
in Equation (83), was computed from microscopic calculation

in the previous section. In this case it is known [37] that the
eigenfunctions of the operatorKR are precisely the sine-functions
αn(v), i.e.,

∫ 1

0
dv′KR(v, v

′)αn(v
′) = (nπ)−1/2αn(v) , (120)

which is consistent with Equation (95). This then gives us the
corresponding Green’s function

GR(v, v
′) =

∞
∑

n=1

(nπ)1/2αn(v)αn(v
′) . (121)

Using this and Equations (114, 115) we recover the exact
expressions for the temperature profile and current given in
Equations (83, 85) [37].

For free BCs with λ 6= ω we have 0 < R < 1. In
this case it is difficult to solve Equations (103, 112) analytically
but numerical solutions have been obtained. In Figure 14 (right
panel) a comparison of the temperature profile obtained from
the numerical solution and from direct microscopic simulations
for R = 1/2 and one can observe excellent agreement. Note
again that the temperature profile is singular at the boundaries.
It turns out that the exponent µ characterizing this singularity
depends on not only on α but also on R [66]. To determine
this dependence we take a derivative with respect to v of

Equation (103) and get
∫ 1
0 dv′ ∂vKR ∂v′2(v′) = 0. Although

the integral is identically zero for all v, the individual terms in
the integrand have divergences. For example, the kernel diverges
as KR ∼ |v − v′|−1/2 while ∂v′2(v′) diverges as |δv|µ−1.
Requiring that all divergent integrals cancel each other, leads to
the following relation between R and µ:

R =

∫ 1
0

qµ−1−q1/2−µ

(1−q)3/2
dq

∫ 1
0

qµ−1+q1/2−µ

(1+q)3/2
dq

. (122)

The integrals can be performed explicitly to give

µ = 1−
1

π
arctan

(√
2− R2 + R

√
2− R2 − R

)

, (123)

which is plotted in Figure 15 along with results extracted from
the temperature profile obtained from direct numerical solution
of Equation (103). We note that this result differs from the one
conjectured in [66] though rather interestingly, the values of µ at
R = 0 and R = 1 obtained from the two expressions agree. A
generalization of the above result for arbitrary α is possible using
the Lévy walk approach with the general kernel in Equation (42)
which leads to an expression similar to Equation (122), now with
the right hand depending explicitly on α.

5. SUMMARY AND OPEN QUESTIONS

Heat transport in a large class of one-dimensional systems
with Hamiltonian or conservative stochastic dynamics is known
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FIGURE 14 | Rescaled temperature profile for resonant BCs R = 0 (left) and free BCs with R = 1
2 (right). In the main plots results of Monte-Carlo simulations for

increasing system sizes N = 100, 200, and 400 are compared to the theoretical predictions given by Equation (118) for the R = 0 case (left panel) and the numerical

solution of Equations (103, 112) with R = 1
2 for the plots in the right panel. In the insets the differences between measurements and theory are shown. The other

parameter values are T+ = 1.5, T− = 0.5, and ω = γ = 1 (adapted from Cividini et al. with permission from [36] Copyright SISSA Medialab Srl, IOP Publishing).

FIGURE 15 | The meniscus exponent µ as a function of R for α = 1/2. The

prediction from Equation (123) is plotted against the values obtained from the

numerical solution of the integral Equation (103) with the kernel in

Equation (112).

to be anomalous. Some typical signatures of anomalous
transport include NESS studies which find that the thermal
conductivity κ , diverges with system size N as κ ∼ Nα ,
and the temperature profile T(x) is typically non-linear, with
a singular dependence T(δx) ∼ (δx)µ for small distance
δx from the boundary. In the closed system one finds that
heat pulses and correlation functions spread super-diffusively
and are associated to propagators that have the scaling form
t−γ G(t−γ x). The scaling form is valid for times |x| < ct,
where c is the sound speed in the system, beyond which
time the correlations decay exponentially. The scaling function

is given by the Lévy-stable distribution in the bulk and
the finite cut-off leads to the width of the pulse scaling
as σ (t) ∼ tβ/2.

In this review we discussed these signatures of anomalous
transport and showed how they can be understood within three
different but related frameworks—(a) a phenomenological model
where the heat carriers are taken to be Lévy walkers, (b) a
microscopic phenomenological approach based on non-linear
fluctuating hydrodynamics and (c) exact results obtained for
certain stochastic models. The main picture that emerges is
that anomalous heat transport can be understood by replacing
Fourier’s law in Equation (1) by a non-local fractional-type
diffusion equation given in Equation (3), where the precise
form of the kernel KR(x, y) depends on the specific set-up and
boundary conditions. For the stochastic models the form of the
kernel is known explicitly both for the closed system (infinite
line) and the open system. In the Lévy walk picture, where
the distribution of flight times has a power-law dependence ∼

1/tν+1, the kernel has the asymptotic form KR(x, y) ∼ 1/|x −

y|ν−1. We saw from the various approaches, that all the different
exponents mentioned above are related to each other and in fact
can be expressed in terms of the Lévy walk exponent as

α = 2− ν, β = 3− ν, γ = 1/ν. (124)

For the Hamiltonian models that we discussed, namely the
alternate mass hard-particle gas and the FPUTmodel, the various
exponents are given by α = 1/3,β = 4/3, γ = 3/5 and
correspond to a Lévy-walk exponent ν = 5/3. For the stochastic
momentum exchangemodel we have α = 1/2,β = 3/2, γ = 2/3
which corresponds to ν = 3/2. The meniscus exponentµ is non-
universal and depends on ν and on boundary conditions through
a single dimensionless number R, which can be interpreted as the
reflection coefficient of the Lévy walkers at the boundaries. In the

Frontiers in Physics | www.frontiersin.org 22 November 2019 | Volume 7 | Article 159132

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Dhar et al. Anomalous Heat Transport in 1D

context of the exactly solvable stochastic models, we discussed
the spectrum of the fractional-type Laplacian operator [specified
by the kernel KR(x, y)] in the open set-up, and pointed out
important differences with the spectrum of the usual Laplacian
for diffusive processes.

We conclude bymentioning some outstanding open questions
in the field.

• Hamiltonian systems—The Lévy walk behavior has been
clearly observed in large number of simulations. The
formalism of NFH gives a microscopic justification of the Lévy
walk model and the fractional-diffusion type description of the
heat mode. Some open questions include:

1. A more rigorous microscopic derivation of the evolution
equation of a localized heat pulse in an equilibrium system,
to show that the central peak satisfies a fractional-diffusion
type equation of a form similar to that in Equation (3).

2. Extension of the NFH formalism to the non-equilibrium
case to study transport in finite open system and
understand the role of BCs. Detailed simulations are also
required to understand the effect of BCs.

3. Establishing the Lévy walk picture from a
microscopic viewpoint?

• Stochastic systems—For the HCME model, the non-local
version of Fourier’s law has been established and the response
kernel KR computed so far using two methods: (i) exact
microscopic method for the BC corresponding to R = 1 and
(ii) using NFH for arbitrary R. Is it possible to extend the
exact microscopic approach to find the non-local kernelKR for
general boundary conditions. Similarly for the HCVE it would
be interesting to explore the role of BCs.

• For the HCME model, it has been possible to find the
eigenspectrum of the non-local kernel KR for the case
R = 1 and it was observed that the eigenvalues for
Dirichlet and Neumann boundary conditions differ (unlike
for the usual Laplacian). Finding the spectrum of the non-
local kernel KR for general R, for Dirichlet and Neumann
boundary conditions, is an interesting mathematical problem.
The knowledge of the spectrum, namely eigenvectors and
eigenvalues, enables one to study the time-evolution.

• For the HCME model we showed that it is possible to write
a stochastic non-local equation (Equation 98) to describe
equilibrium fluctuations. An open problem is to write such an
equation in the non-equilibrium set-up. For diffusive systems
this is given by Equation (97) and this equation enables one
to compute long-range correlations in the NESS and large
deviation functions.
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Statistical mechanics harmonizes mechanical and thermodynamical quantities, via the

notion of local thermodynamic equilibrium (LTE). In absence of external drivings, LTE

becomes equilibrium tout court, and states are characterized by several thermodynamic

quantities, each of which is associated with negligibly fluctuating microscopic properties.

Under small driving and LTE, locally conserved quantities are transported as prescribed

by linear hydrodynamic laws, in which the local material properties of the system are

represented by the transport coefficients. In 1-dimensional systems, on the other hand,

various anomalies are reported, such as the dependence of the heat conductivity on the

global state, rather than on the local state. Such deductions, that rely on the existence

of thermodynamic quantities like temperature and heat, are here interpreted within the

framework of boundary driven 1-dimensional Lennard-Jones chains of N oscillators. It

is found that these chains experience non-negligible O(N) lattice distortions, resulting

in strongly inhomogeneous systems, and O(N) position fluctuations, that are in contrast

with the requirements of LTE.

Keywords: chains of oscillators, local thermodynamic equilibrium, lattice distortion, macroscopic fluctuations,

Lennard-Jones potential

1. INTRODUCTION

In a seminal paper, Rieder, Lebowitz, and Lieb investigated the properties of chains of N harmonic
oscillators, interacting at their ends with stochastic heat baths [1]. These authors proved that while
energy flows from hot to cold baths, the kinetic temperature profile decreases exponentially in
the direction of the hotter bath, rather than increasing, and in the bulk its slope vanishes as N
grows. Thus, in case the kinetic temperature equals the thermodynamic temperature, heat flows
against the direction of energy, in the bulk of such 1D systems. Were this a real fact, no steady state
would be reached, because at the boundaries heat would flow in opposite directions and indefinitely
accumulate. On the contrary, Rieder et al. [1] proves the existence of and explicitly expresses the
steady state. Taken in Rieder et al. [1] as a paradox without explanation, this fact is now understood
as related to the absence of phononic interactions in harmonic chains [2], and it reveals that, in
harmonic chains, the kinetic temperature does not correspond to the thermodynamic temperature,
or the energy flux does not represent a heat flux, or both.

Thermodynamically peculiar behaviors are realized in anharmonic chains as well. In particular,
1D chains of N oscillators without on-site potentials, and conserving momentum, generically

enjoy anomalous transport, i.e., the divergence with N of the thermal conductivity, κN =
〈J〉N

TR−TL
,

where TR and TL are the temperatures at the two ends of a chain and 〈J〉 is the average heat
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flux [2–5]. On the other hand, evidence of normal transport
in chains with asymmetric interactions, such as Lennard-
Jones potentials, is reported in Zhong et al. [6] and Chen
et al. [7]. Unexpected phenomena that seem to contradict the
hydrodynanmic laws of transport, e.g., currents going against the
density gradient, a phenomenon called “uphill diffusion,” can be
observed in several experimental settings. In e.g., Colangeli et al.
[8], the readers my find further references and a non-equilibrium
model with phase transition exhibiting uphill diffusion, whose
thermodynamic relevance is still under investigation.

The fact is that temperature and heat pertain to macroscopic
objects with microscopic states corresponding to Local
Thermodynamic Equilibrium (LTE); they cannot be directly
identified with mechanical quantities such as kinetic energy and
energy flux, Landau and Lifshitz [9], section 9 and Chibbaro et al.
[10] chapters 3, 4, and 5. LTE is the essence of Thermodynamics:
it can be viewed at once as the precondition for the existence of
the thermodynamic fields, such as temperature and heat, and as
the natural state of objects obeying the thermodynamic laws. The
microscopic conditions under which LTE is expected to hold are
extensively discussed in the literature, e.g., [11] section 15.1, [12]
section 2.3, [13] section 3.3, [14] chapter 1. In short, LTE requires
the existence of three well-separated time and space scales, so
that: (1) a macroscopic object can be subdivided in mesoscopic
cells that look like a point to macroscopic observers, while
containing a large number of molecules; (2) boundary effects
are negligible compared to bulk effects, so that the contributions
of neighboring cells to the mass and energy of a given cell are
inappreciable within a cell; (3) particle interactions allow the
cells to thermalize (positions and velocities become respectively
uniformly and Maxwell-Boltzmann distributed) within times
that are mere instants on the macroscopic scale.

That macroscopic observables are not affected by microscopic
fluctuations, despite the exceedingly disordered and energetic
microscopic motions, is essential for mesoscopic quantities to be
sufficiently stable that thermodynamic laws apply, e.g., Landau
and Lifshitz [9], section 1 and 2. This is the case for a quantity
that is spatially weakly inhomogeneous, when the number N
of particles in a cell is large, and the molecular interactions
randomize positions and momenta so that, for instance, the
fluctuations of a quantity φ of size O(N) are order O(

√
N). The

bulk of the cell then dominates in- and out-fluxes, and variations
of φ are sufficiently slow on the mesoscopic scale.

Quantitatively, the space and time scales for which this
description holds depend on the properties of the microscopic
components of the systems of interest, [11–16]. However, the
general rule is that fluctuations be negligible compared to the
signal of interest; were e.g., position fluctuations large, two solids
could kick each other, when placed at a short distance from each
other. This, of course, is impossible in the thermodynamic realm
(see also Exercise 4.5 in [17]).

Under the LTE condition, matter can be considered a
continuum, obeying hydrodynamic laws, i.e., balance equations
for locally conserved quantities, such as mass, momentum and
energy [12, 18–20]. For small to moderate driving, they take a
linear form, in which the local material properties are expressed
by the linear transport coefficients. Locality implies that such

coefficients do not depend on the conditions of the system far
away from the considered region. The thermal conductivity of an
iron bar at a given temperature at a given point in space does not
depend on the conditions of the bar far from that region; cutting
the bar in two, or joining it to another bar, without changing the
local state, leaves unchanged its local properties.

Fluctuations remain of course present in systems made of
particles; they are larger for larger systems, they may be observed
[21, 22], and they play a major role in many circumstances
(see e.g., [23, 24]). This motivates a considerable fraction
of research in statistical physics, e.g., [25, 26], concerning
scales much smaller than the macroscopic ones, or occurring
in low dimensional (1D and 2D) systems [4, 27–30]. In these
phenomena, the linear transport coefficients do not always seem
to exist [4], the robustness of the thermodynamic laws appear
to be violated, and the behaviors appear to be strongly affected
by boundary conditions and by all parameters that characterize
a given object [7, 31–37]. It is also well-known that chains of
oscillators behave more like some kind of (non-standard) fluids
than like solids, because of the loss of crystalline structure, caused
by cumulative position fluctuations [38]. Consequently, a fluid-
like (possibly fluctuating) description has been adopted in a
number of papers, cf. [39, 40].

In driven systems, the situation is problematic also because
equipartition may be violated [41–43], the state of the system
is model dependent, and the ergodic properties are partially
understood [44, 45]. Hence, there is no universal agreement
on the microscopic notion of temperature in non-equilibrium
conditions [43, 46–51]. Further, a microscopic definition of
heat flux requires a clear distinction between convection, i.e.,
energy transport due to macroscopic motions, and conduction,
that is transport without macroscopic motions, cf. Chapter 4 of
Zemansky and Dittman [52], and section III.2 and Chapter XI
of De Groot et al. [18]. In 1D systems, this may not always be
possible [53].

One interpretation of these facts is that LTE is violated in
some situations, hence that thermodynamic concepts, such
as heat and temperature, may be inappropriate [33, 34].
Another interpretation is that thermodynamic notions should
be modified to treat small and strongly non-equilibrium systems
(see e.g., [46–49]). It is therefore interesting to investigate
the validity and universality of the mechanical counterparts
of thermodynamic quantities, in situations in which LTE
is not expected to hold, and “anomalous” phenomena have
been reported.

We address such questions considering chains of N Lennard-
Jones oscillators interacting with deterministic baths at their
ends, and without on-site potentials. We mainly focus on two
quantities: the distortion of the equilibrium lattice and the
fluctuations of the particles, whose position will be denoted by
xi’s. The former is the displacement of the average of xi with
respect to its mechanical equilibrium value, while the latter is the
standard deviation of xi. Our central findings are that:

• thermostats at different temperatures induce O(N)
distortions of the equilibrium lattice, resulting in highly
in-homogeneous chains;
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• thermostats induce collective order O(N) fluctuations,
i.e., “macroscopic” motions. Negligible incoherent O(

√
N)

vibrations typical of 3D equilibrium systems are thus replaced
by kind of convective motions, even in chains bounded by
still walls.

Note that these are two well distinct effects; the latter is
crucial in our investigation, since it hinders thermodynamic
properties, cf. section 3. Combined with the results of Rieder
et al. [1] and further literature, e.g., [41, 46–50], this suggests
that microscopic definitions appropriate for 3-dimensional
equilibrium thermodynamic quantities, need extra scrutiny in
1D. As an example of the effects on observables of both O(N)
lattice distortions and position fluctuations, we consider the
notion of heat flux, J say, given by Equation (23) of Lepri
et al. [2]. This confirms from a different standpoint conclusions
reached in previous studies on the inapplicability of standard
hydrodynamics [54, 55]. Note that Equation (23) of Lepri et al.
[2] has been criticized as an incorrect expression for the “heat
flow.” In fact, it would only reduce to the correct expression,
e.g., Equation (3.8) of Spohn [12], (a) apart from a dimensional
constant, (b) if the position in space could be identified with the
position of one particle, and (c) if position fluctuations about
the equilibrium lattice positions would be totally negligible. Such
negligible fluctuations would at once satisfy one of the conditions
for the validity of LTE, allow the particle position to play the
role of a position in space, and make valid the periodic lattice
assumption of Lepri et al. [2]. Therefore, this quantity suits us, in
order to illustrate the effect of non-negligible fluctuations and of
lattice distortions. We find that:

• J is not spatially uniform in steady states. Variations of J
decrease if the baths temperature difference is reduced at
constant N, but they do not if the mean temperature gradient
is reduced increasing N at constant baths temperatures.

• Dividing J by the local mass density partially balances the
lattice inhomogeneity and yields an approximately uniform
quantity. This suggests that, although relevant, the lattice
deformation is not the only reason for J to fail.

These observations should be combined with those of Giberti
et al. [53] and Lepri et al. [55], according to which collective and
molecular motions are correlated, making hard to disentangle
convection from conduction. Whatever their motion, single
particles push their neighbors, producing kinds of convective
cascades. That difficulties do not ease when N grows, because
of O(N) fluctuations and lattice distortions, explains why LTE,
hence thermodynamic quantities, cannot be established in our
1D systems.

2. CHAINS OF LENNARD-JONES
OSCILLATORS

Consider a 1D chain ofN identical moving particles of equal mass
m, and positions xi, i = 1, ...,N. Add two particles with fixed
positions, x0 = 0 and xN+1 = (N + 1)a, where a is the lattice
spacing. Let nearest neighbors interact via the Lennard-Jones

potential (LJ):

V1(r) = ǫ

[

(a

r

)12
− 2

(a

r

)6
]

, (1)

where r is the distance between nearest neighbors: r = |xi −
xi−1| and ǫ > 0 is the depth of the potential well. Thus,
xi = ai, with i = 0, . . . ,N + 1, is a configuration of
stable mechanical equilibrium for the system. We also consider
interactions involving first and second nearest neighbors, with
second potential given by [56, 57]:

V2(s) = ǫ

[

(

2a

s

)12

− 2

(

2a

s

)6
]

, (2)

where s = |xi − xi−2|. Further, we add two particles with fixed
positions x−1 = −a and xN+2 = (N + 2)a. With potential
V = V1 + V2, the system has the usual stable mechanical
equilibrium configuration xi = ai, i = −1, . . . ,N + 2. The first
and last moving particles are in contact with two Nosé-Hoover
thermostats, at kinetic temperatures TL (on the left) and TR

(on the right) and with relaxation times θL and θR. Introducing
the forces

F1(r) =
∂V1

∂r
(r), F2(s) =

∂V2

∂s
(s) , (3)

the equations of motion are given by:

mẍ1 = F1(x1)− F1(x2 − x1)− ξ1ẋ1, (4)

mẍi = F1(xi − xi−1)− F1(xi+1 − xi), i = 2, ...,N − 1, (5)

mẍN = F1(xN − xN−1)− F1(xN+1 − xN)− ξN ẋN , (6)

with

ξ̇1 =
1

θ2L

(

mẋ21
TL

− 1

)

, ξ̇N =
1

θ2R

(

mẋ2N
TR

− 1

)

, (7)

in the case of nearest neighbors interaction. For first and second
neighbors interactions, we have:

mẍ1 = F1(x1)− F1(x2 − x1)+ F2(x1 + a)− F2(x3 − x1)

−ξ1ẋ1,

mẍ2 = F1(x2 − x1)− F1(x3 − x2)+ F2(x2)− F2(x4 − x2)

−ξ2ẋ2,

mẍi = F1(xi − xi−1)− F1(xi+1 − xi)+ F2(xi − xi−2)

−F2(xi+2 − xi), i = 3, . . . ,N − 2, (8)

mẍN−1 = F1(xN−1 − xN−2)− F1(xN − xN−1)

+F2(xN−1 − xN−3)− F2(xN+1 − xN−1)− ξN−1ẋN−1,

mẍN = F1(xN − xN−1)− F1(xN+1 − xN)+ F2(xN − xN−2)

−F2(xN+2 − xN)− ξN ẋN ,
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FIGURE 1 | (Left) Plot of the displacement of the mean position of particle i from its mechanical equilibrium position, (〈xi〉 − ia), for different values of N, for first and

second neighbors interaction, when TL = 1 and TR = 10. The lattice is strongly distorted in presence of temperature differences. (Right) Linear fit of maxi (〈xi〉 − ia) as

a function of N ranging from 64 to 6000, for N > 400. The label of the particle corresponding to the maximum lattice distortion is fitted by imld = 0.6063N− 6.804 with

R2 = 0.9997.

with

ξ̇l =
1

θ2L

(

mẋ2
l

TL
− 1

)

, l = 1, 2,

ξ̇l =
1

θ2R

(

mẋ2
l

TR
− 1

)

, l = N − 1,N.

(9)

The hard-core nature of the LJ potentials preserves the order of
particles: 0 < x1 < x2 < · · · < xN < (N + 1)a holds at all times,
if it does at the initial time1.

For such systems, a form of single particle virial relation is
often found to hold2. That fact is usually mentioned to identify
the average kinetic energy of a given particle with the temperature
Ti in position xi [2]:

Ti =

〈

pi
2

m

〉

, i = 1, ...,N. (10)

Here, pi is the momentum of particle i, the angular brackets
〈·〉 denote time average, and Ti is called single particle
kinetic temperature.

However, the validity of Equation (10) does not imply a
Maxwell-Boltzmann distribution of velocities, corresponding
to a thermodynamic temperature [53]. Indeed, for TL 6=

TR, the single particle kinetic temperature profile may take
rather peculiar forms, compared to the linear thermodynamic
temperature profiles in homogeneous solids when Fourier law
holds. This is illustrated in great detail in the specialized

1In some cases, we extended the Lennard-Jones interaction to the third nearest

neighbors, preserving the equilibrium configuration xi = ia. The corresponding

equations of motion and thermostats are the natural modification of the previous

ones, hence are not reported here.
2In Falasco et al. [58] a nonequilibrium mesoscopic version of the virial relation

in given.

literature, cf. [2–4, 34, 59–63] just to cite a few. Also, numerically
simulated profiles of various kinds of 1D systems, appear to
be sensitive to parameters such as the relaxation constants of
the thermostats, the interaction parameters, the form of the
boundaries etc. cf. e.g., [34]. This is not surprising, since
many correlations persist in space and time in low dimensional
systems, hindering the realization of LTE and leading to
anomalous behaviors [33, 54, 55, 64–70]. As a further testimony
of the complex behavior of 1D chains, we mention that heat
conductivity may depend on details of the interaction potential
such as its asymmetry; see [6, 7] in which evidence is given for
normal conductivity in chains with LJ potential.

In the following sections, we report our results about systems
with various numbers of particlesN. The parameters defining the
Lennard-Jones potentials are ǫ = 1 and a = 1, while the mass of
the particles is m = 1. The relaxation times of the thermostats
θL and θR are set to 1. The numerical integrator used is the
fourth-order Runge-Kutta method with step size 10−3. The time
averages are typically taken over O(108) − O(109) time steps in
the stationary state.

3. LARGE LATTICE DEFORMATIONS AND
FLUCTUATIONS

The distinction between the different states of aggregation of
matter is not strictly possible in 1D systems with short range
interactions; one nevertheless realizes that our oscillators chains
are more similar to (a kind of) compressible fluids than to
solids [34, 54]. In particular, Lepri et al. [55] shows persistent
correlations, O(N) dependence of relaxation times, and the
failure of standard hydrodynamics, in non-driven LJ systems.
Along similar lines of inquiry, we investigated two different
effects in non-equilibrium conditions: the distortion of the
equilibrium lattice and the size of the fluctuations of the particles.

Frontiers in Physics | www.frontiersin.org 4 November 2019 | Volume 7 | Article 180139

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Giberti et al. O(N) Fluctuations and Lattice Distortions

For the first, we find that temperature differences at the
boundaries of the chains induce “macroscopic” deformations
of the periodic structure of the lattice; cf. Zhong et al. [6]
for the influence of the asymmetry of the potential on such
phenomenon. For all i, we obtain (〈xi〉− ia) ∼ O(N), as shown in
Figure 1, whose right panel plots the quantity maxi(|〈xi〉− ia|) as
a function of N. Consequently, for sufficiently large N the system
cannot be treated as a spatially homogeneous object.

Our second observation, which concerns fluctuations, is that
the presence of thermostats at different temperatures enhances

the size of the vibrations, given by
√

〈x2i 〉 − 〈xi〉2, of each particle

i about its average position 〈xi〉. Such vibrations are order O(i1/2)
in chains without thermostats with origin in i = 0 [38],
which means that, for sufficiently large i, position fluctuations
are incompatible with a crystal structure. In our framework,

the length of chains is bounded, therefore the size of particle
vibrations cannot indefinitely grow with particle index i: the
vibrations are larger for particles in the bulk than for particles
near the boundaries of the chains, see the left panel of Figure 2
More precisely, we find that for every particle i, the size of

vibrations can be called “macroscopic”:
√

〈x2i 〉 − 〈xi〉2 ∼ O(N).

In the right panel of Figure 2 and in Figure 3, square root fits
and linear fits are compared for N ranging from 64 to 6000. The
square root fits are appropriate for small N, while at large N the
linear fit takes over. The size of these vibrations appears even
more striking observing that displacing by a large amount one
of them, a whole collection of particles must be correspondingly
displaced. Indeed, the repulsive part of the LJ potential does
not allow particles’ order to be modified, as noted also in Lepri
et al. [55]. As observed e.g., in Giberti and Rondoni [34],

FIGURE 2 | (Left) Standard deviations of the particles vibrations about their average position, in lattice vectors units, for the case of Figure 1. (Right) Dependence

on N (ranging from 64 to 6000) of the maximum standard deviation together with a linear fit for N > 400 (continuous blue line) and one square root fit for lattices with

N < 2100 (dashed red line). Growing linearly with N, collective vibrations look like convective motions. The label of the particle corresponding to the maximum

fluctuation amplitude is fitted by imfa = 0.7398N − 6.75 with R2 = 0.9993.

FIGURE 3 | (Left) Dependence on N of the standard deviations of the vibrations of particles at 1/3 of the chain. (Right) Dependence on N of the standard deviations

of the vibrations at 2/3 of the chain. In both cases, a square root and a linear fit are drawn. The square root fit holds at small N. At large N the linear fit takes over. In

both panels N ranges from 64 to 6000. Particles motions look more like some kind of convection rather than like microscopic lattice vibrations.
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this kind of constraint leads to long-range correlations, that
necessarily develop while the O(N) fluctuations observed here
take place. Concerning thermodynamics, they are in fact like
the two sides of a coin: both long range correlations and large
spatial fluctuations break locality, connecting mesoscopic cells
over long distances. This violates the conditions for the validity
of LTE, which require mesoscopic cells to be small independent
equilibrium systems [14]. Absence of LTE in our systems was
already noted e.g., Giberti et al. [53], in which non-Maxwellian
velocities distributions were portrayed.

As a result, the motion of particles about their average
positions is not an irregular motion about fixed positions. In
accord with the observations on persistent correlations, this
motion looks like a kind of convection, although LTE and
standard hydrodynamics do not hold [34, 39, 40, 54, 55]. It
follows that, in these cases, energy transport cannot be directly
related to “heat” flows.

FIGURE 4 | Equilibrium simulations. Plot of the displacement of the mean

position of particle i from its mechanical equilibrium position, 〈xi〉 − ia, for

various values of N, for first and second neighbors interactions when

TL = TR = 5. The deviations from the mechanical equilibrium are negligible.

The situation is different for TL = TR. Figure 4 shows
that the lattice deformations are much smaller than the lattice
spacing a, and can be neglected. The computed values of (〈xi〉 −
ia) practically vanish and do not depend on N. The standard
deviation of the vibrations about themean position is represented
in the left panel of Figure 5 and it appears to be closer to O(

√
N)

than to O(N) as can be seen in the right panel of Figure 5. In this
case, in which there is no net energy transport, the system also
behaves more like a fluid than like a solid in sense closer to that
of Peierls [38], although our results refers to a different situation.

4. ENERGY BALANCE

In order to understand the effect of O(N) fluctuations and lattice
distortions on LTE, we now consider, as an example, the “heat
flux” Ji given by Equation (23) of Lepri et al. [2]. Note, exact
expressions for the energy balance about single particles exist,
e.g., Equation (17) of Lepri et al. [2]. Nevertheless, Ji, which had
been presented as more accurate than Equation (17) of Lepri
et al. [2], is here interesting because, in presence of LTE, it does
correspond to a heat flux, apart from a dimensional constant,
which is irrelevant for our investigation. Then, as the energy
current flowing between neighboring particles labeled by i and
i+ 1 should not depend on i, the same should happen to the time
average 〈Ji〉. In this section, we investigate whether this holds or
not. A critical analysis of Equation (23) of Lepri et al. [2] as a heat
flux is provided in Mejía-Monasterio et al. [71].

For the case of first and second nearest neighbors interactions,
the expression given by Equation (23) of Lepri et al. [2] must be
modified as follows:

Ji =
1

2
(xi+1 − xi)F1(xi+1 − xi)(ẋi+1 + ẋi)

+ (xi+2 − xi)F2(xi+2 − xi)(ẋi+2 + ẋi)+ ẋihi ,

(11)

where F1 and F2 are defined by Equation (3) and hi is the energy
of the i-th particle.

FIGURE 5 | Equilibrium simulations (TL = TR = 5) for N ranging from 512 to 5000. (Left) Standard deviations of the particles vibrations about their average position

(xi − 〈xi〉), in lattice vectors units. (Right) Dependence on N of the maximum standard deviation, together with linear and square root fits. This dependence on N

should not be confused with the O(
√
i) dependence on i of Peierls [38].
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FIGURE 6 | Chains with nearest neighbors Lennard-Jones interactions. (Left) Flux 〈Ji〉 computed according to Equation (11), for N = 64, TL = 1, TR = 4. (Right) 〈Ji〉

for N = 64, TL = 1, TR = 64.

The quantity Ji is only apparently “local” because it quantifies
a flow through the position of particle i, and not through a
fixed position in space. Moreover, it implicitly requires small
position fluctuations and small lattice deformations, because
Equation (11) is obtained through Fourier analysis for spatially
homogeneous systems, in the limit of small wave vectors, [2, 28].
For instance, denoting by k the wave-vector, Equation (23) of
Lepri et al. [2] follows from Equation (21) only if k(xn+1 − xn)
is small. On the contrary, in our cases, this quantity strongly
varies in space and time, and average lattice distortions are of
orderO(N), cf. section 3. Therefore, one expects Ji to fail, and it is
interesting to investigate how that is realized, varying the relevant
model parameters.

For chains with nearest neighbors Lennard-Jones interactions
[F2 ≡ 0 in Equation (11)], we find that while the steady state
heat flow should not depend on position, the time average of
Ji substantially changes with i, cf. Figure 6. To quantify this
phenomenon, we introduce the relative variation of 〈Ji〉,

δ =

∣

∣

∣

∣

maxi〈Ji〉 −mini〈Ji〉

J̄

∣

∣

∣

∣

, where J̄ =
1

N

∑

i

〈Ji〉 ,

In Tables 1, 2, for average temperature gradients similar to those
commonly found in the literature [62, 63, 72], we observe that
δ tends to grow with the temperature gradient, at fixed N. In
general, however, reducing the average gradient by increasing the
system size, does not lead to smaller δ 3.

We conclude that under our conditions the quantity Ji
represents neither a heat nor an energy flow, and that this is
not a consequence of the size of temperature gradients, but of
the size of fluctuations. These increase with growing N, thus
preventing LTE and standard hydrodynamics in the large N limit
[34, 54, 55]. One may nevertheless ask whether the observed
features of Ji are merely due to the deformation of the lattice,
which invalidates the Fourier expansion of Lepri et al. [2]. One
may thus take into account the lattice deformations and restore

3Actually, for mere energy flows, there is no reason to be bounded by small

temperature gradients.

TABLE 1 | Relative variation δ of the flux Ji for N = 64 particles with first and

second nearest neighbors interactions.

TR δ1 δ2

1.1 0.0240 0.0199

1.5 0.0091 0.0077

2 0.0142 0.0145

4 0.0480 0.0481

8 0.0831 0.0829

16 0.1060 0.1062

32 0.1199 0.1201

64 0.1229 0.1232

TL = 1 while TR takes eight different values. δ1 is computed averaging over 2 · 109 time

steps, δ2 over 4 · 109 time steps.

TABLE 2 | Relative variation δ of the average fluxes 〈Ji〉 defined by Equation (11).

TR N = 64 N = 128 N = 256

1.1 0.0240 0.0117 0.0110656

1.5 0.0091 0.0297 0.0317283

2 0.0142 0.0534 0.0555437

4 0.0480 0.0817 0.104345

8 0.0831 0.0659 0.0907829

16 0.1060 0.0683 0.0485491

32 0.1199 0.1560 0.0643797

64 0.1229 0.2306 0.195046

Chains with N = 64, N = 128, and with N = 256 particles, with nearest neighbors

interactions are considered. Averages are computed over 2 · 109 time steps. TL = 1,

while TR takes eight different values.

the correct units, normalizing Ji by the average distance between
particles, as follows:

Jni =
Ji

〈xi+1 − xi〉
, i = 2, ..., N − 2. (12)
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FIGURE 7 | Normalized energy flux Jn (o) and the flux J (+) defined by

Equation (11) for chains of different lengths (N = 128, 512, 1,000, 2,000) and

with TL = 1 and TR = 10. Although Jn is not exactly constant, at large N it

enjoys small fluctuations about a given average value.

This quantity, that should not be taken as a correct alternative to
the definition of heat flux, is indeed approximately constant as a
function of i. This is shown in Figure 7, where Jni results more
stable than Ji as a function of i, thus indicating that the lattice
inhomogeneity is one cause of error in Ji. However, the spurious
fluctuations visible in Figure 7, reveal that lattice deformations
are only one of the difficulties affecting Ji as a definition of
heat flux.

5. CONCLUDING REMARKS

In this work we have presented numerical results on one 1D
chains of Lennard-Jones oscillators, in contact with two Nosé-
Hoover thermostats. Scrutinizing the behavior of mechanical
quantities that are commonly considered in the specialized
literature, we have investigated the fluctuations and lattice
distortions, which are expected to prevent the onset of
“thermodynamic” regimes [33, 34, 50, 55].

The thermodynamic behavior emerges from the collective
behavior of very large assemblies of interacting particles,
provided that two conditions are met: rapid (compared to
observation time scales) decay of correlation and negligible

boundary effects. These conditions often take place for

3D mesoscopic cells containing large numbers of properly
interacting particles, but it is not obvious in 1D systems. Indeed,
quoting Spohn: “The propagation of local equilibrium in time, if
true, is a deep and highly non-obvious property of a system of
many particles governed by Newton’s equations of motion”, see
[12] section 3.1.

In particular, we have observed that temperature differences
at the boundaries produce O(N) deformations of the lattice, that
result in strongly inhomogeneous systems, and O(N) position
fluctuations that hinder LTE. In turn, we have observed that
such O(N) effects imply that increasing N, and correspondingly
decreasing “temperature gradient,” does not lead our systems
any closer to thermodynamic systems. Consequently, as observed
also elsewhere, standard hydrodynamics does not apply [34, 54,
55]. This must be taken into account when defining e.g., the heat
conductivity, because its anomalies are necessarily related to the
absence of LTE.
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Over the years the field of non-Markovian stochastic processes and anomalous

diffusion evolved from a specialized topic to mainstream theory, which transgressed

the realms of physics to chemistry, biology and ecology. Numerous phenomenological

approaches emerged, which can more or less successfully reproduce or account

for experimental observations in condensed matter, biological and/or single-particle

systems. However, as far as their predictions are concerned these approaches are

not unique, often build on conceptually orthogonal ideas, and are typically employed

on an ad-hoc basis. It therefore seems timely and desirable to establish a systematic,

mathematically unifying and clean approach starting from more fine-grained principles.

Here we analyze projection-induced ergodic non-Markovian dynamics, both reversible

as well as irreversible, using spectral theory. We investigate dynamical correlations

between histories of projected and latent observables that give rise to memory in

projected dynamics, and rigorously establish conditions under which projected dynamics

is Markovian or renewal. A systematic metric is proposed for quantifying the degree of

non-Markovianity. As a simple, illustrative but non-trivial example we study single file

diffusion in a tilted box, which, for the first time, we solve exactly using the coordinate

Bethe ansatz. Our results provide a solid foundation for a deeper and more systematic

analysis of projection-induced non-Markovian dynamics and anomalous diffusion.

Keywords: Fokker-Planck equation, spectral theory, projection operator method, occupation time, single file

diffusion, Bethe ansatz, free energy landscape

1. INTRODUCTION

Over the past decades the field of anomalous diffusion and non-Markovian dynamics grew
to a mainstream physical topic [1–10] backed up by a surge of experimental observations
[11–16] (the list of works is anything but exhaustive). From a theoretical point of view the
description of anomalous and non-Markovian phenomena is not universal [1] and can be
roughly (and judiciously) classified according to the underlying phenomenology: (i) renewal
continuous-time randomwalk and fractional Fokker-Planck approaches [1–3, 17, 18], (ii) diffusion
in disorderedmedia [19–27], (iii) generalized Langevin equation descriptions [28–36], (iv) spatially
heterogeneous diffusion [37–43], and more recently also (v) the so-called diffusing diffusivity
models [44–50].

From a more general first-principles perspective non-Markovian dynamics in physical systems
are always a result of the projection of nominally deterministic and/orMarkovian high-dimensional
dynamics to a lower-dimensional subspace [51–60]. The projection in general induces a
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dependence of the dynamics on the initial conditions of the
latent degrees of freedom, i.e., those being integrated out, thereby
leading to memory [51, 54–56] and possibly (depending on the
system) also to anomalous diffusion [61–68].

Hallmarks of broken Markovianity are the non-validity of
the Chapman–Kolmogorov equation, and, on the level of
individual trajectories, correlations between histories of projected
observables and latent degrees of freedom [67]. The advantage
of a first principles approach is that it allows for a deeper
understanding and complete control over the origin and nature
of memory effects. It might, however, be difficult to integrate out
exactly degrees of freedom in a given microscopic model, and in
practice this seems to be only possible for simple models, e.g.,
harmonic systems (e.g., [69]), comb-models (e.g., [70–72]) or
simple obstruction models [61–67], to name but a few.

Here, instead of deriving effective evolution operators for
projected dynamics [51, 54–56] we use a spectral-theoretic
approach and focus on the consequences of the projection
directly on the level of probability density functions of projected
variables—both in a general setting as well as by means of a
simplistic yet non-trivial model of single file diffusion in a tilted
box. Using spectral theory we first present a rigorous and quite
general analysis of the problem and establish conditions, under
which the projection in fact leads to Markovian or renewal-
type dynamics. We then apply these general results to the
analysis of tagged particle diffusion in a single file confined in
a tilted box. We obtain an exact solution of the full many-body
and projected tagged particle propagators using the coordinate
Bethe ansatz, and provide exact results for tagged particle local
time statistics and correlations between tagged particle histories.
Finally, to asses the degree of non-Markovianity induced by
the projection, we compute the Kullback–Leibler divergence
between the exact tagged particle propagator and the propagator
of Markovian diffusion in the respective free energy landscape,
i.e., in the so-called free energy landscape perspective. Our results
provide a deeper understanding of projection-induced memory
and anomalous diffusion and highlight important pitfalls in
applications of free energy landscape-ideas in absence of a time-
scale separation.

2. THEORY

2.1. Notation and Mathematical
Preliminaries
Although all presented result hold identically for discrete-state
jump dynamics governed by a Markovian master equation we
will here throughout be interested in projections of strongly
Markovian diffusion in continuous time and in a continuous
domain � ∈ R

d in a vector field F(x) :Rd → R
d (not

necessarily a potential field), which is either nominally confining
(in this case � is open) or is accompanied by corresponding
reflecting boundary conditions at ∂� (in this case � is closed)
thus guaranteeing the existence of an invariant measure and
hence ergodicity. The dynamics are governed by the (forward)
Fokker-Planck operator L̂ :V → V or its adjoint (or backward)

operator L̂
†
:W → W, where V is a complete normed linear

vector space with elements f ∈ C2(Rd), and W is the space dual
to V . In particular,

L̂ = ∇ ·D∇ − ∇ · F(x), L̂
†
= ∇ ·D∇ + F(x) · ∇ , (1)

where D is the symmetric positive-definite diffusion matrix.
L̂ propagates probability measures µt(x) in time, which will
throughout be assumed to posses well-behaved probability
density functions P(x, t), i.e., dµt(x) = P(x, t)dx [thereby posing
some restrictions on F(x)]. On the level of individual trajectories
Equation (1) corresponds to the Itô equation dxt = F(xt)dt +
σdWt with Wt being a d-dimensional vector of independent
Wiener processes whose increments have a Gaussian distribution
with zero mean and variance dt, i.e., 〈dWt,idWt′ ,j〉 = δijδ(t −
t′)dt, and where σ is a d × d symmetric noise matrix such that
D = σσT/2. Moreover, we assume that F(x) admits the following
decomposition into a potential (irrotational) field−D∇ϕ(x) and
a non-conservative component ϑ(x), F(x) = −D∇ϕ(x) + ϑ(x)
with the two fields being mutually orthogonal ∇ϕ(x) · ϑ(x) = 0
[73]. By insertion into Equation (1) one can now easily check that
L̂e−ϕ(x) = 0, such that the stationary solution of the Fokker-
Planck equation (also referred to as the steady state [74, 75],
which is the terminology we adopt here) by construction does not
depend on the non-conservative part ϑ(x). Before proceeding we
first establish the decomposition of the drift field F(x) of the full
dynamics, which with the knowledge of ϕ(x) can be shown to
have the form

F(x) = −D∇ϕ(x)+ eϕ(x)jss(x), (2)

jss(x) denoting the steady-state probability current and
ϑ(x) ≡ eϕ(x)jss(x) being incompressible. The proof follows
straightforwardly. We take ϑ(x) = F(x) + D∇ϕ(x)
and use ϕ(x) to determine the steady-state current
jss(x) = (ϑ(x) − D∇ϕ(x))e−ϕ(x) + D∇e−ϕ(x), such
that immediately ϑ(x) = eϕ(x)jss(x) and in turn follows
F(x) in Equation (2). To check for incompressibility we
note that jss(x) is by definition divergence free and so
∇ · ϑ(x) = eϕ(x)(jss(x) · ∇ϕ(x)) ≡ ϑ(x) · ∇ϕ(x) = 0, i.e.,
eϕ(x)jss(x) is divergence-free, as claimed.

We define the forward and backward propagators by Û(t) =

eL̂t and Û
†
(t) = eL̂

†
t such that L̂ and L̂

†
are generators of a

semi-group Û(t + t′) = Û(t)Û(t′) and Û
†
(t + t′) = Û

†
(t)Û

†
(t′),

respectively. L̂ propagates probability measures µt(x) in time,

whereas L̂
†
propagates observables A(xt) in time, which is best

seen from the definition of the expectation

〈A(xt)〉 ≡

∫

A(x)dµt(x) =

∫

A(x)eL̂tP(x, 0)dx =

∫

P(x, 0)eL̂
†
t
A(x)dx ≡

∫

dµ0(x0)〈A(x0, t)〉, (3)

where 〈A(x0, t)〉 was defined to give a correct behavior after
averaging over the realizations of the Itô process but before
averaging over the initial conditions P(x, 0) for the forward in
time process (or end-point conditions for the adjoint, backward
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in time process). The propagation of measures by L̂ corresponds
to the “Schrödinger” picture of quantum mechanics, whereas the
propagation of observables resembles the “Heisenberg” picture.

For convenience we introduce the bra-ket notation with the
“ket” |f 〉 representing a vector in V (or W, respectively) written
in position basis as f (x) ≡ 〈x|f 〉, and the “bra” 〈g| as the integral
∫

dxg†. The scalar product is defined as 〈g|f 〉 =
∫

dxg†(x)f (x).
Therefore we have, in operator notation, the following evolution
equation for the conditional probability density function starting

from an initial condition |p0〉: |pt〉 = eL̂t|p0〉. Since the process is

ergodic we have limt→∞ eL̂t|p0〉 = |ss〉, where we have defined
the equilibrium or non-equilibrium steady state, L̂|ss〉 = 0 and

〈ss|L̂
†

= 0, as a result of the duality. The steady state refers
to a probability density function 〈x|ss〉 of the invarant measure,
whichmight carry a time-independent non-vanishing probability
current jss(x). We also define the (typically non-normalizable)
“flat” state |–〉, such that 〈x|–〉 = 1 and 〈–|pt〉 = 1. Hence,

∂t〈–|pt〉 = 0 and 〈–|L̂ = 0 and L̂
†
|–〉 = 0. We define the Green’s

function of the process as the conditional probability density
function for a localized initial condition 〈x|p0〉 = δ(x− x0) as

G(x, t|x0, 0) = 〈x|Û(t)|x0〉 ≡ 〈x0|Û
†
(t)|x〉, (4)

such that the conditional probability density starting from
a general initial condition |p0〉 becomes P(x, t|p0, 0) =

〈x|Û(t)|p0〉 ≡
∫

dx0p0(x0)G(x, t|x0, 0). Moreover, as F(x) is
assumed to be sufficiently confining (i.e., limx→∞ P(x, t) = 0, ∀t
sufficiently fast), such that L̂ corresponds to a coercive and

densely defined operator on V (and L̂
†
on W, respectively) [76–

78]. Finally, L̂ is throughout assumed to be normal, i.e., L̂
†
L̂ −

L̂L̂
†

= 0 and thus henceforth V = W, where for reversible

system (i.e., those obeying detailed balance) we have L̂ ⇔ L̂
†
.

Because any normal compact operator is diagonalizable [79], we

can expand L̂ (and L̂
†
) in a complete bi-orthonormal set of left

〈ψL
k
| and right |ψR

k
〉 (〈ψR

k
| and |ψL

k
〉, respectively) eigenstates

L̂|ψR
k 〉 = −λk|ψ

R
k 〉, L̂

†
|ψL

k 〉 = −αk|ψ
L
k 〉, (5)

with Re(λk) ≥ 0, and according to our definition of the scalar
product we have

〈ψL
k |L̂|ψ

R
k 〉 = −λk〈ψ

L
k |ψ

R
k 〉 =

(

〈ψR
k |L̂

†
|ψL

k 〉
)†

= −α
†
k
〈ψR

k |ψ
L
k 〉

(6)

and hence the spectra of L̂ and L̂
†
are complex conjugates,

αk = λ
†
k
. Moreover, λ0 = 0, |ψR

0 〉 = |ss〉, 〈ψL
0 | = 〈–|,

and 〈ψL
k
|ψR

l
〉 = δkl. Finally, we also have the resolution

of identity 1 =
∑

k |ψ
R
k
〉〈ψL

k
| and the propagator Û(t) =

∑

k |ψ
R
k
〉〈ψL

k
|e−λkt . It follows that the spectral expansion of the

Green’s function reads

G(x, t|x0, 0) =
∑

k

ψR
k (x)ψ

L†
k
(x0)e

−λkt ≡
∑

k

ψL
k (x0)ψ

R†
k
(x)e−λ

†
k
t ,

(7)

We now define, P̂x(Ŵ; q), a (potentially oblique) projection
operator into a subspace of random variables – a mapping q =

Ŵ(x) :Rd → R
a to a subset of coordinates q lying in some

orthogonal system in Euclidean space, q ∈ 4(Ra) ⊂ �(Rd)
with a < d. For example, the projection operator applied to some
function R(x) ∈ V gives

P̂x(Ŵ; q)R(x) =

∫

�

dxδ(Ŵ(x)− q)R(x). (8)

The spectral expansion of L̂ (and L̂
†
) in the bi-orthogonal

Hilbert space alongside the projection operator P̂x(Ŵ; q) will
now allow us to define and analyze projection-induced non-
Markovian dynamics.

2.2. General Results
2.2.1. Non-Markovian Dynamics and (Non)Existence

of a Semigroup
Using the projection operator P̂x(Ŵ; q) defined in Equation (8)
we can define the (in general) non-Markovian Green’s function of
the projected dynamics as the conditional probability density of
projected dynamics starting from a localized initial condition q0

Qp0 (q, t|q0, 0) =
Qp0 (q, t, q0, 0)p0

Q0
p0 (q0)

≡
P̂x(Ŵ; q)P̂x0 (Ŵ; q0)G(x, t|x0, 0)p0(x0)

P̂x0 (Ŵ; q0)p0(x0)
, (9)

which demonstrates that the time evolution of projected
dynamics starting from a fixed condition q0 depends on the
initial preparation of the full system p0(x0) as denoted by the
subscript. This is a first signature of the non-Markovian and non-
stationary nature of projected dynamics and was noted upon
also in [55]. Obviously,

∫

4
dqQp0 (q, t|q0, 0) = 1 for any initial

condition q0. We will refer to q as the projected degrees of
freedom, whereas those integrated out will be called latent. For
the sake of simplicity we will here mostly limit our discussion to
a stationary preparation of the system, i.e., p0(x0) = pss(x0) =

〈x0|ss〉. In order to avoid duplicating results we will explicitly
carry out the calculation with the spectral expansion of L̂ but note

that equivalent results are obtained using L̂
†
. Using the spectral

expansion Equation (7) and introducing 9kl(q), the elements of
an infinite-dimensional matrix

9kl(q) = 〈ψL
k |δ(Ŵ(x)− q)|ψR

l 〉 (10)

we find from Equation (9)

Qpss (q, t|q0, 0) =
∑

k

90k(q)(9k0(q0)/900(q0))e
−λkt (11)

with 900(q0) = Q0
pss
(q0). If one would to identify 90k(q) =

9R
0k
(q) and 900(q0)

−190k(q) = 9L
0k
(q), Equation (11) at first

sight looks deceivingly similar to the Markovian Green’s function
in Equation (7). Moreover, a hallmark of Markovian dynamics
is that it obeys the Chapman–Kolmogorov equation and indeed,

Frontiers in Physics | www.frontiersin.org 3 November 2019 | Volume 7 | Article 182148

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Lapolla and Godec Manifestations of Projection-Induced Memory

since 〈ψL
k
|ψR

l
〉 = δkl, we find from the spectral expansion

Equation (7) directly for any 0 < t′ < t that

∫

�

dx′G(x, t|x′, t′)G(x′, t′|x0, 0)

=
∑

k,l

ψR
k (x)〈ψ

L
k |ψ

R
l 〉ψ

L†
l
(x0)e

−λk(t−t′)−λlt
′

≡ G(x, t|x0, 0). (12)

For non-Markovian dynamics with a stationary p0(x) we here
prove the following

Proposition 2.2.1.1. Let the full system be prepared in a steady
state, p0(x) = pss(x), and let non-Markovian Green’s function
be defined by Equation (9). We take 9kl(q) as defined in
Equation (10) and define a scalar product with respect to a
Lebesgue measure w as 〈f |g〉w ≡

∫

dxw(x)f †(x)g(x). Then the
Green’s function of the projected process will obey the Chapman–
Kolmogorov equation if and only if 〈9l0|9k0〉9−1

00
= 0, ∀k, l.

We need to prove if and under which conditions

∫

4

dq′Qpss (q, t|q
′, t′)Qpss (q

′, t′|q0, 0) (13)

can be equal to Qpss (q, t|q0, 0). As this will generally not be
the case this essentially means that the projected dynamics
is in general non-Markovian. The proof is established by

noticing that 9kl(q
′) = 9

†
lk
(q′) such that 〈9l0|9k0〉9−1

00
≡

∫

4
dq′900(q

′)−190l(q
′)9k0(q

′). As a result Equation (13) can be
written analogously to the first equality in Equation (12) as

∑

k,l

90k(q)〈9l0|9k0〉9−1
00
(9†

0l
(q0)/900(q0))e

−λk(t−t′)−λlt
′

. (14)

But since the projection mixes all excited eigenstates with k > 0
(to a k-dependent extent) with the left and right ground states
[see Equation (10)], the orthogonality between900(q)

−1/290l(q)
and 900(q)

−1/29k0(q) is in general lost, and 〈9l0|9k0〉9−1
00

6= 0

for k 6= l as claimed above. The Chapman–Kolmogorov equation
can hence be satisfied if and only if 〈9l0|9k0〉9−1

00
= 0 for all

k 6= l.
The possibility that the Chapman–Kolmogorov equation

remains valid for non-Markovian process has been demonstrated
previously on the hand of specific models (see e.g., [80, 81]). Here
we establish the necessary and sufficient conditions for this to be
the case in a quite general setting. In turn, even if 〈9l0|9k0〉9−1

00
=

0, ∀k 6= l that this does not guarantee that the projected process is
actuallyMarkovian. The computation of higher-order probability
densities is necessary in order to check for Markovianity.

2.2.2. When Is the Projected Dynamics Markovian or

Renewal?
A) Projected Dynamics is Markovian

A particularly useful aspect of the present spectral-theoretic
approach is its ability to establish rigorous conditions for the
emergence of (exactly) Markovian and (exactly) renewal-type

dynamics from a microscopic, first principles point of view.
Note that in this section we assume a general, non-stationary
preparation of the system [i.e., p0(x0) 6= pss(x0)]. By inspection
of Equations (10) and (11) one can establish that:

Theorem 2.2.2.1. The necessary and sufficient condition for the
projected dynamics to be Markovian if is that the projection
P̂x(Ŵ; q) (whatever its form) nominally projects into the nullspace
of latent dynamics. In other words, the latent and projected
dynamics remain decoupled and orthogonal for all times. This
means that (i) there exists a bijective map y = f (x) to a
decomposable coordinate system y = (q, q′′), in which the forward
generator decomposes to L̂ = L̂p + L̂l, where L̂p only acts and

depends on the projected degrees of freedom q ∈ 4(Ra) ⊂ �(Rd)
with a < d and L̂l only acts and depends on the latent coordinates
q′′ ∈ 4c(Rd) ⊂ �(Rd) (with,4 ∩4′′ = ∅,� = 4 ∪4′′), (ii) the
boundary conditions on ∂4 and ∂4c are decoupled, and (iii) the
projection operator P̂y(·; q) =

∫

dq′′ onto the subset of coordinates
q ∈ 4(Ra) ⊂ � corresponds to an integral over the subset of latent
coordinates q′′ ∈ 4c(Rd−a) ⊂ �, which does not mix projected
and latent degrees of freedom, or alternatively L̂lp0(q0, q

′′
0) = 0.

The statement of the theorem is intuitive and has most likely
already been presented elsewhere in the existing literature,
althoughwewere not able to find it in the present form. The proof
is rather straightforward and follows from the fact that if (and
only if) the projected dynamics is Markovian it must be governed
as well by a formal (Markovian) Fokker-Planck generator L̂p as
in Equation (1), in which the projected and latent degrees of
freedom are separable L̂ = L̂p + L̂l, and that the full Hilbert
space is a direct sum of Hilbert spaces of the V = Vp ⊕ Vl, that

is L̂ :V → V , L̂p :Vp → Vp and L̂l :Vl → Vl and Vp ∩ Vl = ∅.
This also requires that there is no boundary condition coupling
vectors from Vp and Vl. In turn this implies assertion (i) above.

If P̂y(·; q) is such that it does not mix eigenfunctions in Vp

and Vl (i.e., it only involves vectors from Vp) then ecause of bi-

orthonormality and the fact that 〈–|L̂ = 0 the projected Green’s
function in full space Q(q, t|q0) for q ∈ 4(Ra) will be identical
to the full Green’s function in the isolated domain G(x, t|x0) for
x ∈ 4(Ra) and the non-mixing condition is satisfied. The effect is
the same if the latent degrees of freedom already start in a steady
state, L̂lp0(q0, q

′′
0) = 0. This establishes sufficiency. However, as

soon as the projectionmixes the twoHilbert spacesVp andVl, the
generator of projected dynamics will pick up contributions from
L̂l and will, upon integrating out the latent degrees of freedom,
not be Markovian. This completes the proof.
B) Projected Dynamics is Renewal

We can also rigorously establish sufficient conditions for the
projected dynamics to poses the renewal property. Namely, the
physical notion of a waiting time or a random change of time-
scale (see e.g., [2, 3]) can as well be attributed a microscopic
origin. The idea of a random waiting time (or a random change
of time scale) nominally implies a period of time and thereby the
existence of some subdomain, during which and within the latent
degrees evolve while the projected dynamics does not change.
For this to be the case the latent degrees of freedom must be
perfectly orthogonal to the projected degrees of freedom, both
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in the two domains as well as on their boundaries (a prominent
simple example is the so-called comb model [70–72]). Moreover,
the projected degrees of freedom evolve only when the latent
degrees of freedom reside in some subdomainϒ ⊂ 4c(Rd−a). In
turn, this means that the dynamics until a time t ideally partitions
between projected and latent degrees of freedom, which are
coupled solely by the fact that the total time spent in each must
add to t, which effects the waiting time. In a comb-setting the
motion along the backbone occurs only when the particle is in
the center of the orthogonal plane. In the context of a low-
dimensional projection of ergodic Markovian dynamics, we can
in fact prove the following general theorem:

Theorem 2.2.2.2. Let there exists a bijective map y = f (x) to
a decomposable coordinate system y = (q, q′′) as in A) with
the projected q ∈ 4(Ra) and latent degrees of freedom q′′ ∈

4c(Rd−a) ≡ �(Rd) \ 4(Ra). Furthermore, let ϒ ⊂ 4c(Rd−a)
and let 1ϒ (q

′′) denote the indicator function of the region ϒ (i.e.,
1ϒ (q

′′) = 1 if q′′ ∈ ϒ and zero otherwise). Moreover, let the
full system be prepared in an initial condition p0(q, q

′′). Then
a sufficient condition for renewal-type dynamics is (i) that the
forward generator in (q, q′′) decomposes L̂ = 1ϒ (q

′′)L̂p + L̂l,

and where L̂p only acts and depends on q and L̂l only acts and
depends on q′′, and (ii) the boundary conditions do not cause
a coupling of latent and projected degrees of freedom (as in the
Markov case above).

Theorem 2.2.2.2 and lemma 2.2.2.2.1 below appear to be new,
and the proof can be established by an explicit construction
of the exact evolution equation for the projected variables.
Let Gl(q

′′, t|q′′0) denote the Green’s functions of the Markovian
problem for the latent degrees of freedom, Gl(q

′′, t|q′′0) =

〈q′′|eL̂lt|q′′0〉 =
∑

k〈q
′′|ψ

l,R
k
〉〈ψ

l,L
k
|q′′0〉e

−λl
k
t and let g̃(s) =

∫ ∞

0 e−stg(t)dt denoted the Laplace transform of a function
g(t). The projection operator in this case corresponds to
P̂q′′ (·; q) =

∫

4c dq
′′. We introduce the shorthand notation

p0(q) =
∫

4c dq
′′
0p0(q0, q

′′
0) and define the conditional initial

probability density p0(q
′′
0 |q0) = p0(q0, q

′′
0)/p0(q0). The Green’s

function of projected dynamics becomes Qp0 (q, t|q0) =
∫

4c dq
′′
∫

4c dq
′′
0G(q, q

′′, t|q0, q
′′
0)p0(q0, q

′′
0)/p0(q0). We then have

the following

Lemma 2.2.2.2.1. Under the specified assumptions Q(q, t|q0)
exactly obeys the renewal-type non-Markovian Fokker-Planck
equation

∂tQp0 (q, t|q0) =

∫ t

0
dτKp0 (t − τ )L̂pQp0 (q, τ |q0), (15)

with the memory kernel

Kp0 (t) = (δ(t)+ ∂t)

∫

ϒ

dq′′
∫

4c
dq′′0p0(q

′′
0 |q0)〈q

′′|eL̂lt|q′′0〉

=
∑

k

(∫

4c
dq′′0ψ

l,L†
k

(q′′0)p0(q
′′
0 |q0)

)

(∫

ϒ

dq′′ψ l,R
k
(q′′)

)

(δ(t)− λlke
−λl

k
t) (16)

that is independent of q. Moreover, Q(q, t|q0) > 0 for all t > 0
and for all q, q0 ∈ 4.

To prove the lemma we Laplace transform equation (t →

u) ∂tG(q, q
′′, t|q0, q

′′
0) = L̂G(q, q′′, t|q0, q

′′
0) and realize that

the structure of L̂ implies that its solution with initial
condition δ(q − q0)δ(q

′′ − q′′0) in Laplace space factorizes

G̃(q, q′′, u|q0, q
′′
0) = fu(q|q0)gu(q

′′|q′′0) with gu and fu to

be determined. Note that
∫

4
dq

∫

4c dq
′′G̃(q, q′′, u|q0, q

′′
0) =

∫

4
dqfu(q|q0)

∫

4c dq
′′gu(q

′′|q′′0) = u−1 and we can chose,
without any loss of generality that

∫

4
dqfu(q|q0) = 1. Plugging

in the factorized ansatz and rearranging leads to

gu(q
′′|q′′0)

(

ufu(q|q0)− 1ϒ (q
′′)L̂pfu(q|q0)

)

−fu(q|q0)L̂lgu(q
′′|q′′0)− δ(q− q0)δ(q

′′ − q′′0) = 0. (17)

Noticing that
∫

4
dqL̂pf (q|q0) = 0 as a result of the divergence

theorem (as we assumed that F(x) is strongly confining implying
that the current vanishes at the boundaries) we obtain, upon
integrating Equation (17) over q

ugu(q
′′|q′′0)− δ(q

′′ − q′′0)− L̂lgu(q
′′|q′′0) = 0, (18)

implying that gu(q
′′|q′′0) = G̃l(q

′′, u|q′′0). As G̃l(q
′′, u|q′′0)

is the Laplace image of a Markovian Green’s function we
use

∫

4c dq
′′G̃l(q

′′, u|q′′0) = u−1 in order to deduce that

Q̃p0 (q, u|q0) = fu(q|q0)/u. The final step involves using the
identified functions fu and gu in Equation (17), multiplying
with p0(q

′′
0 |q0), integrating over q′′ and q′′0 while using the

divergence theorem implying
∫

4c dq
′′L̂lG̃l(q

′′, u|q′′0) = 0 (as
before) to obtain

uQ̃p0 (q, u|q0)− δ(q− q0)

=

(

u

∫

ϒ

dq′′
∫

4c
dq′′0G̃l(q

′′, u|q′′0)p0(q
′′
0 |q0)

)

L̂pQ̃p0 (q, u|q0).

(19)

Finally, since the Laplace transform of ∂tg(t) + δ(t)g(0)
corresponds to ug̃(u), taking the inverse Laplace transform of
Equation (19) finally leads to Equations (15) and (16) and
completes the proof of the lemma, since now we can take
Qp0 (q, t|q0) > 0 by definition because Equation (15) is an
identity of Equation (1) integrated over q′′. Moreover, the rate
of change of the Green’s function Qp0 (q, t|q0) in Equation (15)
depends, at any instance t, position q and for any initial condition
q0 only on the current position q and a waiting time (or random
time-change) encoded in the memory kernel K(t); Qp0 (q, t|q0)
is the Green’s function of a renewal process. This completes the
proof of sufficiency.

Furthermore, for the situation where the full system is
prepared in a stationary state, i.e., p0(x) = ps(x), we have
the following

Corollary 2.2.2.2.1. Let the system and projection be defined as in
Theorem 2.2.2.2. If the full system is prepared such that the latent
degrees of freedom are in a stationary state p0(q0, q

′′
0), such that
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L̂lp0(q
′′
0 |q0) = 0, ∀q0 ∈ 4 and hence also p0(q

′′
0) = pss(q

′′
0), then

p0(q
′′
0 |q0) = ψ

l,R
0 (q′′0) and consequently Kp0 = δ(t)

∫

ϒ
dq′′0pss(q

′′
0),

and therefore the projected dynamics is Markovian. Moreover, if
the system is prepared such that the latent degrees of freedom are
not in a stationary state, i.e., p0(q0|q

′′
0) 6= pss(q

′′
0), ∀q0, there exists

a finite time tM > 0 after which the dynamics will be arbitrarily
close to being Markovian.

The statement of this corollary is again intuitive. The proof of
the first part follows from the bi-orthogonality of eigenfunctions

of latent dynamics 〈ψ
l,R
k
|ψ

l,R
0 〉 = δk,0, rendering all terms in

Equation (16) in Lemma 2.2.2.2.1 identically zero except for
k = 0 with λl

k
= 0. The second part is established by the fact

that for times tM ≫ 1/λl1, with −λl1 being the largest (i.e., least
negative) non-zero eigenvalue, all terms but the k = 0 term in
Equation (16) in Lemma 2.2.2.2.1 become arbitrarily small.

Having established sufficiency, we now also comment on
necessity of the conditions (i) and (ii) above for renewal
dynamics. It is clear that the splitting of L̂ into L̂p and L̂l,

where L̂l does not act nor depend on projected variables, is
also necessary condition for renewal. This can be established by
contradiction as loosening these assumptions leads to dynamics
that is not renewal. This can be understood intuitively, because
it must hold that the latent degrees of freedom remain entirely
decoupled from the projected ones (but not vice versa) and
that the motion along both is mutually orthogonal. To illustrate
this think of the paradigmatic comb model (see schematic in
Figure 1) [70–72] and realize that renewal will be violated as soon
as we tilt the side-branches for some angle from being orthogonal
to the backbone.

However, since it is difficult to establish the most general
class of admissible functions h(q′′) used in L̂ = h(q′′)L̂p +

L̂l, we are not able to prove necessity. Based on the present

FIGURE 1 | Schematics of a generalized comb model. For the sake of clarity

only a couple of side-branches are shown, whereas the model is to be

understood in the sense of densely populated side-branches. (top) As long as

the projected q and latent q′′ degree of freedom remain orthogonal, the

projected dynamics will be of renewal-type. However, as soon as this ceases

to be the case the projected dynamics will not be renewal.

analysis it seems somewhat difficult to systematically relax the
assumptions for projected dynamics to be renewal without
assuming, in addition, some sort of spatial discretization. We
therefore hypothesize that the sufficient conditions stated in
Theorem 2.2.2.2, potentially with some additional assumptions
on h(q′′) are also necessary conditions. Notably, however, that
microscopic derivations of non-Markovian master equations of
the form given in Equation (15) often start in discretized space
or ad-hoc introduce a random change in time scale (see e.g.,
[2, 17, 82]). We end this section with the following final

Remark 2.2.2.1. An arbitrary projection P̂x(Ŵ; q) defined in
Equation (8) will most likely lead to dynamics that is neither
Markovian nor renewal.

This follows from the strong assumptions required for
Markovian and renewal dynamics, respectively. The properties of
the corresponding general evolution operator will be described
in a separate publication.

2.2.3. Markovian Approximation and the Degree of

Non-Markovianity
In order to quantify the degree of non-Markovianity induced by
the projection we propose to compare the full non-Markovian
dynamics with projected dynamics evolving under a complete
time-scale separation, i.e., under the assumption of all latent
degrees of freedom being in the stationary state. To do so we
proceed as follows. The projected coordinates q are now assumed
to represent a subset of another d-dimensional orthogonal system
in Euclidean space q′ ∈ R

d, and we assume the map q′(x) is
bijective. We denote the conditional probability density in this
system by G′(q′, t|q′0, 0). The underlying physical idea is that an
observer can only see the projected dynamics, which since it is
non-Markovian stems from a projection but not necessarily onto
Cartesian coordinates. Therefore, from a physical perspective not
too much generality seems to be lost with this assumption.

As a concrete example one can consider the non-spherically
symmetric Fokker-Planck process in a sphere, corresponding
to the full Markovian parent system projected onto angular
variables (either one or both). This way one first transforms from
x ∈ R

3 to spherical coordinates q′ = (r,φ, θ) and then, e.g.,
projects on the the lines q = φ ∈ [0, 2π).

Since the transformation of the Fokker-Planck equation
under a general change of coordinates is well-known [83] the
task is actually simple. Under the complete map q′ = Ŵ(x)
with Ŵ :R

d → R
d the forward Fokker-Planck operator in

Equation (1) transforms as L̂
′
= ∇q′ ⊗ ∇q′ : D̃(q

′) − ∇q′ · F̃(q
′),

where ⊗ and : denote, respectively, the tensor and double-dot
product, and the transformed drift field and diffusion tensor can
be written as

(F̃(q′))k =

d
∑

i=1

∂q′
k

∂xi
Fi +

d
∑

i,j=1

Dij
∂2qk

∂xi∂xj
,

(D̃(q′))kl =

d
∑

i,j=1

Dij

∂q′
k

∂xi

∂q′
l

∂xj
. (20)
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We note that unless the mapping is linear, the old diffusion
matrix affects the new drift vector and the diffusion matrix
picks up a spatial dependence. For an excellent account of the
transformation properties in the more general case of a position
dependent diffusion matrix [i.e., D → D(x)] we refer the reader
to [84]. We now want to marginalize over the remaining (i.e.,
non-projected) coordinates q′′ ∈ � \4 but beforehand make the
Markovian approximation G′(q′, t|q0, 0) ≈ QM(q, t|q0)pss(q

′′).

Then we have L̂
′
G′(q′, t|q0, 0) ≈ pss(q

′′)L̂
′
QM(q, t|q0), implying

that the operator L̂
′
approximately splits into one part operating

on the projected coordinates alone, L̂
′

M , and one operating only

on the latent stationary coordinates, L̂
′′
, for which L̂

′′
pss(q

′′) = 0.
The physical idea behind the Markovian approximation is that
the latent degrees of freedom relax infinitely fast compared to
the projected ones. Therefore, we can straightforwardly average
the Fokker-Planck operator over the stationary latent coordinates

q′′, 〈L̂
′

M〉q′′ , where we have defined the latent averaging operation

〈·〉q′′ ≡
∫

dq′′pss(q
′′)·. Note that the remaining dependence of L̂

′

on the latent stationary coordinates q′′ is only due to F̃(q′) and
D̃(q′). The averaged drift field and diffusion matrix now become

〈F̃(q)〉k =

d
∑

i=1

〈

∂q′
k

∂xi
Fi

〉

q′′
+

d
∑

i,j=1

Dij

〈

∂2qk

∂xi∂xj

〉

q′′
,

〈D̃(q)〉kl =

d
∑

i,j=1

Dij

〈

∂q′
k

∂xi

∂q′
l

∂xj

〉

q′′
. (21)

We can further decompose the effective drift field into a
conservative and a non-conservative part

〈

∂q′
k

∂xi
Fi

〉

q′′
= −

〈

∂q′
k

∂xi
(D∇ϕ)i

〉

q′′
+

〈

eϕ
∂q′

k

∂xi
(jss)i

〉

q′′
, (22)

which establishes the Markovian approximation also for a broad
class of irreversible systems. The approximate effective Fokker-
Planck operator for the projected dynamics in turn reads

〈L̂
′
〉q′′ = ∇q ⊗∇q :〈D̃(q)〉q′′ −∇q · 〈F̃(q)〉q′′ . (23)

By design the kernel of 〈L̂
′
〉q′′ is equal to pss(q) ≡ P̂x(Ŵ; q)pss(x),

hence 〈L̂
′
〉q′′ governs the relaxation toward the steady-state

density (not necessarily equilibrium) evolving from some initial
state q0 in the Markovian approximation with the corresponding

Green’s function QM(q, t|q0, 0) ≡ 〈q|e〈L̂
′
〉q′′ t|q0〉.

In order to quantify the departure of the exact dynamics from
the corresponding Markovian behavior we propose to evaluate
the Kullback–Leibler divergence between the Green’s functions
of the exact and Markovian propagator as a function of time

Dt(Q||QM) =

∫

4

dqQ(q, t|q0, 0) ln

(

Q(q, t|q0, 0)

QM(q, t|q0, 0)

)

. (24)

By definition Dt(Q||QM) ≥ 0 and since the non-Markovian
behavior of the exact projected dynamics is transient with a life-
time λ−1

1 , we have that limt→∞ Dt(Q||QM) = 0. Our choice

of quantifying the departure of the exact dynamics from the
corresponding Markovian behavior is not unique. The Kullback–
Leibler divergence introduced here can hence be used to quantify
how fast the correlation of the latent degrees of freedom with
the projected degrees of freedom dies out. Notably, in a related
manner the Kullback–Leibler divergence was also used in the
context of stochastic thermodynamics in order to disprove the
hypothesis about the monotonicity of the entropy production as
a general time evolution principle [85].

2.2.4. Functionals of Projected Dynamics
In order to gain deeper insight into the origin and manifestation
of non-Markovian behavior it is instructive to focus on the
statistics of time-average observables, that is functionals of
projected dynamics. As in the previous sections we assume that
the full system was prepared in a (potentially non-equilibrium
current-carrying) steady state. To that end we have, using
Feynman-Kac theory, recently proven a theorem connecting any

bounded additive functional 8t[q(τ )] = t−1
∫ t
0 Z(q(τ ))dτ (with

a function Z :4(Ra) → R locally strictly bounded in 4) of
projected dynamics q(τ ) of a parent Markovian diffusion x(t) to
the eigenspectrum of theMarkov generator of the full dynamics L̂

or L̂
†
[67]. The central quantity of the theory is θt(s), the so-called

local time fraction spent by a trajectory q(τ ) in a infinitesimal
volume element ds centered at s up until a time t enabling

θt(s) = t−1

∫ t

0
dτ1s(q(τ )) → 8t[q(τ )] =

∫

4

dsZ(s)θt(s),

(25)
where the indicator function 1s(q) = 1 if q = s and zero
otherwise. We are here interested in the fluctuations of θt(s)
and correlation functions between the local time fraction of a
projected observable q(t) at a point s and θ ′′(s′), the local time
some latent (hidden) observable q′′(t) a the point s′:

σ 2
t (s) = 〈θ2t (s)〉 − 〈θt(s)〉

2, Ct(s; s
′)

= 〈θt(s)θ
′′
t (s

′)〉 − 〈θt(s)〉〈θ
′′
t (s

′)〉, (26)

where 〈·〉 now denotes the average over all forward paths starting
from the steady state |q0〉 = |ss〉 (and ending anywhere, i.e.,
〈q| = 〈–|), or, using the backward approach, all paths starting
in the flat state |q〉 = |–〉 and propagating backward in time
toward the steady state 〈q0| = 〈ss|. We note that any correlation
function of a general additive bounded functional 8i

t[q(τ )] of

the form 〈8i
t[q(τ )]8

j
t[q

′′(τ )]〉 (as well as the second moment of
8i

t[q(τ )]) follows directly from the local time fraction, namely,

〈8i
t[q(τ )]8

j
t[q

′′(τ )]〉 =
∫

4

∫

4
dsds′Zi(s)Zj(s

′)〈θt(s)θ
′′
t (s

′)〉. For
details of the theory and corresponding proofs please see [67],
here we will simply state the main result:

Theorem 2.2.4.1. Let the Green’s function of the full parent
dynamics x(t) be given by Equation (7) and the local time fraction
θt(s) by Equation (25), then the variance and correlation function
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defined in Equation (26) is given exactly as

σ 2
t (s) = 2

∑

k>0

〈–|1s|ψ
R
k
〉〈ψL

k
|1s|ss〉

λkt

(

1−
1− e−λkt

λkt

)

Ct(s; s
′) =

∑

k>0

〈–|1s|ψ
R
k
〉〈ψL

k
|1′′s′ |ss〉 + 〈–|1′′s′ |ψ

R
k
〉〈ψL

k
|1s|ss〉

λkt

(

1−
1− e−λkt

λkt

)

, (27)

and analogous equations are obtained using the backward
approach [67].

The usefulness of Equation (27) can be understood as follows.
By varying s and s′ one can establish directly the regions in
space responsible for the build-up (and subsequent decay) of
memory in projected dynamics and simultaneously monitor
the fluctuations of the time spent of a projected trajectory in
said regions. Note that because the full process is assumed
to be ergodic, the statistics of θt(s) will be asymptotically
Gaussian obeying the large deviation principle. This concludes
our general results. In the following section we apply the
theoretical framework to the analysis of projected dynamics in
a strongly-correlated stochastic many-body system, namely to
tagged particle dynamics in a single file confined to a tilted box.

3. SINGLE FILE DIFFUSION IN A TILTED
BOX

We now apply the theory developed in the previous section (here
we use the backward approach) to the paradigmatic single file
diffusion in a unit interval but here with a twist, namely, the
diffusing particles experience a constant force. In particular, the
full state-space is spanned by the positions of all N-particles
defining the state vector x0 = (x0,1, . . . , x0,N)

T ∈ [0, 1]N and
diffusion coefficients of all particles are assumed to be equal and
the thermal (white) fluctuations due to the bath are assumed to
be independent, i.e., D = D1. In addition to being confined in
a unit interval, all particles experience the same constant force
F(x0) = −βDF with β = (kBT)

−1 is the inverse thermal energy.
The evolution of the Green’s function is governed by the Fokker-
Planck equation Equation (1) equipped with the external and
internal (i.e., non-crossing) reflecting boundary conditions for

the backward generator L̂
†
=

∑N
i=1 D(∂

2
x0,i

− β F∂x0,i ):

∂x0,1G(x, t|x0)|x0,1=0 = ∂x0,NG(x, t|x0)|x0,N=1 = 0,

lim
x0,i→x0,j

(∂x0,i+1 − ∂x0,i )G(x, t|x0) = 0, (28)

where we adopted the notation in Equation (7). The boundary
conditions in Equation (28) restrict the domain to a hypercone
x0 ∈ 4 such that x0,i ≤ x0,i+1 for i = 1, . . . ,N − 1. The
dynamics is reversible, hence the steady state current vanishes
and all eigenvalues and eigenfunctions are real. Moreover, for
systems obeying detailed balance ϕ(x) corresponds to the density
of the Boltzmann-Gibbs measure and it is known that |ψL

k
〉 ≡

e−ϕ(x)|ψR
k
〉. The single file backward generator already has a

separated form L̂
†

=
∑N

i=1 L
†
i and the coupling between

particles enters solely through the non-crossing boundary
condition Equation (28) and is hence Bethe-integrable [86].
However, because the projected and latent degrees of freedom
are coupled through the boundary conditions Equation (28) the
tagged particle dynamics is not of renewal type.

3.1. Diagonalization of the Generator With
the Coordinate Bethe Ansatz
Specifically, the backward generator L̂

†
can be diagonalized

exactly using the coordinate Bethe ansatz (see e.g., [67]). To that
end we first require the solution of the separated (i.e., single

particle) eigenvalue problem L
†
i |ψ

L
ki
〉 = −λki |ψ

L
ki
〉 under the

imposed external boundary conditions. Since ϕ(x0,i) = Fx0,i +
const we find that pss(x0,i) = βFe−βFx0,i (1−e−βF)−1 and because
of the confinement we also have λ0,i = 0 as well as ψL

0i
(x0,i) ≡

〈x0,i|ψ
L
0i
〉 = 1 and ψR

0i
(x0,i) ≡ 〈ψR

0i
|x0,i〉 = pss(x0,i). We are

here interested in the role of particle number N and not of the
magnitude of the force F, therefore we will henceforth set, for
the sake of simplicity, βF = D = 1. The excited separated
eigenvalues and eigenfunctions then read

λki = π2k2i +
1

4
,

ψL
ki
(x0,i) =

ex0,i/2

(2π2k2i + 1/2)1/2

(

sin(kiπx0,i)− 2kiπ cos(kiπx0,i)
)

,

∀ki ∈ Z
+, (29)

with ψR
ki
(x0,i) = e−x0,iψL

ki
(x0,i). It is straightforward to check

that 〈ψR
ki
|ψL

li
〉 = δki ,li . Denoting by k = (ki, k2, . . . , kN)

the N-tuple of all single-state indices ki one can show by
direct substitution that the many-body eigenvalues are given by
λk =

∑N
i=1 λki and the corresponding orthonormal many-body

eigenfunctions that obey the non-crossing internal boundary
conditions Equation (28) have the form

ψL
0(x0) = 1, ψR

0 (x0) = N!

N
∏

i=1

e−x0,i

1− e−1

ψL
k(x0) =

∑

{ki}

N
∏

i=1

ψL
ki
(x0,i),ψ

R
k (x0) = mk!

∑

{ki}

N
∏

i=1

ψR
ki
(x0,i),

(30)

where
∑

{ki}
denotes the sum over all permutations of the

elements of the N-tuple k and mk! =
∏

imki ! is the respective
multiplicity of the eigenstate with mki corresponding to the
number of times a particular value of ki appears in the tuple. It
can be checked by explicit computation that the eigenfunctions
defined in Equation (30) form a complete bi-orthonormal set,
that is 〈ψR

k |ψ
L
l 〉 = δk,l and

∑

k ψ
L
k(x0)ψ

R
k (x) = δ(x− x0).

3.2. Projection-Induced Non-Markovian
Tagged Particle Dynamics
In the case of single file dynamics the physically motivated
projection corresponds to the dynamics of a tagged particle
upon integrating out the dynamics of the remaining particles. As
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before, we assume that the full system is prepared in a steady state.
The projection operator for the dynamics of the j-th particle is
therefore defined as

P̂x(δ; qj) =

∫

4

dxδ(xj − qj) =

[

Ô

N
∏

i=1

∫ 1

0
dxi

]

δ(xj − qj), (31)

where the operator Ô orders the integration limits
∫ 1
0 dxN

∫ xN
0 dxN−1 · · ·

∫ x2
0 dx1 since the domain4 is a hypercone.

Here, the projection is from R
N to R. Integrals of this kind

are easily solvable with the so-called ’extended phase-space
integration’ [62, 87]. The non-Markovian Green’s function is
defined as

Q(qj, t|q0,j) =
P̂x(δ; qj)P̂x0 (δ; q0,j)G(x, t|x0)pss(x0)

P̂x0 (δ; q0,j)pss(x0)
(32)

and can be computed exactly according to Equation (10) to give

Q(qj, t|q0,j) = 900(q0,j)
−1

∑

k

90k(qj)9k0(q0,j)e
−λkt , (33)

where the sum is over all Bethe eigenstates. If we denote the
number of left and right neighbors by NL = (N − j + 1) and
NR = j−1, respectively, all terms in Equation (33) read explicitly

900(qj) =
N!

NL!NR!(1− e−1)N
e−qj (1− e−qj )NL (e−qj − e−1)NR

9k0(qj) =
N!

NL!NR!(1− e−1)N

∑

{ki}

T(qj)

j−1
∏

i=1

L(qj)

N
∏

i=j+1

R(qj)

(34)

and 90k(qj) ≡ 9
†
k0(qj) =

mk!(1−e−1)N

N! 9k0(qj). In Equation (34)
we have introduced the auxiliary functions

T(qj) = δλj ,0e
−qj + (1− δλj ,0)

e−qj/2

√

1/2+ 2π2λ2j
(

sin(λjπqj)− 2λjπ cos(λjπqj)
)

L(qj) = δλj ,0(1− e−qj )− 2(1− δλj ,0)
e−qj/2 sin(λjπqj)
√

1/2+ 2π2λ2j

R(qj) = δλj ,0(e
−qj − e−1)+ 2(1− δλj ,0)

e−qj/2 sin(λjπqj)
√

1/2+ 2π2λ2j

(35)

To the best of our knowledge, Equations (33) to (35) delivering
the exact non-Markovian Green’s function for the dynamics
of the j-th particle in a tilted single file of N particles, have
not yet been derived before. Note that one can also show that
∫ 1
0 dqj90k(qj)9l0(qj) 6= 0 and hence the Chapman–Kolmogorov
equation is violated in agreement with Equation (13) confirming
that the tagged particle diffusion is indeed non-Markovian on
time-scales t . λ−1

1 .

3.3. Markovian Approximation and Degree
of Broken Markovianity
Since the projection leaves the coordinates untransformed
the effective Markovian approximation in Equation (23) is
particularly simple and corresponds to diffusion in the presence
of an effective force deriving from the free energy of the tagged
particle upon integrating out all the remaining particles assumed
to be in equilibrium 〈F(qj)〉x′′ = −〈βDFδ(xj − qj)〉x′′ or, since
−βDFpss(x) = ∂xjpss(x), explicitly defined as

〈F(qj)〉x′′ =

∫

4
dxδ(xj − qj)∂xjpss(x)

∫

4
dxδ(xj − qj)pss(x)

≡
∂qj

∫

4
dxδ(xj − qj)pss(x)

∫

4
dxδ(xj − qj)pss(x)

.

(36)
Upon taking as before D = βF = 1, and noticing that 900(qj) =
∫

4
dxδ(xj − qj)pss(x) we find

〈L̂〉q′′ = ∂2qj + ∂qj
{

∂qj ln900(qj)
}

,

〈L̂
†
〉q′′ = ∂2qj −

{

∂qj ln900(qj)
}

∂qj (37)

where the curly bracket {·} denotes that the operator inside
the bracket only acts within the bracket. The Markovian
approximation of the Green’s function thus becomes

QM(qj, t|q0,j) = 〈q0,j|e
〈L̂

†
〉x′′ t|qj〉 and is to be compared

to the exact non-Markovian Green’s function (33) via the
Kullback–Leibler divergence in Equation (24).

Our focus here is to asses how the “degree” of the projection,
i.e., d = N, a = 1 and thus d − a = N − 1 –
the number of latent degrees of freedom (here positions of
non-tagged particles) being integrated out affects the time-
dependence of the Kullback–Leibler divergence. Since the
Markovian generator cannot be diagonalized analytically we
used a finite element numerical method cross-checked with
Brownian dynamics simulations to calculate QM(qj, t|q0,j). The
corresponding Kullback–Leibler divergence (24) was in turn
calculated by means of a numerical integration. We present
results for the time dependence Dt(Q||QM) in two different
representations, the absolute (dimensionless) time t and in units
of the average number of collisions t̃ = t/N2, tagging the third
particle (j = 3). The reason to adopt this second choice as the
natural physical time-scale is that collisions in fact establish the
effective dynamics and hence a typical collision time sets the
natural time-scale.

Before going into details we comment on the following.
Because we start from the same initial condition for projected
coordinate (i.e., tagged particle) in both, the non-Markovian and
Markovian setting, it follows trivially that limt→0 Dt(Q||QM) =

0. A zero Dt(Q||QM) would persist until the typical time
of occurrence of the first collision event. This collision time
is, however, much shorter than t/N2 because we start from
equilibrium initial conditions on the full, many-body level
implying a continuous (Boltzmann-weighted) distribution of
initial distances of the tagged particle to its nearest neighbors.
Using a spectral expansion, however, such vanishingly short
time-scales are very difficult to capture, i.e., it would require
an astronomically large number of eigenstates, which is
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computationally not feasible. Conversely, because the tagged-
particle invariant measures are by definition the same for the
single file and its Markovian approximation [i.e.,900(qj) is equal
for both; the first of Equation (34) enters Equation (37)], it also
follows that limt→∞ Dt(Q||QM) = 0. The relaxation time λ−1

1

in the many-body problem corresponds to the exploration of the
entire system of length L (here set to unity); for further details
see [67]. For a finite single file deviations from Markovianity are
therefore transient, starting at zero, passing through a maximum,
and decaying back to zero at times longer than the relaxation time
λ−1
1 of the full, many-body model.
The results for Dt(Q||QM) for intermediate and long times

are shown in Figure 2. From Figure 2, we confirm that the
Markovianity is broken transiently (on time-scales t . λ−1

1 ,
which holds for any ergodic dynamics in the sense of generating
an invariant measure. Notably, the relaxation time λ1 does not
depend on N and is hence equal for all cases considered here.
Moreover, as expected, the magnitude of broken Markovianity
increases with the “degree” of the projection (here with the
particle number N), as is best seen on a natural time-scale (see
Figure 2B). Conversely, on the absolute time-scale the relaxation
rate of the Markovian approximation, describing diffusion on
a free energy landscape f (q3) = −β ln900(q3), which can be
defined as

λM1 = − lim
t→∞

t−1 ln(QM(qj, t|q0,j)−900(qj)) (38)

increases with increasing N (see inset in Figure 2B). Therefore,
while both have by construction the same invariant measure, the
Markovian approximation overestimates the rate of relaxation.
This highlights the pitfall in using free energy landscape ideas in
absence of a time-scale separation.

3.4. Tagged Particle Local Times Probing
the Origin of Broken Markovianity
In order to gain deeper insight into the origin and physical
meaning of memory emerging from integrating out latent
degrees of freedom we inspect how a given tagged particle
explores the configuration space starting from a stationary
(equilibrium) initial condition. To that end we first compute the
variance of local time of a tagged particle, θt(qj) in Equation (25),
given in the general form in Equation (26), which applied to
tagged particle diffusion in a tilted single file reads:

σ 2
t (qj) = 2

∑

k

90k(qj)9k0(qj)

λkt

(

1−
1− e−λkt

λkt

)

(39)

where 9k0(qj) is given by Equation (34) and 90k(qj) =
mk!
N! 9k0(qj). Note that since the process in ergodic we have
〈θt(qj)〉 = 900(qj), and because the projected dynamics
becomes asymptotically Gaussian (i.e., the correlations between
θt(qj) at different t gradually decorrelate) we also have the

large deviation limt→∞ tσ 2
t (qj) = 2

∑

k λ
−1
k 90k(qj)9k0(qj) 6=

f (t). Moreover, because of detailed balance the large deviation
principle represents an upper bound to fluctuations of time-

average observables σ 2
t (qj) ≤ 2

∑

k
90k(qj)9k0(qj)

λkt
,∀ t.

In order to gain more intuition we inspect the statistics of
θt(qj) for a single file of four particles (see Figure 3) at different
lengths of trajectory t (plotted here on the absolute time-scale). In
Figure 3, we show 〈θt(qj)〉with full lines, and the region bounded
by the standard deviation±σt(qj) with the shaded area.

The scatter of θt(qj) is largest near the respective free
energy minima.

To understand further how this coupling to non-relaxed latent
degrees of freedom arises we inspect the correlations between

FIGURE 2 | The Kullback–Leibler divergence between the exact non-Markovian Green’s function Q(q3, t|q0,3) and the Markovian approximation QM (q3, t|q0,3) as a

function of time (measured in units of collision time) for increasing values of particle numbers N: (A) results shown on the absolute (dimensionless) time-scale and (B)

on the natural time-scale, that is, expressed in units of collision time t̃. Inset: λM1 , the slowest relaxation rate of QM (q3, t|q0,3) compared to the corresponding

eigenvalue λ1 of the exact Q(q3, t|q0,3).
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FIGURE 3 | Statistics of tagged particle local time for all members of a single file of four particles starting from stationary initial conditions; 〈θt (qj )〉 is represented by full

lines and the region bounded by the standard deviation ±σt (qj ) with the corresponding shaded area. The color code is: j = 1 violet, j = 2 blue, j = 3, green and j = 4

yellow. The relaxation time corresponds to λ−1
1 ≃ 0.1. Therefore, panel (A) depicts fluctuations on a time scale much shorter that λ−1

1 , whereas (B,C) already belong

deeply into the ergodic large deviation regime.

tagged particle histories

Ct(qi; qj) =
∑

k

90k(qi)9k0(qj)+90k(qj)9k0(qi)

λkt

(

1−
1− e−λkt

λkt

)

,

(40)

where as before limt→∞ tCt(qi; qj) ≡ Ct(qi; qj) =
∑

k λ
−1
k (90k(qi)9k0(qj) + 90k(qj)9k0(qi)) 6= f (t) as a

manifestation of the central limit theorem, since θt(qi) and
θt(qj) asymptotically decorrelate. In other words, taking
Ct(qi; qi) ≡ σ 2

t (qi), the complete large deviation statistics of
θt(qi) (i.e., on ergodically long time-scales) is a N-dimensional
Gaussian with covariance matrix t−1Ct(qi; qj).

To visualize these results we present in Figures 4, 5 two-
tag nearest neighbor and next-nearest correlations, Ct(q1; q3)
and as Ct(q2; q3) respectively, for a single file of N = 4 and
N = 7 particles at two different trajectory lengths. We find that,
alongside the fact that correlations intuitively increase with theN,
both the magnitude and the sign of Ct depend on which particles
we tag and even more so, where we tag these particles. Along the
(upward shifted) diagonal Ct is positive, implying the two tagged
particles along a stochastic many-body trajectory effectively (in
the sense of the local time)move together, such that if one particle
spends more time in a given region, so will the other. At fixed
F (here assumed to be equal to 1) the magnitude of the upward
shift depends on which particles we tag as well as on N. This

Frontiers in Physics | www.frontiersin.org 11 November 2019 | Volume 7 | Article 182156

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Lapolla and Godec Manifestations of Projection-Induced Memory

FIGURE 4 | Two-tag local time correlations Ct (q1;q3) (left) and Ct (q2;q3) (right) for a single file of N = 4 (top) and N = 7 (bottom) particles for a (very short)

trajectory length t = 0.01. The relaxation time corresponds to λ−1
1 ≃ 0.1. The dashed lines denote the positions of the two free energy minima.

intuitive idea is backed up mathematically by realizing that the
lowest excited Bethe-eigenfunctions correspond to collective (“in
phase”) motion (see Equations 29, 30). Furthermore, defining
the free energy minima of the tagged particles with qmin

i and
qmin
i (see dashed lines in Figures 4, 5) we would expect, if the
particles were to explore their respective free energy minima,
a peak localized at (qmin

i , qmin
i ) (i.e., at the crossing of dashed

line in Figures 4, 5). We find, however, that this is not the case,
all together implying that the tagged particles do not, along a
many-body trajectory, explore their respective free energy minima.
Instead, as mentioned above, they move collectively close to
each other. The collective dynamics is therefore non-trivial and
the tagged particle dynamics cannot be, at least for t . λ−1

1
coarse grained to a Markovian diffusion on −β ln900(qj), the
free energy landscape of the tagged particle j. Conversely, the fact
that all correlations (positive and negative) die our as qi,j → 1 is
a straightforward consequence of the tilting of the confining box.

Focusing now on the dependence on the length of the
trajectory we see at very short time (much shorter than the
relaxation time) the correlations are stronger, and that positive
correlations peak further away from the two respective tagged
particle free energy minima (compare Figure 4 and Figure 5).
In addition, the maximum of Ct(qi; qj) appears to be somewhat
more localized at longer (nearly ergodic) times (see Figure 5). In
addition, the tagged particle dynamics seem to be localized more
strongly near the free energy minimum if we tag the first particle

and if N is larger, presumably because of a faster relaxation due
to the presence of the wall effecting more frequent collisions with
the wall, during which the particle eventually loses memory.

4. SUMMARY AND OUTLOOK

Non-Markovian dynamics and anomalous diffusion are
particularly ubiquitous and important in biophysical systems
[1–16]. There, however, it appears that the quite many
non-Markovian observations are described theoretically by
phenomenological approaches with ad-hoc memory kernels,
which in specific cases can lead to mathematically unsound or
even unphysical behavior [82]. It therefore seems timely and
useful to provide a theoretical perspective of non-Markovian
dynamics starting from more fine-grained principles and
considering a projection to some effective lower-dimensional
configuration space.

The ideas presented here are neither new nor completely
general. Projection-operator concepts date back to the original
works by Zwanzig, Mori, Nakajima, van Kampen, Hänggi and
other pioneers. However, these seminal contributions focused
mostly on the derivation and analysis of effective non-Markovian
evolution operators, whereas here we provide a thorough analysis
of the manifestations of the projection on the level of Green’s
functions with the aim to somewhat relieve the need for
choosing a particular model based solely on physical intuition.
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FIGURE 5 | Two-tag local time correlations Ct (q1;q3) (left) and Ct (q2;q3) (right) for a single file of N = 4 (top) and N = 7 (bottom) particles for a trajectory length

comparable to the relaxation time t = 0.12 ≃ λ−1
1 . The relaxation time corresponds to λ−1

1 ≃ 0.1. The dashed lines denote the positions of the two free energy minima.

Furthermore, we rigorously establish conditions under which the
projected dynamics become Markovian and renewal-type, and
derive Markovian approximations to projected generators. As a
diagnostic tool we propose a novel framework for the assessment
of the degree of brokenMarkovianity as well as for the elucidation
of the origins of non-Markovian behavior.

An important remark concerns the transience of broken
Markovianity, which is a consequence of the fact that we assumed
that the complete dynamics is ergodic. First we note that (i) for
any finite observation of length t it is de facto not possible to
discern whether the observation (and the dynamics in general)
will be ergodic or not on a time scale τ > t. (ii) All physical
observations are (trivially) finite. (iii) In a nominally ergodic
dynamics on any finite time scale t, where the dynamics starting
from some non-stationary initial condition x0 has not yet reached
the steady state (in the language of this work t < λ−1

1 ), it is not
possible to observe the effect of a sufficiently distant confining
boundary ∂�(x) (potentially located at infinity if the drift field
F(x) is sufficiently confining) that would assure ergodicity (in
the language of this work ∀t ≪ λ−1

1 such that G(lmin, t|x0, 0) ≃

0 where |lmin| ≡ minx|x0 − ∂�(x)|). Therefore no generality
is lost in our work by assuming that the complete dynamics is
nominally ergodic, even in a rigorous treatment of so-called
weakly non-ergodic dynamics with diverging mean waiting times
(see e.g., [1, 6]) or generalized Langevin dynamics with diverging

correlation times (see e.g., [29–34]) on finite time-scales. As a
corollary, in the description of such dynamics on any finite time-
scale it is a priori by no means necessary to assume that the
dynamics is non-ergodic or has a diverging correlation time. This
does not imply, however, that the assumption of diverging mean
waiting times or diverging correlation times cannot render the
analysis of specific models simpler.

Notably, our work considers parent dynamics with a
potentially broken time-reversal symmetry and hence includes
the description of projection-induced non-Markovian dynamics
in non-equilibrium (i.e., irreversible) systems. In the latter case
the relaxation process of the parent microscopic process might
not be monotonic (i.e., may oscillate), and it will be very
interesting to explore the manifestations and importance of these
oscillations in projected non-Markovian dynamics.

In the context of renewal dynamics our work builds on firm
mathematical foundations of Markov processes and therefore
provides mathematically and physically consistent explicit (but
notably not necessarily the most general) memory kernels
derived from microscopic (or fine-grained) principles, which
can serve for the development, assessment and fine-tuning
of empirical memory kernels that are used frequently in
the theoretical modeling of non-Markovian phenomena (e.g.,
power-law, exponential, stretched exponential etc; [2, 82]). In
particular, power-law kernels are expected to emerge as transients
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in cases, where the latent degrees of freedom relax over multiple
time-scales with a nearly continuous and self-similar spectrum.
Conversely, the quite strongly restrictive conditions imposed
on the microscopic (parent) dynamics that lead to renewal
dynamics, which we reveal here, suggest that renewal type
transport in continuous space (e.g., continuous-time random
walks [1, 2]) might not be the most abundant processes
underlying projection-induced non-Markovian dynamics in
physical systems, but aremore likely to arise due to some disorder
averaging. In general, it seems natural that coarse graining
involving some degree of spatial discretization should underly
renewal type ideas.

From a more general perspective beyond the theory of
anomalous diffusion our results are relevant for the description
and understanding of experimental observables a(q) coupled to
projected dynamics q(t) in presence of slow latent degrees of
freedom (e.g., a FRET experiment measuring the distance within
a protein or a DNA molecule [88]), as well as for exploring
stochastic thermodynamic properties of projected dynamics with
slow hidden degrees of freedom [89–91]. An important field
of applications of the spectral-theoretic ideas developed here
is the field of statistical kinetics in the context of first passage
concepts (e.g., [92–94]), where general results for non-Markovian
dynamics are quite sparse [46, 49, 95–100] and will be the subject
of our future studies.
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A Corrigendum on

Manifestations of Projection-Induced Memory: General Theory and the Tilted Single File

by Lapolla, A., and Godec, A. (2019). Front. Phys. 7:182. doi: 10.3389/fphy.2019.00182

In the original article, there was an error. In section 2.1 the diffusion matrix D the in-line equation
was defined with a factor of 2 instead of 1/2, i.e.,D = 2σσT instead ofD = σσT/2.

In section 2.1 in the paragraph following Equation (4), a copy-paste error occurred in
the sentence “... where for reversible system (i.e., those obeying detailed balance) we have L̂L̂† =

L̂†L̂ = 0.”
In section 2.2. in the paragraph following Equation (13) there is an obvious redundant

additional factor 9−1
00 (q)dq present immediately after the in-line equation: 〈9l0|9k0〉9−1

00
≡

∫

4
dq′900(q

′)−190l(q
′)9k0(q

′).
A correction has been made to section 2.1 [paragraph following Equation (1)]. The paragraph

now reads:
“whereD is the symmetric positive-definite diffusion matrix. L̂ propagates probability measures

µt(x) in time, which will throughout be assumed to posses well-behaved probability density
functions P(x, t), i.e., dµt(x) = P(x, t)dx [thereby posing some restrictions on F(x)]. On the level of
individual trajectories Equation (1) corresponds to the Itô equation dxt = F(xt)dt+σdWt withWt

being a d-dimensional vector of independent Wiener processes whose increments have a Gaussian
distribution with zeromean and variance dt, i.e., 〈dWt,idWt′ ,j〉 = δijδ(t−t′)dt, and where σ is a d×d

symmetric noise matrix such thatD = σσT/2. Moreover, we assume that F(x) admits the following
decomposition into a potential (irrotational) field −D∇ϕ(x) and a non-conservative component
ϑ(x), F(x) = −D∇ϕ(x)+ϑ(x) with the two fields beingmutually orthogonal∇ϕ(x)·ϑ(x) = 0 [73].
By insertion into Equation (1) one can now easily check that L̂e−ϕ(x) = 0, such that the stationary
solution of the Fokker-Planck equation (also referred to as the steady state [74, 75], which is the
terminology we adopt here) by construction does not depend on the non-conservative part ϑ(x).”

A correction has been made to the aforementioned sentence in section 2.1, in the paragraph
following Equation (4), which now reads:

“such that the conditional probability density starting from a general initial condition |p0〉
becomes P(x, t|p0, 0) = 〈x|Û(t)|p0〉 ≡

∫

dx0p0(x0)G(x, t|x0, 0). Moreover, as F(x) is assumed to

be sufficiently confining (i.e., limx→∞ P(x, t) = 0, ∀t sufficiently fast), such that L̂ corresponds to
a coercive and densely defined operator on V (and L̂† on W, respectively) [76–78]. Finally, L̂ is
throughout assumed to be normal, i.e., L̂†L̂ − L̂L̂† = 0 and thus henceforth V = W, where for
reversible system (i.e., those obeying detailed balance) we have L̂ ⇔ L̂†”.
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Finally, the redundant factor 9−1
00 (q)dq has been deleted in

section 2.2 in the paragraph following Equation (13).
“can be equal to Qpss (q, t|q0, 0). As this will generally not

be the case this essentially means that the projected dynamics
is in general non-Markovian. The proof is established by

noticing that 9kl(q
′) = 9

†
lk
(q′) such that 〈9l0|9k0〉9−1

00
≡

∫

4
dq′900(q

′)−190l(q
′)9k0(q

′).”
The authors apologize for this error and state

that this does not change the scientific conclusions

of the article in any way. The original article has
been updated.

Copyright © 2020 Lapolla and Godec. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The
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If a colloidal particle is exposed to an external field, its Brownian motion is modified.

In the case of an anisotropic particle, the external potential might not only affect its

translation but also its rotation. We experimentally investigate the dynamics of a trimer,

which consists of three spherical particles, within a random potential energy landscape.

This energy landscape has energy values drawn from a Gamma distribution, a spatial

correlation length similar to the particle size and is realized by a random light field,

that is a laser speckle pattern. The particle translation and rotation are quantified by

the mean squared (angular) displacement, the van Hove function and other observable

quantities. The translation shows an intermediate subdiffusive regime and a long-time

diffusion that slows down upon increasing the modulation of the potential. In contrast,

the mean squared angular displacement exhibits only small deviations from a linear time

dependence but a more detailed analysis reveals discrete angular jumps reflecting the

symmetry of the trimer. A coupling between the translation and rotation is observed and

found to depend on the length scale.

Keywords: randomwalk, anomalous diffusion, translational motion, rotational motion, potential energy landscape,

colloidal molecules, video microscopy

1. INTRODUCTION

Colloidal particles undergo random thermal motion. Free diffusion is characterized by a mean
squared displacement which increases linearly with time. The slope is determined by the
diffusion coefficient that depends on the temperature, the particle size, and the viscosity of the
medium. However, colloidal particles in more complex situations, for example in the presence of
interparticle interactions or external potentials, can show different behavior such as subdiffusion
or superdiffusion. These imply mean squared displacements with time dependencies that are
less than or greater than linear, respectively [1]. Such dynamics are frequently encountered in
systems with biological or industrial relevance. For example, they are observed in living cells [2–
5], biological membranes [6–8], porous media [9], and glassy systems [10–14]. Due to the analogy
between the behaviors of colloidal particles and many different complex and experimentally less
accessible systems, colloidal suspensions are frequently used as model systems to systematically
and quantitatively study particle dynamics.

Although spherical colloidal particles are usually investigated, most molecular, biological
or industrial systems contain non-spherical objects. The behavior of these objects can be
modeled using anisotropic colloidal particles, which can be made using different synthesis
routes [15–18]. Anisotropy introduces additional degrees of freedom but also, for instance,
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more complex interparticle interactions and particle dynamics.
Anisotropic particles are, therefore, also interesting in their
own right. For example, elongated particles, such as ellipsoidal
particles and dumbbells made of two spherical particles,
show free diffusion that, up to intermediate times, shows a
directional dependence [19, 20]. In addition, experiments on
dumbbells and planar clusters of colloidal particles have shown a
decoupling between translational and rotational motion at high
concentrations [21, 22]. A more complex system, tetrahedral
colloidal clusters immersed in a supercooled colloidal fluid, was
investigated [23]. Also in this system a decoupling between
translational and rotational diffusion was observed when the
volume fraction approached the glass transition. Furthermore,
molecular dynamics simulations revealed that dumbbells in
a porous medium show dynamical heterogeneities [24]. This
illustrates that an anisotropic shape as well as external constraints
can significantly change the particle dynamics.

Colloidal particles can be manipulated using optical trapping,
a phenomenon exploited in optical tweezers [25, 26]. Optical
trapping relies on the momentum transfer between the photons
to the colloidal particles during refraction and scattering. The
magnitude of the effect depends on the intensity and intensity
gradient of the light, the refractive index mismatch between the
medium and the particle, the wavelength of the light and the
particle size and shape [27–29]. In addition to optical tweezers,
extended light fields can be used to expose particles to external
potential energy landscapes [30]. Different light fields can be
created to produce random, periodic or other potential energy
landscapes [31–36]. Typically, energy modulations of the order
of the thermal energy, kBT, are applied. Subjecting colloids to
these energy landscapes will affect their dynamics [30, 37–41].
Therefore, colloids exposed to light fields can serve as a model
system to investigate the effect of external potentials on the
particle dynamics.

Recently light fields have also been imposed on anisotropic
particles [36, 42, 43]. Dilute suspensions of ellipsoids or
multimers consisting of spherical particles, particularly dimers
and trimers, have been subjected to a periodic light field.
In the case of multimers, this results in a small number of
preferred states, which reflects the limited number of spatial and
orientational configurations the multimers attain due to their
confinement in the periodic energy minima. The actual number
of configurations depends on the ratio between the particle
size and the periodicity of the potential. This suggests that the
translational and rotational motions are coupled.

In this work, we study the translational and rotational
dynamics of trimers. Trimers are anisotropic particles consisting
of three spherical colloidal particles bonded together. They are
exposed to a random light field, which imposes a random
potential energy landscape. Due to the convolution of the light
field with the particle volume, the distribution of energy values
follows a Gamma distribution and the spatial correlation length
of the potential is about the size of an individual sphere [34].
We characterize the dynamics by several parameters, such as
the mean squared (angular) displacement and the van Hove
function. The random potential energy landscape leads to an
intermediate subdiffusive regime in the translational motion and

the long-time translational diffusion is found to be reduced upon
increasing the modulation of the potential, which is controlled
by the laser intensity. The mean squared angular displacement,
however, is hardly affected by the external potential. Nevertheless,
a detailed quantitative analysis of the rotational motion uncovers
characteristic angular jumps of approximately 120◦ that reflect
the three-fold symmetry of the trimers. Furthermore, it reveals
a complex coupling between the translational motion and the
rotational motion.

2. MATERIALS AND METHODS

2.1. Synthesis of Trimers and Sample
Preparation
Cross-linked poly(methyl methacrylate) (PMMA) spheres with
a diameter σ ≈ 2.1 µm were synthesized based on previously
established methods [44–46]. After the synthesis, the solvent was
exchanged by centrifugation in a two-step washing process: first,
the suspension was washed three times with n-hexane (Sigma-
Aldrich, Ref. Num. 1043671000) to remove leftovers from the
reaction, then seven times with decahydronaphthalene (mixture
of cis and trans isomers, 98%, Alfa Aesar, Ref. Num. A13883)
to change the solvent to decahydronaphthalene. The particle
suspension at 30 vol% was then used as stock to prepare trimers
[18]. First, decahydronaphthalene was replaced with toluene
(anhydrous, 99.8%, Sigma-Aldrich, Ref. Num. 244511) by
washing three times. After the last washing step a suspension
with a volume fraction of 3.66 vol% was obtained. 3 ml of
this suspension was mixed with 15 ml of ultra pure water
(resistivity 18M�/cm) containing 0.5 wt% sodium dodecyl
sulfate (SDS, Sigma-Aldirch, Ref. Num. L4509) to yield the
precursor emulsion. To narrow down the size distribution of the
emulsion droplets, the emulsion was homogenized by applying
a T25 ULTRA-TURRAX R© (IKA, Ref. Num. IK0003725000) for
60 s at 8,000 rpm followed by 25 s at 9,600 rpm. The emulsion
was poured into a round-bottomed reaction flask with a capacity
of 100 ml and subsequently placed in a constant temperature
bath at 80 ◦C. The sample was slowly stirred for 2 h while the
toluene evaporated.

The obtained suspension contained different multimers. It
was, therefore, fractionated using a density gradient from a
water-saccharose-surfactant solution. The density gradient was
prepared from two solutions. The denser solution (density ρ ≈

1.17 g/ml) contained 40wt% D(+)-Saccharose (99.5%, Sigma-
Aldrich, Ref. Num. 4661.1) and 0.1 wt% SDS. The less dense
solution (ρ ≈ 1.08 g/ml) was prepared by diluting the denser
solution by a factor of two with ultra pure water; typically 5 ml
of the denser solution was diluted with 5 ml of water. Equal
volumes of the two solutions were mixed using a density gradient
maker with two chambers where each chamber was filled with
one of the solutions. The mixed solution was transferred into
a round-bottomed glass centrifuge tube. Then, the suspension
containing the clusters was carefully loaded on top of the gradient
column yielding a thin layer with a height of about 0.5 cm.
The tube subsequently was placed in a centrifuge (Hermle Z323,
rotor 221.12V01) and subjected to 2,000 rpm centrifugation for
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4 min with the brake set to 0. This procedure was repeated
many times to obtain a sufficient amount of trimer suspension.
Finally, the collected suspension was washed a few times with
ultra pure water to remove the surfactant and saccharose. The
suspension contained trimers and a very small number of
tetramers. Themonomers obtained during the fractionation were
used to calibrate the energy landscape as described below. An
image of the trimers is shown in Figure 1A.

For the experiments, a dilute suspension of trimers was
transferred into a quasi-two-dimensional cell consisting of
a microscope slide and a cover slip [47], which were first
carefully cleaned. The few pyramid-like tetramers present in
the suspension served as spacers between the microscope slide
and the cover slip. The confinement to quasi-two-dimensions
reduces the degrees of freedom of each trimer to a center-of-mass
translation and a rotation around one axis. Experiments were
performed at a temperature of∼ 20 ◦C.

2.2. Random Light Field
The random light field is a speckle pattern (Figure 1B). It
was generated as described previously [34]. The central optical
element is a diffuser (RPC Photonics Inc., Engineered DiffuserTM

EDC-1-A-1r), which is illuminated with a planar wave with a
Gaussian intensity distribution from a laser (Laser Quantum,
Opus 532, wavelength λ = 532 nm). The diffuser creates a top-
hat beam including a speckle pattern, which is directed to the
sample plane of an inverted microscope. The average speckle
size, which determines the correlation length of the light field,
matches approximately the monomer size. The magnitude of the
modulations is controlled via the laser power PL. Four different
laser intensities were applied: PL = 0, 1.15, 1.60, and 2.10 W.
The magnitude of the modulations also depends on the refractive
index difference between the medium, in this case water with
a refractive index of 1.330, and the PMMA particles with a
refractive index of about 1.494 for the present wavelength.

2.3. Image Acquisition and Particle
Tracking
The quasi-two-dimensional geometry allows us to use
conventional optical microscopy. An inverted bright field
microscope (Nikon, Eclipse Ti-U) with a 60× objective (Nikon,

FIGURE 1 | (A) Optical microscopy image of trimers. (B) Random light field

(speckle pattern) created by a diffuser illuminated with a laser beam. Particles

exposed to such a light field experience a random potential energy landscape.

Scale bars are 10µm.

S Plan Fluor ELWD, NA 0.7) equipped with a CMOS camera
(Allied Vision, Mako U-130B, 1,280 × 1,024 px2) was used.
The effective pixel pitch was 0.08µm/px and the observation
area was ∼ 100 × 82µm2. This area typically contained
about 6 trimers.

Before each individual measurement, the diffuser was rotated
in order to probe different realizations of the random potential.
Then the sample was left to equilibrate for 30 min while it
was exposed to the random light field. Subsequently, a series of
36,000 images was recorded at 10 fps resulting in an individual
measurement time of 1 h. For each laser intensity, at least 15
individual measurements were performed, which resulted in a
minimum of 90 trajectories. The measurements were controlled
with a custom-written LabView programme. The positions
and trajectories of individual spheres were extracted from the
recorded images using a custom-written Matlab programme
based on standard algorithms [48]. Based on these trajectories,
the center-of-mass trajectories and the orientations of the trimers
were determined.

3. RESULTS AND DISCUSSION

We investigated trimers consisting of three joined spherical
particles (Figure 1A). They were confined between two glass
plates resulting in a quasi-two-dimensional system. Thus, their
thermal motion contains two contributions: center-of-mass
translation and rotation around the symmetry axis. The motion
was modified by a random potential energy landscape whose
values are drawn from a Gamma distribution with standard
deviation ǫ and whose spatial correlation length is about the size
of a spherical particle [34]. The magnitude of the modulations,
quantified by ǫ, was varied with the maximum reaching a few
times the thermal energy. This potential was imposed on the
particles by applying a random light field and the magnitude of
the modulations was controlled through the laser intensity PL
(Figure 1B). A convolution with the particle volume results in
the potential energy landscape [34, 43, 49].

Examples of center-of-mass trajectories of trimers are shown
in Figure 2. It illustrates the effect of the potential energy
landscape on the translation of the trimers. Within the same
time, trimers not exposed to a random potential explore a much
larger region than trimers exposed to a random potential. The
effect of the random potential on the translational motion will be
quantified and compared to the effect on the rotational motion
below. However, first the calibration of the random potential
energy landscape will be explained.

3.1. Calibration of the Random Potential
Energy Landscape—Translation of
Spherical Particles
The magnitude of the modulations of the potential is estimated
using the dynamics of spherical particles for which a theoretical
prediction is available [50]. The dynamics of spherical particles,
the building blocks of the trimers, are followed in the same
random potential and characterized by the mean squared
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FIGURE 2 | Trajectories of the center-of-mass of trimers (A) in the absence of

an external potential and (B) in the presence of an external potential created

with the maximum laser intensity PL = 2.10 W. The trajectories are followed for

60 min.

displacement (MSD) [51]

〈1r2(τ )〉 = 〈[ri(t0+τ )− ri(t0)]
2〉i,t0 , (1)

where ri(t) is the position of particle i at time t and the average
is taken over all particles i and all start times t0. This means
that we consider the ensemble and time average. Without an
external potential, the MSD increases linearly with delay time
τ as expected (Figure 3A). In contrast, in the presence of an
external potential, the MSD indicates different dynamic regimes:
at short times diffusion, at intermediate times subdiffusion
and at long times again diffusion but with a considerably
reduced diffusion coefficient DL. Whereas the diffusion at short
times is not significantly affected by the external potential,
the subdiffusion becomes more pronounced and the long-time
diffusion increasingly slower with increasing laser intensity PL.
This can be quantified by calculating the exponent µ(τ ) in

FIGURE 3 | (A) Mean squared displacement (MSD) 〈1r(τ )2〉 normalized by the

short-time diffusion coefficient DS and (B) exponent

µ = ∂ log (〈1r(τ )2〉)/∂ log (τ ) as a function of delay time τ for spherical particles

(“monomers”) exposed to different laser intensities PL (as indicated). The

horizontal line in (A) indicates σ 2/4DS. (C) Ratio of the long-time (DL) to the

short-time (DS) diffusion coefficient as a function of the square of the laser

intensity, P2
L , of spherical particles (squares) and trimers (circles). The lines are

linear fits to the data except at the highest PL where DL cannot be determined

reliably.

the relation 〈1r2(τ )〉 ∼ τµ(τ ) from the slope of the MSD in
double-logartihmic representation

µ(τ ) =
∂ log

{

〈1r2(τ )〉
}

∂ log {τ }
. (2)

The values of this parameter indicate initial diffusion (µ ≈ 1),
intermediate subdiffusion with µ reaching values as small as
about 0.5 and the re-establishment of diffusion at long times
τ (Figure 3B). These observations agree with previous results
[30, 39].

For a quantitative analysis, the confinement of the particles
between two plates with only a small gap has to be considered.
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Furthermore, radiation pressure pushes the particles in the
direction of the laser beam and hence affects the distance
between the particles and the two plates [27–29]. The resulting
hydrodynamic interactions slow down diffusion regardless of
whether there is an external potential [52, 53]. This results in
a diffusion coefficient which is reduced compared to the bulk
diffusion coefficient D0 = kBT/(3πησ ), where η is the viscosity
of the medium. Thus, the short-time diffusion coefficient DS,
which is affected by the hydrodynamic interactions with the
plates but not by the external potential, was used to normalize
the MSD and other dynamic parameters to account for the
hydrodynamic interactions with the plates (Figure 3A). The
short-time diffusion coefficient DS was determined from the
slope of the MSD at short times by

DS =
1

4
lim
τ→0

{

∂〈1r2(τ )〉

∂τ

}

. (3)

It was found to increase by∼12%within the range of investigated
laser intensities PL (Table 1).

For the case of a random potential energy landscape with the
energy values drawn from a Gaussian distribution with standard
deviation ǫ, the long-time diffusion coefficientDL is related to the
short-time diffusion coefficient DS by [50]

DL

DS
= exp

[

−
1

2

(

ǫ

kBT

)2
]

. (4)

In our experiments, the energy values are Gamma distributed
with a shape parameter M ≈ 1.7 [34]. Assuming that the
deviations from a Gaussian distribution are negligible, the
experimentally determined ratio DL/DS can be used to relate
the laser intensity PL to the standard deviation of the energy
distribution, ǫ. The long-time diffusion coefficient DL was
determined from the slope of theMSD at long times, analogous to
the short-time diffusion coefficient DS (Equation 3), if diffusion
is re-established within the experimental time window. If this
was not the case, DL was determined based on the last data
point at τmax, DL = 〈1r2(τmax)〉/4τmax (or an average of
the values from the last few data points), which is likely to

overestimateDL. Within the range of investigated laser intensities
PL, the ratio DL/DS decreases by slightly more than an order
of magnitude (Table 1, Figure 3C) and using Equation (4) one
obtains ǫ = 0.00, 1.44, 1.92, and 2.25 kBT, respectively. Thus,
the magnitude of the modulations of the potential, ǫ, to which
individual spherical particles and hence also each sphere forming
a trimer is exposed, is linearly proportional to the laser intensity
PL at least for small PL. This is indicated by the linear dependence
of log(DL/DS) on P2L (Figure 3C). The deviation from linearity
at the largest PL = 2.10W could be due to a non-linearity
between ǫ and PL or the fact that diffusion is not re-established
in the experimental window and hence DL is overestimated and
ǫ underestimated. The latter is more likely to be the reason.
Due to this and the assumption concerning the distribution of
energy values, in the following we will refer to the applied laser
intensity PL as a measure for the magnitude of the modulations
of the random potential. Nevertheless, this analysis provides an
estimate of the magnitude of the modulations which can reach a
few times the thermal energy.

3.2. Translation of Trimers
3.2.1. Mean Squared Displacement
The MSD of the trimers was calculated following Equation (1)
with ri(t) now representing the trajectory of the center-of-
mass of trimer i. As in the case of the spherical particles, the
MSD was normalized by the short-time diffusion coefficient DS

to account for the hydrodynamic interactions with the glass
plates. The hydrodynamic interactions depend on the separation
of the trimers from the two plates which is affected by the
radiation pressure and hence the laser intensity PL. Within
the range of investigated laser intensities PL, the short-time
diffusion coefficientDS was found to increase by∼25% (Table 1).
This increase is larger than for the spherical particles but still
rather modest.

In the absence of a random potential, the MSD increases
linearly with delay time τ over the whole investigated time
window (Figure 4A) reflecting the expected free diffusion. In
the presence of an external potential, however, different regimes
are observed. At short delay times, a linear increase is observed
which does not depend on laser intensity PL because the time

TABLE 1 | Diffusion coefficients for particles exposed to different laser intensities PL: short-time diffusion coefficient DS for spherical particles, ratio of the long-time to the

short-time diffusion coefficient (DL/DS) for spherical particles, short-time translational diffusion coefficient DS for the center-of-mass motion of trimers, ratio of the

long-time to the short-time translational diffusion coefficient (DL/DS) for the center-of-mass motion of trimers, short-time rotational diffusion coefficient Drot
S for trimers, ratio

of the long-time to the short-time rotational diffusion coefficient (Drot
L /Drot

S ) for trimers, mean residence time 〈1t〉 (where the ranges indicate the uncertainties of the fits),

mean residence time estimated from the ratio of the total measurement time Tm to the total number of jumps Nm, ratio of the long-time to the short-time rotational

diffusion coefficient (Drot
L /Drot

S ) for trimers calculated based on the mean residence time 〈1t〉.

Monomer Trimer

Translation Translation Rotation Rotation (calculated)

PL [W] DS [µm2/s] DL/DS DS [µm2/s] DL/DS Drot
S [rad2

/s] Drot
L /Drot

S 〈1t〉 [s] Tm/Nm [s] Drot
L /Drot

S

0 0.022 0.99 0.0089 0.98 0.013 1.03 159± 3 178 1.07

1.15 0.024 0.35 0.0092 0.20 0.013 0.81 185± 2 215 0.90

1.60 0.023 0.15 0.0096 0.07 0.014 0.77 214± 6 254 0.76

2.10 0.024 0.08 0.0112 0.04 0.015 0.60 230± 5 275 0.62
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FIGURE 4 | (A) Mean squared displacement (MSD) 〈1r(τ )2〉 normalized by the

short-time diffusion coefficient DS and (B) exponent

µ = ∂ log (〈1r(τ )2〉)/∂ log (τ ) as a function of delay time τ for the

center-of-mass of trimers exposed to different laser intensities PL (as

indicated). The horizontal line in (A) indicates σ 2/4DS.

and distances traveled during this time are too short for the
trimer to experience significant changes of the external potential.
Subsequently, subdiffusion is indicated by a slope µ smaller than
1 with the slope decreasing upon increasing the laser intensity
PL (Figure 4B). This is due to the confinement of the trimer
to a potential minimum or the confinement of the constituent
three spheres to neighboring potential minima. The trimers
wiggle within the minima but they do not leave the minima
within this time scale. The potential minima correspond to the
randomly distributed bright speckles in the light pattern that
have an average size of about 2µm (Figure 1B) similar to the
sphere diameter σ ≈ 2.1 µm (Figure 4A, dashed horizontal
line). The relatively small values of 〈1r2(τ )〉 in the intermediate
regime indicate that the trimers only explore the central part
of the minima. A slope µ ≈ 1 is again reached and hence
diffusion is re-established at very long times. This time scale is
long enough for the trimers to leave the minima and move from
minimum to minimum in a random fashion. The ratio of the
long-time to the short-time diffusion coefficient (DL/DS) shows
a major decrease by about one and a half order of magnitude
within the range of investigated laser intensities PL (Table 1,
Figure 3C). Thus it is significantly more pronounced than for
spherical particles. The dependence of log (DL/DS) on P2L is
linear except for the largest laser intensity PL = 2.10W, which
again is attributed to the difficulty in reliably determining the
long-time diffusion coefficient DL in this case because the long-
time diffusive regime is not reached within the experimental
time window (Figure 4B). The linear dependence is consistent

with Equation (4). Moreover, the MSDs of the trimers and of
the spherical particles, the “monomers,” show similar behavior
over the whole experimental time window (Figures 3A, 4A). The
dependences of the long-time diffusion coefficient DL on the
laser intensity PL also show comparable trends but the DL of
the trimers is significantly smaller (Figure 3C), which is due to
the stronger effect of the light field on the three spheres forming
the trimers than on an individual sphere. Nevertheless, there are
quantitative differences. In the case of trimers, the subdiffusive
regime starts at larger delay times and extends to longer times
(Figures 3B, 4B).

3.2.2. Self Part of the van Hove Function
While the mean squared displacement characterizes the width of
the distribution of displacements, more detailed information on
the dynamics can be obtained by examining the distribution of
displacements itself. The probability to find a particle at position
r+ 1r at time t0 + τ given that there was a particle at position r

at time t0 is given by the van Hove function

G(1r, τ ) =
1

N

〈

N
∑

i=1

N
∑

j=1

δ{1r− [ri(t0+τ )−rj(t0)]}

〉

t0

, (5)

where the average is taken over the start time t0. The van Hove
function can be separated in a self (i = j) and distinct (i 6= j) part.
Here we focus on the motion of individual particles and hence
are interested in the self part of the van Hove function

Gs(1r, τ ) =
1

N

〈

N
∑

i=1

δ{1r− [ri(t0+τ )−ri(t0)]}

〉

t0

. (6)

For an isotropic particle undergoing free diffusion, the self
part of the van Hove functions is a Gaussian distribution with
mean zero and the square of the standard deviation represented
by the MSD.

Based on the trajectories, the self part of the vanHove function
Gs(1r, τ ) can be calculated for the different laser intensities PL.
We consider the individual components of the displacement
vector 1r, namely 1x and 1y, as well as its magnitude, 1r
(Figure 5). In the absence of the randompotential, in other words
in the case of free diffusion, the self part of the van Hove function
Gs(1x, τ ) shows the expected Gaussian shape with the width
increasing with delay time τ . If the random potential is present,
at intermediate delay times the distribution is narrower. This
corresponds to the sublinear increase of the MSD with delay time
τ and is due to the fact that the trimers remain in the central
part of the potential minima for some time. At longer delay
times, the self part of the van Hove function develops shoulders
on both sides of the central maximum and minor maxima at
1x ≈ −4µm and 1x ≈ 4µm. These shoulders become more
pronounced for longer delay times τ and larger laser intensities
PL. They reflect the random motion between minima that are
randomly distributed and separated by a few µm (Figure 1B).
Furthermore, the shape of Gs(1x, τ ) increasingly deviates from
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FIGURE 5 | Self part of the van Hove function Gs for (A) displacements in x direction (1x) and (B) modulus of the displacement vector (1r) for different delay times τ

(indicated by the color) for trimers exposed to different laser intensities PL (as indicated).

a Gaussian shape and, at long times, can better be described by a
Laplacian shape.

The distribution of the magnitude of the displacement,
Gs(1r, τ ) (Figure 5B), resembles the expected Rayleigh
distribution in the absence of the random potential. In the
presence of the random potential, the evolution with delay
time τ and laser intensity PL corresponds to the dependence
observed in Gs(1x, τ ). These are a limited broadening of the
main peak and the development of shoulders and minor maxima
at intermediate and long times.

3.2.3. Non-gaussian Parameter
Since the self part of the van Hove function Gs(1x, τ ) is not
Gaussian in the presence of the random potential (Figure 5A),
it cannot be fully characterized by only the MSD (Figure 4A)

but further moments are required. Thus, the fourth moment
is considered, which usually is normalized to yield the non-
Gaussian parameter α2(τ ) [54]. We focus on the distributions
of one-dimensional displacements, Gs(1x, τ ), and hence use
the corresponding non-Gaussian parameter defined for one
dimension [55]

α2(τ ) =

〈

1x4(τ )
〉

3
〈

1x2(τ )
〉2

− 1 (7)

and similarly for the y direction. Other definitions of the non-
Gaussian parameter have been proposed, for example [56], which
only differ by a constant factor. Since α2(τ ) contains a higher
order moment than the MSD, it is more prone to noise and
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hence has to be based onmore data pairs for comparable statistics
implying a more restricted range of delay times τ .

The non-Gaussian parameter α2(τ ) was determined for
1x and 1y, which, not surprisingly, show similar behavior
(Figure 6). As expected, in the absence of an external potential
the non-Gaussian parameter α2(τ ) ≈ 0. In the presence of
an external potential, α2(τ ) ≈ 0 at short times and hence
small traveled distances, during which no significant changes of
the external potential are experienced. However, at intermediate
times α2(τ ) increases, reaches a maximum and decreases again.
The maximum reaches values as large as α2 ≈ 2.5. This large
value reflects the pronounced tails and minor maxima in the
self part of the van Hove function Gs(1x, τ ) (Figure 5). The
maximum is located at the transition from the intermediate
subdiffusion to the long-time diffusion (Figure 4) because, at
this time, many trimers still reside in their initial minima while
a similarly large number of trimers have already moved to
other minima and thus the ensemble of trimers exhibits very
heterogeneous dynamics. Once most of the trimers have moved
to otherminima and diffusion is re-established, the non-Gaussian
parameter α2(τ ) returns to zero.

3.3. Rotation of Trimers
The rotation of a trimer can be deduced from the position of
its three constituent spheres. One of the three spheres is chosen
arbitrarily. The line connecting the center-of-mass of the trimer
with the center of this sphere is considered to be the direction
of the trimer (Figure 7A, arrow in inset). The angle between this
line and an arbitrary but fixed direction (here the x direction) is
taken to quantify the orientation of the trimer. This angle θi(t) is
followed as a function of time t for each trimer i. Based on θi(t)
the rotational dynamics can be investigated.

3.3.1. Mean Squared Angular Displacement
In analogy to Equation (1), the mean squared angular
displacement (MSAD) is defined as

〈1θ2(τ )〉 = 〈[θi(t0+τ )− θi(t0)]
2〉i,t0 . (8)

FIGURE 6 | Non-Gaussian parameter α2(τ ) for displacements in the x

direction as a function of the delay time τ for trimers exposed to different laser

intensities PL (as indicated).

The MSAD was determined based on the experimentally
observed θi(t). Similar to the analysis of the translational motion,
the MSAD was normalized by the short-time rotational diffusion
coefficient Drot

S to account for the effects of hydrodynamic
interactions. Similar to the short-time diffusion coefficient DS,
the short-time rotational diffusion coefficient Drot

S is affected by
the hydrodynamic interactions but hardly affected by the external
potential. It was determined from the slope of the MSAD at short
times, analogous to the determination of DS (Equation 3). The
frame rate was chosen to be fast enough (10 fps) for a reliable
determination of the initial slope. The short-time rotational
diffusion coefficient Drot

S increases within the investigated range
of laser intensities PL by ∼ 20% (Table 1) which is similar to

FIGURE 7 | (A) Mean squared angular displacement (MSAD) 〈1θ (τ )2〉

normalized by the short-time rotational diffusion coefficient Drot
S and (B)

exponent µ = ∂ log (〈1θ (τ )2〉)/∂ log (τ ) as a function of delay time τ for trimers

exposed to different laser intensities PL (as indicated). The horizontal line in (A)

indicates (120◦)2/2Drot
S . (C) Ratio of the long-time (Drot

L ) to the short-time (Drot
S )

rotational diffusion coefficient as a function of the square of the laser intensity,

P2
L , for trimers as determined from the MSAD (circles) and calculated based on

the jump statistics (triangles). The lines are linear fits.
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the increase of the short-time diffusion coefficient DS of the
center-of-mass diffusion of trimers.

The normalized MSAD was calculated for all laser intensities
PL (Figure 7A). The effect of the external potential on the
MSAD is modest. At intermediate times the slope is only
slightly smaller than unity (µ > 0.8 for all PL, Figure 7B)
and the reduction of the long-time diffusion coefficient Drot

L
is very limited (Figure 7C). The ratio of the long-time to the
short-time rotational diffusion coefficient (Drot

L /Drot
S ) decreases

by less than a factor of 2 within the range of investigated
laser intensities PL. The modest decrease of the long-time
rotational diffusion coefficient Drot

L is in strong contrast to
the pronounced effect of the external potential on the long-
time translational diffusion coefficient DL (Figure 3C). However,
log(Drot

L /Drot
S ) decreases linearly with the square of the laser

intensity, P2L similar to DL (Figure 7C, Equation 4). Moreover,
the intermediate subdiffusion of the rotational motion is not
only much less pronounced than the one for the translational

motion, it also occurs significantly earlier than the one for the
translational motion: at times about an order of magnitude
smaller (Figure 4B). This time window is comparable to the one
during which the intermediate subdiffusion of individual spheres
is observed (Figure 3B).

3.3.2. Self Part of the van Hove Function and

Non-gaussian Parameter
Despite the innocuous-looking MSAD, we determined the self
part of the van Hove function for angular displacements,
Gs(1θ , τ ) (defined analogous to Equation 6). Overall, Gs(1θ , τ )
has a Gaussian shape with the width increasing with delay time τ

(Figures 8A–D). Nevertheless, with increasing delay time τ and
especially with increasing laser intensity PL oscillations emerge
which are separated by about 120 ◦. The effect of increasing
PL, which increases the magnitude of the modulations of the
potential, while keeping the delay time constant (data are
averaged over the interval 35min < τ < 60min) is illustrated

FIGURE 8 | Self part of the van Hove function Gs(1θ , τ ) for angular displacements 1θ for trimers exposed to different laser intensities PL (as indicated) (A–D) for

different delay times τ (indicated by the color) and (E) for a long delay time (averaged over delay times 35min < τ < 60min) for different PL (as indicated).
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FIGURE 9 | Non-Gaussian parameter α2(τ ) for rotational displacements 1θ as

a function of delay time τ for trimers exposed to different laser intensities PL

(as indicated).

in Figure 8E. The data suggest that the trimers perform discrete
rotational jumps of about 120 ◦ which become increasingly
important as the magnitude of the modulations of the potential is
increased. (Note that, although there are characteristic rotational
jumps with 1θ ≈ 120◦, the orientations of the trimers, θi(t),
remain random). Whereas the oscillations become significantly
more pronounced, in particular at the highest laser intensity,
the overall Gaussian shape is hardly affected by the external
potential. This is consistent with the non-Gaussian parameter
α2(τ ) (Figure 9). It only shows a moderate maximum (α2 ≈

0.3) which is approximately an order of magnitude smaller
than the maximum observed in the α2(τ ) of the translational
motion (Figure 6). Furthermore, the time window during which
the non-Gaussian parameter is significantly different from zero
occursmuch earlier for rotationalmotion than the corresponding
time window of the translational motion (Figure 6): again by
approximately an order of magnitude.

3.3.3. Angular Jumps
A typical trajectory ri(t) of a particle exposed to a high laser
intensity PL = 2.10W lasting 1 h is shown in Figure 10A. The
trajectory indicates that the trimer remains in a limited area
for some time before moving on. The size of these areas is
about 2µm, which is similar to the speckle size (Figure 1B).
This suggests that the trajectories reflect the wiggling in minima
as well as the motion between minima as is also indicated by
the MSD (Figure 4A). The corresponding time evolutions of the
center-of-mass, ri(t), and of the orientation, θi(t), are shown in
Figure 10B. They show many small displacements and a few
larger displacements of the center-of-mass, ri(t), as well as of
the orientation, θi(t). To analyse the discrete angular jumps
suggested by the self part of the van Hove function, Gs(1θ , τ )
(Figure 8), a previously proposed algorithm based on the so-
called hop identifier function phop(t) [57, 58] was adapted. It
detects major changes of the orientation occurring during a time
interval T centered around the time t. The evolution of the
orientation during the two neighboring time periods [t−T/2, t],

FIGURE 10 | (A) Trajectory of a trimer exposed to a laser intensity PL =

2.10 W lasting 1 h. Red points indicate angular jumps defined by

phop > 0.75 rad2. (B) Corresponding time-dependence of the center-of mass

ri (t) (top), orientation θi (t) (middle) and angular hop identifier phop(t) (bottom).

The vertical lines indicate regions of large values of phop(t).

and [t, t+T/2] (labeled A and B, respectively), is considered.
The average orientations during the two periods 〈θi(t)〉t∈A and
〈θi(t)〉t∈B are determined. Then the hop identifier function
phop(t) is calculated which compares the values in one of the
periods with the average during the other period. It is defined as

phop(t)

=

√

〈

[θi(t′)− 〈θi(t′′)〉t′′∈B]2
〉

t′∈A

〈

[θi(t′′)− 〈θi(t′)〉t′∈A]2
〉

t′′∈B
.

(9)

Here we consider a time interval T = 15 s, which corresponds to
150 points in the trajectory and sweeps over the experimentally
observed angular traces θi(t).With the help of phop major changes
in θi(t) were identified with the value of phop characterizing the
magnitude and temporal extent of the change. A large value of
phop indicates large changes in the orientation during a short time
(Figure 10B). The magnitude of the angular change 12i(tj) of
trimer i at time tj is defined as

12i(tj) = |〈θi(t
′)〉t′∈A −

〈

θi(t
′)
〉

t′∈B
|, (10)

where the averages are taken over the time intervals before and
after the jump at time tj, i.e., A = [tj−1 + T/2, tj − T/2] and

Frontiers in Physics | www.frontiersin.org 10 January 2020 | Volume 7 | Article 224173

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Segovia-Gutiérrez et al. Diffusion of Anisotropic Particles

B = [tj + T/2, tj+1 − T/2], respectively. (Note that, in contrast,
1θi(τ , t) = θi(t+τ )− θi(t) represents the difference between two
instantaneous angles).

We consider changes in the angular trace corresponding to
phop(tj) > 0.75 rad2 as significant changes (“jumps”) occurring
at time tj. Smaller threshold values were found to be too close
to the noise level and hence to yield unreliable results. In
Figure 10A red dots indicate where angular jumps occurred
along the trajectory. Several angular jumps occur while the
trimer remains in an individual minima. Therefore, the angular
jumps are not related to escapes from minima. This can also be
seen from a comparison of ri(t) and phop(t). At times tj where
phop(tj) shows a peak and hence indicates a jump in θi(t), the
translational motion ri(t) does not show significant changes or
jumps. Thus, based on phop(t), angular jumps can be identified
but they seem uncorrelated with the translational motion.
Angular jumps have previously been observed for the motion
of dimers exposed to a periodic potential energy landscape
created by a fringe pattern [43]. In this study, rotations within
the one-dimensional potential minima have been experimentally
observed and theoretically predicted to occur through discrete
rotational jumps. These rotational jumps were found to be
coupled to the translational motion.

Having identified the angular jumps, the occurrences of
clockwise and counter-clockwise jumps were compared. They are
equally likely and independent of the previous jump direction.
The ratios of the probabilities for clockwise and counter-
clockwise jumps were found to be between 0.989 and 1.011 for
the different laser intensities PL and do not show a dependence on
the laser intensities PL (taking into account a total of 6,615 jumps
during a total measurement time of ∼ 235 h). Thus, memory
effects are absent for all investigated laser intensities PL.

The probability distribution of the magnitude of angular
jumps, p(12), was investigated. Again, phop(tj) > 0.75 rad2

is taken to indicate jumps. This criterion suppresses small 12

and hence the resulting distribution will not represent the true
distribution reliably at small 12 (12 <

√
0.75 rad ≈ 50◦)

and, depending on the temporal extent of the jumps, at larger
values of 12. Despite these shortcomings, we will continue
with this analysis. In addition to the anticipated suppression
of small values of 12, p(12) decreases for increasingly large
jumps (Figure 11A). In the absence of an external potential, the
decrease of p(12) follows a Gaussian distribution as expected.
With increasing laser intensity PL, p(12) keeps its overall shape
but shows a high probability for jumps with 12 ≈ 120◦. This is
in agreement with the increasingly more pronounced oscillations
in Gs(1θ , τ ) (Figure 8) and supports the idea of discrete angular
jumps with 12 ≈ 120◦.

Based on phop(t), the residence time between two jumps,
1t = tj − tj−1, can be extracted as the time elapsed between
two consecutive occurrences of phop(tj) > 0.75 rad2 and the
distribution of residence times, p(1t), determined. The times are
found to be exponentially distributed for all laser intensities PL
(Figure 11B) as expected for a Poisson process. An exponential
fit provides the mean residence time 〈1t〉. It ranges from ∼

160 to 230 s with increasing laser intensity PL (Table 1). These
values can be compared to the mean residence times estimated

FIGURE 11 | (A) Probability distribution p(12) of angular jumps 12 for

different laser intensities PL (as indicated). Angular jumps are identified by

phop(t) > 0.75 rad2 which implies that small jumps with 12 <
√
0.75

rad ≈ 50◦ are suppressed (vertical line in gray area) and, depending on the

temporal extent of the jumps, jumps with larger values of 12 (gray area). (B)

Probability distribution p(1t) of residence times 1t for different laser intensities

PL (as indicated). Straight lines represent exponential fits to p(1t) at small 1t.

from the ratio of the total measurement time Tm and the total
number of jumps during this time, Nm, where Tm ≈ 100 h and
Nm ≈ 1,700 for each laser intensity (Table 1). The values are in
reasonable agreement given the different weightings involved in
the two approaches.

Based on the second moment of p(12) and the mean of
p(1t), the long-time rotational diffusion coefficient Drot

L can
be calculated assuming that the jumps dominate the long-time
rotational diffusion:

Drot
L =

〈122〉

2〈1t〉
, (11)

where we take 〈122〉 = (120◦)2 = (2.09 rad)2. With the values
of 〈1t〉 given above, Drot

L can be calculated for the different PL
(Table 1). The calculated values are in very good agreement with
the experimentally determined values (Figure 7C).

3.3.4. Link Between Rotation and Translation
Above we considered the self part of the van Hove function
for angular displacements Gs(1θ , τ ) as a function of delay
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time τ (Figure 8). To investigate the correlation between
rotation (angular displacements 1θ) and translation (spatial
displacements 1r), the self part of the van Hove function for
angular displacementsGs(1θ ,1r) as a function of displacements
1r is considered [Figures 12A–D which for clarity shows
Gs(|1θ |,1r) instead of the symmetrical Gs(1θ ,1r)]. Without
an external potential, Gs(1θ ,1r) broadens with increasing 1r.
As the translational displacement 1r increases, larger angular
displacements 1θ also become more likely. In the presence
of an external potential, Gs(1θ ,1r) also broadens and in
addition develops characteristic maxima. This indicates that the
particles have preferences for specific angular displacements
1θ . With increasing laser intensity PL, the maxima become
more pronounced but the general behavior remains similar.
For small 1r . 0.8µm, large values of Gs(1θ ,1r) are
observed at multiples of 120◦. This is consistent with the jumps
of 120◦ discussed above and demonstrated, for example, by
maxima in Gs(1θ , τ ) separated by ∼ 120◦ (Figure 8) or by
the high probability for jumps with 12 ≈ 120◦ in p(12)
(Figure 11A). Since the displacements of the center-of-mass are
quite small, these observations reflect rotations of the trimers
with the spheres swapping their locations but the center-of-
mass of the trimer essentially remaining in the same position
(Figure 13A). This explains why no significant translational
displacements are observed when angular jumps are identified
(Figure 10B) and hence why the rotation and translation appear
uncorrelated based on phop(t). Upon increasing the translational
displacements to 0.8µm ≤ 1r ≤ 1.4µm, the maxima
at multiples of 120◦ vanish and instead maxima at 60◦ and
much smaller maxima at 180◦ and 300◦ emerge. This is

consistent with two minima remaining occupied while one
neighboring minimum is newly occupied (Figure 13B) because,
in an idealized situation, this involves a rotation by 60◦ and
possible further rotations by multiples of 120◦ in addition to a
translational motion by σ/

√
3 ≈ 1.2µm. Therefore, in this case,

a rotation of 60◦ is coupled to a translation of about σ/
√
3. This

coupling of translation and rotation could not be detected with
the hop identifier because it cannot reliably identify a jump of
60◦ with the criterion phop(tj) > 0.75 rad2. Larger translational
motions (1r > 1.4µm) imply that at most one minimum
remains occupied whereas two neighboring minima are newly
occupied. If one minimum remains occupied, this involves in the
idealized case shown in Figure 13C a rotation between 120◦ and
180◦ and possibly further rotations by multiples of 120◦ as well
as a displacement σ ≤ 1r ≤ 2σ/

√
3. Moreover, a motion to

new minima can involve any rotation and any displacement with
1r & σ . This is reflected in the broad distribution of angular
displacements and the lack of a preference for a specific angular
displacement for large translational displacements 1r & 1.6µm.
This is qualitatively different from the van Hove function for
angular displacements as a function of delay time τ , Gs(1θ , τ ),
which also shows maxima at specific angular displacements at
long delay times τ (Figure 8). This preference of Gs(1θ , τ ) for
specific angular displacements can be maintained during long
time periods because a long time period does not necessarily
imply significant translational motion during which any angular
displacement can occur but does allow for negligible translational
motion while a swap of the positions of the spheres results in a
rotation by a multiple of 120◦ (Figure 13A). Thus, the coupling
between translation and rotation depends on the distance the

FIGURE 12 | Self part of the van Hove function Gs(|1θ |,1r) for angular displacements |1θ | for different translational displacements 1r (indicated by the color) for

trimers exposed to different laser intensities PL (as indicated, A–D). Note that Gs(1θ ,1r) is symmetrical and hence Gs(|1θ |,1r) is shown for clarity.
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FIGURE 13 | Schematic representation of a trimer (differently colored open

circles) undergoing rearrangements involving (A) three, (B) two and (C) one

initial minima remaining occupied as well as the corresponding angular (1θ ,

arcs) and translational (1r, arrows), displacements. The center-of-mass is

indicated by a filled circle and the initially occupied minima are indicated by

crosses. The particle size and the speckle size are assumed to be equal.

Idealized situations with all three spheres initially perfectly placed in minima are

represented here. This does not fully reflect the random nature of the potential

but may reasonably approximate the actually occupied locations with low

potential energies for the whole trimer.

particle traveled. At very small distances and hence without
significant translation, rotations can occur. In contrast, rotations
are coupled to translations at intermediate distances (0.8µm ≤

1r ≤ 1.4µm). At larger distances translations and rotations are
again decoupled.

In addition to the maxima of the van Hove function
Gs(1θ ,1r), the general broadening of Gs(1θ ,1r) is
characterized by the mean squared angular displacement
(MSAD) 〈1θ2(1r)〉 as a function of the translational
displacement 1r (Figure 14A). Without an external potential,
〈1θ2(1r)〉 increases with increasing translational displacement
1r. In contrast to 〈1θ2(τ )〉 (Figure 7A), 〈1θ2(1r)〉 starts
at 1r = 0 with a finite value since the trimer can
rotate without translating, whereas it cannot rotate in no

FIGURE 14 | (A) Mean squared angular displacement (MSAD) 〈1θ (1r)2〉

normalized by the short-time rotational diffusion coefficient Drot
s and (B)

orientation correlation function 〈cos (1θ (1r))〉 as a function of displacement 1r

normalized by the sphere diameter σ for trimers exposed to different laser

intensities PL (as indicated).

time (〈1θ2(τ=0)〉 = 0). In the presence of an external
potential, translation is restricted and hence even larger
angular displacements are possible during small translational
displacements. With increasing translational displacements,
〈1θ2(1r)〉 increases further.

The experimental uncertainties at large displacements are
quite considerable in the presence of a random potential. This
is due to the long time required for large displacements resulting
in only a small number of large displacements being observed.
This is particularly true for large laser intensities PL. The data
shown in Figure 14 are based on at least 150 displacements.
This number of displacements is easily observed without an
external potential. However, with increasing laser intensity PL,
this number of displacements is only detected for progressively
smaller displacements 1r. Nevertheless, within the experimental
uncertainties, the data suggest that 〈1θ2(1r)〉 does not depend
on the laser intensity PL. This implies that the random potential
slows down the translation and rotation of the trimers equally.
This seems reasonable because the spheres have to move in the
same random potential for both, a translation and a rotation of
the trimer. Translation and rotation are considered separately
only to simplify the analysis and data interpretation and thus
for our convenience. Moreover, although at large distances 1r
the uncertainties do not allow for unambiguous conclusions,
the data seem to indicate that 〈1θ2(1r)〉 might not depend
on the presence of an external potential at distances beyond
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1r ≈ 2µm. This is about the spatial correlation length of the
random potential [34]. This suggests that, at distances larger
than the spatial heterogeneity of the random potential, the
random potential has no specific effect on the translation and
rotation except to generally slow down the motion. In contrast,
at distances smaller than the spatial heterogeneity, the random
potential leads to specific movements resulting in all or some of
the occupied minima remaining occupied (Figure 13).

The coupling between rotation and translation is also
characterized by the orientation correlation function
〈cos (1θ(1r))〉 (Figure 14B). Essentially independent of
the laser intensity PL, the orientation correlation function
〈cos (1θ(1r))〉 decays within 1r ≈ 2µm and hence on a length
scale very similar to the one found above and to the spatial
correlation length of the random potential [34]. Additionally,
〈cos (1θ(1r))〉 for trimers not exposed to a random potential
decays on a comparable length scale. This could be a coincidence
since the spatial correlation length of the random potential and
the size of an individual sphere are similar. Future experiments
with different particle sizes and different spatial correlation
lengths, which can be varied as previously described [34], will be
devoted to this issue.

4. CONCLUSIONS

The translational and rotational dynamics of trimers subjected
to a random potential energy landscape have been investigated.
The translational center-of-mass motion is characterized by
subdiffusion at intermediate times due to the confinement to the
minima and diffusion at long times reflecting the randommotion
between minima. The dynamics hence resemble the dynamics
of spheres, which are the building blocks of the trimers, but the
trimers are more strongly affected by the potential. The rotational
mean squared angular displacements (MSAD) are only slightly
affected by the potential. However, a more detailed analysis based
on the van Hove distribution function and the hop identifier
indicates discrete jumps of 120◦ that are particularly pronounced
at long times and large magnitudes of the modulations of the
random potential. These jumps are found to dominate the long-
time rotational diffusion.

The rotational motion is correlated with the translational
motion due to the symmetry of the trimers. During the angular
jumps of about 120◦, the spheres forming the trimer swap
their positions without any significant translational motion. If
only two out of the three initial minima remain occupied,
a jump of 60◦ is coupled to a translational motion between
∼ 0.8 and 1.4µm. This is in agreement with an idealized

model (Figure 13). Upon a larger translational motion, beyond
the spatial correlation length of the random potential, any
angular displacement becomes possible and hence the correlation
between translation and rotation is lost. In this regime, the
random potential slows down the translational and rotational
dynamics equally.

The work presented here can be extended in future
projects. For example, different particle or speckle sizes
could be investigated to study the effect of their size ratio.
Depending on the size ratio, the rotational dynamics could be
favored or disfavoured compared to the translational dynamics.
The coupling between translation and rotation might also
be affected by the symmetry of the particles and hence
other multimers, such as dumbbells, or other anisotropic
particles, such as elliptical or platelike particles, could be
studied. In addition, in concentrated samples the interplay
between the external random potential and the particle–particle
interactions can be explored. The random potential could also
be replaced by a periodic potential which would also have a
very significant effect on the correlation between translation
and rotation.
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The life of a cell is governed by highly dynamical microscopic processes. Two notable

examples are the diffusion of membrane receptors and the kinetics of transcription factors

governing the rates of gene expression. Different fluorescence imaging techniques

have emerged to study molecular dynamics. Among them, fluorescence correlation

spectroscopy (FCS) and single-particle tracking (SPT) have proven to be instrumental

to our understanding of cell dynamics and function. The analysis of SPT and FCS is an

ongoing effort, and despite decades of work, much progress remains to be done. In this

paper, we give a quick overview of the existing techniques used to analyze anomalous

diffusion in cells and propose a collaborative challenge to foster the development

of state-of-the-art analysis algorithms. We propose to provide labeled (training) and

unlabeled (evaluation) simulated data to competitors all over the world in an open and

fair challenge. The goal is to offer unified data benchmarks based on biologically-relevant

metrics in order to compare the diffusion analysis software available for the community.

Keywords: diffusion in cells, continuous-time randomwalks, fractional Brownian motion, fluorescence correlation

spectroscopy, single-particle tracking

1. INTRODUCTION

The life of a cell is governed by highly dynamical microscopic processes occurring at different space
and time scales from single macromolecules up to organelles. Optical microscopy provided four
decades ago the first measurements of biomolecule motion in cells. First by fluorescence recovery
after photobleaching (FRAP) [1] and fluorescence correlation spectroscopy (FCS) [2], and more
recently with the help of single particle tracking (SPT) [3, 4]. Several factors have colluded to
popularize these techniques in many biophysics and biology labs: (i) the development of highly
sensitive detectors, (ii) the emergence of genetically encoded fluorescent protein labeling in the late
90s [5–7], and (iii) the advent in the years 2000–2010 of far-field super-resolution microscopy [8–
12]. All these technological efforts have granted us access to the monitoring of molecular motion in
cells with unprecedented spatial (down to single molecule) and temporal resolution [13, 14]. The
adoption of these techniques has been paramount in the advancement of the understanding of cell
organization and dynamics [15–17].
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While acquiring sufficient experimental data sets used to be a
limiting factor, these technological advances combined with data
acquisition parallelization provide nowadays huge amounts of
data available for analysis of molecular motion inside the cell.
In turn, the richness of this data has unraveled an unforeseen
complexity and diversity of mechanisms for biomolecule motion
in cells. Therefore, many efforts are devoted to analyze data
provided by FCS or SPT with direct or inference approaches.

However, choosing the appropriate algorithms to analyse the
complexity of the observed phenomena is still an important
challenge. Indeed, the richness of experimental data often makes
it difficult to determine which are the physical models to be
considered and which are the relevant biophysical parameters
to be estimated from them. We review and address this issue in
this perspective.

We will first briefly review key anomalous diffusion models
relevant to cell biology and summarily describe some of the
existing techniques to either infer model parameters or to
perform model selection. We will discuss the relevance of
numerical simulations and the importance of designing realistic
data sets closely mimicking the results obtained in experiments
on biological samples.Wewill also highlight the often overlooked
limitations in current acquisition methods and emphasize the
role of experimental noise and biases of the aforementioned
techniques. Finally, we will present and advocate in favor of
the development of comprehensive sets of simulated data and
metrics, allowing the community to objectively evaluate existing
and new analysis tools. Our hope is that this work will instigate an
open discussion about the limitations and challenges of analysing
andmodeling diffusion ofmolecules in the complex environment
of the cell.

2. BROWNIAN VS. ANOMALOUS
DIFFUSION

Maybe one of the best-known result of the theory of Brownian
diffusion is that the mean squared displacement (MSD) of a
random walker scales linearly with time, and is proportional
to the diffusion coefficient of the fluid in which diffusion takes
place. With x(t) being the position of the random walker at

time t (in one dimension), this means that the MSD
〈

x(t)2
〉

=

2Dt, where 〈·〉 denotes ensemble averaging and x(0) = 0.
However, Brownian diffusion does not explain the physics of
disordered systems. Interestingly, an ubiquitous observation in
cell biology is that the diffusive motion of macromolecules and
organelles is anomalous, i.e., the MSD change with time is
typically characterized by a sublinear increase. In most instances,
this sublinear increase of the MSD with time can be fitted
to a power-law relation

〈

x(t)2
〉

∝ tα with exponent α <

1, which justifies the vocable of “subdiffusion.” Subdiffusion
is usually attributed to cellular crowding, spatial heterogeneity
or molecular interactions. Another possibility of anomalous
diffusion is superdiffusion, with 1 < α < 2. Indeed a lot of
processes in biology exhibit active transport or combinations of
active and random motions.

Anomalous diffusion in cells is therefore a very active area of
research involving biophysics, cell biology, statistical physics and
mathematical modeling.

When confronted to a set of data retrieved from FCS or
SPT experiments, the first question that one needs to answer is
whether the measured subdiffusion is indeed a manifestation of
an anomalous process. Often, a combination of several normal
diffusion mechanisms or experimental artifacts gives rise to an
apparent diffusion. If an anomalous subdiffusion—characterized
by a power law scaling of the MSD with time—can be identified,
establishing the physical model behind the diffusion process can
shed light on the molecular mechanisms driving the motion of
the molecule of interest.

Below, we will first focus on three classical models
for anomalous subdiffusion and their common biological
interpretation, namely the continuous-time random walk
(CTRW) model, the fractional Brownian motion (fBm) model,
and random walks on fractal and disordered systems (for
a review, see e.g., [18]), then we will briefly describe
different models covering super-diffusion processes that can be
encountered in cells, such as run and tumble model, Lévy flights
and super-diffusive fBm.

The continuous-time random walkmodel is a generalization
of a random walk in which the diffusing particle waits for
a random time between jumps. More generally, when the
distribution φ(τ ) of waiting times τ is long-tailed and cannot
be averaged (with e.g., φ(τ ) ∝ τ−(1+α) and 0 < α < 1),
the ensemble-averaged MSD shows anomalous scaling with a
power law. A straightforward interpretation of a CTRW in the
context of molecular biology is assimilating the waiting times
to interactions of the molecule with an immobile substrate (at
the relevant temporal and spatial scales). It is important to note
that an interaction with a characteristic residence time does not
fulfill the conditions of the model. Interestingly, however, the
waiting-time distribution of non-specific interactions, abundant
in the cell, might be non-averageable and thus CTRW a good
microscopic model for one type of anomalous subdiffusion in
the cell. It has been proposed to govern the cytosolic diffusion
of nanosized objects in mammalian cells [19] and it has also been
used to explain the lateral motion of potassium channels in the
plasma membrane of cells [20].

The fractional Brownian motion model is a different
generalization of Brownian diffusion in which the jumps between
lag times follow a normal distribution but respect a correlation
function given by

〈

x(t)x(s)
〉

= 1/2(t2H + s2H − (t − s)2H) for
t > s > 0. A fBm process is thus characterized by the Hurst
index H, ranging between 0 and 1. The value of H determines
the type of jump dependence in the fBm process, such that
H > 1/2 indicates a positive correlation between the increments,
Brownian motion is achieved for H = 1/2, and the increments
are negatively correlated when H < 1/2. The MSD of a fBm

is given by
〈

x(t)2
〉

∝ t2H , which, again, encompasses Brownian

diffusion for H = 1/2 and yields subdiffusion for H < 1/2
or superdiffusion for H > 1/2 (see below). The fBm model
describes faithfully the diffusion of particles in a viscoelastic fluid
[21], and it has been often argued that molecular crowding in
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the cell gives rise to microviscosity and therefore to anomalous
diffusion. It was proposed as the model of telomere diffusion in
nucleus [22, 23].

Another possible model for anomalous diffusion in the cell is
that of random walks in fractal media and disordered systems.
Fractals are self-similar mathematical objects built upon the
repetition of simple rules and characterized by a non-integer
number: the fractal dimension. Although still under debate, some
authors have proposed that chromatin organization follows, as
a first order approximation, a fractal structure, and estimates of
its fractal dimension have been proposed [24]. Random walks
on fractals are subdiffusive due to the spatial correlation of
displacements, and the power law scaling factor of the MSD
with time is given by 2/dw, where dw is the dimension of the
walk that is specific to the fractal. Although the pertinence of
a fractal network model to describe molecular diffusion is still
up to debate, it is justified to attempt to integrate the multiscale
characteristics of the cell organization to such fractal model.

Amongst the existing superdiffusive motion in cells is the
run-and-tumble process, which consists of alternating phases
of fast active and slow passive motion leading to transient
anomalous diffusion [25]. Initially observed for bacteria motion
it has recently been used to describe molecular motions in
cells, such as the motion of motors along cytoskeletal filaments.
Motor proteins perform a number of steps (run) until they
randomly unbind from the filaments and diffuse in the crowded
cytoplasm (tumble) before rebinding [26]. The same could also
stand for transcription factors in the nucleus searching for their
initiation codon, alternating successively diffusion and 1D sliding
along the DNA. Superdiffusive fBm which is characterized by an
Hurst index H > 1/2 has been described as the intracellular
motion of particles in the super-crowded cytoplasm of a amibae
[27]. Finally, Lévy flights, has previously been proposed for
intracellular actin-based transport mediated bymolecular motors
[28] and recently in the case of a membrane targeting C2
protein [29].

Note that by no means the above described models
exhaustively cover the range of models that are known to
exhibit anomalous diffusion (see e.g., [30–32]). However, the
CTRW, fBM, and random walks in a fractal models have been
extensively studied; more importantly, they have the potential
to map parameters of the model to relevant biological and
biophysical features. Therefore, we will limit our discussion to
the aforementioned cases, and how they can be used to analyse
and interpret experimental data obtained by FCS and SPT.

3. WHICH METHODS TO CORRECTLY
ANALYSE DIFFUSIVE PROCESS?

3.1. Fluorescence Correlation
Spectroscopy
The principle of FCS consists in measuring the temporal
variations of molecular concentration at a given position within
the volume of a biological sample. This is achieved bymonitoring
the temporal fluctuations of fluorescence signal emitted by the
molecules present in the observation volume, which is excited

with a focused laser. The underlying assumption of FCS is that
the system is in a dynamic equilibrium and therefore the signal
fluctuation can be correlated to the diffusion of molecules within
the observation volume. While the amplitude of the fluctuations
relates to the number of molecules in the observation volume, the
decay of their autocorrelation in time depends on their mobility.

A typical FCS set-up consists of an illumination laser and
a confocal microscope with a fast single-channel single-photon
detector. The laser beam illuminates the detection volume with,
usually, a Gaussian intensity profile and excites the fluorophores
in the focal volume. The emitted fluorescent light is collected
by the detector and it depends on the fluctuations of the local
concentration of the labeled molecules.

Parameters, such as the average number of molecules (N)
and their mean residence time (τd) in the confocal volume
(surface) can be obtained either directly from this fluorescence
intensity fluctuation measurement or indirectly by a temporal
auto-correlation of this fluctuation. The second method is the
most popular approach for FCS data analysis (see Figure 1). The
main drawback of standard FCS is the lack in directly monitoring
possible spatial and/or temporal heterogeneities that will give rise
to deviation from pure Brownian motion. Several approaches
have been proposed to overcome this issue including spot
variation FCS (sv-FCS) [14, 33], line scanning FCS and STED-
FCS [34, 35], as well as imaging approaches, such as (spatio)-
temporal imaging correlation spectroscopy [(S)TICS], raster
imaging correlation spectroscopy (RICS) [36] or more recently
whole plane Imaging FCS (Im-FCS) [37]. With the development
of commercial microscopes coupled to FCS capabilities, this
technique and its derivatives are now becoming more and more
popular in biology labs.

A large range of dynamic processes leading to concentration
fluctuations (i.e., diffusion, flow, chemical reactions and
different combinations of these) has been investigated to
generate corresponding analytical expressions of the temporal
autocorrelation curve G(t) in the case of Gaussian (laser
confocal) illumination/detection geometry (for a review, see [38]
and references therein). For instance, in the case of a Brownian
motion in 2D, G(t) = 1/{N̄(1 + 4Dt/w2)} where w is the size
of the beam waist and N̄ is the average number of molecules in
the observation volume. The main approach to diffusive process
identification and quantification in FCS consists in non linear
least square fitting of experimental autocorrelation curves using
above described analytical expressions and discriminate amongst
these models which suits the best using various statistical test.
Although it can deliver quantitative values of the parameters
of the statistically chosen model of motion, it could be strongly
biased, in particular for complex motions. A Bayesian approach
to single spot FCS correlogram analysis has been proposed to
discriminate between different models without bias [39, 40].

Another way to discriminate between different types of
motion is to explore space and time with FCS using svFCS
for example. svFCS offers the opportunity to generate so-called
“diffusion-laws” by plotting changes in the residence time (τd)
as a function of the surface (i.e., laser waist) explored w2.
This has enabled to directly identify deviations from pure
Brownian motion in the plasma membrane of cells [41] or
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FIGURE 1 | Schematic view of the typical setup used in fluorescence correlation spectroscopy (A) and single/multiple particle tracking (B) experiments. (A) A laser is

focused on the fluorescently labeled sample by the objective of a microscope. The fluorescence is then collected by the objective and focused in a confocal way

(using a pinhole) on a single photon counting detector (avalanche photodiode, APD). This detector records the fluctuation of fluorescence emission within the confocal

volume of the sample. A direct link to an electronic correlator authorize on line generation of the autocorrelogram. (B) A laser is focused at the back focal plane of a

microscope objective in order to obtain a full field illumination of the sample. The fluorescence emitted by each single particle present in the illumination field is then

directly imaged on a sensitive camera (Charge Coupled Device, CCD). A movie is obtained and the post processing of this movie allow tracking of the individual

emitter and latter on, generation of Mean Square Displacement (MSD) as a function of lag time curves.

anomalous diffusion occurring, either during first order lipid
phase transition [42] or in non-homogeneous fluids, gels and
crowded solutions [43, 44]. It has been recently extended to the
line-scanning STED-FCS [45] and to Im-FCS [46].

3.2. Single/Multiple Particle(s) Tracking
While the concentration of the subset of fluorescent molecules
within a confocal volume in FCS experiments is close to the
single-molecule regime, the measurement gauges the average
motion of the ensemble of molecules diffusing in and out the
observation spot. Conversely, SPT is by construction a single-
molecule approach, monitoring thus the motion of individual
molecules. One of the strengths of SPT is the potential to capture
rare events or behaviors that would otherwise be buried within
an average.

The principle of SPT experiments is simple, it consists in
retrieving the changes in position of individual molecules within
the sample of interest, i.e., the time series of two-dimensional or
three-dimensional coordinates of the molecule location. This is
achieved in two stages: firstly by estimating the centroid of the
measured point spread function (PSF) of each detected individual
emitter, and secondly by linking the trajectory of the same
molecule between consecutive images. Importantly, the accuracy

at which one is able to pinpoint the molecule position depends
only on the signal-to-noise ratio of the measured PSF, obtaining
sub-wavelength accuracy typically in the order of∼10 nm.

The basic SPT experimental setup consists of an excitation
laser, a high NA objective, a set of dichroic and filters to separate
the excitation and emission wavelengths, a tube lens, and a
highly sensitive camera capable of detecting single fluorophores
(see Figure 1). The laser is focused on the back focal plane of
the objective to obtain a wide-field illumination configuration,
which can be adjusted to total internal reflection (TIRF) or
highly inclined illumination (HILO) [47] to increase the SNR
when studying molecular dynamics in cellular membranes
or at the interior of cells, respectively. The fluorescence
light is collected by the same objective, and an image of
the single emitters is formed on the camera plane via the
tube lens [13, 48].

The amount of retrieved information about the biological
system from an SPT assay depends on the nature of the
experiment. The study of a slowly diffusing transmembrane
protein will yield much longer traces than a fast diffusing
transcription factor in the nucleus. In the latter case, the traces
will be limited to the number of images in which the tracked
particle remains within the depth of focus around the image
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plane, unlike the former case where photobleaching is the
limiting factor.

The classical analysis of a set of trajectories consists in
computing the dependence of the MSD (time-average or
ensemble-average) over time from the distribution of jumps at
increasing lag times defined by the camera acquisition, typically
in the order of tens of ms. However, as we will see in the
following section, different approaches and estimators have been
proposed in order to analyze and interpret SPT data to its
full extent. In comparison to FCS, the analysis of SPT has
been intensively investigated, and one can distinguish several
families of techniques (see also for reviews: [24, 49, 50]). In
the field of stochastic processes, the inference of a diffusion
coefficient from a sampled process is a common problem (see for
instance [51, 52]). However, this theory cannot be applied when
moving to experimental trajectories, and other approaches have
been proposed.

3.2.1. MSD-Based Techniques
A first family of SPT analysis algorithms tries to perform
robust MSD inference. The use of MSD to study diffusion was
introduced by Einstein in 1906, and was revived in biology
by [53]. MSD analysis can either be performed by inferring a
diffusion coefficient from a single trajectory (a setting studied
in [54]) or by pooling various trajectories [55], and many
refinements and estimators based on the MSD have been
proposed [56, 57].

When inferring kinetic parameters from a series of single
trajectories, one faces the issue that for common trajectory
lengths obtained in nuclear SPT (length of << 20 points per
track) and common localization error, inaccuracy might reach
100% [54, 58]. As such, any approach that uses MSD on short
trajectories should be evaluated with great care. For longer
trajectories (such as diffusion in a membrane), approaches have
been proposed that can segment trajectories based on the type of
motion [59].

3.2.2. Hidden Markov Models (HMMs)
A second family of SPT analysis algorithms derives fromMarkov
models and Hidden Markov Models. Most of them were derived
to perform trajectory segment classification, the hidden variable
inferred being the state of diffusion, or the current diffusion
coefficient. For instance, Monnier et al. [60] introduces the
HMM-Bayes technique to infer whether a trajectory segment is
in one (or several) diffusive or active transport states. Moreover,
Slator et al. [61] implemented the inference of localization noise
to infer switches in diffusion coefficient within one trajectory. A
similar approach was used to detect confinement [62].

These methods often rely on a fixed number of states,
which comes from significant mathematical limitations. Some
of these limitations were overcome using so-called variational
Bayesian inference [63]. The prototypical algorithm performing
variational Bayesian inference on a HMM is vbSPT [64]. This
algorithm can estimate the number of diffusive states and
progressively consolidate increasing information about these
states as trajectories are analyzed. The algorithm was further
refined to incorporate the estimate of localization error [65].

3.2.3. Inferring Maps of Diffusion Coefficients
A third family of SPT analysis algorithms not only infers the
diffusion coefficient over the population of diffusing molecules,
but also a spatial map of diffusivity [66, 67]. This approach
has been pioneered in membranes, where a high density of
tracks can easily be obtained. An extension of this approach
using an overdamped Langevin equation of the single molecule
motion has shed new lights on HIV-1 assembly within living cells
[68]. These promising techniques have not been tested beyond
membrane molecules, but the high diffusion coefficients of freely
diffusing cellular proteins might render such a map difficult to
establish. Moreover, unlike in membranes, proteins can reside at
the same location with different diffusion coefficients, depending
on whether they are interacting with a given structure or not.

3.2.4. Inferring Anomalous Diffusion
Many approaches have been proposed to infer anomalous
diffusion in cells; some of them are reviewed in Guigas
and Weiss [69]. A direct technique can be used by fitting
the MSD with a power law to estimate the anomalous
diffusion coefficient α. However, alternative techniques have been
proposed, many of them focused on the inference of model-
specific parameters, or on techniques to distinguish between
types of anomalous diffusion.

Several methods have been proposed to infer diffusion
parameters for several anomalous diffusion models. For the case
of diffusion in disordered (fractal) media, Shkilev [70] proposes
estimators that can be applied to SPT, FCS and FRAP. For the
case of fractional Brownian motion, techniques to infer both the
anomalous diffusion coefficient (α) and the generalized diffusion
coefficient (Dα) have been proposed. The former approach
[71] takes into account noise (localization error) and drift,
and uses Bayesian inference. The latter [72] relies on squared
displacements and uses least squares to estimate Dα .

Conversely, instead of trying to estimate the parameters
of a known model, a key question is to distinguish between
various anomalous diffusion models. A prototypical approach
[73] used Bayesian inference to distinguish between Brownian,
anomalous, confined and directed diffusion, and uses the
propagators associated with each different diffusion model.
However, Hellmann et al. [74] found using simulations that it
is very hard to distinguish between fBm and diffusion on a
fractal when localization noise is present, both in SPT and FCS.
The authors used a combination of techniques for the inference,
including MSD and p-variation techniques. In Burnecki et al.
[23], the authors propose a series of tests to “unambiguously”
identify fBm, by progressively proving that several other models
are wrong. Other tests were proposed to distinguish fBm from a
CTRW using a test based on p-variations [75]. The p-variations
are the finite sum of the p-th powers of the increments of the
trajectory. Finally, approaches inferring the mean first passage
time of a particle were used to distinguish between CTRW and
diffusion in fractals [76, 77].

Many other families of techniques to identify types of diffusion
have been proposed. Some relied on maximum likelihood
estimates [78], auto-correlation functions [79] or on more exotic
estimators [80]. Another line of progress was made in the type of
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models being simulated. For instance, Amitai [81] introduced a
model in which TFs can bind and rebind in a dense chromatin
mesh. This model was successively fitted to explain anomalous
diffusion of CTCF dynamics [82].

Finally, we note that many models were developed to infer
trapping potential in membranes ([83, 84] for instance). We
do not review them here since their application seems limited
to membranes.

3.3. Strengths and Limitations of the Two
Techniques
A strong limitation is that the experimental context, either in
FCS or in SPT, may lead to spurious determination of anomalous
diffusion. In other words, specific experimental parameters
(low statistics, location noise, spatial confinement, etc.) and/or
inappropriate analysis of the data can lead to incorrectly conclude
that the diffusion exponent α 6= 1. Those artifacts concern both
SPT [85] and FCS [43]. This is for instance the case if α is
determined by a fit of the MSD or the autocorrelation with time
and the statistical power is low (low sampling of the time points
or short trajectories in SPT, low signal/noise at small or large
times in FCS). To avoid such caveats, model selection must use
more elaborate approaches to unambiguously demonstrate and
characterize an underlying complex diffusion process.

So far, most of the inference tools available in the literature
only partially account for the biases detailed above, and are
usually limited in terms of the anomalous diffusion models they
consider. For instance, in Hansen et al. [58], the authors showed
that an algorithm not taking into account localization error was
likely to improperly estimate diffusion coefficients. Similarly, the
fact that the observed proteins diffuse in a confined volume
leads to a sublinear MSD, a phenomenon that has been widely
documented and that needs to be taken into account to properly
distinguish between genuine anomalous diffusion and mere
confinement effect. Similarly, tracking errors (misconnections
between tracks) can also look like anomalous diffusion.

Some of these biases can be minimized at the acquisition
step (for instance by using fast frame rates and low labeling
density [58]), other need to be explicitly taken into account in
the model. As of today, most inference algorithms available have
not been benchmarked against realistic imaging conditions.
Furthermore, a general realistic inference algorithm is
still missing.

4. CONCLUSION: THE NEED FOR
CONTROLLED BENCHMARKS

Confronted with the variety of approaches described above,
one would like to know the performance of each approach
on typical representative datasets. For the comparison to be
fair, this demands two main ingredients: (i) the existence
of a reference dataset, or benchmark—possibly one reference
dataset for each main classes of experimental methods and
(ii) a fair, objective, transparent and open comparison process,
with datasets, comparison procedures and performance results
that are clearly stated and publicly available. Several fields in

computer science have been using open community competitions
to organize the process and produce open benchmarks for the
community. Computer vision, applied machine learning or time
series forecasting, among many others, have a long tradition
of leveraging these competitions. The strategy has been widely
successful because it parallelizes research along a vast community
of high-skilled researchers. Internet platforms or services are
even available to that purpose, including, among many others,
Kaggle (www.kaggle.com) or DrivenData (www.drivendata.org).
This increases further the size of the competing community, and
the richness of the proposals. In fact, in addition to providing
reference datasets and benchmarks, open competitive challenges
can also foster the emergence of radically new approaches to
the open problem at hand. Many of these competitive challenges
are concerned with biomedical applications (for instance, http://
dreamchallenges.org or https://grand-challenge.org), including
several revolving around microscopy (see e.g., https://cremi.
org). Recently, a series of consecutive community competitions
for single-molecule imaging have involved dozens of labs and
focused on tracking algorithms [86], and 2D and 3D localization
for super-resolution [87]. Finally, another challenge has also been
set up recently to infer the anomalous diffusion exponent from
particle trajectories (http://www.andi-challenge.org/) [88].

In practice, an important feature of competitive challenges
is to provide labeled data examples that the participants will
be able to use as a training set. Indeed according to standard
machine learning practice, this training dataset must be distinct
from the test set, that includes the data used to estimate the
performance of the algorithm. The organizers therefore usually
publish two datasets (training dataset and test), of which only the
training dataset comes with the label of each examples—only the
organizers know the true label of the test dataset. After training,
the results of the challenge is based on some quantification of
the performance of the participant tools on the test set, although
performance on the learning set can also be communicated as
a way to judge overtraining/generalization capacities. In many
cases however, it is not possible to provide the “true” label
of experimental data, because such a gold standard does not
exist. In this case, computer simulations can be used to generate
synthetic data, as long as these simulations are realistic enough
that the performance of the algorithms is not different than their
performance on real experimental measurements. In the recent
challenges on super-resolution, training and test data were a
combination of computer-generated data and experimental data.
Computer-generated data gives a clear access to ground truth
whereas experimental data incorporate uncharacterized biases
that can affect the inference process.

Here we propose to organize an international open
collaborative challenge for the quantification and analysis
of molecule movements in living cells via SPT and FCS. To date,
the generation of realistic computer-simulated data has been
hampered by the number of experimental biases to be taken
into account, and by the diversity of the diffusion models, in
particular for anomalous diffusion. For the challenge, we will
generate both SPT and FCS data from the same set of simulated
trajectories and in different modalities (2D in membranes and
3D in the nucleus) using a dedicated open source simulation
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software, simSPT (https://gitlab.com/tjian-darzacq-lab/simSPT),
that is freely available to the participants to generate their own
additional training sets if needed.

The challenge will be organized around various sub-challenges
that represent the main classes of experimental situations
(high-density short trajectories in membranes, less dense long
trajectories in membranes, very short trajectories in the nucleus)
and the main types of Brownian and anomalous diffusion
(Brownian motion, fractional Brownian motion, continuous-
time random walks and diffusion on fractals), and mixtures
thereof. In the long run, we will also propose sub-challenges
where the molecule dynamics depends on the location, to
emulate localized spatial heterogeneity in the dynamics (local
potentials, position-dependent diffusion coefficients). Moreover,
we will progressively propose two challenge categories. In
parameter inference challenges, the models used to generate the
trajectories (Brownian motion, anomalous diffusion, . . . ) will be
given and the task will be to infer as precisely as possible the value
of the parameters used for the generation. In model selection
challenges, the goal will be to infer what model was used to
generate the data given a known limited list of models.

Finally, we are aware that it may well be that no generic
tool is able to solve all the sub-challenges evoked above. We are
also aware that the difficulty of each sub-challenges can be quite

variable. We therefore propose to start with the simple challenges
and work in collaboration with the community involved in the
analysis of molecular dynamics in living cells, to progressively
climb the steps toward the more difficult sub-challenges. In this
strategy, maintaining an open communication channel between
the organizers and the participants is paramount. To this aim, we
propose to start with amailing list that will be used to support this
communication. Every interested individual is therefore welcome
to subscribe to the mailing list of the challenge by visiting
https://listes.services.cnrs.fr/wws/info/diffusion.challenge. Once
registered in the mailing list through this website, participants
will be able to exchange with themselves and the organizers
and they will receive the instructions to access the datasets of
the challenge.
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A plethora of complex dynamical systems from disordered media to biological systems

exhibit mathematical characteristics (e.g., long-range dependence, self-similar and

power law magnitude increments) that are well-fitted by fractional partial differential

equations (PDEs). For instance, some biological systems displaying an anomalous

diffusion behavior, which is characterized by a non-linear mean-square displacement

relation, can be mathematically described by fractional PDEs. In general, the PDEs

represent various physical laws or rules governing complex dynamical systems. Since

prior knowledge about the mathematical equations describing complex dynamical

systems in biology, healthcare, disaster mitigation, transportation, or environmental

sciences may not be available, we aim to provide algorithmic strategies to discover the

integer or fractional PDEs and their parameters from system’s evolution data. Toward

deciphering non-trivial mechanisms driving a complex system, we propose a data-driven

approach that estimates the parameters of a fractional PDE model. We study the

space-time fractional diffusion model that describes a complex stochastic process,

where the magnitude and the time increments are stable processes. Starting from limited

time-series data recorded while the system is evolving, we develop a fractional-order

moments-based approach to determine the parameters of a generalized fractional PDE.

We formulate two optimization problems to allow us to estimate the arguments of the

fractional PDE. Employing extensive simulation studies, we show that the proposed

approach is effective at retrieving the relevant parameters of the space-time fractional

PDE. The presented mathematical approach can be further enhanced and generalized

to include additional operators that may help to identify the dominant rule governing the

measurements or to determine the degree to which multiple physical laws contribute to

the observed dynamics.

Keywords: anomalous diffusion, fractional derivative, Fourier transform, Laplace transform, regression

1. INTRODUCTION

Technological advances ranging from an impressive improvement in the sensing and
computational resources to the enhancement in data storage play a prominent role in offering
researchers’ new directions to investigate unknown or poorly understood phenomena and boost
numerous scientific areas (e.g., neuroscience, synthetic and system biology, finance, anthropology,
and political sciences). This impact on all sciences is likely to persist with the booming advances
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in data science (DS), machine learning (ML), and artificial
intelligence (AI) [1–4]. Apart from the impressive contribution of
AI in pattern recognition (e.g., images) and language processing,
nowadays AI and data science are contributing to several
developing scientific fields (e.g., the discovery of unwanted effects
of drugs and drug repositioning [5, 6]). For example, one can
consider the problem of “Lamisil” drug used for the treatment
of skin infections, which caused deaths and other liver reactions
after being on the market for years. Although it was found that
the drug is behind the TBF-A generation, which has toxicological
effects, it was not possible to explain how the drug boosts the
TBF-A formation. In 2018, a deep learning-based investigation
identified the pathways leading to TBF-A formation [5]. The
process of TBF-A formation could not be identified before
launching the product on the market due to its complicated
mechanism and limited information on its manifestations. Such
a discovery can have a primordial role in drug discovery and
development by pharmaceutical industries and startups working
in drug discovery (e.g., Kebotix, Deep Genomics).

Furthermore, AI has been recently considered as a useful
analysis and discovery tool in medicine and healthcare. For
instance, computer scientists and radiologists incorporated ML
and AI techniques into the radiological examination in order
to provide better results in medical imaging [7] and to detect
early signs of diseases. Indeed, convolutional neural networks
based approaches enabled the analysis of three dimensional MRI
images and the identification of symptoms of Alzheimer’s disease
[8]. Similarly, AI-based investigation provided new approaches
for quantifying the risk of autism [9]. It is also worth mentioning
that AI has also been introduced in ophthalmology [10]. Beyond
the medical field, reinforcement learning has been recently
used in meteorology in order to study the climate [11, 12].
Consequently, we are witnessing a paradigm shift in mining
and understanding real-world problems, as a variety of late
innovations are based on applying ML algorithms to analyze and
characterize high-dimensional experimental data.

Despite the tremendous boost that is provided by the ML and
AI for the analysis of static data through identifying the statistical
interdependence between components of a system of interest,
there is little to say about analyzing dynamical processes from
big data and uncertainty quantification for large-scale complex
systems. Specifically, ML has a limiting ability in deciphering the
physical driving laws and governing equations frommulti-modal
heterogeneous, scarce, and/or noisy time-series data associated
with complex systems exhibiting multi-scale and multi-physics
spatiotemporal evolution. These multi-scale and multi-physics
spatiotemporal characteristics that occur in physics, biology,
chemistry, neuroscience, and even geology, are usually encoded
through (fractional or integer order) partial differential equations
(PDEs) with possibly uncertain parameters. These PDEs are
derived from conservation laws on energy, momentum, or
electric charge (e.g., diffusion equation, Maxwell’s equations,
Navier-Stokes equations, Schrodinger equations). However, a
plethora of complex systems from biology, neuroscience, or
finance have numerous hidden interaction mechanisms, and the
derivation of the PDEs describing their evolution is unknown. In
the big data era, we witness new opportunities for data-driven

discoveries of potentially new physical phenomena and new
physics laws (or rules). Consequently, one may ask the following
fundamental question: Can we learn a PDE model from a
given set of time-series measurements and perform accurate,
efficient, and robust predictions using this learned model?
This question has motivated researchers to develop methods
for estimating PDE parameters using numerical solutions of
PDEs [13, 14] (which requires careful parameterizations and
high computational cost), Bayesian approaches [15], and a two-
state approach [16–19] where the parameters of the PDEs are
estimated via least squares. However, exploiting the higher-order
statistics of the measurements, which can characterize the rare
events for a robust understanding of complex systems, and
determining whether fractional or integer order PDEs together
with their corresponding parameters govern the observations,
has not been addressed.

Diffusion is one of the fundamental mechanisms used for
analyzing the transport of particles, and a common example of
a diffusion process is the Brownian motion. Chaotic motion of a
particle characterizes the latter process, and it can be modeled by
a random walk such that the mean square displacement follows
the diffusing scaling < (1X)2 >∼ t (where < . > designates
the mean). Furthermore, diffusion is a principal concept that
explains many natural and scientific/technological phenomena
(e.g., particles motion [20], DNA and cellular processing [21–24],
microbial communities [25], brain activity [26], physiological
complexity and cyber-physical systems modeling [27–29]),
neuron spikes [30]. The focus on analyzing complex systems
led to studying anomalous diffusion [31–43] to decipher
complex system properties (e.g., long-range memory, higher-
order correlations, ergodicity breakingmeasured as a discrepancy
between the long time-averaged mean squared displacement
and the ensemble-averaged mean squared displacement). The
anomalous diffusion has been shown to be able to describe
complex fluid dynamics [44, 45], biological systems [46–48],
transport [49], dynamics in fractal structures [50–52], and
economics [53]. Contrary to random walks processes describing
classical diffusion (e.g., Brownian motion), the particle possesses
an internal memory that leads to a non-stationary motion, where
the mean square displacement is heavy-tailed < (1X)2 >∼ tβ

(β is a parameter that is related to the memory of a particle).
The principal purpose for studying anomalous diffusion

is to take into account complex/non-trivial behavior of the
motion of particles usually found in transport processes in
disordered and complex systems. From a phenomenological
perspective, the anomalous diffusion can be better understood
by recalling the assumptions made by Einstein [20] on defining
the normal diffusion: the motion of the Brownian particles
are independent (valid for small concentrations), there exist a
small time scale during which the particle displacements are
statistically independent (i.e., a Markovian behavior), and the
particle displacements at these time scales correspond to a
mean free path distributed symmetrically in positive or negative
directions (i.e., a symmetric Gaussian statistical behavior). In
contrast, anomalous diffusion generalizes the normal diffusion
framework by removing one or more of such requirements on
either Markovian or Gaussian behavior [42, 43]. In the literature,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 May 2020 | Volume 6 | Article 14190

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Znaidi et al. Identifying Arguments of Fractional Diffusion

there are many methods used to analyze anomalous diffusion,
mainly generalized Langevin equation [54, 55], thermodynamics
[56, 57] and in this article, we concentrate our analysis on the
discussion of incorporating fractional derivatives into PDEs to
model anomalous diffusion. In fact, themathematical description
of anomalous diffusion involves a power law expression of
the mean square displacement as a function of time. It often
relies on fractional-order derivatives acting on either space or
time components of a PDE [29, 42, 43]. Indeed, modeling
anomalous diffusion via fractional diffusion equation (i.e., PDE)
can be provided by the master equation for continuous time
random walk, and the solutions of the fractional diffusion
equation can be interpreted as spatial probability densities
evolving in time, related to self-similar stochastic process
encoding the long-range memory property [58]. For instance,
the anomalous diffusion of a particle subject to an external non-
linear force and a thermal bath is described in Metzler et al.
[59] through a fractional Fokker-Planck equation. Here, the time-
fractional Riemann-Liouville derivative models the long-range
memory effects characteristic to anomalous diffusion in random
environments and chaotic Hamiltonian systems [59]. More
generally, the anomalous diffusion has been successfully modeled
by a space-time fractional diffusion equation that assumes
that the process has memory (i.e., time-fractional derivative)
as well as being non-local (space-fractional derivative). More
recently, a comprehensive analysis of the higher-order moments
associated with the amplitude fluctuations of the time-averaged
mean square displacement for an anomalous diffusion model
demonstrated that the skewness and kurtosis can improve the
estimation of the anomalous diffusion exponent and can help at
classifying the anomalous stochastic processes [60].

Despite the significant body of work on anomalous diffusion
models, finding the exact parameters of the corresponding
governing PDE is not a trivial task. In this context, given a
spatiotemporal dataset, we aim to develop an efficient algorithm
for estimating the parameters of the generalized fractional-order
PDE thatmodels the dynamics of the process under investigation.
Consequently, by identifying these parameters, one can also
investigate the physical rules modeled by the PDE. In the results
section, we analyze two types of PDEs and discuss algorithmic
approaches to determine their parameters from the time-series
data. We also provide a simulation study where we verify
the correctness and effectiveness of the proposed algorithmic
approaches on deriving the exact parameters using synthetic
trajectories generated from the PDE model.

2. DATA-DRIVEN APPROACH FOR
ANALYZING ANOMALOUS DIFFUSION

2.1. Space-Time Fractional Diffusion
Equation
The space-time fractional diffusion equation has been proposed
in previous works as a mathematical model to analyze anomalous
diffusion [34, 61–65]. In a nutshell, the space-time fractional
diffusion equation in (1) consists of a fractional Riesz-Feller
derivative of the order α > 0 (space-derivative) that encodes

the space variations and a fractional Caputo derivative of the
order β > 0 (time-derivative) that measures the time variations.
To better generalize, we also consider the skewness factor in the
space derivative of the diffusion equation. Hence, the space-time
fractional diffusion equation is defined as

tD
β
∗ u(x, t) = D× xD

α
θ u(x, t), ∀x ∈ R,∀t ∈ R+, (1)

where the operators xD
α
θ and tD

β
∗ designate the fractional Riesz-

Feller derivative of order α and skewness θ [66], and the Caputo
time-fractional derivative of order β [67], respectively1. The
parameter D denotes the generalized diffusion coefficient. The
parameters α,β and θ satisfy the following constraints, 0 < α ≤

2, 0 < β ≤ 1 and |θ | ≤ min{α, 2− α}.
Given a set of time-series trajectories that record the evolution

of particles or agents that exhibits anomalous diffusion modeled
by Equation (1), without prior knowledge about the parameters
of the space-time fractional diffusion equation, our goal is to
use the dataset available to retrieve the exact fractional PDE that
generates the given time-series. Toward this end, we develop a
mathematical framework where the parameter and mathematical
(operator) expression identification task is defined as a regression
problem (Figure 1). Indeed, the regression is formulated as a
least squares problem, where the minimization involves the
theoretical and the empirical statistical (higher order) moments
(i.e., specifically the absolute moments). The choice of the
statistical moments for performing the regression is convenient
because we could derive its closed form expressions just from the
generalized fractional PDE given in Equation (1). For the given
time-series data, Xn(t), 1 ≤ n ≤ N, where N denotes the total
number of trajectories, the time empirical moments are defined
as follows

Mδ
t =

1

N

N
∑

n=1

|Xn(t)|
δ , Sδ

t =
1

N

N
∑

n=1

Xn(t)
〈δ〉, (2)

where x〈δ〉 denotes the signed absolute δ-th power of x and x〈δ〉 =
|x|δsign(x). The time-dependent absolute moment of the data
generated according to the fractional PDE in (1) is given by the
following result.

Proposition 1. The time-dependent absolute moment of the order
δ with 0 < δ < α is written as follows

E[|X(t)|δ] = tδ
β
α D

δ
α ×

Ŵ(1− δ
α
)Ŵ(1+ δ

α
) cos( δπθ

2α )

Ŵ(1− δ)Ŵ(1+ δ
β
α
) cos( δπ

2 )
, (3)

where Ŵ(·) designates the gamma function.

To find the parameters of the fractional PDE in (1), we
rely on analyzing the higher order moments and minimize
the quadratic error between the theoretical and the empirical
absolute higher order moments. However, due to the non-
linear non-convex expression stated in the Equation (3), such a
regression problem is non-trivial and it is non-trivial to provide

1The two operators are clearly defined in the Supplementary Material.
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FIGURE 1 | Flowchart showing an AI architecture used to uncover hidden patterns governing complex phenomena: a data-driven based approach to estimate the

parameters of the space-time fractional diffusion equation from spatiotemporal dynamics.

the theoretical guarantees about the convergence of a multi-
dimensional optimization algorithm used to solve the problem
in one-shot. To tackle the non-convexity, we aim to approach the
parameters estimation via multi-step optimization. For obtaining
additional information from the data, we also derive the signed
absolute as in the following result.

Proposition 2. The time-dependent signed absolute moment of
the order δ with 0 < δ < α is written as follows

E[X(t)〈δ〉] = −tδ
β
α D

δ
α ×

Ŵ(1− δ
α
)Ŵ(1+ δ

α
) sin( δπθ

2α )

Ŵ(1+ δ
β
α
)Ŵ(1− δ) sin( δπ

2 )
. (4)

We refer the reader to the Supplementary Materials for the
proofs of the above Propositions. Using the above results, the
estimation of parameters is detailed in the following section.

2.2. Parameter Estimation
Absolute Moments Approach: Starting from a dataset
containing N independent trajectories (realizations of the
Equation (1) with unknown parameters) sampled uniformly at
times {t1, t2, · · · , tL}, we aim at estimating the actual parameters
of the Equation (1) via a moments-based approach, i.e.,
determining the parameters using empirical moments and the
theoretical expressions. Thus, the proposed scheme to find the
parameters is mainly a two-step approach, regression over time
on one hand and over space on the other hand. The method is
summarized as follows.

For a given order δ, the log of absolute moments in Equation
(3) varies as

log(E[|X(t)|δ]) = δ
β

α
log(t)+ C1, (5)

where C1 does not depend on t. Using the estimated empirical
moments from Equation (2), we replace the theoretical moments
with the empirical values in the Equation (5). The parameter ratio
β/α can then be estimated by performing linear regression of
log(tl) vs. log(M

δ
tl
) using a total of L points (i.e., l = 1, 2, · · · , L). It

is worthwhile to note that the precision in estimation of β/α can
be improved upon using multiple values of moment exponent δ

for increasing the total diverse points in linear regression. For
example, a set 1 = {δ1, δ2, . . . , δK} can be used for having K × L
diverse points for linear regression by repeating the Equation (5)
with different δk. Hence, we can make a trade-off between space
and time, i.e., enlarging the cardinality of 1 when the available
time-series are short, in other words when L is small.

Next, we use the results of Proposition 1 and 2 to get the ratio
of E[|X(t)|δ] and E[X(t)〈δ〉] as the following ratio r

r =
E[X(t)〈δ〉]

E[|X(t)|δ]
= −

tan(πδθ
2α )

tan(πδ
2 )

.

Upon replacing the theoretical moments with the ones derived
in Equation (2) we can invert the tangent function to have the
ratio θ/α. In addition, although the ratio r is independent of time
t, the empirical ratio of the data will possibly not be a constant
across time. We therefore, replace r with time average of the

ratio of Sδ
tl
andMδ

tl
as Sδ

tl
/Mδ

tl
. From section 2.1, we know that the

parameter θ is constrained as |θ | ≤ min(α, 2 − α), therefore, we
have |θ/α| ≤ 1. Next, we define the following function

wL(x) =











−1 x < −1

x −1 ≤ x ≤ 1

1 x > 1

.
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Finally, the ratio of parameters θ and α can now be written as

θ

α
= wL



−
2

πδ
arctan



tan

(

πδ

2

)

(

Sδ
tl

Mδ
tl

)







 . (6)

As argued before, to improve the precision of the estimation, we
can add diversity by having a set of moment exponents 1 =

{δ1, δ2, . . . , δK}. For each δk ∈ 1 (where k = 1, 2, · · · ,K), we use

the Equation (6) to obtain (̂θ/α)k, and finally obtain the estimated

ratio of parameters as (̂θ/α) = 1
K

∑K
k=1 (̂θ/α)k.

The absolute moments of order δ from Proposition 1 can be
re-written as follows

E[|X(t)|δ]

tδ
β
α

= D
δ
α ×

Ŵ(1− δ
α
)Ŵ(1+ δ

α
) cos( δπθ

2α )

Ŵ(1− δ)Ŵ(1+ δ
β
α
) cos( δπ

2 )

= D
δ
α ×

πδ
α

sin(πδ
α
)
×

cos(πδθ
2α )

Ŵ(1− δ)Ŵ(1+ δβ
α
) cos(πδ

2 )
.

Therefore, for the given value of the order δ = δk, the estimation
of α and diffusion coefficient D can be written as the following
non-linear equation

Ck =
Ŵ(1− δk)Ŵ(1+

δkβ

α
) cos(πδk

2 )

cos(πδkθ

2α )
×

E[|X(t)|δk]

tδk
β
α

= D
δk
α ×

πδk
α

sin(πδk
α
)
. (7)

To solve the non-linear equation in (7) for α and D, we use
non-linear least squares method (trust region reflective method).
The input variables to the non-linear optimization are the values
of order δ ∈ 1, where 1 = {δ1, δ2, . . . , δK}. Formally, the
optimization problem is written as follows.

{D̂, α̂} = argmin
α,D

K
∑

k=1

∣

∣

∣
D

δk
α ×

δkπ

α

sin( δkπ

α
)
− Ck

∣

∣

∣

2
. (8)

We note that the values of Ck can be efficiently estimated by

first performing the linear regression of tδ
β
α vs E[|X(t)|δ] with

the condition of zero intercept, and then substituting the ratio
(slope of the linear regression) in Equation (7). The optimization
problem in (8) is non-convex, therefore, the global optimum
solution is not guaranteed by the solvers. Note that, in some
scenarios, we may have a prior knowledge about boundaries of
the parameter α (i.e., αmin ≤ α ≤ αmax). Thus, we solve the
constrained optimization problem.

Finally, the values of β and θ can be estimated upon estimating
α, as we already have the ratios β/α and θ/α from Equation
(5) and Equation (6), respectively. The approach described is
summarized as Algorithm 1.

Remark: Note that for α 6= 2, when the order δ is close to
the boundary values, the theoretical absolute moment goes to
+∞. However, the empirical one is finite, so in order to have
a small error associated to the estimated parameters, we choose

the order δ to be far enough from the end points of allowed
region. Notice that, the value of α is unknownwhile the condition
−min{α, 1} < ℜ(δ) < α is dependent of it, so assuming
an αmin as lower bound for α is rational. We note that the
Algorithm 1 is dependent upon the solution of non-linear non-
convex optimization problem in (8), and therefore, convergence
to the global solution is not guaranteed. Also, we need to provide
an input set 1 such that the absolute and signed moments are
computable for unknown α. The choice of 1 has to be made by
having some idea about lower bound of the α parameter. To take
care of these two issues together, we next present an alternative
approach in which we do not require non-linear optimization as
well as do not require to have the knowledge of 1 set.

Log AbsoluteMoments Approach: In this subsection, we rely
on the moments of log absolute values of the trajectories. Similar
to absolute moments with order δ, the log absolute moments can
be computed as we present in the following results.

Proposition 3. The time-dependent expected log absolute value of
X(t) is written as follows

E[log |X(t)|] =
β

α
log(t)+

log(D)

α
+ γ

(

β

α
− 1

)

, (9)

where γ is the Euler-Mascheroni constant.

Next, the variance of the log absolute values of the trajectories can
be written as the following results.

Proposition 4. The variance of log absolute value of X(t) is
written as follows

var(log |X(t)|) =
π2

6

(

1

α2
+

1

2

)

−

(

πθ

2α

)2

. (10)

It is interesting to note that the variance is independent of time
as well as a function of α and θ/α. We exploit this feature of
the variance to obtain an estimate of the α with the ratio θ/α

known. Hence, the need for performing non-linear optimization
in Algorithm 1 is omitted. We also write the second moment of
the log absolute values in the following result.

Proposition 5. The time-dependent expected square of log
absolute value of X(t) is written as follows

E[(log |X(t)|)2] =
β2

α2
log2(t)+ 2

βγ

α

(

β

α
− 1

)

log(t)+ c, (11)

where c = π2

6

(

1
α2 +

1
2

)

−
(

πθ
2α

)2
+
(

log(D)
α
+ γ

(

β
α
− 1

))2
+

π2

6α2 (1− β2), and γ is the Euler-Mascheroni constant.

The proof of the Propositions 3, 4, and 5 are provided in
the Supplementary Materials. Using the above results for log
absolute values, we now present the second approach to estimate
the parameters of the space-time fractional PDE in (1).

We proceed similarly to the first approach of the δ order
absolute moments, however, now equating the theoretical and
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Algorithm 1: | Space-Time Fractional Diffusion: Parameters
Estimation
Input: Time-series data {Xn(tl); 1 ≤ n ≤ N, 1 ≤ l ≤ L}, order δ,
1 = {δ1, δ2, · · · , δK}
Output: Parameters: α,β , θ and D

1: for l = 1, 2, · · · , L do

2: Calculate the empirical absolute and signed moments Mδ
tl

and Sδ
tl

⊲ Eq.2
3: end for

4:
̂

(

β
α

)

← m1
δ
, m1 being slope of linear regression log(t) vs

log(Mδ
t )

5: Get the estimatê
(

θ
α

)

⊲ Eq.6
6: for k = 1, 2, · · · ,K do

7: Calculate the empirical absolute momentsM
δk
tl
, ∀l ⊲ Eq.2

8: m2 ← slope of linear regression t
δk
̂

(

β
α

)

vs M
δk
t with zero

intercept

9: Ck ← m2.
Ŵ

(

1+δk
̂

(

β
α

)

)

Ŵ(1−δk) cos
(

πδk
2

)

cos

(

πδk
2

̂

(

θ
α

)

) ⊲ Eq. 3

10: end for

11: Find α̂,̂D ← argmin
α,D

K
∑

k=1

∣

∣

∣
D

δk
α ×

δkπ

α

sin(
δkπ

α
)
− Ck

∣

∣

∣

2
: non-linear

regression over space (sinc inversion)
12: Calculate β̂ , θ̂ .

empirical expressions of the log absolute moments. The empirical
log absolute moments are written as

L
(1)
t =

1

N

N
∑

n=1

log |Xn(t)|,

L
(2)
t =

1

N

N
∑

n=1

log |Xn(t)|
2,

var(log |X(t)|) =
1

N − 1

N
∑

n=1

(

log |Xn(t)| − L
(1)
t

)2
. (12)

The parameter ratio β/α is estimated by performing the linear

regression of log(t) vs L
(1)
t . The slope of the regression output is

the estimated ratio (̂β/α). Next, the ratio of the parameters θ and
α is estimated using the same approach as described previously
in Equation (6).

We note that upon having an estimate of the parameter ratio
̂θ/α, the variance is one-to-one function of α since α ≥ 0.
Therefore, on substituting the value of ̂θ/α in Equation (10)
we compute the value of α̂. Finally, with α̂ and ̂β/α known,
the value of diffusion coefficient is estimated from the intercept

of the linear regression of log(t) vs L
(1)
t as ̂D. The above

described approach is summarized as an algorithmic strategy in
Algorithm 2.

Algorithm 2: | Space-Time Fractional Diffusion: Parameters
Estimation
Input: Time-series data {Xn(tl); 1 ≤ n ≤ N, 1 ≤ l ≤ L}, order δ

Output: Parameters: α,β , θ and D

1: for l = 1, 2, · · · , L do

2: Calculate the empirical absolute and signed moment Mδ
tl

and Sδ
tl

⊲ Eq.2

3: Calculate log absolute moments L
(1)
t ⊲ Eq.12

4: end for

5:
̂

(

β
α

)

←m, (m, c) being (slope, intercept) of linear regression

L
(1)
t vs log(t)

6: Get the estimatê
(

θ
α

)

⊲ Eq.6
7: Calculate empirical variance of log absolute values

var(log(|X(t)|)) as σ 2 ⊲ Eq.12

8: α̂←
(

σ 2 6
π2 −

1
2

)− 1
2

9: D̂← exp

{

α̂

(

c− γ

(

̂

(

β
α

)

− 1

))}

⊲ Eq.3

10: Calculate β̂ , θ̂ .

It should be noted that the approach utilizing log absolute
moments does not require a predefined set of order values 1. In
addition, this does not suffer from the convergence issues as there
is no non-linear non-convex optimization involved.

Note: The estimated parameters in both algorithms are not
guaranteed to be optimal. For example, it is not straightforward
to guarantee maximum likelihood sense as solving maximum
likelihood involves solution to non-convex problem.We evaluate
the efficiency of the both algorithms in the following section.

3. EXPERIMENTAL RESULTS

As we described previously, both algorithms depend mainly
on the statistical absolute moments, statistical signed absolute
moments and the expected log absolute value of the process
X(t). For this reason, we first start by validating the theoretical
expressions derived in Equations (3), (4) and (9). We consider
different scenarios (normal diffusion equation, neutral diffusion
equation [68–71], space diffusion equation [71], and time
diffusion equation [71]). In these experiments, we generate
synthetic data corresponding to N = 100 trajectories simulated
according to the diffusion model under study with a generalized
diffusion coefficient D = 1. Note that the data generation
procedure is presented in details in the Supplementary Material.
In Figure 2, we present panel of 4 × 3 plots where we
refer by a row the scenario considered (normal, time, space,
neutral diffusion) and we plot the statistical absolute moments,
statistical signed absolute moments and the expected log absolute
value of the process X(t) for an order δ = 0.001 vs. time
in the columns. The signed moment deviates a little from
the theoretical expression for some scenarios, due to lack of
sufficient samples. For the particular case of Figure 2E, we
observe that there is nearly perfect match with the theoretical
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FIGURE 2 | The time-dependent theoretical and empirical absolute moments and signed absolute moments of order δ = 0.001, the time-dependent theoretical and

empirical expected log absolute for the following four types of diffusion models: (A–C) Normal diffusion equation, (D–F) Neutral diffusion equation, (G–I) Space

fractional diffusion equation, (J–L) Time fractional diffusion equation.

expression. The reason being, in this case, the parameters α

= θ , hence the trajectories are generated from a negatively
skewed alpha-stable distribution, therefore X(t) ≤0 ∀t. We note
that a similar situation happens when we have the parameters

α = −θ . In this case, we have a positive skewed alpha
distribution, and therefore, X(t) ≥ 0∀t. In all scenarios, we can
observe that the empirical statistical moments match perfectly
the theoretical ones in all scenarios. This result confirms our

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 May 2020 | Volume 6 | Article 14195

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Znaidi et al. Identifying Arguments of Fractional Diffusion

FIGURE 3 | Determining the parameters of the space-time fractional diffusion via the two proposed algorithms while varying the number of trajectories and the

generalized diffusion coefficient D = 1. The dotted line indicate 2% error tube around the original parameter value in the red: (A–D) Normal diffusion equation

(α = 2,β = 1, θ = 0), (E–H) Neutral diffusion equation (α = 0.5,β = 0.5, θ = 0.5), (I–L) Space fractional diffusion equation (α = 0.5,β = 1, θ = 0.25), (M–P) Time

fractional diffusion equation (α = 2,β = 0.5, θ = 0).

theoretical derivations and motivates us to move forward with
this approach.

3.1. Parameters Estimation of Synthetic
Data
In this experiment, we validate the proposed approach using
artificially generated spatiotemporal data according to the PDE
model presented in Equation (1). More precisely, we use the

above-mentioned schemes (Algorithm 1 and Algorithm 2) to
retrieve the parameters (α,β , θ and D) used during the data
generation step. Figures 3–5 summarize several experiments
done for different diffusion models (classical, neutral, space,
and time diffusion), where we assume a set of combination of
α,β and θ parameters for a generalized diffusion coefficient
D = 1, 2 and D = 5, respectively. In each figure we present
a panel of 4 × 4 different plots where a row represents the
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FIGURE 4 | Determining the parameters of the space-time fractional diffusion via the two proposed algorithms while varying the number of trajectories and the

generalized diffusion coefficient D = 2. The dotted line indicate 2% error tube around the original parameter value in the red: (A–D) Normal diffusion equation

(α = 2,β = 1, θ = 0), (E–H) Neutral diffusion equation (α = 0.5,β = 0.5, θ = 0.5), (I–L) Space fractional diffusion equation (α = 0.5,β = 1, θ = 0.25), (M–P) Time

fractional diffusion equation (α = 2,β = 0.5, θ = 0).

type of diffusion considered and columns 1, 2, 3 and 4 designate
the parameters α,β , θ and D, respectively. In each of the sub-
figure, we plot the estimated parameter using both algorithms
(blue line for Algorithm 1 and the black line for Algorithm 2)
vs. the number of trajectories considered during the estimation
process. We also plot the true value as a red line, and a narrow

interval around the true value using black dashed lines. The
presented blue and gray shaded regions represent the standard
deviation for the estimated parameters associated to Algorithm
1 and Algorithm 2, respectively. All sub-figures in Figures 3–5
show that the proposed schemes are doing well in all scenarios
where we are able to retrieve the exact set of parameters α, β , θ
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FIGURE 5 | Determining the parameters of the space-time fractional diffusion via the two proposed algorithms while varying the number of trajectories and the

generalized diffusion coefficient D = 5. The dotted line indicate 2% error tube around the original parameter value in the red: (A–D) Normal diffusion equation

(α = 2,β = 1, θ = 0), (E–H) Neutral diffusion equation (α = 0.5,β = 0.5, θ = 0.5), (I–L) Space fractional diffusion equation (α = 0.5,β = 1, θ = 0.25), (M–P) Time

fractional diffusion equation (α = 2,β = 0.5, θ = 0).

and D with a small/negligible error2. Also, we can see how the
standard deviation of the estimated parameters decreases as the
number of trajectories increases. Furthermore, we can remark
that Algorithm 2 is performing slightly better than Algorithm 1

2Additional simulations for other scenarios are presented in the

Supplementary Material.

in terms of rate of convergence. Although the variance is quite
high when fewer trajectories are considered, we remark that in
some scenarios we can get good estimates of the parameters even
with reduced number of trajectories.

In Tables 1–3, we provide further details about the results
we have described in Figures 3–5, respectively. Indeed, for both
algorithms, we report the estimated value of each parameter, in
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TABLE 1 | Numerical results for fractional diffusion parameter estimation with

D = 1.

Parameters
Algorithm-1 Algorithm-2

N
(1)
90 Final

value

Final relative

error

N
(2)
90 Final

value

Final relative

error

α = 2.0,β = 1.0, θ = 0.0

α 41 1.992 0.400% 10 1.996 0.200%

β 50 0.994 0.600% 10 0.998 0.200%

θ −− −0.006 −− −− −0.004 −−

D 12 0.992 0.800% 22 0.989 1.100%

α = 0.5,β = 0.5, θ = 0.5

α 10 0.501 0.200% 10 0.502 0.400%

β 10 0.497 0.600% 10 0.505 1.000%

θ 10 0.501 0.200% 10 0.502 0.400%

D 41 0.968 3.200% 140 1.027 2.700%

α = 0.5,β = 1.0, θ = 0.25

α 10 0.497 0.600% 10 0.505 1.000%

β 10 0.995 0.500% 10 1.000 0.000%

θ 10 0.250 0.000% 10 0.253 1.200%

D 10 1.004 0.400% 10 0.982 1.800%

α = 2.0,β = 0.5, θ = 0.0

α 114 1.985 0.750% 15 2.000 0.000%

β 41 0.511 2.200% 10 0.493 1.400%

θ −− 0.015 −− −− 0.017 −−

D −− 1.119 11.900% −− 0.890 11.000%

The bold values are used to highlight the best performance for each case across the

2 algorithms.

the column entitled the final value, of the space-time fractional
diffusion equation (i.e., α,β , θ and D) and the final relative error,
which is defined as the percentage of the discrepancy between the

exact value and the estimated one, or εξ =
|ξ̂−ξ |
|ξ |
× 100, where

ξ̂ and ξ are any estimated and original parameters, respectively.

We also report the parameter N
(i)
90 , which we define as the

minimum number of trajectories beyond which the accuracy
using algorithm i is at least 90% and formally can be written as

N
(i)
90 (ξ ) = inf{N | εξ ≤ 10, ∀N > N90, ξ ← Ai({Xn(tl)}

N
n=1)},

where ξ ∈ {α,β , θ ,D} and Ai({Xn(tl)}
N
n=1) denotes the output

of the i-th Algorithm (i ∈ {1, 2}). By looking at the values

reported in the column N
(i)
90 , we can analyze the performance

of both algorithms. For instance, we can remark that a dozen of
trajectories is sufficient for both algorithms to achieve at least 90%
accuracy in most of the settings. We note that a missing value

for N
(i)
90 could be an indicator of either a bias in the Algorithm i

which is greater than 10%, or the situation that the maximum
considered trajectories (N = 104) in our experiments are not

TABLE 2 | Numerical results for fractional diffusion parameter estimation with

D = 2.

Parameters
Algorithm-1 Algorithm-2

N
(1)
90 Final

value

Final relative

error

N
(2)
90 Final

value

Final relative

error

α = 2.0,β = 1.0, θ = 0.0

α 41 1.995 0.250% 10 2.000 0.000%

β 50 0.999 0.100% 10 1.000 0.000%

θ −− 0.004 −− −− 0.004 −−

D 10 2.022 1.100% 15 2.030 1.500%

α = 0.5,β = 0.5, θ = 0.5

α 10 0.500 0.000% 10 0.500 0.000%

β 10 0.503 0.600% 10 0.503 0.600%

θ 10 0.500 0.000% 10 0.500 0.000%

D 114 2.039 1.950% 114 2.039 1.950%

α = 0.5,β = 1.0, θ = 0.25

α 10 0.499 0.200% 10 0.499 0.200%

β 10 1.000 0.000% 10 1.000 0.000%

θ 10 0.250 0.000% 10 0.250 0.000%

D 10 2.011 0.550% 10 2.012 0.600%

α = 2.0,β = 0.5, θ = 0.0

α 76 1.999 0.050% 22 2.000 0.000%

β 62 0.504 0.800% 10 0.513 2.600%

θ −− −0.001 −− −− −0.001 −−

D 140 2.082 4.100% 712 2.111 5.550%

The bold values are used to highlight the best performance for each case across the

2 algorithms.

sufficient enough for achieving accuracy more than 90%. Lastly,
it is worth to note that increasing the number of trajectories will
lead to a smaller final relative error.

3.2. Parameters Estimation of Fractional
Brownian Motion
In this experiment, we present a study of fractional Brownian
motion (fBm) process. More precisely, we consider a dataset of
trajectories generated using the fBmmodel, then we parameterize
the data according to the fractional diffusion equation under
study in order to estimate the parameters of the fBm process
generating the data (i.e., the Hurst exponent H and the diffusion
constant D0). From the Langevin equation associated with the
fBm, we can remark that the fBm exhibits a long-time correlation
which makes the process non-Markovian. The effective Fokker-
Planck equation is given as

∂p(x, t)

∂t
= D02Ht

2H−1 ∂2p(x, t)

∂x2
. (13)

The solution for the aforementioned equation is provided in
Wang and Lung [72]
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TABLE 3 | Numerical results for fractional diffusion parameter estimation with

D = 5.

Parameters
Algorithm-1 Algorithm-2

N
(1)
90 Final

value

Final relative

Error

N
(2)
90 Final

value

Final relative

error

α = 2.0,β = 1.0, θ = 0.0

α 33 1.979 1.050% 10 2.000 0.000%

β 33 0.997 0.300% 10 1.000 0.000%

θ −− −0.021 −− −− −0.021 −−

D 76 4.960 0.800% 15 5.069 1.380%

α = 0.5,β = 0.5, θ = 0.5

α 10 0.503 0.600% 10 0.503 0.600%

β 15 0.507 1.400% 10 0.506 1.200%

θ 10 0.503 0.600% 10 0.503 0.600%

D 140 5.145 2.900% 171 5.142 2.840%

α = 0.5,β = 1.0, θ = 0.25

α 10 0.494 1.200% 10 0.494 1.200%

β 10 0.995 0.500% 10 0.995 0.500%

θ 10 0.243 2.800% 10 0.243 2.800%

D 10 5.027 0.540% 10 5.027 0.540%

α = 2.0,β = 0.5, θ = 0.0

α 76 1.994 0.300% 10 1.994 0.300%

β 50 0.509 1.800% 10 0.509 1.800%

θ −− −0.002 −− −− −0.002 −−

D 114 5.338 6.760% 1311 5.335 6.700%

The bold values are used to highlight the best performance for each case across the

2 algorithms.

p(x, t) =
1

√

4πD0t2H
exp

(

−x2

4D0t2H

)

. (14)

Thus, the fractional absolute moment of a fBm process with a
parameter 0 < H < 0.5 is given as

E[|X(t)|δ] = (2D0t
2H)δ/2

Ŵ( 1+δ
2 )
√

π
. (15)

Based on the expressions (3) and (15), we can use the space-
time fractional diffusion equation under study to parameterize
an fBm process. Indeed, by mapping the two expressions, we get
α = 2, β = 2H, θ = 0 and D = D0

2 . In this experiment, we
assume that the given trajectories are following an fBm model
and the task is to apply the proposed algorithms to identify the
parameters associated with the fBm (H and D0).

Last, in Figure 6, we present the simulation results associated
with this experiment. The figure represents a panel of 4 × 4
plots where a row is associated with a set of parameters H and
D0 associated to a fBm process, and columns 1, 2, 3 and 4 are
associated with the estimation of the parameters α, β , θ and
D, respectively. Hence the estimation of the parameters H and

D0. In these simulations, we generate N trajectories following
four different fBm models using the built-in function wfbm in
Matlab (i.e., in Figure 6, rows 1, 2, 3 and 4 are associated to fBm
with Hurst exponents H = 0.25, H = 0.3, H = 0.35 and
H = 0.4, respectively). As we can observe, Algorithm 2 (plotted
using black line) can efficiently provide accurate estimates of the
Hurst exponent and the diffusion constant and it performs better
than Algorithm 1. The reason behind this is that Algorithm 1
requires solving a non-linear non-convex optimization problem
which is not the case for the second algorithm. Also, we remark
that finding the parameters of the fBm using Algorithm 2 does
not require very large number of trajectories. In fact, we can
determine an accurate estimates of the parameters (α,β) with an
error close to 2% by performing Algorithm 2 on dataset of few
trajectories obeying the fBm model (i.e., N ≤ 10).

From the simulation results related to fBm in Figure 6, we
can see that Algorithm 2 is capable to accurately estimate the
parameters α and β = 2H hence H. However, the estimation
of the parameter D0 is not accurate because of the non-
conformity of the equation under study with the fBm model for
all parameters values. Indeed, both models coincide, in terms
of moments, only when α = 2, θ = 0 and β = 2H.
Interestingly, in the current experiment, we focus more on
determining an accurate estimate of the parameter H that is
related to the long-time memory of an fBm process. Therefore,
the proposed algorithms can be used as a tool to quantify the
memory of an unknown process that follows the fBmmodel from
given trajectories.

In Table 4, we report further elaboration of the results in
Figure 6. In fact, we can remark that all the bold marked
minimum relative errors are in the column associated with
Algorithm 2, which endorse our previous claim about the
effectiveness of the second algorithm. Related to the discussion of

the estimation of α and β , we can see that the column N
(1)
90 has a

lot of missing values, and this indicates that using Algorithm 1 for
these experiments lead to a final relative error that is greater than
10%. More interestingly, we can remark that with just around 10
trajectories, Algorithm 2 can provide an estimate of either α or β

that is within the 10% error margin.

4. DISCUSSION

Understanding complex dynamics remains a challenging task
when their generative model is unknown. This task is more
complicated when it comes to analyze spatiotemporal kinetics
and infer the model that dictate their evolution. Although,
the physics that drive the dynamics are unknowns, data-
driven based approaches are prominent tools to discover the
physical laws/rules governing complex observed dynamics (from
heterogeneous, sparse, scarce or even noisy data). Indeed, such a
discovery plays a crucial role in diverse fields ranging from system
biology, neuroscience, econophysics to social studies. Toward
addressing this goal, in this manuscript, we have considered a
generalized space-time fractional PDE and have developed an
effective, rigorous and robust algorithmic strategies to estimate
the parameters and so identify the main mathematical operators
appearing in the PDE.
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FIGURE 6 | Determining the parameters of the fractional Brownian motion via the two proposed algorithms while varying the number of trajectories. The dotted line

indicate 2% error tube around the original parameter value in the red: (A–D) with H = 0.25 and (α = 2,β = 2H, θ = 0,D0 = 0.31), (E–H) with H = 0.3 and

(α = 2,β = 2H, θ = 0,D0 = 0.22), (I–L) with H = 0.35 and (α = 2,β = 2H, θ = 0,D0 = 0.16), (M–P) with H = 0.4 and (α = 2,β = 2H, θ = 0,D0 = 0.12).

In contrast to prior work, we investigated the effectiveness and
robustness of the proposed algorithmic approach for estimating
the correct parameters as a function of the available number of
trajectories. From our simulation results, we observe that for
all considered types of diffusion models except the classical one
(i.e., all combination of the parameters α, β , θ , and D), a few
number of recorded time-series (less than 100 trajectories) is
required to attain the correct estimation of the PDE parameters
with less then 2% confidence interval. For the case of the normal

diffusion (i.e., except for the case α = 2 and β = 1), we may
need more trajectories to achieve similar accuracy. Therefore, we
hope that the proposed algorithms will help the community to
better analyze complex spatiotemporal data, in order to unravel
new physical laws in different applications (social networks,
neuroscience, etc.) and decipher the causal interdependence
between different processes.

Furthermore, we performed a study on the properties of fBm
processes. We can remark from the Fokker Planck equation
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TABLE 4 | Numerical results for fBm parameter estimation.

Parameters
Algorithm-1 Algorithm-2

N
(1)
90 Final

value

Final relative

error

N
(2)
90 Final

value

Final relative

error

H = 0.25

α −− 1.794 10.300% 10 1.998 0.100%

β 210 0.459 8.200% 10 0.511 2.200%

θ −− −0.006 −− −− −0.006 −−

D −− 0.426 36.132% −− 0.386 23.350%

H = 0.30

α −− 1.733 13.350% 10 2.000 0.000%

β −− 0.527 12.167% 10 0.609 1.500%

θ −− 0.023 −− −− 0.026 −−

D −− 0.325 42.284% −− 0.273 19.518%

H = 0.35

α −− 1.689 15.550% 10 1.983 0.850%

β −− 0.581 17.000% 10 0.683 2.429%

θ −− 0.015 −− −− 0.018 −−

D −− 0.269 62.570% −− 0.213 28.727%

H = 0.40

α −− 1.587 20.650% 10 2.000 0.000%

β −− 0.635 20.625% 10 0.801 0.125%

θ −− −0.016 −− −− −0.020 −−

D −− 0.217 70.179% −− 0.144 12.930%

The bold values are used to highlight the best performance for each case across the

2 algorithms.

associated with the fBm process, mentioned in the manuscript,
that the effective diffusion coefficient is time-dependent. Even
though, this type of equation does not perfectly match the class
of fractional diffusion equation that we are dealing with in
this work, we applied the proposed algorithms to a dataset of
trajectories generated according to the fBm model to retrieve
the Hurst exponent and the diffusion constant. Indeed, we
were able to identify these parameters since the absolute and
signed absolute moments present similar structure as the ones
calculated for a process that is generated according to the
fractional diffusion equation under study. Therefore, we provide
a new/alternative approach to quantify the memory of a fBm
process. Note that without knowing the model that governs
the dynamics of the process and using this framework, we
can estimate the parameters α and θ to be equal to 2 and
0, respectively, but in the current stage we are not able
to confirm that the data is generated either from a space-
time fractional diffusion equation with a constant generalized
diffusion coefficient or from a fBm process with time varying
diffusion coefficient. In future work, we will push forward the
analysis to identify whether the diffusion coefficient is time-
dependent or it is a constant, and thus to differentiate between the
space-time fractional diffusion equation and the Fokker Planck
equation associated with the fBm process.

This mathematical formalism can be further developed
and generalized to include additional operators and take into
account advection phenomena as well as combined with other
advanced statistics and information theory inspired methods
to discriminate among various mathematical expressions
(operators) in order to either identify the dominant physical
phenomenon (or rule) governing the measurements or to
determine the degree to which multiple physical laws contribute
to the observed dynamics. Also, analyzing noisy data originated
from real world applications will be taken into account in order
to cope with complex scenario. We plan to build on these
grounds, enrich the mathematical formalism and contribute to a
significant paradigm shift in the context of data-driven discovery
architectures of physical phenomena as well as enabling accurate
predictions concerning complex evolving systems without
requiring to know the regimes of variation for parameters, the
types of mathematical operators or the fact that the data should
be sampled at a particular level.
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In this review paper we survey recent achievements in anomalous heat diffusion, while

highlighting open problems and research perspectives. First, we briefly recall the main

features of the phenomenon in low-dimensional classical anharmonic chains and outline

some recent developments in the study of perturbed integrable systems and the effect of

long-range forces and magnetic fields. Selected applications to heat transfer in material

science at the nanoscale are described. In the second part, we discuss of the role of

anomalous conduction in coupled transport and describe how systems with anomalous

(thermal) diffusion allow a much better power-efficiency trade-off for the conversion of

thermal to particle current.

Keywords: anomalous transport and diffusion, non-linear chains, Kardar Parisi Zhang equation, thermoelectricity,

efficiency, multi-particle-collision

1. INTRODUCTION

Anomalous diffusion is a well-established concept in statistical physics and has been used to
describe many diverse kinetic phenomena. Detailed insights have been gained by generalizing the
motion of Brownian particles, as done for the continuous-time random walk and for Lèvy flights
and walks. A formidable body of literature on the topic exists; we refer to, for example, Klages et al.
[1] as well as the present issue for an overview.

The above particle models are based on a single-particle description, whereby a single walker
performs a non-standard diffusive motion. How do the features of anomalous diffusion emerge
when dealing with a many-body problem? What are the conditions for a statistical system
composed of many interacting particles to yield effectively anomalous diffusion of particles
or quasi-particles? Another question concerns how such anomalies in diffusion are related to
transport and whether they can somehow be exploited to achieve some design principle, such as
efficiency of energy conversion. In fact, although thermoelectric phenomena have been known
for centuries, it is only recently that a novel point of view on the problem has emerged [2].
Generally speaking, the renewed research activity is motivated also by the possibility of applying
the thermodynamics and statistical mechanics to nano- and micro-sized systems, with applications
in molecular biology, micro-mechanics, nano-phononics, etc. This involves dealing with systems
far from the thermodynamic limit, where fluctuations and interactions with the environment are
critically relevant and need to be understood in detail.

In this article, we first review how anomalous energy diffusion arises in lattices of classical
oscillators as a joint effect of non-linear forces and reduced dimensionality (and in this respect
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we will mostly discuss one-dimensional chains). This amounts
to saying that the anomalous dynamics of energy carriers is
an emergent feature stemming from correlations of the full
many-body dynamics. As a consequence, Fourier’s law breaks
down: the motion of energy carriers is so correlated that they
are able to propagate faster than diffusively. In the second part
of the paper, we discuss how this feature influences coupled
transport and how it can be used to enhance the efficiency of
thermodiffusive processes.

We conclude our review of the multifaceted problem of heat
transport in classical systems with a short summary of possible
extensions to the quantum domain, with reference to related
open problems that merit attention in the near future.

2. ANOMALOUS HEAT TRANSPORT IN
CLASSICAL ANHARMONIC LATTICES

The presence of a heat conductivity that diverges with the
system size in a chain of coupled non-linear oscillators was first
pointed out in Lepri et al. [3, 4]. This marked the beginning
of a research endeavor that, over more than two decades, has
been devoted to understanding the mechanisms giving rise
to anomalous transport in low-dimensional systems. Far from
being a purely academic exercise, this research has unveiled the
possibility of observing such peculiar effects in nanomaterials,
such as nanotubes, nanowires, or graphene [5, 6]. Extended
review articles on this problem have existed for many years [7, 8],
while a collection of works about more recent achievements can
be found in Lepri [9] and a review article [10] in the present issue.
Here it is useful to first provide a short summary of the state of
the art in the field, while the main part of the paper will focus
on recent achievements that point to promising and challenging
directions for future investigations.

In any model where anomalous transport has been observed,
it emerges as a hydrodynamic effect due to a combination of
reduced space dimensionality and conservation laws, yielding
non-standard relaxation properties even in a linear response
regime. As a reference we consider the basic class of models
represented by a Hamiltonian of the following form:

H =

L
∑

n=1

[

p2n
2m

+ V(qn+1 − qn)

]

. (1)

Typical choices for the interaction include the famous
Fermi-Pasta-Ulam-Tsingou (FPUT) potential, where

V(x) = VFPUT(x) ≡ 1
2x

2 + α
3 x

3 +
β
4 x

4, and the rotor (or
Hamiltonian XY) model, where V(x) = VXY (x) ≡ 1 − cos x.
With regard to conservation laws, in d = 1 anomalous transport
has been generically observed in Hamiltonian models of type
(1), where energy, momentum, and the “stretch” variable
∑

n(qn+1 − qn) are conserved. It is worth recalling that any
approach aiming to describe out-of-equilibrium conditions,
such as stationary transport processes, has to be based on the
hydrodynamic equations associated with such locally conserved
quantities. One-dimensional oscillator models with only one
conserved quantity, such as the Frenkel-Kontorova or φ4 models

[11], or two conserved quantities, such as the rotor model
[12, 13] or the discrete non-linear Schrödinger lattice [14, 15],
instead show standard diffusive transport. Intuitively, this is
due to the presence of scattering sources for acoustic waves
propagating through the lattice induced by the presence of a
local non-linear potential, which breaks translation invariance
(i.e., momentum conservation). This argument does not apply to
the rotor model, where only the stretch variable is not conserved,
owing to the angular nature of the qn variables; in any case
standard diffusion is allowed because of the boundedness of the
cosine potential. Concerning dimensionality, in d = 3 normal
diffusion regimes are expected to characterize heat transport
in non-linear lattices. Only in d = 2 can one find evidence
of a diverging heat conductivity that exhibits a logarithmic
dependence on the system size L [16–18].

The main distinctive feature of anomalous heat transport in
one-dimensional Hamiltonian models of anharmonic lattices is
that the finite-size heat conductivity κ(L) diverges in the limit
L → ∞ of a large system size [3] as

κ(L) ∝ Lγ ,

with 0 < γ ≤ 1 (the γ = 1 case corresponds to integrable
models, such as the Toda lattice discussed in section 2.2). This
implies that this transport coefficient is, in the thermodynamic
limit, not well-defined. In the linear response regime, this is
equivalent to finding that the equilibrium correlator of the energy
current J(t) displays, for long times t, a non-integrable power-law
decay of the form

〈J(t)J(0)〉 ∝ t−(1−δ) , (2)

with 0 ≤ δ < 1. Accordingly, the Green-Kubo formula yields an
infinite value of the heat conductivity and allows one to establish
the equivalence of the exponents, i.e., γ = δ, provided that
the sound velocity is finite [4]. In Figure 1 we show two typical
simulations of the FPUT model demonstrating the results above.

The most basic issue of the anomalous feature relates to
anomalous dynamical scaling of the equilibrium correlation of
the hydrodynamic modes. A simple way to state this is that
fluctuations of the conserved quantities with small wavenumber
k evolve on time scales of order τ (k) ∼ |k|−z . For standard
diffusion one has z = 2. Within the non-linear fluctuating
hydrodynamics approach it has been shown [19, 20] that models
like (1) belong generically to the universality class of the famous
Kardar-Parisi-Zhang (KPZ) equation, originally formulated in
the context of growing interfaces. It is well-known that this
equation in d = 1 is characterized by the dynamical exponent
z = 3/2. The origin of this non-trivial dynamical exponent can
be traced back to the non-linear interaction of long-wavelength
modes. This leads to the prediction γ = (2− z)/z = 1/3 (at
least in the linear response regime), a value that should be largely
universal, as confirmed by many numerical experiments.

The above consideration applies generically to anharmonic
chains with three conservation laws [20]. There is, however, the
possibility of having a different universality class depending on
the number of conserved quantities [21] or on the non-linear
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FIGURE 1 | Anomalous thermal conductivity for the FPUT model with cubic

and quartic potential terms (α = 0.25, β = 1): (A) finite-size conductivity

measured in the non-equilibrium steady state; (B) power spectrum S(ω) of

heat current fluctuations [i.e., the Fourier transform of 〈J(t)J(0)〉]. The long-time

tail in (2) corresponds to a divergence ω−δ at small frequencies. The inset of

(B) displays the logarithmic derivative δeff = d log10 S/d log10 ω. The data are

compatible with δ = γ = 1/3 (dashed lines). Microcanonical simulations are

performed at energy density 0.5.

coupling between the hydrodynamic modes [20]. For instance,
model (1) with an even potential V(x) = V(−x) should belong
to a different universality class having a different exponent γ . In
fact, the precise value of γ is still somewhat controversial: the
theoretical prediction from the mode-coupling approximation
of the hydrodynamic theory yields γ = 1/2 [20, 22, 23], while
kinetic theory yields γ = 2/5 [24], a value closer to thatmeasured
numerically [25, 26] (see also [27, 28] for related results on
exactly solvable models). The existence of the two classes can be
demonstrated either by directmeasurement of the exponents [25]
or via suitable changes of the thermodynamic parameters. For
instance, a non-linear chain with a symmetric potential subject to
a suitable pressure acting at its boundaries may exhibit a change
from exponent γ = 1/2 to γ = 1/3 [29]. This observation is
relevant to possible experimental verification of anomalous heat
transport, as it indicates that the pressure or torque applied to
any one-dimensional material should be taken into account for a
correct comparison with theoretical predictions.

A physically intuitive way to describe anomalous heat
transport is to think in terms of a Lévy walk, namely an
ensemble of random walkers performing free ballistic steps
with finite velocity for times that are power-law distributed
[30]. This simple description accounts very well for many
features of anharmonic lattices and fluids in various non-
equilibrium settings [31–33]. For instance, energy perturbations
propagate superdiffusively [31, 34, 35]: an initially localized
perturbation of the energy broadens, and its variance grows in
time as σ 2 ∝ tη with η > 1. These empirical observations
have a theoretical justification within the framework of non-
linear fluctuating hydrodynamics. Indeed, the theory predicts
a hydrodynamic “heat mode” that has the characteristic shape
given by a Lévy-stable distribution [see [20, 36] for details].
Further support comes frommathematical results: superdiffusive
behavior has been proven for one-dimensional infinite chains

of harmonic oscillators undergoing stochastic collisions that
conserve energy and momentum [37, 38]. In the same spirit,
the more difficult case of non-linear oscillators with conservative
noise has been discussed [39]. For exponential interactions (the
Kac-van Moerbecke model), superdiffusion of energy has again
been demonstrated, and a lower bound on the decay of the
current correlation function has been obtained [40]. In reference
[20] it is argued that such models should also belong to the
KPZ class.

A related distinctive feature of anomalous transport is that
the temperature profiles in non-equilibrium steady states are
non-linear, even for vanishing applied temperature gradients
[32, 41]. There is indeed a close connection with the fractional
heat equation, which has been demonstrated and discussed in
recent literature [10, 42].

2.1. The Importance of Being Small
As mentioned above, theoretical results on the problem of heat
transport in anharmonic chains are based on the fundamental
assumption that one should compute any relevant quantity in
the limits L → ∞ and t → ∞, performed in that specific
order. On the other hand, in any numerical simulation or for
real low-dimensional heat conductors, such as nanowires, carbon
nanotubes, polymers, or even thin fibers, one has to deal with
finite size and finite time corrections. These can be controlled
in a linear response regime if the mean free path of propagating
excitations, λ, and their mean interaction time, τ , are such that
λ ≪ L and τ ≪ t. It is a fact that when dealing with models of
anharmonic chains, such control is often not guaranteed, mainly
because of non-linear effects. This is a very relevant problem also
for interpreting possible experimental verifications of anomalous
transport in real systems as well as for designing nanomaterials
that exhibit deviations from the standard diffusive conductivity.

In fact, severe finite size effects invariably arise when one
tries to check predictions numerically. Very often, estimates
of the relevant exponents γ and δ systematically deviate from
the expected values and sometimes even seem to depend on
parameters [43–46]. If universality were to hold (as we believe),
these effects should be due to subleading corrective terms to
the asymptotics that are still relevant on the scales accessible
in simulations. Besides these issues, other unexpected effects
arise. For instance, for the FPUT [47], Toda [43], and Kac-
van Moerbecke [38] chains perturbed by conservative noise, the
exponent γ increases with the noise strength. Apart from the
problem of evaluating the precise exponents, this observation is
quite surprising since it suggests that greater stochasticity in the
model makes the systemmore diffusive, at least for finite systems.

Another example of finite size corrections being “amplified”
by non-linear effects is the case of anharmonic chains with
asymmetric potential, i.e., where V(x) 6= V(−x) as in the FPUT
model with α 6= 0. As shown in Figure 1, both equilibrium
and out-of-equilibrium measurements of the heat conductivity
in the presence of an applied thermal gradient are usually
consistent with KPZ scaling. However, in other temperature
regimes Fourier’s law appears to hold, i.e., thermal conductivity is
constant over a large range of sizes [48]. This has been traced back
to the relatively long relaxation time of mass inhomogeneities
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induced by the asymmetry of the interaction potential and acting
as scatterers of phonons [48]. Actually, it was later shown in
Wang et al. [49], Das et al. [50], and Chen et al. [51] that this
is a strong finite size effect, as it persists for relatively large
values of L and t. Yet, the expected theoretical prediction of
a diverging heat conductivity can be recovered in simulations
performed for sufficiently large values of L and t. It should be
pointed out that all of these speculations are based on numerical
results, and a theoretical approach capable of providing estimates
for the combination of non-linear and finite size corrections
to the hydrodynamics would be useful. Indeed, fluctuating
hydrodynamics can provide some kind of prediction: subleading
corrections to the leading asymptotic decay in (2) can be very
large and decay very slowly [20].

There are other aspects to finite size effects. A remarkable
example is the discrete non-linear Schrödinger equation, a well-
known model for atomic condensates in periodic optical lattices.
The model has two conserved quantities (energy and number
density) and exhibits normal diffusive transport [14]. However,
at very low temperatures another almost-conserved quantity (the
phase difference between oscillators) appears, and for a finite
chain and long times the dynamics is the same as that of a generic
anharmonic model, leading to KPZ scaling of correlations and
anomalous transport [52, 53]. Further unexpected features have
been reported also in Xiong and Zhang [54], where the authors
study this problem for the FPUT-β model (i.e., Equation 1) with
V = VFPUT and α = 0) with an additional local, also called
“pinning,” potential of the form

U(q) =
1

2

L
∑

n=1

q2n . (3)

This term breaks translational invariance, making energy the
sole conserved quantity. By varying the non-linear coupling β ,
one observes a crossover from ballistic transport, typical of an
integrable model, to an anomalous diffusive regime governed by
an exponent of the time correlation function, which corresponds
to a value of γ ∼ 0.2. The crossover occurs in the parameter
region 0.1 < β < 1. Numerical simulations performed for
a chain of a few thousands of oscillators show that further
increasing β seems to yield an increasing γ . The overall outcome
challenges the basic theoretical argument, which predicts that
an anharmonic chain equipped with a local potential should
exhibit normal diffusion. For the sake of completeness it is
worth mentioning that in this paper the model under scrutiny
is compared with the so-called φ4 model, where the non-linear
term in Hamiltonian (1), i.e., β(qn+1−qn)

4, is replaced with βq4n.
For this model one also observes, in the same parameter region,
a crossover from a ballistic regime to an anomalous diffusive
regime, but for β > 1 one eventually obtains numerical estimates
yielding γ ∼ 0, i.e., the expected diffusive behavior is recovered.

All of these results have a logical interpretation only if we
take into account, once again, the role of finite size corrections
combined with non-linearity. Actually, for the φ4 model there is
no way to argue that a ballistic regime should be observed for any
finite, even if small, value of β . The ballistic behavior observed
in both models for β < 0.1 seems to suggest that for small

non-linearities one needs to explore considerably larger chains
and integrate the dynamics over much longer times than in
Xiong and Zhang [54], before phonon-like waves in both chains
may experience the scattering effects due to the local potential.
Moreover, the weaker quadratic pinning potential of the original
model seems to still be affected by finite size corrections, even
in the region β > 1. A problem that should be investigated
systematically is the dependence on β of the chain length and
of the integration time necessary to recover standard diffusive
transport, at least in the crossover region 0.1 < β < 1, where one
can expect to perform proper numerical analysis in reasonable
computational time.

2.2. Chimeras of Ballistic Regimes
In the light of the discussion in the previous subsection, one
should not be surprised to encounter further non-linear chain
models equipped with a pinning potential that exhibit a regime of
ballistic transport of energy, compatible with a linearly divergent
heat conductivity, κ(L) ∼ L. Again, one might conjecture
that this is due to the puzzling combination of non-linearity
and finite size effects, although, as we shall see, the scenario
that emerges is more intricate and interesting than the former
statement indicates.

As a preliminary remark we recall that ballistic transport is
the typical situation of an integrable Hamiltonian chain, the
prototypical example of which is the harmonic lattice, with
V(x) = 1

2x
2 in Hamiltonian (1). It is worth pointing out that

the addition of the harmonic pinning term (3) again keeps the
harmonic chain integrable.With this inmind, it seems reasonable
that for sufficiently small non-linearities both the FPUT-β and
the φ4 chains, as discussed in the previous subsection, would
exhibit a seemingly ballistic regime for β < 0.1 also in the
presence of the pinning potential. Recovering the expected
diffusive transport regime is a matter of simulating exceedingly
large chains over extremely long times.

The special role played by the quadratic pinning potential (3)
has been revealed also by a recent study of heat transport in the
Toda chain [55]. It is worth recalling that the unpinned Toda
chain is an integrable Hamiltonian model of the form (1) with
V(x) = e−x + x − 1; in this model heat transport is ballistic due
to the finite-speed propagation of solitons (rather than phonons,
as in the harmonic chain). Toda solitons are localized non-linear
excitations which are known to interact with each other by a non-
dissipative diffusion mechanism; a soliton experiences a random
sequence of spatial shifts as it moves through the lattice and
interacts with other excitations without exchanging momentum
[56]. In fact, the calculation of the transport coefficients by the
Green-Kubo formula indicates the presence of a finite Onsager
coefficient, which corresponds to a diffusive process on top of the
dominant ballistic one [57, 58].

When the pinning term (3) is included, the Toda chain
becomes chaotic, as one can easily see by measuring the spectrum
of Lyapunov exponents [55]. Despite this, not only the energy but
also the “center of mass”

hc =
1

2

( L
∑

n=1

qn

)2

+
1

2

( L
∑

n=1

pn

)2
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are conserved quantities. The special role of the quadratic
pinning potential (3) is evidenced by the fact that if one turns
it into a quartic one, i.e., U(qi) =

1
4

∑L
n=1 q

4
n, the quantity hc is

no longer conserved. Non-equilibrium simulations of the Toda
chain with the addition of (3), with heat reservoirs at different
temperatures T1 > T2 acting at its boundaries, yield a “flat”
temperature profile at T = (T1 + T2)/2 in the bulk of the chain.
This scenario would be expected for the pure Toda chain, but
it is inconsistent with the basic consideration that the presence
of (3) breaks translation invariance and total momentum is no
longer conserved. This notwithstanding, in order to observe a
temperature profile in the form of a linear interpolation between
T1 and T2 (i.e., Fourier’s law), one has to simulate the dynamics of
very large chains over very long times, typically L ∼ O(104) and
t ∼ O(106), when all the parameters of the model are set to unity.

Equilibrium measurements based on the Green-Kubo
relation, i.e., based on the behavior of the energy current
correlator (2), lead to further interesting findings in this scenario.
By comparing the Toda chain with quadratic and quartic pinning
potentials, one observes in the latter case clear indications of a
diffusive regime, i.e., a finite heat conductivity, and a practically
negligible influence of finite size corrections, whereas in the
former case the power spectrum [i.e., the Fourier transform of
(2)] is found to exhibit a peculiar scaling regime (with power
−5/3) before eventually reaching a plateau that indicates a
standard diffusion. In the same region of the spectrum, the
FPUT model (where the parameters α and β have been chosen
in such a way to correspond to a Taylor series expansion of the
Toda chain) with the addition of (3) is found to converge to a
plateau, in the absence of any precursor of a power-law scaling.

Further details about the unexpected transport regimes
encountered in the Toda chain equipped with the quadratic
pinning can be found in Dhar et al. [59]. We point
out that many of the observations still await a convincing
theoretical interpretation.

2.3. Anomalous Transport in the Presence
of a Magnetic Field
Recent contributions [60, 61] have dealt with the important
problem of heat transport in chains of charged oscillators in
the presence of a magnetic field B. The model is a one-
dimensional polymer that allows transverse motion of the
oscillators interacting via a harmonic potential. For B = 0
the exponent of the energy current correlator is δ = 1

2 ,
indicating the presence of anomalous transport and a divergent

heat conductivity κ(L) ∼ L
1
2 . Upon switching on B, the first

basic consequence is the breaking of translation invariance,
so that the total momentum is no longer conserved. This
notwithstanding, the total pseudo-momentum is conserved, but
the hydrodynamics of the model is definitely modified. In fact,
numerical and analytical estimates indicate that the exponent
δ may change to a value different from 1

2 . In particular, in
Tamaki et al. [60] two different cases were considered: one
where oscillators have the same charge and one where oscillators
have alternate charges of sign (−1)n, n being the integer

index numbering oscillators along the chain. It can easily be
shown that in the former case the sound velocity is null and
the energy correlator exhibits a thermal peak centered at the
origin and spreading in time. By contrast, in the latter case
the sound velocity has a finite, B-dependent value and the
thermal peak of the energy correlator is coupled to sound
modes propagating through the chain. In the case of finite
sound velocity (alternate charges), the exponent governing the
divergence of the heat conductivity with the system size is found
to remain the same as that for B = 0, i.e., γ = 1

2 . This
is not surprising, since for B = 0 the sound velocity in the
model is also finite. In the case of equally charged oscillators,
on the other hand, a new exponent γ = 3

8 appears, which
corresponds to a universality class different from all the others
encountered in anomalous transport in non-linear chains of
oscillators. An important remark about this new exponent is that
in the absence of a finite sound velocity, the identification of
the exponents δ and γ , introduced in section 2, is no longer
correct. In fact, in this case the value of the exponent δ is
found to be very close to 3

4 . Rigorous estimates of all of these
exponents, also for the d = 2 and d = 3 versions of
the charged polymer model, have been obtained through the
asymptotics of the corresponding Green-Kubo integrals, where
the deterministic dynamics has been replaced with a stochastic
version that conserves the same quantities [61]. For the different
one-dimensional cases, these rigorous estimates agree with the
previous findings, while in d = 2 and d = 3 dimensions the
expected logarithmic divergence and finite heat conductivity have
been singled out, respectively.

2.4. The Case of Long-Range Interactions
Long-range forces that slowly decay with the relative distance
between particles are well-studied in statistical mechanics.
They characterize a wide range of physical situations, such
as self-gravitating systems, plasmas, interacting vortices in
fluids, capillary effects of colloids at an interface, chemo-
attractant dynamics, cold atoms in optical lattices, and colloidal
active particles. Several unusual features are known: ensemble
inequivalence, long-lived metastable states and anomalous
energy diffusion [62, 63], inhomogeneous stationary states [64],
lack of thermalization on interaction with a single external
bath [65], etc. Moreover, perturbations can spread with infinite
velocities, leading to qualitative differences from their short-
range counterparts [66, 67].

Heat transport in chains with long-range interactions has been
studied only recently [68–72]. The main question is to what
extent the anomalous properties change as the spatial range of
interactions between oscillators increases. In two recent papers
[73, 74] this problem was investigated for Hamiltonian chains
with a long-range potential of the form

V =
1

2N0(α)

N
∑

i=1

N
∑

i6=j

v(qi − qj)

|i− j|α
, (4)
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where the generalized Kac factor

N0(α) =
1

N

N
∑

i=1

N
∑

j 6=i

1

|i− j|α
(5)

guarantees the extensivity of the Hamiltonian [62, 63]. In
particular, the long-range versions of both the rotor chain, with
v(x) = VXY (x), and the FPUT-β model, with v(x) = 1

2x
2 + 1

4x
4,

have been investigated. The reason for studying these two choices
is that the nearest-neighbor version (i.e., α → +∞) of the former
model exhibits standard diffusion of energy while that of the
latter is characterized by anomalous diffusion.

For the rotor chain, non-equilibrium measurements with
thermal reservoirs at different temperatures, T1 > T2, acting at
the chain ends show that when α > 1, the resulting temperature
profile interpolates linearly between T1 and T2. Despite the long-
range nature of the interaction, this is a strong indication that a
standard diffusive process still governs energy transport through
the rotor chain, as in the limit α → +∞. In contrast, when α < 1
the temperature profile progressively flattens until it reaches a
constant bulk temperature T = (T1 + T2)/2 in the “mean-
field” limit α → 0+. It is important to note that, in contrast
to the situation of chimeras of integrable models discussed in
section 2.2, such flat temperature profiles have nothing to do
with integrability, but rather are driven by the dominance of a
“parallel” energy transport mechanism, which connects the heat
baths at the chain boundaries with each other directly through
the individual rotors in the bulk of the chain. Energy transport
along the chain is practically immaterial, and the overall process
is mediated by the rotors, which have to compromise between the
two different temperatures imposed by the reservoirs. A sketch of
this mechanism is presented in Figure 2. For small α, each lattice
site in the bulk is directly coupled to both thermal baths, and its
temperature tends to the average (T1+T2)/2 independently of the
system size. Moreover, the average heat current exchanged with
any other site is negligibly small.

At least for α < 1, a similar scenario seems to characterize
the FPUT model: flat temperature profiles are observed also in
this case, and one can verify that the same parallel transport
mechanism as described for rotors is at work. On the other
hand, the behavior is definitely more complicated for α > 1.
Careful numerical studies exploring finite size effects give an

overall picture in which an anomalous diffusion mechanism sets
in, characterized by an exponent γ that is expected to increase
up to that of the quartic FPUT model in the limit α → +∞.
But one is faced with a first surprise at α = 2, where a flat
temperature profile is restored, although, as the numerics clearly
indicates, the mechanism of transport along the chain certainly
dominates the parallel transport process. In the light of what
was discussed in section 2.2, this would appear to be a possible
manifestation of a chimera ballistic regime, although there is no
simple argument allowing us to invoke a relation of this special
case with an integrable approximation, if any. That the α = 2
case is characterized by a somewhat “weaker non-integrability”
has been confirmed also for a related model [70, 72]. This can
be traced back to the fact that in this case the lattice supports
a special type of free-tail localized excitations (traveling discrete
breathers) that enhance energy transfer [72].

A complementary approach is the analysis of space-time
scaling of equilibrium correlations, which in the short-range case
yields useful information via the dynamical exponent z [20]. A
numerical study of the structure factors of the FPUT model [74]
shows that for α > 1 the dynamical exponent z certainly depends
on α in a different way from that expected from the theory of Lévy
processes. Moreover, upon adding the cubic term 1

3 (qi − qj)
3 to

the potential, one recovers the same dependence of z on α, up to
α = 5. This is again a surprise, because in the limit α → +∞ the
cubic and quartic versions of the FPUT model should converge
to different values of z. At present, no theoretical explanation
exists for this challenging scenario; in particular, to the best of
our knowledge, no hydrodynamic description is available.

2.5. Anomalous Transport via the
Multi-Particle Collision Method
So far we have discussed the case of lattice models. To test
the universality of the results, it is important to consider more
general low-dimensional many-body systems, such as interacting
fluids or even plasmas. Although molecular dynamics would be
the natural choice, it is computationally convenient to consider
effective stochastic processes capable of mimicking particle
interactions through random collisions. A prominent example
is the multi-particle collision (MPC) simulation scheme [75],
proposed to simulate the mesoscopic dynamics of polymers
in solution, as well as colloidal and complex fluids. Another

FIGURE 2 | Pictorial representations of heat transfer processes for long-range interacting chains, in the limiting cases of α = ∞ (left) and α = 0 (right). Oscillators in

contact with thermal reservoirs are enclosed in rectangular boxes while ones in the bulk are enclosed in the ellipse. The relevant transport channels are represented by

black lines. Adapted with permission from Di Cintio et al. [74]. Copyright © 2019 American Physical Society.
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application is the modeling of parallel heat transport in edge
tokamak plasma [76]. Indeed, in the regimes of interest for
magnetic fusion devices, large temperature gradients will build
up along the field line joining the hot plasma region (hot source)
and the colder one close to the wall (which acts as a sink). Besides
this motivation, wemention some results that are pertinent to the
problem of anomalous transport.

In brief, the MPC method consists in partitioning the set
of Np point particles into Nc disjoint cells. Within each cell,
the coordinates of the local center of mass and the velocity
are computed, and a rotation of the particle velocities about
a random axis in the cell’s center-of-mass frame is performed.
The rotation angles are fixed by requiring that the conserved
quantities (energy, momentum) be locally preserved. All particles
are then propagated freely. Physical details of the interaction
can easily be included phenomenologically, for instance by
introducing energy-dependent collision rates [18]. Interaction
with external reservoirs can be also included by imposing
Maxwellian distributions of velocity and chemical potentials on
the thermostatted cells [77].

For a one-dimensional MPC fluid, since the conservation
laws are the same as in, say, the FPUT model, we expect it
to belong to the same KPZ universality class of anomalous
transport. Indeed, numerical measurements of dynamical scaling
fully confirm this prediction [78], and the result is quite robust.
The same type of anomalies have been shown to occur also for
quasi-one-dimensional MPC dynamics, namely in the case of a
fluid confined in a box with a sufficiently large aspect ratio [18].

2.6. Anomalous Heat Transport in Material
Science
The discovery of anomalous heat transport in anharmonic chains
has triggered a search for this important physical effect in
real low-dimensional materials. There is now a vast literature
in which this kind of phenomenon has been predicted and
experimentally observed; an overview of part of this growing
research field is given in Lepri [9]. Here we just illustrate two
recent contributions which will help the reader to appreciate the
relevance of this phenomenon for nanowires and polymers. We
point out that a review of the recent literature in both fields is
contained in the bibliographies of these two contributions.

In Upadhyaya and Aksamija [79] the problem of lattice
thermal conductivity in Si-Ge nanowires was tackled by solving
the Boltzmann transport equation. More precisely, the authors
used a Monte Carlo algorithm to sample the phonon mean
free path, and combined this with phenomenological results
concerning a suitable representation of realistic boundary
conditions. It is quite remarkable that they found evidence of
a heat transport mechanism ruled by a Lévy walk dynamics
of phonon flights through the lattice structure. In particular,
the phonon mean free paths are found to be characterized
by a heavy-tailed distribution, which is associated with an
anomalous diffusive behavior characterized by a size-divergent
heat conductivity κ(L) ∼ L0.33. This behavior has been checked
for system sizes in the range of 10 nm < L < 10µm. Notice that
the phonon mean free path is orders of magnitude smaller than

this size range. It is important to note that this scenario is robust
across different alloy compositions, where the Ge component
varies in the range [6, 86%]. All of these results fully agree with
the theoretical expectation that anharmonic chains with leading
cubic non-linearity should exhibit a divergent heat conductivity
with an exponent γ = 1

3 .
In Crnjar et al. [80] atomistic simulations were performed

for poly(3,4-ethylenedioxythiophene), abbreviated PEDOT, a
conjugated polymer that is of interest in view of its tunable

and large electrical conductivity, transparency, and air stability

[81]. The authors simulated this polymer model in d = 1
and d = 3, in both equilibrium and non-equilibrium settings.
More precisely, equilibrium measurements were performed by
estimating the dependence of the heat conductivity κ on the
system size L via the Green-Kubo formula, where one has
to estimate the asymptotic decay in time of the correlator
of the total energy current (2). The outcome of this analysis
was compared with the numerics obtained in non-equilibrium
conditions. The setup used in this case is based on a transient
measurement of the effective heat diffusivity κ̄ . The two halves
of the system were initially prepared in two thermalized states
at different temperatures T1 and T2. By running a molecular
dynamics simulation, one can measure κ̄ as a function of L
during the transient evolution to the thermal equilibrium state
at temperature (T1 + T2)/2. More precisely, the estimate of κ̄

relies on the fit of the time-dependent temperature difference in
the two regions (for details see Equation 9 in [80]). Finally, the
thermal conductivity is obtained from the formula κ = κ̄ ρ cV ,
where ρ is the polymer mass density and cV its specific heat.
The authors obtained consistent results showing that for the
polymer chain anomalous diffusion, κ(L) ∼ Lγ with γ ≃ 1

2 , is
observed, whereas for the polymer crystal standard diffusion, i.e.,
a size-independent finite thermal conductivity κ , is recovered.
These results are quite remarkable because they provide very
clear confirmation of the role played by the space dimension in
determining anomalous transport effects. On the other hand, the
authors point out that the exponent γ ≃ 1

2 does not agree with

the expected theoretical value 1
3 , since the phenomenological

AMBER non-linear potential adopted for the PEDOT model
is certainly asymmetric, dominated by a leading cubic non-
linearity. Simulations of the polymer chain have been performed
for quite large system sizes, namely 0.376µm < L < 7.526µm.
This notwithstanding, we cannot exclude the possibility that,
as discussed in the previous section, the combination of finite
size effects and non-linearity might also be at work in this
case, yielding a power-law divergence of κ(L) that should be
compatible with a symmetric phenomenological potential.

These findings should be compared with those obtained
for simpler models. For instance, in the case mentioned in
section 2.3, the exponent γ = 1

2 was found in a chain
model with a quadratic interaction potential between the beads
[60] (notice that the possibility of displacements in both the
horizontal and the vertical directions make this model non-
integrable, in contrast to the harmonic chain). On the other
hand, a three-dimensional anharmonic chain with cubic and
quartic interactions has been shown to belong instead to the
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KPZ class with γ = 1/3 [82]. One could speculate that in
any polymer model the basic scaling associated with anomalous
transport is determined only by the quadratic term, and this
is a conjecture that certainly merits further theoretical and
numerical investigation.

To conclude this section, we briefly mention some
experimental studies. Thermal properties of nanosized objects
are of intrinsic technological interest for nanoscale thermal
management. In this general context, nanowires and single-
walled nanotubes have been analyzed to look for deviation from
the standard Fourier’s law [5]. Some experimental evidence
of anomalous transport in very long carbon nanotubes has
been reported [83], although the results are controversial [84].
Experiments demonstrating a non-trivial length dependence
of thermal conductance for molecular chains have also
been reported [85]. Admittedly, such experimental evidence
of anomalous transport is rather limited and not exempt
from criticism. Heat transfer measurements on nanosized
objects are notoriously difficult but may be undertaken
in the future, possibly guided by the theoretical insights
summarized here.

3. COUPLED TRANSPORT

In this section we discuss the relevance of anomalous
diffusion in coupled transport. In particular, we focus on
steady-state transport and for concreteness use the language
of thermoelectricity [2, 86], in which the coupled flows
are charge and heat flow (other examples where the flow
coupled to heat is particle or magnetization flow could be
treated similarly). Moreover, we shall limit our discussion
to power production, even though many of the results and
open problems highlighted below can be readily extended
to refrigeration. Thermoelectricity is a steady-state heat
engine. Relevant quantities for characterizing the performance
of a generic heat engine, which operates between a hot
reservoir at temperature Th and a cold one at Tc, are
the following:

• The efficiency η = W/Qh, where W is the output work and
Qh the heat extracted from the hot reservoir. For cyclic as well
as for steady-state heat engines, the Carnot efficiency ηC =

1− Tc/Th is an upper bound for the efficiency η.
• The output power P. It is a common belief that an engine

attaining the Carnot efficiency would require a quasi-static
transformation, i.e., an infinite cycle-time, implying vanishing
power. For steady-state engines this argument is replaced by
one saying that finite currents would imply dissipation, thus
precluding Carnot efficiency for non-zero power. Hence, it is
important to consider the power-efficiency trade-off. This is a
key problem in the field of finite-time thermodynamics [87],
in relation to the fundamental thermodynamic bounds on the
performance of heat engines, as well as the practical purpose of
designing engines that, for a given output power, work at the
maximum possible efficiency. For classical cyclic heat engines,
whose interactions with a heat bath can be described by a
Markov process, it was proved [88] that the mean power P has

an upper bound

P ≤
A

Tc
η(ηc − η), (6)

where A is a system-specific pre-factor (see also [89] for
an analogous linear response result within the framework
of stochastic thermodynamics [90]). While at first sight this
bound implies that P → 0 as η → ηc (and of course when
η → 0), so that an engine of this kind with finite power never
attains the Carnot efficiency, one cannot exclude the possibility
that the amplitude A diverges as the efficiency approaches the
Carnot value [91].

• The fluctuations in the power output about its mean value
P. Indeed, large fluctuations render heat engines unreliable.
Especially for heat engines at the nanoscale, one expects power
fluctuations due to, e.g., thermal noise, which are not negligible
in comparison with the mean output power. In general, one
would like to obtain high efficiency (as close as possible to
the Carnot efficiency), large power, and small fluctuations.
However, a trade-off between these three quantities has been
proved [92] for a broad class of steady-state heat engines
(including machines described by suitable rate equations or
modeled by overdamped Langevin dynamics):

P
η

ηC − η

kBTc

1P
≤

1

2
, (7)

where the (steady-state) power fluctuations are given by

1P ≡ lim
t→∞

[P(t)− P]2 t, (8)

with P(t) being the mean power delivered up to time t. For
t → ∞, since P(t) converges to P as 1/

√
t, an additional factor

of t in (8) is needed to obtain a finite limit for 1P. Equation
(7) tells us that efficiency close to the Carnot value and high
power entail large fluctuations. We note that the bound (8) has
recently been generalized to periodically driven systems [93].

3.1. Linear Response
In the linear response setting, the relationship between currents
and generalized forces is linear [94, 95]. In particular, for
thermoelectric transport we have







je = LeeFe + LeuFh,

ju = LueFe + LuuFh,
(9)

where je is the electric current density, ju is the energy current
density, and the conjugated generalized forces are Fe =

−∇(µ/eT) and Fh = ∇(1/T), with µ being the electrochemical
potential and e the electron charge. The coefficients Lab (a, b =

e, u) are known as kinetic or Onsager coefficients; we will denote
by L the Onsager matrix with matrix elements Lab. Note that
the (total) energy current ju = jh + (µ/e)je is the sum of
the heat current jh and the electrochemical potential energy
current (µ/e)je.

The Onsager coefficients must satisfy two fundamental
constraints. First, the second law of thermodynamics, i.e., the
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positivity of the entropy production rate, ṡ = Feje + Fuju ≥ 0,
implies

Lee, Luu ≥ 0, LeeLuu −
1

4
(Leu + Lue)

2 ≥ 0. (10)

Second, for systems with time-reversal symmetry, Onsager
derived fundamental relations, Leu = Lue, known as Onsager
reciprocal relations.

The kinetic coefficients Lab are related to the familiar
thermoelectric transport coefficients, namely the electrical
conductivity σ , the thermal conductivity κ , the thermopower (or
Seebeck coefficient) S, and the Peltier coefficient 5:

σ = −e

(

je

∇µ

)

∇T=0

=
Lee

T
, (11)

κ = −

(

jh

∇T

)

je=0

=
1

T2

det L

Lee
, (12)

S = −
1

e

(

∇µ

∇T

)

je=0

=
1

T

(

Leu

Lee
−

µ

e

)

, (13)

5 =

(

jh

je

)

∇T=0

=
Lue

Lee
−

µ

e
. (14)

For systems with time-reversal symmetry, the Onsager reciprocal
relations give 5 = TS.

The thermoelectric performance is governed by the
thermoelectric figure of merit

ZT =
σS2

κ
. (15)

Thermodynamics imposes a lower bound on the figure of merit:
ZT ≥ 0. Moreover, the thermoelectric conversion efficiency
is a monotonically increasing function of ZT, with η = 0 at
ZT = 0 and η → ηC in the limit ZT → ∞. Nowadays,
most efficient thermoelectric devices operate at around ZT ≈

1. On the other hand, it is generally accepted that ZT > 3–
5 is the target value for efficient, commercially competitive
thermoelectric technology. It is a great challenge to increase the
thermoelectric efficiency, since the transport coefficients S, σ ,
and κ are generally interdependent. For instance, in metals σ

and κ are proportional according to the Wiedemann-Franz law,
and the thermopower is small; these properties make metals
poor thermoelectric materials. It is therefore of great importance
to understand the physical mechanisms that might allow us to
independently control the above transport coefficients.

3.2. Anomalous Transport and Efficiency
The theoretical discussion of the role of anomalous (thermal)
diffusion in thermoelectric transport is based on the Green-
Kubo formula. expresses the Onsager coefficients in terms of
dynamic correlation functions of the corresponding currents,
computed at thermodynamic equilibrium. If the current-current

correlations 〈ja(0)jb(t)〉 (where 〈 · 〉 denotes the canonical average
at a given temperature T) do not decay after time-averaging, then
by definition the corresponding Drude weight

Dab = lim
t→∞

lim
3→∞

1

2�(3)t

∫ t

0
dt 〈ja(0)jb(t)〉 (16)

is different from zero. Here � is the system’s volume and 3

is the system’s size along the direction of the currents. It has
been shown [96–99] that a non-zero Drude weight Dab is a
signature of ballistic transport, i.e., in the thermodynamic limit
the corresponding kinetic coefficient Lab diverges linearly with
the system size. Non-zero Drude weights can be related to the
existence of relevant conserved quantities, which determine a
lower bound on Dab [100, 101]. By definition, a constant of
motion Q is relevant if it is not orthogonal to the currents under
consideration; in thermoelectricity this means 〈jeQ〉 6= 0 and
〈juQ〉 6= 0.

With regard to thermoelectric efficiency, a theoretical
argument [102] predicts that for systems with a single relevant
conserved quantity, as is the case for non-integrable systems with
elastic collisions (momentum-conserving systems), the figure of
merit ZT diverges at the thermodynamic limit, so that the Carnot
efficiency is attained in that limit. Indeed, for systems in which
the total momentum along the direction of the currents is the
only relevant constant of motion, as a consequence of ballistic
transport the Onsager coefficients Lab are proportional to 3.
Therefore, the electrical current is ballistic, σ ∼ Lee ∼ 3,
while the thermopower is asymptotically size-independent, S ∼

Leu/Lee ∼ 30. On the other hand, for such systems the ballistic
contribution to det L is expected to vanish [102]. Hence the
thermal conductivity κ ∼ det L/Lee grows sub-ballistically, κ ∼

3γ with γ < 1. Since σ ∼ 3 and S ∼ 30, we can conclude that
ZT ∼ 31−γ ; that is, ZT diverges in the thermodynamic limit
3 → ∞.

This result has been demonstrated in several models: in
a diatomic chain of hard-point colliding particles [102] (see
Figure 3), in a two-dimensional system [77] with dynamics
simulated by the MPC method discussed in section 2.5 [75], and
in a one-dimensional gas of particles with screened (nearest-
neighbor) Coulomb interactions [104]. In all these (classical)
models, the collisions are elastic and the only relevant constant of
motion is the component of momentum in the direction of the
charge and heat flows. In the numerical simulations, openings
connect the system with two electrochemical reservoirs. The
left (L) and right (R) reservoirs are modeled as ideal gases, at
temperature Tγ and electrochemical potential µγ (γ = L,R). A
stochastic model of the reservoirs [105, 106] is used: whenever
a particle of the system crosses the opening that separates the
system from the left or right reservoir, it is removed. Particles
are injected into the system through the openings, with rates
and energy distribution determined by the temperature and
electrochemical potential (see e.g., [2]).

We now show that systems with anomalous (thermal)
diffusion allow a much better power-efficiency trade-off than is
achievable by non-interacting systems or, more generally, by any
system that can be described by the scattering theory.
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FIGURE 3 | (A) Electrical conductivity σ , (B) Seebeck coefficient S,

(C) thermal conductivity κ, and (D) thermoelectric figure of merit ZT plotted as

functions of the mean number N of particles in the system, for a

one-dimensional diatomic hard-point gas. Parameter values are m = 1 and

M = 3 for the masses, T = 1, µ = 0, and kB = e = 1, with the system length

3 set equal to the number of particles. Adapted with permission from Luo

et al. [103]. Copyright © 2018 American Physical Society.

We first briefly discuss non-interacting systems. In this case,
we can express the charge current according to the Landauer-
Büttiker scattering theory [107], adapted to classical physics:

je =
e

h

∫ ∞

0
dǫ [fL(ǫ)− fR(ǫ)]T (ǫ), (17)

where fγ (ǫ) = e−βγ (ǫ−µγ ) is theMaxwell-Boltzmann distribution
function for reservoir γ and T (ǫ) is the transmission probability
of a particle with energy ǫ going from one reservoir to the other,
so that 0 ≤ T (ǫ) ≤ 1. Similarly, we obtain the heat current from
reservoir γ as

Jh,γ =
1

h

∫ ∞

0
dǫ (ǫ − µγ )[fL(ǫ)− fR(ǫ)]T (ǫ). (18)

For a given output power P = (1µ/e)Je (where 1µ = µR −

µL > 0 and we set µL = 0 for simplicity), the transmission
function that maximizes the efficiency of the heat engine, η(P) =
P/Jh,L (with P, Jh,L > 0 and TL > TR) was determined in Luo
et al. [103] by closely following the method developed for the
quantum case in Whitney [108, 109]. The optimal transmission
function is a boxcar function, T (ǫ) = 1 for ǫ0 < ǫ < ǫ1 and
T (ǫ) = 0 otherwise. Here ǫ0 = 1µ/ηC is obtained from the
condition fL(ǫ0) = fR(ǫ0) and corresponds to the special value
of energy for which the flow of particles from left to right is
the same as the flow from right to left. Thus, if particles only
flow at energy ǫ0, the flow can be considered “reversible” in a
thermodynamic sense. The energy ǫ1 and 1µ are determined
numerically in the optimization procedure [103, 108, 109]. The

maximum achievable power is obtained when ǫ1 → ∞:

P(st)max = A
π2

h
k2B (1T)2, (19)

where 1T = TL − TR, A ≈ 0.0373, and the superscript “(st)”
reminds us that the results are obtained within the scattering

theory framework. At small output power, P/P
(st)
max ≪ 1, we have

η(P) ≤ η(st)max(P) = ηC

(

1− B

√

TR

TL

P

P
(st)
max

)

, (20)

where B ≈ 0.493. Note that in the limit P → 0 the upper
bound on efficiency achieves the Carnot value and the energy
window for transmission, δ = ǫ1 − ǫ0, tends to 0. That is,
we recover the celebrated delta-energy filtering mechanism for
Carnot efficiency [110–112]. Hence, the Carnot limit corresponds
to the aforementioned reversible, zero-power flow of particles.

It is clear that selecting transmission over a small energy
window reduces power production. We would thus expect a
different mechanism for reaching Carnot efficiency to be more
favorable for power production. Such an expectation is supported
by numerical data for the interacting momentum-conserving
systems described above. For these systems, the Carnot efficiency
can be reached without delta-energy filtering [113], and the
power-efficiency trade-off can be improved. Figure 4 shows, for
a given 1T and different system sizes, η/ηC as a function of
P/Pmax. The curves have two branches. Indeed, they are obtained
by increasing 1µ from zero, where trivially P = 0, up to
the stopping value, where again P = 0. In the latter case, the
power vanishes because the electrochemical potential difference
becomes too great to be overcome by the temperature difference.
The power first increases with 1µ, up to its maximum value
P = Pmax, and then decreases, leading to a two-branch curve.
Note that, despite the relatively high value of 1T/T = 0.2, the
numerical results are in rather good agreement with the universal
linear curves, which depend only on the figure of merit ZT
[103]. Not surprisingly, the agreement improves with increasing
system size, since |∇T| = 1T/N decreases as N increases.
In Figure 4 we also plot the limiting curve corresponding to
ZT = ∞, obtained in momentum-conserving models in the
thermodynamic limit N → ∞. The upper branch of this curve
is the universal linear response upper bound on efficiency for a
given power P. For P/Pmax ≪ 1, this bound reads

ηlr(P) = ηC

(

1−
1

4

P

Pmax

)

, (21)

which is much less restrictive than the bound (20) obtained
from scattering theory. Note that, by using the linear response
result Pmax ∝ (1T)2, from (21) we obtain P ∝ 1T (ηC − η).
Accordingly, when η ≈ ηC ∝ 1T, we find the same dependence
as in bound (6), which was obtained in a rather different context.

3.3. Open Problems
Several open questions about the role of anomalous transport in
coupled transport remain, notably the following:
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FIGURE 4 | Relative efficiency η/ηC vs. normalized power P/Pmax at different

system sizes. The dotted, dashed, and dot-dashed curves represent the linear

response predictions at the ZT (N) value corresponding to the given system

size 3 = N. The solid line is the linear response curve for ZT = ∞ (i.e.,

N = ∞). The model parameter values are as in Figure 3, with 1T = 0.2

(TL = 1.1 and TR = 0.9). Adapted with permission from Luo et al. [103].

Copyright © 2019 American Physical Society.

• As discussed in section 2.4, heat transport in the presence
of long-range interactions has been investigated recently.
However, the effect of the range of interactions on coupled
transport, and in particular on the power-efficiency trade-off,
is unknown.

• While momentum-conserving systems greatly improve the
power-efficiency trade-off relative to the non-interacting case,
it is not known how they would behave with respect to
the bound (7), which simultaneously involves the efficiency,
power, and fluctuations. That bound was obtained within
the framework of stochastic thermodynamics [90], with the
transition rates between the system’s states obeying the local
detailed balance principle, and without precisemodeling of the
underlying particle-particle interactions. On the other hand,
in the models described in the present paper, stochasticity is
confined to the baths and the internal system dynamics plays
a crucial role. This has allowed us to assess the impact of
constants of motion and anomalous transport on the efficiency
of heat-to-work conversion and could also be relevant to the
bound (7).

• Although the results reviewed in this section have been
corroborated by numerical simulations of several classical one-
and two-dimensional systems, their extension to the quantum
case remains a challenging problem for future investigation.

• The discussion in this section has neglected phonons.
Nevertheless, besides being of fundamental interest, the
results presented here could be of practical relevance to
very clean systems where the elastic mean free path of the
conducting particles is much longer than the length scale
associated with elastic particle-particle collisions, for instance
in high-mobility two-dimensional electron gases at very
low temperatures. Phonon-free thermoelectricity (or, more
precisely, thermodiffusion) has been experimentally realized
in the context of cold atoms, first for weakly interacting

particles [114] and more recently in a regime with strong
interactions [115]. In the latter case, a strong violation of
the Wiedemann-Franz law has been observed. Such violations
cannot be explained by the Landauer-Büttiker scattering
theory. It would be interesting to investigate whether in
such systems where a high thermoelectric efficiency has been
observed, the non-interacting bound on efficiency for a given
power could be outperformed.

4. OVERVIEW

In spite of the significant progress made over the past few
decades, the study of anomalous heat transport in non-linear
systems remains a challenging research field. While this
review has focused on some promising directions in regard to
classical systems, a main avenue for future investigations should
undoubtedly be sought in the quantum domain. At the quantum
level, anomalous heat transport is considerably less well-
understood than in the classical case, due to both conceptual
and practical difficulties. The definitions of thermodynamic
observables, such as temperature, heat, and work, and of the
concept of local equilibrium, become problematic in nanoscale
systems. For instance, in solid-state nanodevices we can have
structures smaller than the length scale over which electrons
relax to a local equilibrium due to electron-electron or electron-
phonon interactions. Consequently, quantum interference
effects, quantum correlations, and quantum fluctuation effects
should be taken into account [2]. In particular, many-body
localization provides a mechanism by which thermalization can
fail in strongly disordered systems, with anomalous transport in
the vicinity of the transition between many-body localized and
ergodic phases [116, 117].

From a practical viewpoint, one faces challenges arising
from the computational complexity of simulating many-
body open quantum systems, with the size of the Hilbert
space growing exponentially with the number of particles.
Notwithstanding these difficulties, a time-dependent density
matrix renormalization group method allows the computation of
transport properties of integrable and non-integrable quantum
spin chains driven by local (Lindblad) operators acting close
to their boundaries [118]. Sizes up to n ∼ 100 spins can be
simulated, much larger than the n ∼ 20 spins achievable with
other methods, such as Monte Carlo wavefunction approaches
[119]. The results obtained confirm the relevance of constants
of motion to transport properties, with integrable systems that
exhibit ballistic heat transport, whereas for quantum chaotic
systems heat transport is normal (according to Fourier’s law; see
[120, 121]). In passing, we note that for magnetization transport
in some integrable models like XXZ, one can obtain diffusive
behavior (Fick’s law; see [118]).

From a thermodynamic perspective, the use of local Lindblad
operators is problematic. Except in quantum chaotic systems,
such operators do not drive the system to a grand-canonical state
[122]. Furthermore, the use of local Lindblad baths may result
in apparent violations of the second law of thermodynamics
[123]. Global Lindblad dissipators are free from such problems
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and can be used to simulate heat transport (see e.g., [124]),
but are not practical in that they are limited to very small
system sizes. Furthermore, for the description of quantum heat
engines in the extreme case where the working medium may
even consist of a single two-level quantum system, it is crucial
to take into account medium-reservoir quantum correlations as
well as non-Markovian effects, which are not included in the
standard, weak-coupling Lindblad description of quantum open
systems. For first steps in this challenging direction, see Carrega
et al. [125], Tamascelli et al. [126], and Wiedmann et al. [127].
The investigation of anomalous heat transport in such regimes is
terra incognita.
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