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Inertia triggers nonergodicity of fractional Brownian motion
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How related are the ergodic properties of the over- and underdamped Langevin equations driven by fractional
Gaussian noise? We here find that for massive particles performing fractional Brownian motion (FBM) inertial
effects not only destroy the stylized fact of the equivalence of the ensemble-averaged mean-squared displacement
(MSD) to the time-averaged MSD (TAMSD) of overdamped or massless FBM, but also dramatically alter the
values of the ergodicity-breaking parameter (EB). Our theoretical results for the behavior of EB for underdamped
or massive FBM for varying particle mass m, Hurst exponent H , and trace length T are in excellent agreement
with the findings of stochastic computer simulations. The current results can be of interest for the experimental
community employing various single-particle-tracking techniques and aiming at assessing the degree of noner-
godicity for the recorded time series (studying, e.g., the behavior of EB versus lag time). To infer FBM as a
realizable model of anomalous diffusion for a set single-particle-tracking data when massive particles are being
tracked, the EBs from the data should be compared to EBs of massive (rather than massless) FBM.

DOI: 10.1103/PhysRevE.104.024115

I. INTRODUCTION

Fractional Brownian motion (fractional BM or FBM)—
introduced by Kolmogorov [1] and further developed by
Mandelbrot and van Ness [2]—is one of the paradigmatic
stochastic anomalous-diffusion processes [3–6] employed to
describe or rationalize numerous experimental observations of
non-Brownian or nonlinear diffusion taking place on various
length- and timescales, from the nanoworld to the interstellar
space (the list of relevant studies is too long to overview it in
this short paper). In its classical formulation, the dynamics
of a single FBM particle is described by the overdamped
Langevin equation (the high-friction scenario) [7–13]

dx(t )/dt = ηH (t ) (1)

driven by fractional Gaussian noise ηH (t ) with zero mean and
power-law long-ranged correlations, with (for t �= t ′)

〈ηH (t )ηH (t ′)〉 � K2H 2H (2H − 1)|t − t ′|2(H−1). (2)

For “athermal” FBM dynamics—with no (generalized)
fluctuation-dissipation relation being fulfilled, in contrast to
BM—the mean-squared displacement (MSD)

〈x2(t )〉 =
∫

x2P(x, t ) dx = 2K2Ht2H (3)
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follows from the probability-density function, which for the
Dirac-delta-like initial condition, P(t = 0) = δ(x − x0), is
given by the Gaussian

P(x, t ) = exp

[
− x2

4K2Ht2H

]/√
4πK2Ht2H . (4)

Here K2H is the generalized diffusion coefficient (with the
physical units [K2H ] = m2/sec2H ) and H is the Hurst expo-
nent [3,6]. The increments of FBM are positively (negatively)
correlated for superdiffusive (subdiffusive) Hurst exponents,
for 1 > H > 1/2 and 0 < H < 1/2, respectively. Standard
BM is FBM at H = 1/2.

From a time series x(t ) of a stochastic process, the time-
averaged MSD (TAMSD) is defined as the sliding average of
squared increments along the trajectory of length T as

δ2(�) = 1

T − �

∫ T −�

0
[x(t + �) − x(t )]2dt, (5)

where � is the lag time. Averaging over N realizations of a
fluctuating variable δ2(�) constructed via (5) from x(t ), the
mean TAMSD at a given � value is

〈δ2(�)〉 = 1

N

N∑
i=1

δ2
i (�). (6)

Hereafter, the angular brackets denote ensemble averaging,
while time averaging is shown by the overline. The standard
concept of ergodicity [3,6,14–20] (see Refs. [21–24] for some
alternative approaches) implies the equivalence of the MSD to
the [mean] TAMSD for long trajectories and short lag times,
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at �/T � 1. FBM is ergodic [7–9,13], with

〈δ2(�)〉 = 2K2H�2H = 〈x2(�)〉. (7)

The degree of nonergodicity—or of innate irreproducibility
of the TAMSD realizations—is quantified by the ergodicity-
breaking parameter [6,7,25–28],

EB(�) = 〈(δ2(�))2〉/〈δ2(�)〉2 − 1 = 〈ξ 2(�)〉 − 1, (8)

that is the ratio of the variance to the squared mean of δ2(�).
The dispersion and distribution of the TAMSDs (5) around
their mean (6) is embodied in the distribution φ(ξ ), where
ξ (�) = δ2(�)/〈δ2(�)〉.

In the continuous-time framework, EB of FBM for the
Hurst exponent 0 < H < 3/4 deviates only slightly from EB
for BM given by,

EB(�) ≈ 4�/(3T ), (9)

growing at �/T � 1 as [7] [see Eq. (18) below] EB(�) ≈
C1(H ) × (�/T )1. For 1 > H > 3/4 the behavior of EB(�)
of FBM is more subtle: the EB values also depend explicitly
on the lag time [rather than only on the (�/T ) ratio], with EBs
being generally significantly larger. In this range of H expo-
nents FBM features a slower approach to ergodicity: we refer
to [7,12,29–32] for the continuous-time and to Refs. [13,33]
for the discrete-time calculations of EB for FBM.

Our key objective here is to quantify (non-)ergodicity of
FBM in terms of EB for diffusion of massive—rather than
massless—particles. We focus on the experimentally rele-
vant setup of a constant trace length T and varying particle
mass m, as often utilized in EB calculations [e.g., for size-
or mass-polydisperse tracers in single-particle-tracking (SPT)
and optical-tweezers-based [34–38] experiments]. We use
underdamped or massive and overdamped or massless inter-
changeably for the respective scenarios of FBM diffusion.
FBM particles with m �= 0 require an underdamped descrip-
tion yielding an additional timescale; see below.

The paper is organized as follows. Starting with the de-
scription of the simulation scheme in Sec. II A, in Sec. II B the
results for the MSD and mean TAMSD of underdamped FBM
are presented, from both computer simulations and theory. In
Sec. II C the main results for the EB parameter of massive
FBM are presented and contrasted to those for massless FBM.
We conclude in Sec. III and mention some applications. In Ap-
pendix A certain technical details and derivations are given,
while some auxiliary figures are presented in Appendix B.

II. MAIN RESULTS

A. Diffusion model and simulation scheme

We simulate the diffusion for a single tracer of mass m
driven by external fractional Gaussian noise ηH (t ) using the
underdamped Langevin equation,

md2x(t )/dt2 + γ dx(t )/dt = γ ηH (t ), (10)

used recently also in Refs. [39–42]. Here we consider the
instantaneous Stokes damping, −γ dx(t )/dt , with a constant
coefficient γ (not a dynamical Basset force; see, e.g., the
discussion in Ref. [38]). We set γ = 1 below, so that the

characteristic momentum-relaxation or Smoluchowski’s time,

τ0 = m/γ , (11)

is controlled in simulations (for simplicity) solely by the par-
ticle mass m. We study the potential-free case; the general
problem of (non-)ergodicity of massive-FBM in the presence
of a space-dependent potential is complicated and requires a
special investigation.

To simulate (10) we introduce the velocity v(t ) = dx(t )/dt
and discretize the resulting Eq. (A3) with the time step dt

xn+1 − xn = vn dt, vn+1 − vn = −τ−1
0 vn dt + τ−1

0 (�BH )n,

(12)

with 1 < n < (N̄ − 1), where

N̄ = T/dt (13)

is the number of elementary steps in the trajectory. This sys-
tem of forward recurrent equations is solved with the initial
position x0 and velocity v0 of the particle. Both v0 = 0 and v0

being distributed according to the stationary-state distribution
are considered. The increment of standard FBM (�BH )n is
generated using the Wood-Chan method (faster than the Hosk-
ing approach) based on the fast Fourier transform [43].

B. MSD and TAMSD

In Fig. 1 we present the results of simulations for the
MSD and TAMSD of massive-FBM particles starting their
motion with v0 = 0, for two values of the Hurst exponent
H (for sub- and superdiffusive dynamics). We find that
the long-time dynamics of massive FBM is expectedly the
same as for massless FBM, with the MSD (3) being equal
to the TAMSD (7). At short lag times the mean TAMSD of
massive FBM start ballistically,

〈δ2(�)〉 ∝ �2, (14)

while its MSD grows superballistically,

〈x2(t )〉 ∝ t2H+2. (15)

The exact prefactors in these relations are derived in Ap-
pendices A 1 and A 2; see Eqs. (A29), (A31), and (A20),
respectively. In terms of the MSD-to-TAMSD equivalence,
underdamped FBM ceases to stay ergodic: both scalings and
magnitudes of 〈x2(�)〉 and 〈δ2(�)〉 are disparate, see Fig. 1.
Massive FBM also features larger EB values, see Sec. II C.

The long-time evolution of the MSD and TAMSD for mas-
sive FBM is identical, given by that of massless FBM in (3)
and (7), namely,

〈x2(�)〉 = 〈δ2(�)〉 = 2K2H�2H . (16)

The temporal extent of the short-time regimes given by (14)
and (15) grows with the particle mass [similarly to that for
massive BM or the Ornstein-Uhlenbeck (OU) process [44]]
and depends on the Hurst exponent. These two parameters
determine the “agility” of the underlying dynamics; compare
Figs. 1 and 5 (see Appendix B for Figs. 5–11) for the 10-
times heavier particles. Expressions (A23) and (A35) give the
crossover times to the long-time behavior (16) of the MSD
and mean TAMSD.
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FIG. 1. Magnitude of the MSD 〈x2(t )〉 (blue circles), the spread
of individual TAMSDs δ2(�) (thin red curves), and the mean
TAMSD 〈δ2(�)〉 (thick blue curve) for massive FBM, shown for
two values of the Hurst exponent (see the legends). The long-time
MSD and mean TAMSD asymptotes given by expressions (3) and
(7), respectively, are the dashed lines. The short-time asymptotes
(15) and (14) for the MSD and mean TAMSD are the dashed lines.
Parameters: the particle mass is m = 1, the time step of simulations
is dt = 10−2, the trajectory length is T = 102 (or 104 time steps),
the number of independent trajectories used for ensemble averaging
is N = 103, the initial conditions are x0 = 0 (for this and all other
plots) and v0 = 0, and the generalized diffusivity is set at K2H = 1/2.

We emphasize that initial velocities of the particles—
instead of being zero as in Fig. 1—can be sampled from the
stationary distribution (A12), with 〈v2〉st given by (A11). Then
the MSD and mean TAMSD are equal and both acquire a
transient short-time ballistic growth,

〈x2(�)〉 = 〈δ2(�)〉 ∝ �2, (17)

with a crossover time to the long-time behavior given by
expression (A24). For stationary-state-distributed initial ve-
locities, the process of massive FBM stays “ergodic” at
short times in the sense of the MSD-to-TAMSD equivalence,
whereas the long-time growth of the two averages is the same
as for massless FBM given by expression (16) see Fig. 6 as
well as Appendices A 1 and A 2. In analogy to superballistic
tracer dispersion ∝ t2H+2 in Eq. (15) and the ballistic law (17)
for massive FBM, for massive BM with constant or zero and
stationary-state-distributed initial velocities of the particles
the short-time MSD grows as ∝ t3 and ∝ t2, respectively (see
the detailed discussion and the experimental confirmation of
this in the seminal work [37]).

We stress, however, that despite (17) is true for the aver-
ages, the irreproducibility of individual TAMSDs increases
for larger Hurst exponents, as quantified in Fig. 6(b). This
increase has dramatic implications for the EB values charac-
terizing the dispersion of δ2(�) around 〈δ2(�)〉, see Sec. II C.

C. EB

1. Spread of δ2(�)

From Fig. 1 it becomes apparent that for superdiffusive
underdamped FBM the individual TAMSDs become less re-
producible. This fact gets reflected in larger values of the EB
parameter, as compared to those for standard FBM [7,13],
see the results of simulations in Fig. 7 for EB(�) for FBM
with H = 0.8 and 0.2 (both for the under- and overdamped
cases). The increase of EB for massive FBM is observed in
the entire range of lag times, but at the shortest lag time
� = �1 = dt it is particularly dramatic. This is associated
with a larger degree of nonergodicity (in terms of EB [6]).
This fact is relevant for SPT experiments as—in virtue of the
best time-averaging statistics at short lag time—the time series
are often used to compare the assessed EB(�1) values to EBs
of known models of diffusion [6,45–47]. We stress that for the
massive particles driven by ηH —with the initial conditions
x0 = 0 and v0 = 0—the EB values are dramatically larger
than those for overdamped FBM [7]. The deviations of mas-
sive versus massless FBM results for EB are (expectedly) the
largest for lag times where the respective MSD and TAMSD
deviate, compare the respective �-regions in Figs. 1 and 7.
The number of independent in silico-generated trajectories
used for ensemble averaging in Fig. 1 and all later plots is
at least N = 103.

2. EB of massless FBM

In Fig. 7 we show for comparison the theoretical predic-
tions for EB of massless FBM in the framework of continuous
time given by [7,12,13]

EB(�) ≈
{

C1(H ) × (�/T )1, 0 < H < 3/4
C2(H ) × (�/T )4(1−H ), 1 > H > 3/4

,

(18)

with the coefficients

C1(H ) =
∫ ∞

0
[(1 + t ′)2H + |1 − t ′|2H − 2(t ′)2H ]2dt ′ (19)

[see Fig. 8 of Ref. [13] for C1(H ) values for some H] and

C2(H ) = [2H (2H − 1)]2

(
1

4H − 3
− 1

4H − 2

)
. (20)

Here (�/T ) is the only possible dimensionless time.
We also use the results for EB of massless FBM in the

discrete-time approach [13,31], predicting that at the first step
(for H < 1/2)

EB(�1, N̄ ) ≈ 2

N̄ − 1
+ (N̄ − 2)(22H − 2)2

(N̄ − 1)2
. (21)

Here N̄ is given by Eq. (13). For H > 1/2 the result
for EB(�1, N̄ ) is more complicated, given by Eq. (C4) of
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FIG. 2. EB of massive FBM versus trajectory length T for sev-
eral values of the H exponent (the filled symbols), with the scaling
relations (23) and (A53) shown as the dashed lines [no data fitting
here, the exact prefactors used]. The results of EB simulations of
massless FBM for the same H are the empty symbols; they are
shown together with the modified Deng-Barkai [7] EB asymptote
(18) and the discrete-time EB expression (21), see Ref. [13]. The
initial velocities are v0 = 0. Parameters: m = 1, dt = 10−2.

Ref. [13]. The terminal value (see Ref. [13] for details)

EB(� = T ) = 2 (22)

is also referred to in Fig. 7 and in other EB plots.
In Fig. 8 the variation of EB(�) of massive FBM—

computed at the shortest lag time � = �1—with the Hurst
exponent H is summarized. For underdamped FBM the be-
havior of EB(�1) is very different from the discrete-time
prediction (21) (see our recent study [13] for detailed deriva-
tions and description). Instead, we find that, starting from very
small H, the values EB(�1) grow quickly with H , rather
than stay nearly constant in the range 0.6 � H > 0 as EB
expression (21) would predict. At � → T the value of EB(�)
approaches (22).

3. EB of massive FBM

For a fixed m, for longer times series massive FBMs turn
progressively “less heterogeneous” and deviations from er-
godicity decrease. Specifically, EB(�1, T ) values obtained
from simulations are found to decrease with the trajectory
length T according to the empirical scaling

EB(�1, T ) ∼
{

(�1/T )1, 0 < H < 3/4
(�1/T )4(1−H ), 1 > H > 3/4

, (23)

as illustrated in Fig. 2. The approach to ergodicity for longer
trajectories of massive-FBM particles is, thus, the same as that
for standard FBM [7] in expression (18), with the anoma-
lously slow EB decrease with T and slower approach to
ergodicity for 1 > H > 3/4. As follows from Fig. 2, for a
fixed mass m, a slower decay of the EB parameter for massive
FBM for increasing H requires longer trajectories for scaling
(23) to be applicable. For comparison, the empty symbols
in Fig. 2 are the results of simulations for the decay of
EB(�1, T ) with T for massless FBM following Eq. (18).

Our main results, presented in Fig. 3, show that for vanish-
ing mass m the EB values for massive FBM approach those

10-3 10-2 10-1 100 101 102 103 104
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100

FIG. 3. EB parameter of underdamped FBM plotted versus the
particle mass m for several H values. At intermediate m-values we
show the scaling relations of Eqs. (24) and (A51) as the dashed
colored lines and the EB expression (A53) with the exact pref-
actors (no data fitting) as the dot-dashed colored asymptotes. The
terminal EB value (22) is also shown. The colored dot-dashed lines
on the left and on the right side of the plot, respectively, indicate
the discreteness-induced plateaus of EB for massless FBM in the
discrete-time formulation given by (21) and the EB plateaus in the
large-mass limit given by (A42). The initial velocities are v0 = 0.
Parameters: T = 102, dt = 10−2.

of massless FBM, Eq. (21) in the discrete-time approach,
as expected. For extremely massive particles, the EB param-
eter reaches its maximal values, saturating at H-dependent
plateaus [see Eq. (A42) and the derivations in Appendix A 3
and also Fig. 9]. These large EB values corroborate with
the most pronounced spread of δ2(�) and, therefore, broader
distributions φ(ξ (�1)) for diffusion of heavier FBM particles
(as detailed in Fig. 5, which is to be compared to Fig. 1).

For the particles of intermediate masses, we empirically
find scaling relations

EB(�1, m) ∼
{

m1, 0 < H < 3/4
m4(1−H ), 1 > H > 3/4

, (24)

which are in excellent agreement with the in silico results
for all H values, see Fig. 3. In Appendix A 3 we present
the derivations of the EB plateaus for large-mass or short-
trace conditions given by (A42) and the variation of EB for
long trajectories given by expression (A51), both in excellent
agreement with the results of simulations and identical to the
empirical laws (23) and (24).

We stress that—although for stationary-state distribution of
initial velocities (A12) of massive-FBM particles the TAMSD
scaling gets affected and the short-time MSD-versus-TAMSD
equivalence gets restored, as shown in Fig. 6—using the
stationary-state distribution for v0 does not change the scaling
relations for the ergodicity-breaking parameter EB(�1, m)
versus particle mass m given by relations (24). These scaling
relations are the same for the case v0 = 0 and for pst(v0)-
distributed initial velocities, see the derivations of (A51) and
(A53). Solely the EB-plateau values at m → ∞ are different
in these two scenarios, as evident from comparing Fig. 3 ob-
tained for v0 = 0 and Fig. 10 where the stationary distribution
pst(v0) given by (A12) was used.
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III. DISCUSSION AND CONCLUSIONS

We examined the diffusion process driven by fractional
Gaussian noise ηH in the presence of inertia, both analytically
and via stochastic computer simulations. We found that the
short-time transient mass-dependent growth of the MSD is
superballistic with 〈x2(t )〉 ∝ t2H+2, while the mean TAMSD
grows at short-lag-time ballistically, 〈δ2(�)〉 ∝ �2. In this
range of times—quantified in Appendices A 1 and A 2—a
pronounced inertia-induced MSD-to-TAMSD nonequivalence
was found. Systematically varying the Hurst exponent H and
particle mass m we demonstrated that the evolution of the EB
parameter at short lag times follows the scaling relations with
trajectory length T and tracer mass m. In particular, EB for
massive FBM grows with m at a fixed T , reaching much larger
values than EBs of massless FBM. The scaling relations (23)
and (24)—derived in Appendix A 3 as (A51) and (A53)—are
closely supported by the results of simulations and embody
the main findings of this study.

We emphasize that the effects of inertia, inevitable in the
short-time behavior of real-world tracers in SPT experiments,
should be carefully accounted for if a quantitative comparison
of the computed EB values versus those for FBM (or other
diffusion models) is to be performed. For short lag times—
where the EB-averaging statistics is most accurate and, thus,
often used in the SPT-data analysis—the values of EB were
found to be most affected by these inertia effects. The emerg-
ing “ballisticity” in the TAMSD and the altered scaling of the
MSD in this short-� region was shown to trigger the MSD-
to-TAMSD nonequivalence and weak ergodicity breaking for
the ηH -driven dynamics of massive particles.

From the experimental perspective, the m- and H-
dependent timescales—when the above-mentioned ballistic
effects can play a role in the massive-FBM dynamics [see
Eqs. (A23) and (A35)]—should be understood for a given
tracer mass m, trajectory length T , lag time �, and properties
of the diffusion medium (embodied by γ ). This will clarify
whether the short- or long-time asymptotic behaviors of the
TAMSD and EB are valid for a given set of data and system
parameters. The computed EB values—if aimed at a quan-
titative comparison with known models of massless-particle
diffusion—should be properly adjusted to account for a finite
particle mass, m. This is exemplified above for massive FBM.

From the theoretical perspective, the velocity-relaxation
time τ0 = m/γ in (11) naturally rescales the timescale T to
be taken for a physically correct comparison of EB values
for FBM computed for the particles of varying mass. As we
have shown, the inertial effects make FBM appear nonergodic
when, e.g., the trajectory length T is fixed while mass m is
varied. A correct rescaling of the trace length T with a typical
relaxation time τ0 would be

T → Tm,γ ≡ T/τ0, (25)

so that heavier particles diffuse for the same relative time,
Tm,γ . The relaxation time τ0 is, therefore, an important phys-
ical timescale, as compared to a “scale-free” massless FBM.
The mass-dependent T -rescaling (25) renders the respective
EB(� = �1) values universal and constant for a fixed Tm,γ ,

EB(�1, T, m, γ ) → EB(�1, T/[m/γ ]). (26)

101 102 103 104
10-3

10-2

10-1

100

FIG. 4. Nearly constant EB of massive FBM at �1 = 10−2 for
simultaneously varying particle mass m and trajectory length T such
that the rescaled trace length Tm,γ in (25) stays constant, namely
T/τ0 = 102. The initial velocities are v0 = 0.

We have indeed confirmed this invariance of the rescaled EB
parameters via simulating massive FBM for a constant Tm,γ

but for a set of different T and m values (see Fig. 4) for both
sub- and superdiffusive H exponents. Note that a plateau-like
behavior of EB at small � (especially for H = 0.8), as shown
in Fig. 7, enables us to consider in Fig. 4 for rescaling (26) the
EB values at the same �1 for different T . The rescaling (25)
is also supported by theoretical arguments in Appendix A 3:
namely, EB in (A51) varies with the rescaled (τ0/T )-variable
only. We stress that a similar time-rescaling “regularizes”
apparent nonergodicity emerging for FBM in the presence of
stochastic resetting [33,48].

Note that the theoretically desirable rescaling (25) might
not always be realizable in SPT experiments, performed,
e.g., for an ensemble of mass-polydisperse tracers. Certain
restrictions of measurement protocols and limitations of the
apparatus itself (in terms of recording time, measurement
precision, etc.) can prevent such an idealized scenario from
happening. As a result, nonrescaled EB parameter will be
extracted from the SPT time series. We therefore presented
the main theoretical results for variation of the EB parameter
of massive FBM and pronounced emerging nonergodicity in
such a practice-related setup.

The nonergodicity of underdamped FBM is therefore “ap-
parent,” being the direct consequence of insufficient trajectory
lengths for progressively heavier particles (the time, required
to visit cells in the phase-space in the same proportion as
lighter particles, to attain a similar degree of ergodicity).
This is similar to the “apparent” nonergodicity predicted, e.g.,
in a two-state switching-diffusion model [49] [with, respec-
tively, {k1, D1} and {k2, D2} being the switching rates and
diffusivities]. Such a model (see also Refs. [50,51]) becomes
“apparently” profoundly nonergodic when the mean resident
time in a given diffusion state exceeds the overall length of the
trajectory (i.e., for occupation times [49] τ1,2 = 1/k1,2 � T ).

Note here also that above we followed the definitions
of the MSD and TAMSD standard for the SPT-data anal-
ysis [45–47,52–54], although some alternative “next-level”
definitions of (non-)ergodicity can (in some situations) be
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theoretically more appropriate for assessing the MSD-versus-
TAMSD equivalence (see, e.g., Refs. [55–57]).

Finally, this analysis continues a series of recent studies of
(non-)ergodic dynamics of massive particles for anomalous-
diffusion processes with a power-law D(t ) [41,42,58] and
exponential and logarithmic forms of D(t ) [59]. The ex-
tension of the “nonzero-mass concept” for unveiling the
MSD-versus-TAMSD nonequivalence and EB-based noner-
godicity is of interest also for other models of anomalous
diffusion [4,6,24,60–63], for both pure and “modified” pro-
cesses (e.g., by external confinement [9,64], TAMSD-aging
effects [42,65], diffusion in barrier-escape setups [66], and for
stochastic-resetting protocols [33,48]).

IV. ABBREVIATIONS

Brownian motion, BM; fractional BM, FBM; mean-
squared displacement, MSD; time-averaged MSD, TAMSD;
Ornstein-Uhlenbeck, OU; single-particle tracking, SPT.
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APPENDIX A: DERIVATION OF THE MSD, MEAN TAMSD,
AND EB FOR MASSIVE FBM

1. MSD

a. General solution

The Langevin-type equation of a single massive-FBM par-
ticle of mass m can be written as

md2x(t )/dt2 = −γ dx(t )/dt + γ ηH (t ), (A1)

where γ is the damping coefficient. In the overdamped
limit, the inertia term in (A1) can be neglected yielding the
massless-FBM formulation [2,7–9,13]. The external-noise in-
tensity, scaling as ∝ K1/2

2H as per Eq. (2), is generally not
coupled to the friction coefficient. With the velocity

dx(t )/dt = v(t ) (A2)

Eq. (A1) is the velocity-OU process [44] for v(t ) driven by
fractional Gaussian noise ηH with the correlator (2), i.e.,

dv(t )/dt = −τ−1
0 v(t ) + τ−1

0 ηH (t ). (A3)

Here τ0 = m/γ is the velocity-relaxation time (11). The for-
mal solution of Eq. (A3) with the initial condition v(t = 0) =
v0 is

v(t ) = v0e−t/τ0 + e−t/τ0

∫ t

0
et ′/τ0τ−1

0 ηH (t ′) dt ′. (A4)

The noise-averaged squared velocity is given by [56]

〈v2(t )〉 = e−2t/τ0
[
v2

0 + K2Ht2Hτ−2
0 M(2H, 2H + 1, t/τ0)

]
+ 2HK2Hτ 2H−2

0 γ (2H, t/τ0), (A5)

where BH (t ) is FBM, M(a, b, z) is the confluent hypergeo-
metric (or the Kummer’s) function of the first kind,

M(a, b, z) = 
(b)


(b − a)
(a)

∫ 1

0
ezt t a−1(1 − t )b−a−1 dt,

(A6)

and γ (a, z) is the lower incomplete Gamma function,

γ (a, z) =
∫ z

0
e−xxa−1 dx. (A7)

The expression (A5) follows from Eq. (28) of Ref. [56] [see
also the detailed derivation there] after setting the relaxation
time to τ0 and the actual noise strength as in Eq. (A3), after
some algebra with the M-functions [67].

b. Short- and long-time limits

At short times, when

{t,�} � τ0, (A8)

using the small-argument expansions M(2H, 2H +
1, t/τ0) ≈ 1 and γ (2H, t/τ0) ≈ (2H )−1(t/τ0)2H , one gets
from (A5) that

〈v2(t )〉 ≈ v2
0 + 2K2Hτ−2

0 t2H , (A9)

whereas at long times, at

t � τ0, (A10)

using the respective expansions M(2H, 2H + 1, t/τ0) ≈
2Het/τ0 (t/τ0)−1 and γ (2H, t/τ0) ≈ 
(2H ), where 
(x) is
the Gamma function, we find stationary, time-independent
velocities of the particles in the parabolic OU potential.
The long-time, stationary-state-related mean-squared velocity
〈v2(t )〉 follows then from (A5) as

〈v2(t )〉 ≈ 〈v2〉st = K2Hτ 2H−2
0 
(2H + 1). (A11)

The Gaussian distribution of long-time velocities,

pst(v) = exp

(
− v2

2〈v2〉st

)/√
2π〈v2〉st, (A12)

is akin to the one-dimensional Maxwell-Boltzmann distribu-
tion with effective H-dependent temperature defined as

Teff(H ) = m〈v2〉st/kB, (A13)

where kB is the Boltzmann constant. For this nonequilibrium
system the width of pst(v) in (A12) and the mean-squared ve-
locity 〈v2〉st given by (A11) can thus be expressed via Teff(H )
[no equipartition theorem or fluctuation-dissipation relation is
connected to Teff (A13)]. The distribution (A12) satisfies the
stationary Fokker-Planck equation for the fractional velocity-
OU process (A3) given by [68,69]

〈v2〉st∂
2 pst(v)/∂v2 + ∂[vpst(v)]/∂v = 0. (A14)

The asymptotic result for the velocity-autocorrelation func-
tion of the fractional OU process for the stationary velocities
for the well-separated time instances, at δt � τ0, is given by
[56] (see also Ref. [70])

〈v(t )v(t + δt )〉 ≈ K2H 2H (2H − 1)(δt )2H−2, (A15)
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while at δt � τ0 we have

〈v(t )v(t + δt )〉 ≈ 〈v2〉st. (A16)

As m, γ , and noise strength are independent model
parameters, to get simpler solutions and to capture main
physical scalings, we consider now the “large-mass” or
“short-trajectory” limit of Eq. (A3) via setting τ0 to a large
value, but such that the product τ−1

0 K1/2
2H stays constant via

adjusting the noise strength [neglecting, thus, the second term
in (A3)]. The evolution of velocity at short times, starting from
v0 value, is then simply integrated ηH (t ) that is FBM, namely,

v(t ) ≈ v0 + τ−1
0

∫ t

0
ηH (t ′) dt ′ = v0 + τ−1

0 BH (t ). (A17)

The velocity-autocorrelation function and the velocity second
moment are then given, respectively, by

〈v(t ′)v(t ′′)〉 ≈ v2
0 + τ−2

0 〈BH (t ′)BH (t ′′)〉 (A18)

and

〈v2(t )〉 ≈ v2
0 + 2K2Hτ−2

0 t2H . (A19)

As per Eq. (A2), the particle position x(t ) is one more integra-
tion of (A17), the MSD in this limit for the initial condition
x(t = 0) = 0 is a combination of a ballistic ∼t2 and a faster-
than-ballistic ∼t2H+2 term, namely,

〈x2(t )〉 ≈ v2
0t2 + 2K2Hτ−2

0 (2H + 2)−1t2H+2. (A20)

c. Distributed v0 velocities

Assuming initial velocities to be distributed with the
stationary-state distribution (A12), the MSD at short times—
after neglecting the second term in (A20)—reads

〈x2(t )〉 ≈ 〈v2〉stt
2, (A21)

while at long times (A10) one gets

〈x2(t )〉 ≈ 2K2Ht2H . (A22)

We note that the long-time MSD behavior is observed beyond
the transition time t�

MSD scaling as [via equating the second
term in (A20) and (A22)]

t�
MSD/τ0 ∼ (2H + 2)1/2 (A23)

and [via comparing (A21) and (A22)]

(t�
MSD/τ0)|stat.v0 ∼ [
(2H + 1)/2]1/(2H−2) (A24)

for the case of v0 = 0 and pst(v0)-distributed initial velocities
of the particles, correspondingly. For a (vanishingly) small
mass, neglecting the first term in Eq. (A3), one gets the ex-
pected MSD of massless FBM,

〈x2(t )〉 ≈ 2K2Ht2H . (A25)

2. TAMSD

a. Short-time limit

For the TAMSD (5), formally integrating expression (A2)
from t to t + �, we get

δ2(�) = 1

T − �

∫ T −�

0

[∫ t+�

t
v(t ′) dt ′

]2

dt . (A26)

For the region of short lag times, when (A8) holds, neglecting
the variation of velocity v(t ) on the timescale of �, we find
from (A26) that

〈δ2(�)〉 ≈ 〈
δ2

app(�)
〉 ≡ �2

T − �

∫ T −�

0
〈v2(t )〉dt . (A27)

For short trajectories or large particle mass, i.e., at

T � τ0, (A28)

when velocities did not yet reach stationarity, after using the
approximate velocity (A9) the TAMSD form (A27) yields—
similarly to the MSD representation (A20)—a combination of
two terms,

〈δ2(�)〉 ≈ v2
0�

2 + 2K2H (2H + 1)−1(T − �)2H (�/τ0)2,

(A29)

both featuring a ballistic TAMSD growth at T � �.

b. Long-time limit

For long trajectories, when

T � τ0, (A30)

and, thus, for nearly stationary particle velocities, we split
the integral in (A27) into two regions, with 0 < t < τ0 and
τ0 < t < (T − �). In the first region we use the short-time
expansion of 〈v2(t )〉 near v2

0 given by (A19), while in the
other region the long-time result (A11) with 〈v2(t )〉 ≈ 〈v2〉st

is used. With this strategy, after integration, the approximate
mean TAMSD in this limit becomes

〈δ2(�)〉 ≈ τ0�
2

T − �

[
v2

0 + 2K2H (2H + 1)−1τ 2H−2
0

+ K2H
(2H + 1)(T − � − τ0)τ 2H−3
0

]
. (A31)

From this expression, neglecting the duration of � and τ0

compared to the trace length T , one gets the expected short-
lag-time ballistic scaling,

〈δ2(�)〉 ≈ K2Hτ 2H
0 
(2H + 1)(�/τ0)2 = 〈v2〉st�

2. (A32)

This asymptotic TAMSD is identical to the MSD evolution
under the same conditions, Eq. (A22). Therefore, the ergodic-
ity in terms of MSD-to-TAMSD equivalence at short lag times
is restored for long trajectories and stationary-state velocities.

When both the measurement time and the lag time are
longer than the velocity-relaxation timescale, i.e., at τ0 �
{�, T }, after using the correlator

〈v(t ′)v(t ′′)〉 = 〈ηH (t ′)ηH (t ′′)〉, (A33)

following from Eq. (1) with the initial velocities being
fully relaxed by that long time, for the mean TAMSD—
starting from expression (A26) and performing the elementary
integration—we find

〈δ2(�)〉 = 2K2H�2H . (A34)

The MSD-to-TAMSD equivalence is thus again restored. The
transition lag time from the short-time TAMSD behavior
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(A32) to the long-time asymptotic law (A34), denoted as
��

TAMSD, is the same as that for the MSD case with stationary-
state-distributed v0 given by (A24),

(��
TAMSD/τ0) = (��

MSD/τ0)|stat.v0 . (A35)

3. EB

The standard procedure for computing the EB parameter
is to find the general expression for the fourth-order corre-
lation functions of particle positions (for Gaussian random
variables) and with its help express all nine terms in the inte-
grand of the fourth-moment 〈(δ2(�))2〉 in EB in Eq. (8). This
general methodology is often tedious (we refer, e.g., to EB
of the OU process computed like this in Ref. [71]). Our goal
here is—via avoiding exact lengthy derivations—that are not
easy to use in practice, i.e., because of special functions often
involved that demand a considerable time to find relevant
scalings—to derive EB of massive FBM approximately and
get the main relevant scaling relations.

a. Short-time limit

To pursue this goal, for the region of short lag times defined
by (A8), using the approximate TAMSD 〈δ2

app(�)〉 in (A27)
and employing Isserlis-Wick theorem for zero-mean Gaussian
processes,

〈v(t ′)v(t ′′)v(t ′′′)v(t ′′′′)〉
= 〈v(t ′)v(t ′′)〉〈v(t ′′′)v(t ′′′′)〉 + 〈v(t ′)v(t ′′′)〉〈v(t ′′)v(t ′′′′)〉

+ 〈v(t ′)v(t ′′′′)〉〈v(t ′′)v(t ′′′)〉, (A36)

for computing the fourth-order correlators in terms of the
pair correlators in Eq. (8), EB of massive FBM for short
trajectories or large particle mass can be approximated as

EB(�) ≈
∫ T −�

0 dt ′ ∫ T −�

0 dt ′′〈v2(t ′)v2(t ′′)〉[ ∫ T −�

0 dt ′〈v2(t ′)〉]2 − 1

= 2
∫ T −�

0 dt ′ ∫ T −�

0 dt ′′〈v(t ′)v(t ′′)〉2

[ ∫ T −�

0 dt ′〈v2(t ′)〉]2 . (A37)

Using the velocity-velocity correlator (A18), the FBM auto-
correlation function

〈BH (t ′)BH (t ′′)〉 = K2H [(t ′)2H + (t ′′)2H − |t ′ − t ′′|2H ] (A38)

and setting

v0 = 0, (A39)

for short-T or large-m values [when the condition (A28)
holds] the integrand in the nominator of (A37) becomes

〈v(t ′)v(t ′′)〉2 = τ−4
0 K2

2H

[
(t ′)4H + (t ′′)4H + 2(t ′)2H (t ′′)2H

− 2(t ′)2H |t ′ − t ′′|2H − 2(t ′′)2H |t ′ − t ′′|2H + |t ′ − t ′′|4H
]
.

(A40)

With this result, taking the elementary integrals in (A37),
using the symmetry with respect to swapping t ′ ↔ t ′′ in the

integrals, and employing that∫ T −�

0
dt ′

[∫ T −�

0
dt ′′2(t ′)2H |t ′ − t ′′|2H

]
= (T − �)4H+2

×
[

1

(2H + 1)2
+ 2

2H + 1


(2H + 1)
(2H + 2)


(4H + 3)

]
,

(A41)

the EB parameter in this limit has no dependence on the lag
time and attains the H-dependent value

EB ≈ 2H + 1

2

[
4H + 3

4H + 1
− 4


(2H + 1)
(2H + 2)


(4H + 3)

]
.

(A42)
The values of EB (A42) for a set of typical Hurst ex-
ponents H = {0, 1

4 , 1
2 , 3

4 , 1} are as follows: EB={ 1
2 , 3

4 (2 −
π
4 ), 4

3 , 5
4 ( 3

2 − 3π
64 ), 2}. The results of computer simulations for

large particle mass for zero initial velocities v0 = 0 (the EBs
on the right side of Fig. 3) are in excellent agreement with
(A42), see also Fig. 9.

For initial velocities v0 distributed with the stationary-state
distribution pst(v0) given by Eq. (A12), the same strategy of
EB computation in the short-time or large-mass limit can be
employed. Specifically, we start with the general EB form
(A37) and use the second moment (A19) and the autocorre-
lation function (A18) with〈〈

v2
0

〉〉 = 〈v2〉st (A43)

given by (A11). The double angular brackets denote averaging
over realizations of initial velocities. After integration, the
nominator of EB in Eq. (A37) becomes

2
∫ T −�

0
dt ′

∫ T −�

0
dt ′′〈v(t ′)v(t ′′)〉2

= 2K2
2Hτ−4

0

{
[
(2H + 1)]2τ 4H

0 (T − �)2 + 4
(2H + 1)

× τ 2H
0 (2H + 2)−1(T − �)2H+2 + (T − �)4H+2

×
[

4H + 3

(4H + 1)(2H + 1)

− 4

2H + 1


(2H + 1)
(2H + 2)


(4H + 3)

]}
, (A44)

while the denominator is given by
[∫ T −�

0
dt ′〈v2(t ′)

〉]2

= K2
2Hτ−4

0

{
[
(2H + 1)]2τ 4H

0 (T − �)2

+ 4
(2H + 1)τ 2H
0 (2H + 1)−1(T − �)2H+2

+ 4(2H + 1)−2(T − �)4H+2
}
. (A45)

In the limit of large mass or short traces, at T/τ0 � 1, the
highest powers of τ0 in these expressions dominate yielding
in the leading order

EB(�) ≈ 2 (A46)

for all values of the Hurst exponent H . The value (A46) is
shown as the large-mass EB plateau in Fig. 10 and several
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other EB plots. Note that for particles of large mass in the
scenario v0 = 0 the EB values are H-dependent as given by
(A42), while for the initial velocities obeying the stationary
distribution (A12) the ergodicity-breaking parameter in this
limit approaches EB = 2 as per (A46); compare the large-
mass EB values of Figs. 3 and 10.

b. Long-time limit

At long measurement times, when (A30) is valid, the ve-
locities executing the fractional OU process are stationary,
〈v2(t )〉 → 〈v2〉st. Starting from the representation (A37), the
leading-order approximation of EB is

EB(�) ≈ 4

∫ T −�

0 〈v(t1)v(t2)〉2|τ=|t1−t2| dτ

〈v2〉2
st(T − �)

. (A47)

The velocity-autocorrelation features different forms for τ �
τ0 given by (A15) and for τ � τ0 in Eq. (A16). Similarly
to the approximate TAMSD evaluation in the long-time limit
in (A31), we split the integral in expression (A47) into
two parts, utilize these different velocity-velocity correlators,
and get

EB(�) ≈ 4

∫ τ0

0 〈v2〉2
st dτ +∫ T −�

τ0
dτ [K2H 2H (2H −1)τ 2H−2]2

〈v2〉2
st(T − �)

.

(A48)

10-2 10-1 100 101 102
10-7

10-5

10-3

10-1

101

10-2 10-1 100 101 102
10-10

10-5

100

105

(a)

(b)

FIG. 5. The same as in Fig. 1, for the same parameters and with
the same asymptotes being shown, except for heavier particles, with
m = 10. The initial velocities are v0 = 0.

After elementary integration, neglecting the terms of order
�/T � 1, the value of EB becomes independent on the lag
time, obeying the relation

EB ≈ 4τ0/T + C3(H )[(τ0/T )4−4H − τ0/T ], (A49)

where the coefficient C3 reads (see Fig. 11 for its variation)

C3(H ) = 16H2(2H − 1)2

[
(2H + 1)]2(4H − 3)
. (A50)

In EB expression (A49), the lag time � is effectively replaced
by the characteristic timescale τ0. At τ0/T � 1, after retain-
ing the leading-order terms in (A49), one gets [similarly to
the two-region solution for EB of massless FBM given by
Eq. (23)] the following scaling relations

EB ≈
{

[4 − C3(H )] × (τ0/T )1, 0 < H < 3/4
C3(H ) × (τ0/T )4−4H , 1 > H > 3/4

. (A51)

As τ0 = m/γ , the relations (23) and (24)—used to rationalize
the simulation data for EB(�1, T, m) obtained for varying
trace length T and particle mass m—instantly follow from
Eq. (A51).

As a next-order approximation, instead of (A16) we use the
small-increment expansion in the stationary regime

〈v(t )v(t + δt )〉 ≈ 〈v2〉st − K2Hτ−2
0 (δt )2H , (A52)

while for the well-separated increments (A15) is still em-
ployed. Then, repeating the calculations starting from the
EB expression (A48), one gets the same scalings as in

(a)

10-2 10-1 100 101 102

10-4

10-2

100

(b)

10-2 10-1 100 101 102
10-5

10-3

10-1

101

103

FIG. 6. The same as in Fig. 1, for the same model parameters,
except for initial velocities taken from the stationary distribution
pst(v0) given by (A12).
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10-2 100 102

10-4

10-2

100

FIG. 7. EB parameter (8) plotted versus lag time � for two
values of the Hurst H exponent (see the legend). The theoretical
continuous-time asymptote (18) by Deng-Barkai [7] and the terminal
EB value (22) are the dashed and dot-dashed black lines, respectively.
The initial velocities are v0 = 0. Parameters: T = 102, dt = 10−2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-4

10-3

10-2

10-1

100

FIG. 8. Variation of EB(�1) of overdamped FBM from the sim-
ulation data (as those in Fig. 7) versus the Hurst exponent H . The
prediction of the discrete-time theory of EB for massless FBM
[13,31] given by (21) is also shown (see the legend). The initial ve-
locity is v0 = 0. Parameters: m = 1, T = 102, and �1 = dt = 10−2.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

FIG. 9. EB parameter of massive FBM in the limit T � m/γ =
τ0 (the blue symbols) and T � τ0 (the red symbols, see the legend).
The analytical short-trace or large-mass EB asymptote given by
expression (A42) is the solid blue curve for the case T � τ0. The
initial velocity is v0 = 0.

10-3 10-2 10-1 100 101 102 103
10-4

10-3

10-2

10-1

100

FIG. 10. The same as in Fig. 3, for the same parameters and
with scaling relations (23) shown, but computed for initial velocities
distributed as in the stationary state, with pst(v0) given by (A12). The
large-mass-asymptote (A46) is the dot-dashed black line at EB=2.

(A51), but with the improved coefficient for 0 < H < 3/4,
namely,

EB ≈
{

[4 − C4(H )] × (τ0/T )1, 0 < H < 3/4
C3(H ) × (τ0/T )4−4H , 1 > H > 3/4

, (A53)

where

C4(H ) = C3(H ) + 8


(2H + 2)
− 4

[
(2H + 1)]2(4H + 1)
.

(A54)

The variation of coefficients C3(H ) and C4(H ) with the Hurst
exponent H is shown for completeness in Fig. 11. Using a
more accurate Eq. (A53) instead of (A51) enables a quan-
titative description of the EB-versus-m data extracted from
simulations, as shown in Fig. 3.

APPENDIX B: AUXILIARY FIGURES

Here we present some auxiliary figures (Figs. 5–11) sup-
porting the claims of the main text.

FIG. 11. Prefactors in expressions (A51) and (A54), with a
visible divergence at the “critical” Hurst exponent H = 3/4. The co-
efficients C3(H ), 4 − C3(H ), and 4 − C4(H ) are denoted by the solid
red, the dashed green, and the dot-dashed blue curves, respectively.
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