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Scaled geometric Brownian motion features sub- or superexponential ensemble-averaged, but linear
time-averaged mean-squared displacements
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Various mathematical Black-Scholes-Merton-like models of option pricing employ the paradigmatic stochas-
tic process of geometric Brownian motion (GBM). The innate property of such models and of real stock-market
prices is the roughly exponential growth of prices with time [on average, in crisis-free times]. We here explore
the ensemble- and time averages of a multiplicative-noise stochastic process with power-law-like time-dependent
volatility, σ (t ) ∼ tα , named scaled GBM (SGBM). For SGBM, the mean-squared displacement (MSD) com-
puted for an ensemble of statistically equivalent trajectories can grow faster than exponentially in time, while
the time-averaged MSD (TAMSD)—based on a sliding-window averaging along a single trajectory—is always
linear at short lag times �. The proportionality factor between these the two averages of the time series is �/T
at short lag times, where T is the trajectory length, similarly to GBM. This discrepancy of the scaling relations
and pronounced nonequivalence of the MSD and TAMSD at �/T � 1 is a manifestation of weak ergodicity
breaking for standard GBM and for SGBM with σ (t )-modulation, the main focus of our analysis. The analytical
predictions for the MSD and mean TAMSD for SGBM are in quantitative agreement with the results of stochastic
computer simulations.
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I. INTRODUCTION

Pioneered by Bachelier [1] and Bronzin [2] more than
a century ago, price fluctuations on stock markets are be-
lieved to follow random walks and “arithmetic” Brownian
motion (BM) in particular. The widely recognized Black-
Scholes-Merton (BSM) model [3–5]—employing instead
“exponential” or geometric BM (GBM) as the exponentially
growing solution of the multiplicative-noise stochastic differ-
ential equation [6]—has been shaping the field of financial
mathematics for decades. The magnitude of price fluctuations
over a certain time span yields volatility of a stock or asset,
σ . This concept—of constant, time-dependent, or stochastic
volatility—is crucial for the detailed mathematical modeling
and general understanding of the underlying principles of
functioning of financial markets [7–11].

One source of deficiencies and imperfections of stan-
dard BSM-model-based predictions stems from assuming a
constant, time-invariant volatility σ yielding log-normally
distributed prices of an option at expiration (not always
true). Numerous modifications of the BSM model were
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proposed—to account for time-varying, stochastic or fluctu-
ating volatilities [8–10,12–16], anticorrelations of changes in
price and in volatility [17], alternative diffusion processes
[11,18,19], price-dependent volatility [20–22], jump diffu-
sion [5,14,23], and other relevant effects—to make such
modified-GBM-based models more applicable to the quanti-
tative analysis of real financial data. GBM modifications for
subdiffusive dynamics [24–26] and with fractional BM [27]
were developed.

The concept of stochastic volatility, e.g., involves a
separate stochastic equation [12] for a time- and price-
value-dependent volatility, σ (X, t ). As another example, the
diffusion model of constant elasticity of variance (CEV) is
based on the volatility dependent as a power law on price
[20–22],

σ (X ) ∼ X γ , (1)

with the square-root process realized at γ = −1/2 [18]. In the
physics literature, diffusion models with a space-dependent
power-law-varying diffusivity were proposed recently as het-
erogeneous diffusion processes [28–33].

During periods of high volatilities the trading situation
on stock markets can change rapidly and dramatically, also
with certain systematic trends in the volatility behavior, e.g.,
during a systematic development of a specific stock. The
response of a market to incoming news and financial an-
nouncements can also imprint characteristic patterns in the
volatility-variation function with time. Option-valuation mod-
els with deterministic volatility function (of time and price)
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were thus developed [34,35]. Such systematic power-law
variation of volatility in time were detected, e.g., in the anal-
ysis of the intraday dynamics of foreign-exchange markets
[36–39]. Specifically, the increments of returns of the Euro-
Dollar rate, log[P(t + δt )/P(t )] with δt =10 min, were shown
to be nonstationary, with their standard deviation σ̄ (t ) reveal-
ing a clear daily periodicity [37]. On a timescale of several
hours, the time regions of both increasing and decreasing
σ̄ (t ) of a power-law form were detected. For instance, in the
first 3 hours after 9 AM New-York time for the Euro-Dollar
pair the power-law variation σ̄ (t ) ∼ t−0.13 was found [37].
These observations for real financial markets motivated this
theoretical study.

Below, we consider scaled GBM (SGBM) with volatility
varying as a power law in time,

σ (t ) = σαtα. (2)

An analog of SGBM for a nonmultiplicative case is scaled
BM (SBM), a nonstationary nonergodic process with the time-
dependent diffusivity of the form [30,40–46],

D(t ) ∼ t ᾱ−1. (3)

SBM yields anomalous scaling for the mean-squared dis-
placement (MSD), while the time-averaged MSD (TAMSD)
grows linearly with the lag time. We emphasize that the scaled
“exponential” BM (or SGBM) should not be mixed with the
process of exponential SBM introduced recently [46]. Below,
we compute the MSD and mean TAMSD of SGBM and com-
pare them to the results for conventional GBM [47,48].

This paper—targeting, primarily, the community of
stochastic processes and, secondarily, that of financial
mathematics—is structured as follows. We start with defini-
tions and observables in Sec. II. In Sec. III the results for
the MSD and mean TAMSD of canonical GBM are presented
for a reference. In Sec. IV we compute the same for SGBM
and show that their functional forms and the MSD-to-TAMSD
ratio are similar. Our analytical predictions agree closely with
findings from stochastic computer simulations, see Sec. V.
We draw conclusions in Sec. VI and present auxiliary figures
in Appendix A, whereas other forms of σ (t ) are outlined in
Appendix B.

II. DEFINITIONS AND OBSERVABLES

For the financial time series, the concept of “ensemble av-
eraging” is not applicable due to the innate irreproducibility of
price-evolution “experiments.” Thus, single-trajectory-based
characteristics, such as the TAMSD [49]

δ2(�) = 1

T − �

∫ T −�

0
[X (t + �) − X (t )]2dt, (4)

are more informative and relevant variables. Here � is the lag
time and T is the length of the time series. Hereafter, averag-
ing over noise realizations is denoted by the angular brackets,
while time averaging is shown by the overline. Averaging over
N (independent and statistically equivalent) TAMSD realiza-
tions yields the mean TAMSD (arithmetic mean),

〈δ2(�)〉 = 1

N

N∑
i=1

δ2
i (�). (5)

Ergodicity necessitates the MSD-to-TAMSD equivalence
at �/T � 1 for long time series [49], a feature of complete
sampling of accessible states in the phase-space. The inher-
ently nonstationary nature of financial time series [37,39,50]
questions the existence of an “equilibrium ensemble” (con-
structed, e.g., from equal-length nonoverlapping segments
of a long trajectory), the appropriateness of fixed-parameter
sliding-window-based averaging approaches, and the ergodic
hypothesis itself [48,51,52].

III. GBM: THEORETICAL RESULTS

A. MSD

The process of standard GBM X (t ) is the solution of the
stochastic differential equation

dX (t ) = μX (t )dt + σX (t )dW (t ), (6)

where X (t ) is the value at time t , μ is the drift, and σ is the
volatility (both assumed to be constant for now). We consider
Eq. (6) below in Îto interpretation, typical for the mathemat-
ical literature in economics. Here dW (t ) are increments of
the Wiener process, defined via the integral of white Gaussian
zero-mean noise ξ (t ) as

W (t ) =
∫ t

0
ξ (t ′)dt ′. (7)

In Eq. (6) the noise enters “multiplicatively” with the pro-
cess itself, i.e., σX (t ) × dW (t ). The variation of stock-market
prices with time, starting with an initial value

X (t = 0) > 0, (8)

can be described using Îto’s lemma [8,10]. Equation (6) yields
an exponentially growing GBM process of the form

X (t ) = X (0)e(μ−σ 2/2)t+σW (t ). (9)

Using the associated log-normal distribution,

p(X (t ), t ) = exp
( − {log[X (t )/X (0)]−(μ−σ 2/2)t}2

2σ 2t

)
√

2πσ 2t[X (t )]2
, (10)

one obtains for GBM the mean 〈XGBM(t )〉 = X (0)eμt , the
second moment〈

X 2
GBM(t )

〉 = [X (0)]2e(2μ+σ 2 )t , (11)

and the variance

〈(XGBM(t ) − 〈XGBM(t )〉)2〉

=
∫ ∞

0
(X (t ) − 〈X (t )〉)2 p(X (t ), t ) dX (t )

= [X (0)]2e2μt (eσ 2t − 1). (12)

At μ = 0 one gets 〈X 2
GBM(T )〉 = [X (0)]2eσ 2T . With the prob-

ability distribution of the Wiener process,

p(W (t ), t ) = exp[−W (t )2/(2t )]/
√

2πt, (13)

via averaging (9) over realizations of W (t ), one gets the same
expressions for the moments.
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B. TAMSD

Using the two-point transition probability for the Wiener
process (t2 < t1),

p12(W1, t1;W2, t2) = exp

[
− (W1 − W2)2

2(t1 − t2)

]/√
2π (t1 − t2),

(14)
the mean TAMSD of GBM (9) becomes [47,48]

〈
δ2

GBM(�)
〉 = [X (0)]2[1 − 2eμ� + e�(2μ+σ 2 )]

T − �

× e(2μ+σ 2 )(T −�) − 1

2μ + σ 2
. (15)

Here the averaging of

〈[X (t + �) − X (t )]2〉
= 〈X 2(t + �)〉 + 〈X 2(t )〉 − 2〈X (t + �)X (t )〉 (16)

in the integrand of Eq. (4) was performed using Eqs. (13)
and (15). As with no drift

〈
δ2

GBM(�)
〉 = [X (0)]2(eσ 2� − 1)

T − �

eσ 2(T −�) − 1

σ 2
, (17)

for short lag times (� � T and σ 2� � 1) and long trajecto-
ries (σ 2T 
 1) one gets

〈
δ2

GBM(�)
〉 ≈ [X (0)]2(eσ 2T − 1)

�

T

≈ 〈[XGBM(T ) − 〈XGBM(T )〉]2〉�
T

∼ 〈
X 2

GBM(T )
〉�
T

. (18)

Therefore, for GBM the mean TAMSD and MSD are pro-
portional with the factor �/T , the fact also confirmed by
computer simulations, see Ref. [48] and below.

IV. SGBM: THEORETICAL RESULTS

A. MSD

For a deterministic time-dependent volatility σ (t ), starting
with the analog of Eq. (6) with σ being replaced by σ (t ) and
after using the Îto lemma, the solution of the SGBM equation,

d[log(X (t ))] = [μ − σ 2(t )/2]dt + σ (t )dW (t ), (19)

is similar to Eq. (9) (see Sec. 2.2.1 of Ref. [10] and Eq. (6.34)
in Sec. 5.6 of Ref. [7]), namely

X (T ) = X (t )eμ(T −t )−∫ T
t σ 2(t ′ )dt ′/2+∫ T

t σ (t ′ )dW (t ′ ). (20)

Here t and T are the initial and final times of the process.
This process stays log-normally distributed, with its mean
and variance redefined in terms of the time-averaged squared
volatility [10] [denoted below by a wide tilde, to distinguish it
from time-averaging in Eq. (4)],

˜σ 2(T, t ) = 1

T − t

∫ T

t
σ 2(t ′)dt ′. (21)

The “effective volatility” is a quadratic mean of σ (t ) over the
lifetime of an option.

In analogy to SBM, for SGBM we set the volatility being
a power-law function, σ (t ) = σαtα, where σα is the volatility
magnitude (with physical dimensions [σα] = 1/sα+1/2). Pos-
itive (negative) values of the exponent α describe the MSD
growing faster (slower) compared to that for GBM. From (21),
after setting t = 0, the dependence of the squared-averaged
volatility on time is

˜σ 2(t ) = 1

t

σ 2
α t2α+1

2α + 1
. (22)

The range of exponents α is limited below to

α > −1/2, (23)

see the reasoning in Sec. VI. For the second moment and the
variance of SGBM, using the log-normal distribution analo-
gous to (10) for GBM,

p(X (t ), t ) =
exp

( − {log[X (t )/X (0)]−[μ−˜σ 2(t )/2]t}2

2˜σ 2(t )t

)
√

2π ˜σ 2(t )t[X (t )]2

, (24)

we get

〈
X 2

SGBM(t )
〉 = [X (0)]2e2μt e

σ2
α t2α+1

2α+1 (25)

and

〈(XSGBM(t ) − 〈XSGBM(t )〉)2〉 = [X (0)]2e2μt
(
e

σ2
α t2α+1

2α+1 − 1
)
.

(26)
As expected, these expressions turn into expressions (11) and

(12) for standard GBM upon a formal substitution σ 2 to ˜σ 2(t ).
Thus, for SGBM with the volatility growing in time (at α >

0) expressions (25) and (26) yield a faster-than-exponential
(superexponential) growth of the MSD, as compared to the
exponential one for GBM. The ratio of the second moments
for SGBM and GBM at time t is〈

X 2
SGBM(t )

〉
〈
X 2

GBM(t )
〉 ≈ e

σ2
α t2α+1

2α+1

eσ 2
0 t

. (27)

Therefore, if one neglects a possible time-dependence of the
volatility, then the MSD predictions acquire exponentially
growing deviations at long times.

B. TAMSD

1. Derivation 1

The integrands of the mean TAMSD of SGBM at μ = 0
can be expressed, utilizing the approximate statistical inde-
pendence of 2X (t ) and X (t + �) − X (t ) at short lag times, as

〈[X (t + �) − X (t )]2〉 ≈ 〈X 2(t + �)〉 − 〈X 2(t )〉. (28)

Evaluating the TAMSD integral using Eq. (25) (in the absence
of drift, μ = 0),

〈
δ2

SGBM(�)
〉 =

∫ T −�

0 〈[XSGBM(t + �) − XSGBM(t )]2〉dt

T − �

≈ [X (0)]2

T − �

∫ T −�

0

[
e

σ2
α (t+�)2α+1

2α+1 − e
σ2
α t2α+1

2α+1

]
dt, (29)
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FIG. 1. Variation of the mean TAMSD of SGBM with the lag
time (30) and the short-lag-time asymptote (32), plotted for a varying
SGBM parameter α = {−0.1, −0.05, 0, 0.05, 0.1} (for the curves
from bottom to top). Other parameters are X (0) = 1, T = 103, and
σα = 10−1 (given without physical units hereafter).

one arrives at

〈
δ2

SGBM(�)
〉 = [X (0)]2

( − σ 2
α

1+2α

) 2α
1+2α

σ 2
α (T − �)

×
(

	

[
1

1 + 2α

]
− 	

[
1

1 + 2α
,−σ 2

α�1+2α

1 + 2α

]

+ 	

[
1

1 + 2α
,−σ 2

α T 1+2α

1 + 2α

]

− 	

[
1

1 + 2α
,−σ 2

α (T − �)1+2α

1 + 2α

])
, (30)

where 	(x) is the Gamma function and 	(a, z) is the (upper)
incomplete Gamma function,

	(a, z) =
∫ ∞

z
t a−1e−t dt . (31)

For short lag times and long trajectories, at � � T, the lead-
ing term in the expansion of (30) yields a linear asymptote

〈
δ2

SGBM(�)
〉 ≈ [X (0)]2

(
e

σ2
α T 2α+1

2α+1 − 1

)
�

T
, (32)

see Fig. 1. The region of short lag times is our main focus
when considering the mean TAMSD. The MSD and the
mean TAMSD for SGBM are, therefore, similarly to standard
GBM, connected at short lag times via the proportionality
factor of (�/T ), namely

〈
δ2

SGBM(�)
〉 ≈ 〈

X 2
SGBM(T )

〉 × �

T
. (33)

Thus, despite a superexponential growth of the MSD for a
volatility growing in time [at α > 0, see Eqs. (25) and (26)],
the mean TAMSD of SGBM increases linearly with the lag
time in the limit �/T � 1, see Eq. (33). The increased mag-
nitude of the MSD of SGBM at α > 0 acts solely as a larger
prefactor for the mean TAMSD. This is the main conclusion

of TAMSD derivations for SGBM, Last, both for GBM (18)
and SGBM (33) the MSD and the mean TAMSD are equal
at the terminal point of the trajectory, at � = T , as they
should [49].

2. Derivation 2

A more rigorous derivation of the mean TAMSD of SGBM
with nonzero drift is as follows. The stochastic integral in the
SGBM equation, after employing Îto lemma, Eq. (19), is equal

in distribution (denoted as
dist.= below) to

∫ t2

t1

σ (t ′)dW (t ′) dist.= w

√∫ t2

t1

[σ (t ′)]2dt ′. (34)

To prove it, we use a representation of BM as the sum of (di-
mensionless) random numbers wn taken from the probability
density

p(w) = e−w2/2/
√

2π, (35)

namely

W (t ) =
t/dt∑
n=0

wn. (36)

As the variance of BM grows linearly with time, the relation
(34) (in the continuous limit) can be proved via the discrete
summation [53]

∫ t

0
σ (t ′)dW (t ′) =

t/dt−1∑
n=0

σ (n × dt ){W [(n+1)dt]−W (n×dt )}

=
√

dt
t/dt−1∑

n=0

σ (n × dt )wn
dist.= w

√
dt

√√√√t/dt−1∑
n=0

σ 2(n × dt )

n→∞= w
√

dt

√
1

dt

∫ t

0
σ 2(t ′)dt ′. (37)

Here the values of the volatility σ (t ) are taken at the start of
the nth interval in this discrete sum in order to comply with
Îto’s representation (prepoint stochastic convention).

The general expression for SGBM Xw(t ) then becomes

Xw(t2)
dist.= Xw(t1) × e

μ(t2−t1 )− 1
2

∫ t2
t1

σ (t ′ )2dt ′+w
√∫ t2

t1
[σ (t ′ )]2dt ′

,

(38)
that, after using the explicit dependence of volatility on time
(2), turns into

Xw(t2)
dist.= Xw(t1)eμ(t2−t1 )− σ2

α

(
t2α+1
2 −t2α+1

1

)
2(2α+1) + wσα

√
t2α+1
2 −t2α+1

1√
2α+1 .

(39)
For t2 = t and t1 = 0, using the distribution function (35), one
obtains expression (25) for the MSD of SGBM (39), namely

〈
X 2

w(t )
〉 =

∫ +∞

−∞
X 2

w(t )p(w)dw = [X (0)]2e2μt e
σ2
α t2α+1

2α+1 . (40)
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For the correlation term in Eq. (16), expressing Xw(t + �) via
Xw(t ), one arrives at

〈Xw(t + �)Xw(t )〉 dist.= 〈
X 2

w(t )
〉
eμ�e− σ2

α [(t+�)2α+1−t2α+1]
2(2α+1)

×
∫ +∞

−∞
e

wσα

√
(t+�)2α+1−t2α+1√

2α+1 p(w)dw = 〈
X 2

w(t )
〉
eμ�, (41)

that yields for the integrand of the mean TAMSD

〈[Xw(t + �) − Xw(t )]2〉

= [X (0)]2e2μt

[
e2μ�e

σ2
α (t+�)2α+1

2α+1 − 2eμ�e
σ2
α t2α+1

2α+1 + e
σ2
α t2α+1

2α+1

]
.

(42)

With no drift, this gives the same TAMSD integrand and the
leading-order expansion at short lag times as in (30) support-
ing the validity of approximation (28) in this limit. Naturally,
for α = 0 expression (42) turns into the TAMSD integrand
(15) for standard GBM [48], that is

〈[Xw(t + �) − Xw(t )]2〉
[X (0)]2

= e(σ 2
0 +2μ)t

[
e(σ 2

0 +2μ)� − 2eμ� + 1
]
.

(43)

3. Visualization of theoretical results

The evolution of the TAMSD for SGBM with lag time
is shown in Fig. 1. We expectedly observe an increase of
the mean-TAMSD magnitude with the growing exponent α.
For larger α, when the condition σ 2

α T 2α+1 
 1 holds and the
TAMSD magnitude (32) grows exponentially, a plateaulike
regime of the mean TAMSD of SGBM at intermediate lag
time can emerge, see Figs. 1 and 7. In this regime the second-
order term for the expansion (32) starts to be non-negligible.
The characteristic lag time �
 after which the TAMSD plateau
is realized can be assessed via equating the first and second
term of the TAMSD expansion. This yields

�
 ∼ 2T

σ 2
α T 2α+1

(44)

and a “transient” TAMSD plateau with the height

〈
δ2

SGBM(�)
〉
pl ∼ 1

2
[X (0)]2

(
�


T

)
e

σ2
α T 2α+1

2α+1 . (45)

In the opposite limit of large values of the lag time, at � → T ,
the Taylor expansion of (30) gives〈
δ2

SGBM(�)
〉

[X (0)]2
∼

(
e

σ2
α T 2α+1

2α+1 − 1
)

− e
σ2
α T 2α+1

2α+1

(
σ 2

α T 2α

2

)
(T − �).

(46)
The ratio of the TAMSDs for SGBM and GBM, computed

at short lag times (where the TAMSD gives the most statisti-
cally accurate averaging [49]), given by〈

δ2
SGBM(�)

〉
〈
δ2

GBM(�)
〉 ≈ e

σ2
α T 2α+1

2α+1 − 1

eσ 2
0 T − 1

, (47)

grows with exponent α in almost the entire range, as demon-
strated in Fig. 2. The functional dependence (47) is similar
to that of the ratio of the MSDs in Eq. (27). In the region of
parameters when both exponential functions in (47) can be

FIG. 2. Ratio of the mean TAMSDs of SGBM and
GBM given by Eq. (47), for σα and σ0 taking the values
{10−5, 10−4, 10−3, 10−2, 10−1} (for the curves from right to
left), plotted for varying exponents α at short lag times, �/T � 1.
The functional dependence in the limit of small volatilities given by
Eq. (49) is the thick dashed curve, while Eq. (50) is shown as the
lower dashed curve. Other parameters are the same as in Fig. 1.

expanded, at

σ 2
α T 2α+1 � 1 and σ 2

0 T � 1, (48)

this ratio becomes 〈
δ2

SGBM(�)
〉

〈
δ2

GBM(�)
〉 ∼ T 2α

2α + 1
. (49)

This asymptote (independent on the volatility value) describes
the actual dependence for progressively larger values of α as
the magnitudes of σα and σ0 decrease, as Fig. 2 illustrates.
We observe that, as the volatility values decrease, the short-
lag-time ratio of the TAMSDs follows the asymptote (49)
up to large values of scaling exponent α. When σ 2

0 T 
 1
and σ 2

α T 2α+1 � 1, the TAMSD ratio (47) at short lag times
simplifies to 〈

δ2
SGBM(�)

〉
〈
δ2

GBM(�)
〉 ∼ σ 2

α T 2α+1

(2α + 1)eσ 2
0 T

. (50)

As α → −1/2 (from the right), the ratio of TAMSDs (47)
rapidly increases: the squared time-averaged volatility (22)
diverges in this limit that produces an unexpected growth of
the TAMSDs’ ratio (47) near the “critical point” α = −1/2,
see Fig. 2.

V. SGBM: SIMULATION RESULTS

A. Simulation scheme

From Eq. (19), the infinitesimal increments of SGBM at
time t depend on the time-local volatility σ (t ) and are being
driven by the increments of W (t ). The latter are modeled using
the unit-variance and zero-mean normal distribution as

dW (t ) ∼ N (0, 1) × dt . (51)
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FIG. 3. Results of computer simulations for the MSD in log-
linear scale (a) and the variance in log-log scale (b) of SGBM, with
the theoretical predictions (25) and (26) shown as the dashed curves
for each α (correspondingly, in each panel). The values of exponent
α implemented are given in the legend. Parameters: the volatility
magnitude is σα = 10−2 (given without units here), the drift is absent
μ = 0, the elementary time step for the lag time is δ� = 10−2,
the trajectory length is T = 102, and the number of independent
trajectories used for final ensemble averaging is N = 5 × 104.

With the Euler-Murayama scheme [23], a stochastic differen-
tial equation of the form

dX (t ) = f (X (t ))dt + g(X (t ))dW (t ), (52)

subject to the initial condition X (0) = X (t = 0), can be
solved in an interval [0, T ] via splitting into N̄ time steps

0 = t0 < t1 < t2 < . . . < tN̄ = T (53)

or ti = t0 + i × �t with

�t = T/N̄ . (54)

Applying the discrete scheme to Eq. (52), with the increments

�Wn = W (tn+1) − W (tn), (55)

FIG. 4. Results of computer simulations for the rescaled MSD

of SGBM, computed as log

[ 〈X2
SGBM (t )〉
[X (0)]2

]
2α+1
σ2
α

, are shown in panel (a),

while those for the behavior of the rescaled variance, evaluated as
log

{ 〈[XSGBM (t )−〈XSGBM (t )〉]2〉
[X (0)]2

+1

}
2α+1
σ2
α

, are illustrated in panel (b). The diag-

onal dotted black lines in both panels correspond to the theoretical
predictions (25) and (26), correspondingly. Parameters are the same
as in Fig. 3, with the same color scheme for varying values of α

exponent.

the recurrent relation to generate SGBM trajectories [consis-
tent with the Îto interpretation] becomes

Xn+1 = Xn + μXn�t + σ (tn)Xn × �Wn. (56)

B. Description of the results of simulations

The results of computer simulations of Eq. (6) reveal
good-to-excellent agreement with the theoretical predictions.
First, the MSD of SGBM features a super- and subexpo-
nential growth in time for the volatility exponents in the
range α > 0 and −1/2 < α < 0, respectively, see Figs. 3
and 4. This growth is in good agreement with theoretical
prediction (25). This agreement and the precise scaling of
the spreading dynamics is clearly visible when presenting the
data in terms of the rescaled MSD and the variance, namely
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FIG. 5. Distribution of individual TAMSDs for α =
{−0.4, 0.3, 0.6} in log-log scale (a) and the computed evolution
of the mean TAMSDs after averaging over N = 5 × 104 SGBM
trajectories (for each α value listed in the legend). The dashed
lines in panel (b) are the theoretical short-lag-time asymptotes (32).
Parameters are the same as in Fig. 3.

as log
[ 〈X2

SGBM (t )〉
[X (0)]2

]
2α+1
σ2
α

and log
{ 〈[XSGBM (t )−〈XSGBM (t )〉]2〉

[X (0)]2
+1

}
2α+1
σ2
α

, versus the

rescaled time t2α+1, as shown in Fig. 4 in log-log scale. The
theoretical asymptotes (25) and (26) are simply the diagonals
in both panels of Fig. 4, excellently coinciding with the results
of simulations. Note that the initial point—the first simulation
step δt—is not shown in Fig. 3 for larger positive values of
exponent α. As the values of σ (δt ) for such α values are very
small, the MSD cannot be presented adequately in log-log
scale.

The magnitude of the MSD of SGBM computed at the last
point of the trajectory for varying α values reveals a nonmono-
tonic dependence on α, with a minimum at αmin ≈ −0.39
for the trajectories with length T = 100, as shown in Fig. 9.
This value follows from minimizing (25) over α that yields

αmin = 1 − log T

2 log T
, (57)

FIG. 6. The same as in Fig. 2, but obtained from computer sim-
ulations of SGBM (red circles). Theoretical expectation (47) and its
simplistic form (49) are denoted in the legend and reveal excellent
agreement with the simulation data for moderate magnitudes of |α|.
Parameters are the same as in Fig. 3 and �0 = 5 elementary time
steps (or time equal to 0.05).

that for long trajectories at T → ∞ approaches the natu-
ral value αmin → −1/2 for the slowest-dynamics state of
SGBMs. Note that for exponents α near the “boundary”
α = −1/2 the agreement of the MSD and the variance from
simulations versus theory is not that great. The reason for this
disparity can be a finite—and, to a certain extent, arbitrary—
volatility value used in simulations at the very first time step,
see also the results of this analysis presented in Fig. 10.

Second, the distribution of individual TAMSD realizations
for varying values of the volatility exponent are shown in
Fig. 5(a). As intuitively expected, the spread of TAMSDs with
respect to their mean TAMSDs is larger for more superexpo-
nential MSDs of SGBM, i.e., as the scaling exponent α > 0
increases. In contrast, for negative values of α the TAMSD
realizations become more reproducible and the respective
spread shrinks. A detailed evaluation of the ergodicity break-
ing parameter [49,54]

EB(�) = 〈(δ2(�))2〉/〈δ2(�)〉2 − 1 (58)

for GBM and SGBM deserves a separate investigation [55].
The mean TAMSDs for varying exponents scale linearly in
the region of short lag times, with the TAMSD-to-MSD pro-
portionality relation (33) satisfied, see Fig. 5(b).

Here, again, for the most negative scaling exponents in
the set the TAMSD magnitudes from simulations do not
exactly match with theoretical predictions in part because of
a finite volatility used in the numeric scheme at the initial
time step. The effect of this value [used to approximate the
diverging magnitude of σ (t = 0)] is examined in Fig. 10. For
the exponent α = −0.45, for volatility magnitude σ0 = 10−2

and time step �t = 10−2 the time-initial volatility value is set
in Fig. 10 to

σapprox ≈ 0.1. (59)
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Since σ (0) diverges for α < 0 (see also Ref. [19]), to remove
this discontinuity, we approximate

σ (0) = σapprox (60)

for all α < 0 values. For later time steps, the volatility follows
the standard dependence (2). For α > 0 we put σ (0) = 0
in simulations so that the process does not change during
the first time step [as visible from Fig. 3(b) where at these
conditions the data for the initial timestep is not shown].

Last, the variation of the ratio of mean TAMSDs for
SGBM and GBM computed at short lag times with the expo-
nent α is roughly consistent with expression (47) and simple
relation (49) (in the region of its applicability). The ratio
〈δ2

SGBM(�)〉/〈δ2
GBM(�)〉 computed at short lag times depends

only on the trajectory length and the value of the scaling
exponent α, as demonstrated in Fig. 6. We observe that the
theoretical asymptote (47) is valid for all values α � −1/2,
while [as expected in virtue of condition (48)] simplistic scal-
ing (49) starts to deviate from the results of simulations for
〈δ2

SGBM(�)〉/〈δ2
GBM(�)〉 at short lag times for larger positive

values of α.

VI. DISCUSSION AND CONCLUSIONS

To summarize, the MSD and mean TAMSD of SGBM
computed analytically, see expressions (25), (33), (42), and
(49), are quantitatively supported by the results of our
computer simulations is the essence of our main results.
Specifically, the MSD for this modified GBM process with
a power-law-dependent volatility revealed a sub- and su-
perexponential growth for the scaling exponents in the
range −1/2 < α < 0 and α > 0, respectively. In contrast,
the mean TAMSD of SGBM was shown to grow exclu-
sively linearly with the lag time at �/T � 1, irrespective
of volatility decaying or growing in time. For SGBM—the
multiplicative-noise stochastic process featuring a deter-
ministic growth or decline of volatility, σ (t )—the found
dependencies for the MSD and mean TAMSD as well as the
MSD-to-TAMSD ratio are the same as for the standard GBM
process (with a constant volatility) [47,48]. The results of
our computer simulations excellently support the predicted
theoretical trends for the MSD and mean TAMSD of such
SGBM.

Note that, although SGBM does not require the condi-
tion (23) per se, a “critical point” at α → −1/2 does exist
if one sets t → 0 as the lower limit of integration in the
expression (21). The model of a power-law volatility can,
however, be used in a finite range of times, e.g., in a domain
where such volatility variations are detected in real financial
data [37–39]. Doing so, the initial time can be chosen t = 0
and the final time T in Eq. (21) stays finite, so does the
volatility magnitude. Physically, the MSD slows down its
growth with time at α → −1/2 and ultimately stagnates. At
this point, and also for smaller negative α, the MSD ceases
to have exponential growth typical of GBM. We thus limit
the analysis by α > −1/2, focusing more on SGBM with a
faster-than-exponential growth, at the region α > 0. Under
such conditions, additionally, no regularization of the initial

volatility (60) is necessary in simulations and, thus, their
results can be compared to the theory quantitatively.

We stress that the approach to α = −1/2 in terms of the
functional dependence of the MSD (and mean TAMSD) on
time can be intricate. A similar situation was observed, e.g.,
for SBM with a diffusivity of the form (3) as the SBM ex-
ponent ᾱ → 0. In this case, the MSD changes its dependence
from the standard ∼t ᾱ for SBM to a much slower, ∼ log[t]-
like growth at long times for this “critical” diffusion process,
yielding ultraslow SBM [43]. The question of how exactly
the MSD and TAMSD of SGBM change their functional de-
pendencies in time as α → −1/2 deserves a separate future
analysis.

From the point of view of the description of real financial
data based on GBM and SGBM, the current results for SGBM
(with a linear growth of the mean TAMSD with lag time)
indicate that deterministic variations of volatility in time get
reflected only in the magnitude of mean TAMSD but not
in its functional dependence on the lag time. Therefore, the
TAMSD linearity for a given financial time series is not a
good indicator of validity of standard GBM as the underlying
stochastic process, as compared to SGBM.

Finally, as possible future developments of the SGBM
model some resetting approaches [56–58], ageing- and
delay-time-based analyses of the TAMSD [47,48], and GBM-
SGBM under regulations or constraints can be possible. The
volatility that depends both on time and actual price as power
laws [see Eq. (1)], namely

σ (X, t ) ∼ tαX γ , (61)

can also be used as a generalization of SGBM. Its analog
in the realm of nonexponential in the MSD anomalous dif-
fusion processes is the diffusion with a power-law-like time-
and position-dependent diffusivity [30]. Lastly, the evolution
of two SGBM processes—coupled via a volatility function
σ (X1, X2) or via correlated noise terms, see, e.g., Ref. [16]—
can be used to study mutual effects on the dynamics of
interlinked options or stocks [for instance, in application to
performance- and portfolio-optimization tasks].
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APPENDIX A: SUPPLEMENTARY FIGURES

Here we present some auxiliary figures supporting the
claims in the main text, see Figs. 7–10.
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FIG. 7. The same as in Fig. 1 but for α = 0.2. The short-lag-time
asymptote (32), the long-lag-time mean TAMSD expansion (46),
and the intermediate-lag-time plateau of the TAMSD (45) are shown
as the dashed curves. The results of numerical integration of Eq. (29)
are the red stars. The dot-dashed gray curve shows the first two
terms in the short-lag-time TAMSD expansion, with a divergence
at ∼�
 ≈ 12.6. Other parameters are X (0) = 1, T = 103, and σα =
10−1.

0.4 0.2 0.0 0.2 0.4

0.1

10

FIG. 8. The same as in Fig. 2, but according to Eq. (B5) for
SGBM with the “regularized” volatility of the form (B1), shown as
the blue curve. The volatility- and lag-time-independent asymptote
(49) is the thick dashed black curve, while the level of unity is the
horizontal dashed line. The results of numerical integration of the
TAMSD (29) with the averaged-squared volatility (B3) are the red
stars (for � = 1) and the green stars (for � = 102). Parameters for
the analytical calculations are T = 103, σ0 = 10−3, and σα = 10−2.

FIG. 9. Magnitude of the MSD of SGBM at the terminal point
t = T , plotted versus the scaling exponent α, for the parameters of
Fig. 3.

APPENDIX B: GENERALIZED TIME-DEPENDENT
VOLATILITY

Performing the same MSD and TAMSD calculations for a
generalized version of (2), for which the time-dependent term
is a correction to the basal volatility σ0 (more applicable to
real financial data [37,39]), namely for

σ (t ) = σ0 + σαtα, (B1)

one gets for the MSD

〈
X 2

SGBM(t )
〉 = [X (0)]2e2μt e

˜σ 2(t )t , (B2)

FIG. 10. Variation of the short-lag-time TAMSD of SGBM as
obtained from simulations for a varying volatility value at the initial
time step, computed for α = −0.45 (close to the lower boundary of
the exponent) and with σapprox given by Eq. (59). The asymptote (32)
is the dotted line.
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where now

˜σ 2(t ) = σ 2
0 + 2σ0σα

tα

α + 1
+ σ 2

α

t2α

2α + 1
. (B3)

Expanding the integrand in the TAMSD for short lag times,
integrating the first term linear in �, and retaining the leading-
order term one gets, similarly to (33), that

〈
δ2

SGBM(�)
〉 ≈ [X (0)]2 �

T

[
e
˜σ 2(T )T − 1

]
∼ 〈

X 2
SGBM(T )

〉�
T

.

(B4)
This proportionality of the mean TAMSD and the MSD seems
universal, valid for time-independent [47] and time-varying
forms of the volatility. For such SGBM, the ratio of the
TAMSDs at short lag times for α = 0 to that at α = 0 is

〈
δ2

SGBM(�)
〉

〈
δ2

GBM(�)
〉 ∼ e

˜σ 2(T )T − 1

e(σ0+σα )2T − 1
, (B5)

where ˜σ 2(T ) in (B4) and (B5) is given by (B3). For small σ0

and not too long trajectories, such that σ0 � σαT 2α holds, the
ratio (B5) returns the same law (49), see Fig. 8.

For other functional forms of σ (t ), e.g., for σ (t ) = σ0 +
σω sin[ωt], we get ˜σ 2(t ) = σ 2

0 + σ 2
ω/2 so that at short lag

times the TAMSD of this modified GBM (MGBM) grows
compared to the case σω = 0. For T = 2π/ω and μ = 0,
using (28) one gets〈

δ2
MGBM(�)

〉
〈
δ2

GBM(�)
〉 ∼ e(σ 2

0 +σ 2
ω/2)T − 1

eσ 2
0 T − 1

. (B6)

For the exponentially varying volatility, σ±(t ) = σβe±βt ,

the MSD grows double-exponentially in time,

〈
X 2

MGBM(T )
〉 = [X (0)]2e

˜σ 2(T )T = [X (0)]2e± σ2
β

(e±2βT −1)

2β , (B7)

and the ratio of the short-lag-time mean TAMSD to the MSD
is again the universal �/T . The ratio of the short-lag-time
TAMSDs,

〈
δ2

MGBM(�)
〉

〈
δ2

GBM(�)
〉 ∼ e± σ2

β
(e±2βT −1)

2β − 1

eσ 2
0 T − 1

, (B8)

increases with β > 0 for growing volatilities σ+(t ) and it
decreases for decreasing volatilities σ−(t ).
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