Stochastic dynamics driven by combined Lévy-Gaussian noise:
fractional Fokker-Planck-Kolmogorov equation and solution

To cite this article before publication: wanrong zan et al 2020 J. Phys. A: Math. Theor. in press https://doi.org/10.1088/1751-8121/aba654

Manuscript version: Accepted Manuscript

Accepted Manuscript is "the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an 'Accepted Manuscript' watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors"

This Accepted Manuscript is © 2020 IOP Publishing Ltd.

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.
Stochastic dynamics driven by combined Lévy-Gaussian noise: fractional Fokker-Planck-Kolmogorov equation and solution

Wanrong Zan†, Yong Xu†‡, Jürgen Kurths§♭, Aleksei V. Chechkin♯¶ and Ralf Metzler♯
† Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710072, China
‡ MIIT key Laboratory of Dynamics and Control of Complex Systems, Northwestern Polytechnical University, Xi’an 710072, China
§ Potsdam Institute for Climate Impact Research, 14412 Potsdam, Germany
♭ Department of Physics, Humboldt University of Berlin, 12489 Berlin, Germany
♯ Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
¶ Akhiezer Institute for Theoretical Physics National Science Center "Kharkov Institute of Physics and Technology", 61108 Kharkov, Ukraine
E-mail: Corresponding authors: Yong Xu, hsux3@nwpu.edu.cn; Ralf Metzler: rmetzler@uni-potsdam.de

Abstract. Starting with a stochastic differential equation driven by combined Gaussian and Lévy noise terms we determine the associated fractional Fokker-Planck-Kolmogorov equation (FFPKE). For constant and power-law forms of an external potential we study the interplay of the two noise forms. Particular emphasis is paid on the discussion of sub- and superharmonic external potentials. We derive the probability density function solving the FFPKE and confirm the obtained shapes by numerical simulations. Particular emphasis is also paid to the stationary probability density function in the confining potentials and the question, to which extent the additional Gaussian noise effects changes on the probability density function compared to the pure Lévy noise case.

1. Introduction

The concept of random forces was introduced by Langevin in lieu of a more explicit, first-principle derivation of the apparent jittery motion of test particles in thermal environments where they are incessantly bombarded by neighbouring molecules [1]. Such fluctuations have become key statistical descriptors for many natural systems in physics, chemistry, biology, but also in economics etc. Systems in these fields are always affected by external or internal fluctuations, which are termed as "noise". These systems are then typically described by stochastic differential equations (SDEs). During the past years, interest in the study of these stochastic systems has increased significantly.
Gaussian white noise, the formal derivative of Brownian motion, is the earliest and most commonly adopted noise. There exist a vast literature on SDEs driven by Gaussian white noise. An important framework is the Fokker-Planck-Kolmogorov equation (FPKE), which governs the deterministic time evolution of the probability density functions (PDFs) corresponding to the SDE with Gaussian white noise [2]. However, analytical solutions of the FPKE are available only for some special cases. In other cases, solutions may be constructed by mapping the FPKE onto an imaginary time Schrödinger equation [3]. Concurrently, numerical methods are adopted for cases in which analytical solutions are difficult to obtain [4, 5].

Gaussian white noise stands out mathematically due to the universal convergence imposed by the central limit theorem on all independent, identically distributed (iid) random variables with finite variance. Practically, however, the Gaussian white noise is somewhat of an ideal realisation of random noise. Gaussian white noise is always used to describe small random fluctuations around a mean value, and it is no longer appropriate for systems exhibiting burst phenomenon. In the latter cases Lévy noise is often a better description. Lévy noise does not only consist of small perturbations but also of large jumps. In fact it was Mandelbrot who epitomised the role of Lévy noise as the driving noise for "Lévy flights", random processes with long-tailed jump length distributions and fractal sample paths [6–10].

While Lévy flights can be described by SDEs driven by Lévy noise [11], a breakthrough was the formulation of the corresponding fractional Fokker-Planck-Kolmogorov equations (FFPKEs) [11–20]. These FFPKEs are similar in structure to the classical second-order FPKE, except for the fractional, αth-order of the highest derivative instead of the standard second-order [11–16]. The emergence of this fractional-order derivative makes the FFPKE difficult to solve, and there exist only several special cases that could be solved analytically [21–24]. Chechkin and coworkers specifically focused on the non-stationary and stationary solutions of FFPKEs with different forms of an external, power-law potential of the form $U(x) \propto |x|^c/c$ [25–29]. Several exact results for Lévy flights in power potentials were obtained by Dubkov et al [30, 31]. In addition to analytical solutions, there are works adopted numerical methods to determine the PDF encoded by the FFPKEs [37, 62, 63]. Based on the solutions, Xu and coworkers studied the effect of Lévy noise to analyse bifurcation dynamics, stochastic resonance phenomena, first passage time and phase transitions [32–36, 38].

Due to the complexity of many real systems, there are situations which need to be addressed by a combination of more than one kind of noise. For example, in single gene expression there are both intrinsic noise and extrinsic noises [39–42]. Specifically, the random motion of a DNA-binding protein was shown to perform Lévy flights in the chemical co-ordinate on the DNA, but the protein may also normally-diffuse along the DNA, giving rise to an FFPKE with combined Gaussian and Lévy noises [43], compare also [44]. We also mention that the Earth’s temperature was proposed to be modelled by a stochastic differential equation with a combination of Gaussian and Lévy white noises [45]. The role of thermal and non-Gaussian noise on the dynamics of driven
short overdamped Josephson junctions was studied in [46]. An alternative point of view for combining Lévy white noise with Gaussian white noise is that the latter represents a measurement noise or a diffusive drift in the setup [47]. Such sampling noise could correspond to the diffusive drift, for instance, due to the local wind conditions, of a drone providing aerial footage of randomly searching animals employing Lévy search statistics [48–53] (see also references therein). In this context the question we want to answer is whether the presence of the additional Gaussian noise significantly alters the shape of the PDF, or whether the Lévy noise is tolerant to such a disturbance.

Duan and his coauthors [54] studied SDEs with Gaussian and Lévy noise. They investigated mean exit times and escape probabilities in terms of an FFPKE, which is derived in terms of an infinite series. Different from this approach, we here infer the FFPKE from the underlying SDE driven by combined Gaussian and Lévy noises via the respective characteristic functions. It is apparent that both fractional-order and second-order derivatives emerge in the FFPKE in the joint presence of Gaussian and Lévy noises [43] when the two noises contribute additively to the dynamics in the underlying SDE. Because of the co-existence of fractional-order and second-order derivatives, it becomes more difficult to obtain analytical solutions of FFPKEs. We will present analytical solutions wherever possible, combined with asymptotic behaviours and numerical solutions, in the force-free case and for different forms of external power-law potentials $U(x) \propto |x|^c/c$.

The remainder of this paper is organised as follows. In section 2, the SDE with Gaussian and Lévy noise and the corresponding FFPKE are introduced. In section 3, the FFPKE for constant external potential is solved and analysed. It is proved that the solution of the FFPKE possesses power-law tails. In section 4 the stationary analytical solutions for the FFPKE are derived for an harmonic external potential. In addition, the power-law asymptotic of the solution of the FFPKE is inferred. In section 5 the analysis for the quartic oscillator and strongly non-linear oscillator is studied, including an expansion of the analytical solution and the power-law tails. In section 6, the existence of the stationary state and the power-law asymptotic of the stationary PDF are proved. In the last section 7 we conclude this paper. Some additional information is provided in the appendix.

2. The model

In this section we introduce the model equations analysed in this paper. The starting SDE with Gaussian white noise and symmetric α-stable Lévy white noise is presented in section 2.1, and in section 2.2 the derivation of the associated FFPKE is described.

2.1. Starting stochastic differential equation with Gaussian and Lévy white noise terms

The starting SDE with Gaussian white noise and α-stable Lévy white noise reads

$$\frac{dX}{dt} = f(X) + \xi_\alpha(t) + \xi(t),$$ (1)
Stochastic dynamics driven by combined Lévy-Gaussian noise

where \(f(X) = -dU(X)/dX \), and \(U(X) \) is the external potential. In the above, \(\xi(t) \) is Gaussian white noise with zero mean, such that \(\langle \xi(t) \rangle = 0 \) and \(\langle \xi(t)\xi(s) \rangle = 2D_G\delta(t-s) \), where \(D_G \) is the intensity of the Gaussian white noise. Concurrently, \(\xi_\alpha(t) \) is an external symmetric \(\alpha \)-stable Lévy white noise, whose characteristic function is \(Z(k) = \exp(-D_L|k|^{\alpha}) \) (here and below, \(x \) is the variable in the real space and \(k \) stands for the Fourier space), where \(D_L \) and \(\alpha \) \((0 < \alpha \leq 2)\) are the noise intensity and the stability index of the \(\alpha \)-stable Lévy white noise, respectively. \(D_L \) and \(\alpha \) satisfy the relationship \(D_L = \sigma^\alpha \), where \(\sigma \) is called the scale parameter. The symmetric \(\alpha \)-stable Lévy white noise reduces to Gaussian white noise when \(\alpha = 2 \).

We denote \(p(x,t|x_0,t_0) \), \(Z_X(k,t-t_0|x_0,t_0) \) and \(K_X(k,t-t_0|x_0,t_0) \) as the transition PDF, characteristic function, and cumulant generating function of the solution \(X \) of equation (1). The relationship among them is

\[
\mathcal{F}[p(x,t|x_0,t_0)] = Z_X(k,t-t_0|x_0,t_0) = \exp(K_X(k,t-t_0|x_0,t_0)) = \mathbb{E}[\exp(ik[X(t)-X(t_0)])|X(t_0) = x_0],
\]

(2)

where \(k \) is the conjugate variable of \(x - x_0 \) (namely, \(X(t) - X(t_0) \)). Here \(\mathcal{F} \) is the Fourier transformation defined as

\[
\hat{f}(k) = \mathcal{F}[f] = \int_{-\infty}^{\infty} dx \exp(ikx)f(x).
\]

(3)

Similarly, for a given time lag \(\delta t > 0 \) we define the corresponding quantities for the increment processes, \(\delta X(\delta t) = X(t+\delta t) - X(t) \) in the form

\[
\mathcal{F}[p(x+\delta x,t+\delta t|x,t)] = \mathcal{F}[p(x+\delta x,t+\delta t|x,t)] = \hat{\delta Z}_X(k,\delta t|x,t) = \exp(\delta K_X(k,\delta t|x,t)) = \mathbb{E}[\exp(ik[X(t+\delta t)-X(t)])|X(t) = x],
\]

(4)

where \(k \) is the conjugate variable of \(\delta x \).

It is known that \(\alpha_\alpha(t) \) is the formal time derivative of the symmetric Lévy stable processes \(L_\alpha(t) \). The characteristic function about the increment \(\delta L \) of the process \(L_\alpha(t) \) is \(\delta Z_L(k,\delta t) = \exp[-\delta t \times D_L|k|^{\alpha}] \). Then we get the corresponding cumulant generating function \(\delta K_L(k,\delta t) = \delta t[-D_L|k|^{\alpha}] \), according to equation (4). In addition, Gaussian white noise is the formal time derivative of Brownian motion \(B(t) \), and the characteristic function for the increment \(\delta B \) is \(\delta Z_B(k,\delta t) = \exp[-\delta t \times D_Gk^2] \). Thus, we can get the corresponding cumulant generating function \(\delta K_B(k,\delta t) = \delta t[-D_Gk^2] \) through equation (4).

For the SDE (1) with a single noise type the corresponding FPKE is well known. For pure Gaussian noise the corresponding FPKE is the classical second-order FPKE [2]

\[
\frac{\partial}{\partial t}p(x,t|x_0,t_0) = -\frac{\partial}{\partial x}(f(x)p(x,t|x_0,t_0)) + D_G\frac{\partial^2}{\partial x^2}p(x,t|x_0,t_0).
\]

(5)

Conversely, for the SDE with pure symmetric \(\alpha \)-stable Lévy white noise the corresponding FFPKE reads [11, 14–16, 21, 24]

\[
\frac{\partial}{\partial t}p(x,t|x_0,t_0) = -\frac{\partial}{\partial x}(f(x)p(x,t|x_0,t_0)) + D_L\frac{\partial^\alpha}{\partial |x|^\alpha}p(x,t|x_0,t_0),
\]

(6)
Stochastic dynamics driven by combined Lévy-Gaussian noise

which is a FFPKE. Here the definition of the Riesz fractional derivative \(\frac{d^\alpha f(x)}{d|x|^\alpha} \) is \([25,57,58]\)

\[
\frac{d^\alpha f(x)}{d|x|^\alpha} = \begin{cases}
- \frac{D_+^\alpha f(x) + D_-^\alpha f(x)}{2 \cos(\pi \alpha/2)}, & \alpha \neq 1 \\
- \frac{d}{dx} H f(x), & \alpha = 1
\end{cases}
\]

(7)

where

\[
D_+^\alpha f(x) = \frac{1}{\Gamma(n - \alpha)} \frac{d^n}{dx^n} \int_{-\infty}^{x} \frac{f(\xi)}{(x - \xi)^{\alpha-n+1}} d\xi
\]

(8)

\[
D_-^\alpha f(x) = \frac{(-1)^n}{\Gamma(n - \alpha)} \frac{d^n}{dx^n} \int_{x}^{\infty} \frac{f(\xi)}{(\xi - x)^{\alpha-n+1}} d\xi
\]

are the left and right Riemann-Liouville derivatives with \(n = 1 \) for \(0 < \alpha < 1 \), and \(n = 2 \) for \(1 < \alpha \leq 2 \). Besides, \(H \) is the Hilbert transformation operator

\[
H f(x) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{f(\xi)}{x - \xi} d\xi.
\]

(9)

Here \(f \) is the integral in the principal value sense.

2.2. The Fractional Fokker-Planck-Kolmogorov equation

We now show the derivation of the FFPKE corresponding to the SDE (1) with Gaussian and symmetric \(\alpha \)-stable Lévy white noise. We will start from the Chapman-Kolmogorov-Smoluchowski equation for Markov processes.

\[
p(x, t + \delta t | x_0, t_0) = \int_{-\infty}^{+\infty} dy p(x, t + \delta t | y, t) p(y, t | x_0, t_0), \quad \forall \delta t > 0,
\]

(10)

where \(p(x, t + \delta t | x_0, t_0) \) and \(p(y, t | x_0, t_0) \) are the PDF at time \(t + \delta t \) and \(t \), with the initial condition \(X(t_0) = x_0 \), respectively. Moreover \(p(x, t + \delta t | y, t) \) is the transition PDF from \(p(y, t | x_0, t_0) \) to \(p(x, t + \delta t | x_0, t_0) \). Equation (10) can be rewritten in the equivalent form

\[
p(x, t + \delta t | x_0, t_0) = \int_{-\infty}^{+\infty} dy \int_{-\infty}^{+\infty} \frac{dk}{2\pi} \exp \left(-ik(x-y) + \delta K_X(k, \delta t | y, t)\right) x p(y, t | x_0, t_0),
\]

(11)

where \(k \) is the conjugate variable of \(x-y \). Letting \(\delta t = 0 \) in equation (11) the following equation holds.

\[
p(x, t | x_0, t_0) = \int_{-\infty}^{+\infty} dy \int_{-\infty}^{+\infty} \frac{dk}{2\pi} \exp \left(-ik(x-y)\right) p(y, t | x_0, t_0).
\]

(12)

Subtracting relation (12) from (11) produces

\[
p(x, t + \delta t | x_0, t_0) - p(x, t | x_0, t_0) = \int_{-\infty}^{+\infty} dy \int_{-\infty}^{+\infty} \frac{dk}{2\pi} \exp \left(-ik(x-y)\right)
\times \left[\exp \left(\delta K_X(k, \delta t | y, t)\right) - 1 \right] p(y, t | x_0, t_0),
\]

(13)

where the \(\delta K_X(k, \delta t | y, t) \) can be obtained using formula (4) and the SDE (1),

\[
\delta K_X(k, \delta t | y, t) = ik f(y) \delta t - \delta t D_L |k|^\alpha - \delta t D_G k^2.
\]

(14)
Stochastic dynamics driven by combined Lévy-Gaussian noise

With this expression equation (13) can be rewritten, after expanding \(\exp(\delta K_X(k, \delta t|y,t)) \) in a Taylor series around \(\delta t \),

\[
p(x, t + \delta t|x_0, t_0) - p(x, t|x_0, t_0) = \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} dk \frac{1}{2\pi} \exp \left(-ik(x-y) \right) \left(\delta K_X(k, \delta t|y,t) + O(\delta t^2) \right) p(y, t|x_0, t_0)
\]

\[
= \int_{-\infty}^{\infty} dy \mathcal{F}^{-1}[\delta K_X(k, \delta t|y,t)] p(y, t|x_0, t_0) + O(\delta t^2),
\]

where the term \(\mathcal{F}^{-1}[\delta K_X(k, \delta t|y,t)] \) means the inverse Fourier transformation of \(\delta K_X(k, \delta t|y,t) \) that can be calculated as

\[
\mathcal{F}^{-1}[\delta K_X(k, \delta t|y,t)] = f(y) \delta t(-1)\delta'(x-y) - \delta t D_G(-\Delta)^{\alpha/2} \delta(x-y)
\]

Inserting result (16) into (15) we get

\[
p(x, t + \delta t|x_0, t_0) - p(x, t|x_0, t_0)
= -\delta t \frac{\partial}{\partial x} \left(f(x)p(x, t|x_0, t_0) \right) + \delta t D_L \frac{\partial^\alpha}{\partial |x|^\alpha} p(x, t|x_0, t_0)
+ \delta t D_G \frac{\partial^2}{\partial x^2} p(x, t|x_0, t_0) + O(\delta t^2).
\]

In the limit \(\delta t \to 0 \) we arrive at the FFPKE

\[
\frac{\partial}{\partial t} p(x, t|x_0, t_0) = \lim_{\delta t \to 0} p(x, t + \delta t|x_0, t_0) - p(x, t|x_0, t_0)
= -\frac{\partial}{\partial x} \left(f(x)p(x, t|x_0, t_0) \right) + D_L \frac{\partial^\alpha}{\partial |x|^\alpha} p(x, t|x_0, t_0) + D_G \frac{\partial^2}{\partial x^2} p(x, t|x_0, t_0).
\]

Namely, for the SDE (1) with Gaussian and symmetric \(\alpha \)-stable Lévy white noise, the corresponding fractional FPK equation is

\[
\frac{\partial}{\partial t} p(x, t|x_0, t_0) = -\frac{\partial}{\partial x} \left(f(x)p(x, t|x_0, t_0) \right) + D_L \frac{\partial^\alpha}{\partial |x|^\alpha} p(x, t|x_0, t_0)
+ D_G \frac{\partial^2}{\partial x^2} p(x, t|x_0, t_0).
\]

Equation (19) reduces to equation (5) when \(D_L = 0 \) and to equation (6) when \(D_G = 0 \). The FFPKE (19) can be directly inferred from the continuous time random walk theory with a combined jump length distribution \([15, 43, 44, 59]\).

In the next section the FFPKE (19) with a constant potential \(U(x) = \text{const} \), a "subharmonic" potential \(U(x) = |x|^c \) with \(0 < c < 2 \), a harmonic potential \(U(x) = x^2/2 \), or a "superharmonic" potential \(U(x) = x^{2m+2}/(2m + 2) \) with \(m = 1, 2, \ldots \) will be studied. In our calculation the initial condition \(p(x, t|x_0, t_0) = p(x, t|0, 0) = \delta(x) \) is considered. The symbol \(p(x, t|0, 0) \) is replaced by the short-hand notation \(p(x, t) \), which is the probability density function (PDF) at any time \(t \). We also introduce the symbol \(Z_X(k, t) \) as the characteristic function corresponding to \(p(x, t) \).
3. Fractional FPK equation with constant external potential

We start with analysing the FFPKE (19) for the zero-force case corresponding to a constant external potential. Analytical solutions are available for some special cases, and the power-law asymptotic of the solution is proved. Both solutions and power-law asymptotic are corroborated by numerical results.

3.1. Analytical solutions

For the FFPKE (19) with the external potential \(U(x) = \text{const} \) the analytical solution in the Fourier space of this equation is derived. The analytical solutions in real space are obtained for the special cases \(\alpha = 2 \) and \(\alpha = 1 \).

The FFPKE (19) with \(U(x) = \text{const} \) reads

\[
\frac{\partial}{\partial t} p(x,t) = D_L \frac{\partial^{\alpha}}{\partial |x|^\alpha} p(x,t) + D_G \frac{\partial^2}{\partial x^2} p(x,t).
\]

(20)

After applying the Fourier transformation (3), equation (20) turns into

\[
\frac{\partial}{\partial t} Z_X(k,t) = -D_L |k|^\alpha Z_X(k,t) - D_G k^2 Z_X(k,t),
\]

(21)

which has the solution

\[
Z_X(k,t) = \exp\left(-\left(D_L |k|^\alpha + D_G k^2\right) t\right).
\]

(22)

By the inverse Fourier transformation we get the PDF \(p(x,t) \) in the real space. This transformation is not straightforward, and we can only implement it for the two special cases \(\alpha = 2 \) and \(\alpha = 1 \).‡

For the special case \(\alpha = 2 \) the analytical solution (22) in Fourier space becomes

\[
Z_X(k,t) = \exp(-D_L k^2 - D_G k^2 t) = \exp(-D_L + D_G)k^2 t).
\]

The PDF \(p(x,t) \) in real space can be obtained by the inverse Fourier transformation as the Gaussian

\[
p(x,t)_{\alpha=2} = \frac{1}{2\sqrt{(D_L + D_G)\pi t}} \exp\left(-\frac{x^2}{4(D_L + D_G)t}\right)
\]

(23)

with the effective diffusivity \(D_L + D_G \).

For the special case \(\alpha = 1 \) the analytical solution (22) becomes \(Z_X(k,t) = \exp(-D_L |k| + D_G k^2 t) \). The corresponding PDF \(p(x,t) \) in the real space yields from the inverse Fourier transformation,

\[
p(x,t)_{\alpha=1} = \frac{1}{4\sqrt{D_G \pi t}} \left[\exp\left(\frac{(D_L t + ix)^2}{4D_G t}\right) \text{erfc}\left(\frac{D_L t + ix}{2\sqrt{D_G t}}\right) + c.c.\right],
\]

(24)

where c.c is the complex conjugate of the first part in the curly brackets on the right hand side of relation (24), and the function \(\text{erfc}(x) \) is the complementary error function.

Two special examples are worthwhile considering:

‡ Note that the inverse Fourier transform for arbitrary Lévy stable density can be achieved in terms of Fox \(H \)-functions [15,64,65].
Stochastic dynamics driven by combined Lévy-Gaussian noise

(A) If only Gaussian noise exists, that is, $D_L = 0$, relation (24) reduces to the Gaussian distribution

$$p(x, t)|_{\alpha=1} = \frac{1}{2\sqrt{D_G \pi t}} \exp \left(- \frac{x^2}{4D_G t} \right), \quad D_L = 0.$$ \hspace{1cm} (25)

Although the symbol $p(x, t)|_{\alpha=1}$ continues to be used here in accordance with the expression of the formula (24) α has no effect on the result due to $D_L = \sigma^2$ and $D_L = 0$.

(B) If $D_G \to 0$ expression (24) turns into the well-known Cauchy distribution

$$p(x, t)|_{\alpha=1} = \frac{D_L t}{\pi D_L^2 t^2 + x^2}, \quad D_G \to 0.$$ \hspace{1cm} (26)

3.2. Power-law asymptotic around the tails of the PDF

The asymptotic behaviour of the PDF $p(x, t)$ at large x are determined by the first non-analytical term in the series expansion of the exponent in expression (22) \[25\],

$$p(|x| \to \infty, t) \sim - \int_{-\infty}^{+\infty} \frac{dk}{2\pi} \exp(-ikx)(D_L |k|^{\alpha}t + D_G k^2 t)$$

$$= - \int_{-\infty}^{+\infty} \frac{dk}{2\pi} \exp(-ikx)(D_L |k|^{\alpha}t)$$

$$= \frac{D_L t \sin(\pi \alpha/2) \Gamma(\alpha + 1)}{\pi |x|^{1+\alpha}}.$$ \hspace{1cm} (27)

In equation (27) we use the value of the following improper integral

$$\int_{0}^{\infty} dt t^{\alpha+2m} e^{-\alpha t} = (-1)^{m+1} i e^{-i(\alpha \pi/2)} \Gamma(\alpha + 2m + 1), \quad m = 0, 1, 2, \ldots.$$ \hspace{1cm} (28)

Equation (27) shows that $p(x, t)$ is a power-law function for larger x, and the power-law exponent is $-(\alpha + 1)$. Taking the logarithm on both sides of relation (27) we get

$$\lim_{|x| \to \infty} \log_{10} p(x, t) = \log_{10} \frac{D_L t \sin(\pi \alpha/2) \Gamma(\alpha + 1)}{\pi} - (\alpha + 1) \log_{10} |x|.$$ \hspace{1cm} (29)

This result shows that $\log_{10} p(|x| \to \infty, t)$ is a linear function of $\log_{10} |x|$ with the slope $-(\alpha + 1)$, i.e. we can represent the power-law relationship between $p(x, t)$ and large x through log-log plots. Then, in the numerical results parts (Figure 1 to Figure 3), an auxiliary line with slope equal to the power-law exponent is included to verify the power-law relationship in (29).

The asymptotic decay of the tails of pure Lévy processes is $p(x) \simeq |x|^{-(1+\alpha)}$ \[21,27\]. Comparing the power-law asymptotic of the pure Lévy process and the process (27) combining Gaussian and Lévy noises we conclude that the asymptotic of the combined noise case asymptotically only depends on the Lévy noise index. This can be easily understood in view of the independence of these two kinds of noise, as well as the absence of the heavy-tailed asymptotic of the pure Gaussian case. As we will see, the intermediate x-behaviour does carry signatures of the Gaussian noise.

At the end of this subsection we briefly dwell on the mean squared displacement and fractional moments for the considered FFPKE (20) and the influence of both types
Stochastic dynamics driven by combined Lévy-Gaussian noise

of noise on these quantities. First, due to the power law decay (29) of the PDF the mean squared displacement does not exist, and one has to characterise the diffusion process with fractional moments \(\langle |x|^q \rangle \). For pure BM and pure LFs the fractional moments scale as \(t^{q/2} \) for any \(q \) and \(t^{q/\alpha} \) for \(q < \alpha < 2 \), respectively [22], displaying the superdiffusive behaviour of LFs. It was shown in [66,67] that for the combined Lévy-Brownian process governed by the FFPKE (20) fractional moments behave as \(t^{q/\alpha} \) at short times (pure Brownian behaviour) and as \(t^{q/\alpha} \) at long times, that is, it displays pure Lévy behaviour in the long time limit. Such a crossover from normal to superdiffusive scaling is a particular case of the phenomenon called "accelerating superdiffusion". For the details of this and other phenomena in a general context of the distributed order fractional kinetics we refer the reader to [66–70].

3.3. Numerical results

Comparisons between the analytical solution of \(p(x,t) \), results from Monte Carlo simulations of the underlying SDE, and the result obtained from the finite difference method are presented in figure 1 for the special cases \(\alpha = 0.5, \alpha = 1.0, \) and \(\alpha = 1.5 \) for \(t = 0.2 \). In this figure the analytical solutions in the real space are calculated through the inverse Fourier transformation of equation (22). The finite difference method is used to solve the FFPKE (20). In figure 1 panels (a), (c), and (e) show linear scales, while the corresponding panels (b), (d), and (f) display the results in log-log scale. The auxiliary lines indicate that the power-tails of the PDF \(p(x,t) \) is fully consistent with result (27).

Figure 2 shows the PDF for \(D_L = 0.1 \) and different values of \(D_G \). Panel (a) shows the results on linear scales and panel (b) is the corresponding log-log plot. Figure 2 (a) indicates that a larger noise intensity \(D_G \) leads to lower peaks of the PDF while the PDF is getting broader around the origin. Interestingly, as predicted by the theoretical result (29), the tails for all cases are identical and thus only depend on the noise intensity \(D_L \) and stability parameter \(\alpha \). As expected the slope in figure 2 (b) is \(- (\alpha + 1) = -2.0\).

Figure 3 is a log-log representation of the PDF \(p(x,t) \) for different times. In each panel of figure 3, the results \(p(x,t) \) are obtained through the difference solution of equation (20). In the finite difference method, the stability index \(\alpha = 1.5 \), noise intensity \(D_G = 1.0 \), and different values for \(D_L \), time step \(dt = 0.001 \), and spatial increment \(dx = 0.01 \) were used. In each panel the PDF \(p(x,t) \) has a Gaussian shape for the case \(D_L = 0 \), while we see distinct power-law tails for the combined noise cases \((D_L \neq 0) \). We note that larger \(D_L \) values leads to heavier tails of the PDF for the combined-noise cases with the same \(D_G \). In addition, comparing panels (a) to (d) we find that longer times \(t \) lead to the heavier tails at the same \(x \)-value in the tail regions.
Stochastic dynamics driven by combined Lévy-Gaussian noise

Figure 1. PDF $p(x, t)$ obtained from the finite difference method (FD), Monte Carlo simulations (MC), and the analytical solution (AS) for $D_L = 0.1$, $D_G = 1$, $t = 0.2$, and $U(x) = \text{const}$. (a) $\alpha = 0.5$ and (b) the corresponding log-log plot; (c) $\alpha = 1.0$ and (d) the corresponding log-log plot; (e) $\alpha = 1.5$ and (f) the corresponding log-log plot.
Stochastic dynamics driven by combined Lévy-Gaussian noise

Figure 2. PDF $p(x, t)$ with $D_L = 0.1$ and different values $D_G = 0.1, 1.0, 5.0, 10.0$, at time $t = 0.2$. (a) linear-linear plot; (b) log-log plot.

Figure 3. Log-log plots of the PDF $p(x, t)$ at times $t = 0.001, 0.01, 0.1, 1.0$ for $\alpha = 1.5$ and $D_G = 1.0$.
4. Fractional Fokker-Planck-Kolmogorov equation with harmonic external potential

We now turn to the solution of the FFPKE (19) in the presence of an external harmonic potential. The stationary analytical solutions are available for some special cases and the power-law asymptotic of the stationary solution are proved. We note that the FFPKE (19) is more complicated for the case of a non-constant external potential, and we concentrate on the more easily accessible stationary case $p_{st}(x)$ of the equation instead of the full time-dependent solution $p(x,t)$.

4.1. Analytical solutions

We here derived the stationary solution in the Fourier space and obtain explicit solutions in the real space for the special cases $\alpha = 2$ and $\alpha = 1$. For the harmonic potential function $U(x) = x^2/2$ the PDF $p(x,t)$ satisfies the FFPKE

$$\frac{\partial}{\partial t} p(x,t) = \frac{\partial}{\partial x} \left[x p(x,t) \right] + D_L \frac{\partial^\alpha}{\partial |x|^\alpha} p(x,t) + D_G \frac{\partial^2}{\partial x^2} p(x,t).$$

(30)

In the Fourier space $Z_X(k,t)$ thus satisfies

$$\frac{\partial}{\partial t} Z_X(k,t) = -k \frac{dZ_X(k,t)}{dk} - D_L |k|^\alpha Z_X(k,t) - D_G k^2 Z_X(k,t),$$

(31)

where, $Z_X(k,t)$ is the Fourier transformation of $p(x,t)$. Note that $Z_X(k,0) = 1$. By the method of characteristics, the solution of equation (31) is [21]

$$Z_X(k,t) = \exp \left(-\frac{D_L}{\alpha} |k|^\alpha \left[1 - e^{-\alpha t} \right] - \frac{D_G k^2}{2} \left[1 - e^{-2t} \right] \right).$$

(32)

We can then always get the stationary solution $Z_X(k)$ as (note that we omit "st" for $Z_X(k)$)

$$Z_X(k) = \exp \left(-\frac{D_L}{\alpha} |k|^\alpha - \frac{D_G k^2}{2} \right).$$

(33)

By the inverse Fourier transformation of equation (33) we get the stationary PDF $p_{st}(x)$ in the real space. This transformation is difficult, and we are able to perform it for the special cases $\alpha = 2$ and $\alpha = 1$.

For the case $\alpha = 2$, the analytical solution can be obtained by the inverse Fourier transformation of $Z_X(k) = \exp(-D_L |k|^2/2 - D_G k^2/2)$,

$$p_{st}(x)|_{\alpha=2} = \frac{1}{\sqrt{2\pi(D_L + D_G)}} \exp \left(-\frac{x^2}{2(D_L + D_G)} \right).$$

(34)

For the case $\alpha = 1$, the inverse Fourier transformation of $Z_X(k) = \exp(-D_L |k| - D_G k^2/2)$ produces

$$p_{st}(x)|_{\alpha=1} = \frac{1}{\sqrt{8\pi D_G}} \left[\exp \left(\frac{(D_L + ix)^2}{2D_G} \right) \text{erfc} \left(\frac{D_L + ix}{\sqrt{2D_G}} \right) + c.c \right],$$

(35)
Stochastic dynamics driven by combined Lévy-Gaussian noise

where, again, \(c.c\) is the complex conjugate of the first part in the curly brackets on the right hand side of equation (35) and \(\text{erfc}(x)\) is the complementary error function. There are two special cases of equation (35) that are worth mentioning:

(A) If only Gaussian noise exists, that is, \(D_L = 0\), equation (35) reduces to the Gaussian distribution \(p_{st}(x)|_{\alpha=1} = \exp(-x^2/[2D_G]) / \sqrt{2\pi D_G}\).

(B) If \(D_G \rightarrow 0\), then \(p_{st}(x)|_{\alpha=1} \rightarrow (1/\pi)D_L/(D_L^2 + x^2)\), the well-known Cauchy distribution.

4.2. Power-law asymptotic around the tails of the stationary PDF

The power-law asymptotic of the stationary PDF \(p_{st}(x)\) at large \(x\) can be proved in the same way as in the constant-potential case, namely,

\[
\lim_{|x| \to \infty} p_{st}(x) \sim -\int_{-\infty}^{+\infty} \frac{dk}{2\pi} \exp(-ikx) \left(\frac{D_L}{\alpha} |k|^\alpha + \frac{D_G k^2}{2} \right) \\
= -\int_{-\infty}^{+\infty} \frac{dk}{2\pi} \exp(-ikx) \frac{D_L}{\alpha} |k|^\alpha \\
= \frac{D_L \sin(\pi\alpha/2)\Gamma(\alpha)}{\pi |x|^{1+\alpha}}. \tag{36}
\]

This shows that \(p_{st}(|x| \to \infty)\) is a power-law function of \(|x|\), that is, \(\log_{10} p_{st}(|x| \to \infty)\) and \(\log_{10} |x|\) have a linear relationship. Moreover, equation (36) exhibits that larger \(D_L\) values leads to larger amplitudes of \(p_{st}(|x| \to \infty)\), which means a heavier tail of the stationary PDF.

For the SDE with pure \(\alpha\)-stable Lévy noise and confining the potential \(U(x) = x^2/2\) the stationary PDFs have power-law asymptotic of the form \(|x|^{-(\alpha+1)}\) at \(|x| \to \infty\) \[55\]. Comparing with the power-law asymptotic of the combined noise case, equation (36), we find the same power-law asymptotic. Solely from the tails the presence of the Gaussian noise therefore cannot be discerned, as detailed in the numerical analysis below.

4.3. Numerical results

The analytical solution of the stationary PDF is compared with the result of the finite difference method in figure 4, where the analytic solutions are obtained from the inverse Fourier transformation of relation (33). In the numerical calculation of the finite difference method the time and space steps are \(dt = 0.01\) and \(dx = 0.1\), respectively. Good agreement between the stationary PDF and the finite difference results are observed in figure 4. In the log-log plots the power-law asymptotic are distinct, and consistent with the theoretical results (36). Moreover, we see that the noise intensity affects the value of the stationary PDF but does not affect the power-law behaviour.

Figure 5 (a) shows the stationary PDF comparison of the pure Gaussian case \((D_L = 0)\), for pure Lévy noise \((D_G = 0)\), and for the combined-noise case for \(U(x) = x^2/2\) and \(\alpha = 1.5\) on both linear and log-log scales. The numerical solutions are
Stochastic dynamics driven by combined Lévy-Gaussian noise

Figure 4. Stationary PDFs obtained from the finite difference (FD) method, compared with the analytical solution (AS) for the harmonic external potential $U(x) = x^2/2$. Panels (a) and (b) are for $\alpha = 0.5$ in linear and log-log scales; (c) and (d) are correspondingly for $\alpha = 1.0$; and (e) and (f) are for $\alpha = 1.5$.
obtained through the finite difference method on the interval \([-30, 30]\), with the time step \(dt = 0.01\) and space increment \(dx = 0.01\). The analytical solutions are obtained from the equation (33) through the inverse Fourier transformation. Figure 5 (a) indicates that the numerical solutions fit well the analytical solutions. Figure 5 (b) highlights the tails of the PDF. For the pure Gaussian-noise case \((D_L = 0)\) we see a fast Gaussian decay, see formula (36). However, both cases of combined-noise and pure Lévy noise case have the same asymptotic tails.

5. Fractional Fokker-Planck-Kolmogorov equation in the presence of quartic and strongly nonlinear potentials

We now study the solution of the FFPKE (19) for the quartic external potential \(U(x) = x^2/2\) and the "strongly nonlinear" potential \(U(x) = x^{2m+2}/(2m + 2)\) with \(m = 2, 3, 4, \ldots\) We again limit our discussion to the stationary solution. Specifically, we find the stationary analytical solutions of the special cases \(D_L = 0\) and \(D_G = 0\) with \(\alpha = 1\) and \(U(x) = x^{2}/4\). Moreover, the power-law asymptotic about the tails of the stationary PDF is proved and presented through log-log plots in our numerical analysis.

5.1. Analytical solutions

For the case \(U(x) = x^{2m+2}/(2m + 2)\) \((m = 1, 2, \ldots)\), the stationary distribution \(p_{st}(x)\) satisfies

\[
\frac{\partial}{\partial x} \left(x^{2m+1} p_{st}(x) \right) + D_L \frac{\partial^\alpha}{\partial |x|^\alpha} p_{st}(x) + D_G \frac{\partial^2}{\partial x^2} p_{st}(x) = 0. \tag{37}
\]

In the Fourier space equation (37) can be expressed as (note that we again omit the subscript "st" for \(Z_X(k)\))

\[
d_{2m+1}^2 Z_X(k) = D_L \text{sign}(k)|k|^\alpha Z_X(k) + D_G k^2 Z_X(k). \tag{38}
\]

In general, the analytical solutions for both equations (37) and (38) are difficult to derive. We obtain the analytical solutions for the following two special cases:
Stochastic dynamics driven by combined Lévy-Gaussian noise

Figure 6. Stationary PDFs obtained from finite difference method (FD) compared with the analytical solution (AS) for \(\alpha = 2 \). (a) \(U(x) = x^4/4 \), (b) \(U(x) = x^6/6 \).

(A) For the stability index \(\alpha = 2 \) the analytical solution of (37) is

\[
p_{st}(x) = \frac{m+1}{\Gamma(1/[2m+2])((2m+2)(D_L+D_G))^{1/(2m+2)}} \times \exp\left(-\frac{1}{D_L+D_G}x^{2m+2}\right).
\]

(B) For the special case \(\alpha = 1 \), \(U(x) = x^4/4 \) and \(D_G = 0 \) the stationary distribution in the Fourier space satisfies

\[
\frac{d^3 Z_X(k)}{dk^3} = D_L \text{sign}(k) Z_X(k),
\]

and the solution for the pure Lévy case can be obtained as

\[
Z_X(k) = \frac{2}{\sqrt{3}} \exp\left(-\frac{D_L^{1/3}}{2} |k| \right) \cos\left(\frac{D_L^{1/3} \sqrt{3}}{2} |k| - \frac{\pi}{6}\right).
\]

After inverse Fourier transformation of equation (41) we have

\[
p_{st}(x) = \frac{1}{\pi} \frac{D_L}{x^4 + D_L^{4/3} - D_L^{2/3} x^2}.
\]

And the exact stationary PDFs for \(\alpha = 1 \), \(D_G = 0 \) and arbitrary \(m \) can be found in [30]

Figure 6 presents the stationary solution \(p_{st}(x) \) for the quartic and \(x^6 \) potentials for different noise intensities for the case \(\alpha = 2 \). The analytical solutions are compared with the finite difference solutions for the cases \(D_L = D_G = 0.01 \) and \(D_L = D_G = 0.05 \), in each panel. Both results agree well in all cases. For the finite difference method, the parameters \(dx = 0.01 \) and \(dt = 0.01 \) were used on the interval \(x \in [-5,5] \). We find that smaller \(D_L \) and \(D_G \) lead to a thinner PDF. Moreover, \(U(x) = x^4/4 \) results in a thinner PDF than for \(U(x) = x^6/6 \) for the same noise intensity.

In figure 7 the stationary analytical solution (42) is compared with the corresponding finite difference solution for \(D_G = 0 \), \(D_L = 0.05 \) and \(\alpha = 1.0 \). In the finite difference scheme the parameter \(dx = 0.005 \), \(dt = 0.01 \) and the interval \(x \in [-20,20] \) are employed. Figure 7 (a) shows that the analytical solution agrees well with the finite
Stochastic dynamics driven by combined Lévy-Gaussian noise

Figure 7. Stationary PDFs comparing between the finite difference solution (FD) and the analytical solution (AS) for $D_G = 0$, $D_L = 0.05$, and $\alpha = 1.0$.

difference solution. Panel (b) displays the corresponding log-log plot with the power-law tails of the PDF, detailing the asymptotic for the pure Lévy case with $D_G = 0$, $\lim_{|x| \to \infty} p(x) \simeq x^{-4}$, compare the analytical solution (42). In panel (b) of figure 7 the auxiliary line with slope -4 is plotted with the expected power-law asymptotic. Notably, panel (a) of figure 7 demonstrates a bimodal stationary PDF, with a distinct dip towards the origin, $x = 0$. This behaviour for Lévy stable processes was first analysed in a series of works [25–29]. We will here analyse how this phenomenon is when we use combined Lévy-Gaussian noise.

5.2. Power-law asymptotic around the tails of the stationary PDF

The power-law asymptotic of the stationary solution is analysed theoretically through the method laid out in [27]. For the potential $U(x) = x^{2m+2}/(2m + 2)$ ($m = 0, 1, 2, \ldots$) the stationary solution satisfies

$$\frac{\partial}{\partial x} (U'(x) p_{st}) + D_L \frac{\partial^\alpha}{\partial |x|^{\alpha}} p_{st} + D_G \frac{\partial^2}{\partial x^2} p_{st} = 0. \tag{43}$$

We find $p_{st}(x + \Delta x) \simeq p_{st}(x - \Delta x)$ and $D^\alpha_{st} p_{st}(x) \ll D^\alpha_{st} p_{st}(x)$, when $x \to +\infty$. To prove the power-law asymptotic we distinguish the two different cases $\alpha \neq 1$ and $\alpha = 1$:

(A) When $\alpha \neq 1$ then the stationary solution meets

$$\frac{\partial}{\partial x} (U'(x) p_{st}(x)) - \frac{D_L}{2 \cos(\pi \alpha/2) \Gamma(2 - \alpha)} \frac{d^2}{dx^2} \int_{-\infty}^{x} \frac{p_{st}(\xi)}{(x - \xi)^{\alpha-1}} d\xi \simeq 0, \quad x \to \infty \tag{44}$$

for $1 < \alpha < 2$, namely,

$$x^{2m+1} p_{st}(x) \simeq \frac{D_L}{2 \cos(\pi \alpha/2) \Gamma(2 - \alpha)} \frac{d}{dx} \int_{-\infty}^{x} \frac{p_{st}(\xi)}{(x - \xi)^{\alpha-1}} d\xi, \quad x \to +\infty, \ 1 < \alpha < 2. \tag{45}$$

Suppose that the asymptotic behaviour of $p_{st}(x)$ satisfies $p_{st}(x) \sim C_1/x^\mu \ (x \to$
Stochastic dynamics driven by combined Lévy-Gaussian noise

\(+\infty, \mu > 0\), and then integrate equation (45) to get

\[
2C_1 \cos(\pi \alpha/2) \Gamma(2 - \alpha) x^{2m+2-\mu} \sim \int_{-\infty}^{x} \frac{p_{st}(\xi)}{(x-\xi)^{\alpha-1}} d\xi.
\]

Then the approximated value for the right-hand side integral can be obtained as

\[
\int_{-\infty}^{x} \frac{p_{st}(\xi)}{(x-\xi)^{\alpha-1}} d\xi \sim \frac{1}{x^{\alpha-1}} \int_{-\infty}^{x} p_{st}(\xi) d\xi \sim \frac{1}{x^{\alpha-1}} \int_{-\infty}^{\infty} p_{st}(\xi) d\xi = \frac{1}{x^{\alpha-1}}.
\]

Comparing equations (46) and (47) we see that

\[
\mu = \alpha + 2m + 1,
\]

and

\[
C_1 = \frac{D_L (2m+2-\mu)}{2 \cos(\pi \alpha/2) \Gamma(2-\alpha)} = \frac{D_L \sin(\pi \alpha/2) \Gamma(\alpha)}{\pi}.
\]

In view of the symmetry of the stationary solution its power-law asymptotic form is

\[
p_{st}(x) \sim \frac{D_L \sin(\pi \alpha/2) \Gamma(\alpha)}{\pi |x|^{\alpha+2m+1}}, \quad |x| \to \infty, \quad 0 < \alpha < 2.
\]

For the case \(0 < \alpha < 1\), \(\mu\) has the identical value (48), and

\[
C_1 = \frac{D_L}{2 \cos(\pi \alpha/2) \Gamma(1-\alpha)} = \frac{D_L \sin(\pi \alpha/2) \Gamma(\alpha)}{\pi}.
\]

Thus, the general power-law asymptotic of \(\alpha \neq 1\) becomes

\[
p(x) \sim \frac{D_L \sin(\pi \alpha/2) \Gamma(\alpha)}{\pi |x|^{\alpha+2m+1}}, \quad |x| \to \infty, \quad 0 < \alpha < 2, \ \alpha \neq 1.
\]

(B) When \(\alpha = 1\) the stationary solution satisfies

\[
\frac{\partial}{\partial x} \left(U'(x) p_{st}(x) \right) - D_G \frac{1}{\pi} \frac{d}{dx} \int_{-\infty}^{\infty} \frac{p_{st}(\xi)}{x-\xi} d\xi \sim 0.
\]

After the same procedure followed in part (A) the asymptotic of the stationary solution turns into

\[
p_{st}(x) \sim \frac{D_L}{\pi |x|^{2m+2}}, \quad |x| \to \infty,
\]

which is indeed a special case of result (50) when \(\alpha = 1\).

Thus, the power-law asymptotic of stationary solution uniquely satisfies

\[
p_{st}(x) \sim \frac{D_L \sin(\pi \alpha/2) \Gamma(\alpha)}{\pi |x|^{\alpha+2m+1}}, \quad |x| \to \infty, \quad 0 < \alpha < 2.
\]

Equation (55) shows that the Gaussian noise intensity \(D_G\) has no effect on the power-law asymptotic of the PDF, and thus for the pure Lévy case, the PDF has the same power-law asymptotic as reported in [25].
Stochastic dynamics driven by combined Lévy-Gaussian noise

\[U(x) = x^4/4, \quad \alpha = 1.0, \quad D_G = 0.05 \]

\[U(x) = x^4/4, \quad \alpha = 1.3, \quad D_G = 0.01 \]

\[U(x) = x^4/4, \quad \alpha = 1.0, \quad D_L = 0.5 \]

\[U(x) = x^4/4, \quad \alpha = 1.3, \quad D_L = 0.05 \]

\[\log_{10} p(x) \]

\[\log_{10} p(x) \]

\[\log_{10} p(x) \]

\[\log_{10} p(x) \]

Figure 8. Stationary PDF from the finite difference method (FD) and Monte Carlo solution (MC) for \(U(x) = x^4/4 \) and \(U(x) = x^6/6 \). Both Monte Carlo solutions for the SDE and finite difference solutions for the FEPKE are used.

5.3. Numerical results

In this subsection we present our numerical results for the external potentials \(U(x) = x^4/4 \) and \(U(x) = x^6/6 \). Both Monte Carlo solutions for the SDE and finite difference solutions for the FEPKE are used.

Figure 8 presents the stationary PDFs for different noise strengths \(D_L \) and \(D_G \) for the quartic potential \(U(x) = x^4/4 \), in both linear and log-log representation. In the latter the power-law tails are highlighted. For the finite difference method the time step \(dt = 0.01 \) and spatial increment \(dx = 0.01 \) are adopted. The finite difference solution agrees well with the Monte Carlo solution. Figure 8 (a) and (c) show that larger \(D_L \) lead to a stronger bimodality of the PDF for the same \(D_G \). The bimodality of the stationary PDF for smaller \(D_L \) is shown in the zoom-in in the insets in figures 8 (a) and (c). Panels (b) and (d) are the corresponding double-logarithmic plots detailing the power-law asymptotic for the tails of the PDF. For the case \(U(x) = x^4/4 \) and \(\alpha = 1 \), figure 8 (b) shows that the tails of the PDF satisfy \(p_{st}(x) \sim x^{-4} \) \((x \to +\infty) \). Similarly, for \(\alpha = 1.3 \) panel (d) shows that the tails of the PDF satisfy \(p_{st}(x) \sim x^{-4.3} \) \((x \to +\infty) \). Both results are thus consistent with equation (55) where the tails of the stationary PDF are shown to obey \(p_{st}(x) \sim |x|^{-(\alpha+3)} \) at \(x \to \infty \). Moreover, we find that larger \(D_L \)
Stochastic dynamics driven by combined Lévy-Gaussian noise

Figure 9. Stationary PDF from the finite difference method (FD) and Monte Carlo solution (MC) for $U(x) = x^6/6$. (a) is for $\alpha = 1.0$ with the corresponding log-log representation in (b). (c) is for $\alpha = 1.3$, with log-log scales in (d).

lead to heavier tails in each of the log-log plots.

Figure 9 shows the stationary PDF on both linear and double-logarithmic scales for different noise strengths D_L and D_G for the case of the strongly nonlinear potential $U(x) = x^6/6$. Both finite difference solutions and Monte Carlo solutions are shown, demonstrating good agreement. For the finite difference method the time step was $dt = 0.01$ and the spatial increment was $dx = 0.01$. Figure 9 (a) and (c) show that larger D_L values lead to a stronger bimodality of the PDF for the same D_G. The bimodality for smaller D_L is shown in the insets. Panels (b) and (d) show that the tails of the PDF have power-law asymptotic. For the case $U(x) = x^6/6$ equation (55) indicates that $p_{\text{st}}(x) \sim |x|^{-(\alpha+5)}$ as $|x| \to \infty$. Namely, $\log_{10} |x| \to (\alpha+5) \log_{10} |x|$ as $|x| \to \infty$, such that in the log-log plot the stationary PDF has the asymptotic slope $- (\alpha+5)$. For $\alpha = 1$, $p_{\text{st}}(x) \sim |x|^{-6}$ ($|x| \to \infty$), and the tails of the PDF are indeed parallel to the auxiliary line with slope -6 in panel (b). In panel (d) the auxiliary line has slope -6.5, again consistent with the analytical prediction.
6. Fractional Fokker-Planck-Kolmogorov equation in the presence of an external subharmonic potential

In this section, consider the FFPKE (19) in the presence of a "subharmonic" potential $U(x) = |x|^c/c$ ($0 < c < 2$). Specifically, the FFPKE can be expressed as

$$\frac{\partial}{\partial t} p(x,t) = \frac{\partial}{\partial x} \left(|x|^{-1}\text{sign}(x)p(x,t)\right) + D_L \frac{\partial^{\alpha}}{\partial |x|^\alpha} p(x,t) + D_G \frac{\partial^2}{\partial x^2} p(x,t), \quad (56)$$

where $\text{sign}(x)$ is the sign function. In figure 10 the subharmonic potential functions with some specific parameters are presented. We discuss the existence of a stationary state and determine the power-law asymptotic of the tails of the stationary PDF.

6.1. Existence of a stationary PDF and corresponding power-law tails

We here prove that the tails of the stationary PDF have power-law asymptotic. To this end we use the same method as employed in section 5.2.

If a stationary state of equation (56) exists, it satisfies

$$\frac{\partial}{\partial x} \left(|x|^{-1}\text{sign}(x)p_{st}(x)\right) + D_L \frac{\partial^{\alpha}}{\partial |x|^\alpha} p_{st}(x) + D_G \frac{\partial^2}{\partial x^2} p_{st}(x) = 0. \quad (57)$$

Considering that the stationary solution satisfies $p_{st}(x + \Delta x) \simeq p_{st}(x) \simeq p_{st}(x - \Delta x)$ for $|x| \to \infty$, according to the definition of the Riemann-Liouville derivatives (8) we find that $D_+^{\alpha} p_{st}(x) \ll D_+^{\alpha} p_{st}(x)$ when $x \to +\infty$, and $D_-^{\alpha} p_{st}(x) \ll D_-^{\alpha} p_{st}(x)$ when $x \to -\infty$. Then, equation (57) reduces to

$$x^{-1}p_{st}(x) \simeq \frac{D_L}{2 \cos(\pi \alpha/2) \Gamma(2 - \alpha)} \frac{d}{dx} \int_{-\infty}^{x} \frac{p_{st}(\xi)}{(x - \xi)^{\alpha - 1}} \, d\xi, \quad x \to +\infty, \ 1 < \alpha < 2 \quad (58)$$
and, respectively,
\[-(x)^{c-1} p_{st}(x) \sim \frac{D_L}{2 \cos(\pi\alpha/2)\Gamma(2-\alpha)} \frac{d}{dx} \int_x^{\infty} \frac{p_{st}(\xi)}{(\xi-x)^{\alpha-1}} d\xi, \quad x \to -\infty, \quad 1 < \alpha < 2. \tag{59}\]

Assuming that the tails of the distribution are given by a power-law, i.e. \(p_{st}(x) \sim C_1/|x|^{\mu} \) \((\mu > 0, x \to \infty)\) we get
\[
\frac{2C_1 \cos(\pi\alpha/2)\Gamma(2-\alpha)}{D_L(c-\mu)} x^{c-\mu} \sim \int_{-\infty}^{x} \frac{p_{st}(\xi)}{(x-\xi)^{\alpha-1}} d\xi, \quad x \to +\infty, \quad 1 < \alpha < 2 \tag{60}\]
and
\[
\frac{2C_1 \cos(\pi\alpha/2)\Gamma(2-\alpha)}{D_L(c-\mu)} (-x)^{c-\mu} \sim \int_{x}^{\infty} \frac{p_{st}(\xi)}{(\xi-x)^{\alpha-1}} d\xi, \quad x \to -\infty, \quad 1 < \alpha < 2. \tag{61}\]

The right hand sides of equations (60) and (61) can be approximated as
\[
\int_{-\infty}^{x} \frac{p_{st}(\xi)}{(x-\xi)^{\alpha-1}} d\xi \approx \frac{1}{x^{\alpha-1}} \int_{-\infty}^{\infty} p_{st}(\xi) d\xi = \frac{1}{x^{\alpha-1}}, \quad x \to +\infty, \quad 1 < \alpha < 2 \tag{62}\]
and
\[
\int_{x}^{\infty} \frac{p_{st}(\xi)}{(\xi-x)^{\alpha-1}} d\xi \approx \frac{1}{(-x)^{\alpha-1}} \int_{-\infty}^{\infty} p_{st}(\xi) d\xi = \frac{1}{(-x)^{\alpha-1}}, \quad x \to -\infty, \quad 1 < \alpha < 2. \tag{63}\]
Comparing equations (60) and (62), as well as (61) and (63), we obtain
\[c - \mu = 1 - \alpha \tag{64}\]
and,
\[C_1 = \frac{D_L(c-\mu)}{2 \cos(\pi\alpha/2)\Gamma(2-\alpha)} = \frac{D_L \sin(\pi\alpha/2)\Gamma(\alpha)}{\pi}. \tag{65}\]

Thus, the power-law asymptotic about the tail of the PDF is
\[p_{st}(x) \sim \frac{C_1}{|x|^\alpha} = \frac{D_L \sin(\pi\alpha/2)\Gamma(\alpha)}{\pi |x|^{\alpha-1}}, \quad |x| \to \infty, \quad 1 < \alpha < 2. \tag{66}\]

In the derivation of the power-law asymptotic (66) the Riemann-Liouville fractional derivatives (8) with stability parameter \(1 < \alpha < 2 \) are used. For the fractional derivatives with stability parameter \(0 < \alpha < 1 \) the analogous power-law asymptotic can be obtained as
\[p_{st}(x) \sim \frac{D_L}{2 \cos(\pi\alpha/2)\Gamma(1-\alpha)|x|^{\alpha-1}} = \frac{D_L \sin(\pi\alpha/2)\Gamma(\alpha)}{\pi |x|^{\alpha-1}}, \quad |x| \to \infty, \quad 0 < \alpha < 1. \tag{67}\]
Finally, the power-law asymptotic in the Cauchy case \(\alpha = 1 \) is
\[p_{st}(x) \sim \frac{D_L}{\pi |x|^c}, \quad |x| \to \infty, \quad \alpha = 1, \tag{68}\]
which can be viewed as a limiting case of the general power-law asymptotic. Taken altogether, the power-law asymptotic in the subharmonic potential becomes
\[p_{st}(x) \sim \frac{D_L \sin(\pi\alpha/2)\Gamma(\alpha)}{\pi |x|^{\alpha-1}}, \quad |x| \to \infty, \quad 0 < \alpha < 2. \tag{69}\]
Moreover, for the pure Lévy case \((D_G = 0)\) the tails of the PDF satisfy the same power-law asymptotic [55].
Stochastic dynamics driven by combined Lévy-Gaussian noise

Figure 11. Evolution of the PDF at $x = 0$ as function of time t for $U(x) = |x|$, $D_L = 0.05$, and $D_G = 0.02$. (a) $\alpha = 1.5$, (b) $\alpha = 0.9$.

The PDF $p_{st}(x)$ has to be integrable which implies to $\mu > 1$. The necessary condition for the existence of the steady state therefore is

$$c > 2 - \alpha.$$ \hfill (70)

Specifically, this means that for the harmonic case $c = 2$ we always have a stationary solution, as proved originally in [21].

6.2. Numerical results

In this section numerical results are presented to verify the condition for the existence of the stationary state and to show the power-law asymptotic of the stationary PDF. Without loss of generality, we choose two special cases, $U(x) = |x|$ ($c = 1$) and $U(x) = |x|^{0.5}/0.5$ ($c = 0.5$). In our presentation the value $p(x = 0, t)$ is selected as a parameter to show the existence of the stationary states, and logarithmic scales are used to show the power-law asymptotic of the stationary solution.

6.2.1. Subharmonic potential $U(x) = |x|$. We first turn to the case $U(x) = |x|$ for different noise intensities and stability parameter α and verify the necessary condition for the existence of the stationary state with its long-tailed asymptotic $p_{st}(x) \propto |x|^{c+\alpha-1}$ for $|x| \to \infty$.

If the stationary state exists, the PDF will remain unchanged once it arrives at the stationary state. Figure 11 shows the evolution of the PDF at $x = 0$ as function of time. The value of the PDF is obtained through Monte Carlo simulations with the time step $dt = 10^{-3}$ and spatial increment $dx = 0.1$. The number of sample trajectories is 1×10^6 and the initial condition is $x(0) = 0$. In figure 11 (a), the PDF $p(x = 0, t)$ first decreases and then remains unchanged when we use the parameters $D_L = 0.05$, $D_G = 0.02$, and $\alpha = 1.5$. This combination of $\alpha = 1.5$ and $c = 1$ meet the necessary condition (70). In contrast, there does not exist a stationary state if (70) is violated. This is demonstrated
Stochastic dynamics driven by combined Lévy-Gaussian noise

Figure 12. Time evolution of the PDF at $x = 0$ for $U(x) = |x|$ and $\alpha = 1.5$ under different D_G. (a) $D_L = 0.01$, (b) $D_L = 0.05$.

Figure 13. Stationary PDFs and corresponding log-log plots for $U(x) = |x|$, $\alpha = 1.5$, and $D_L = 0.05$.

in figure 11 (b). The parameters $\alpha = 0.9$ and $c = 1$ do not satisfy condition (70), and the value of the PDF apparently does not reach a stationary value.

For the case that the stationary state exists, figure 12 shows the value of $p(x = 0, t)$ for different noise intensities. Each panel of figure 12 demonstrates that smaller D_G values lead to higher amplitudes for the same noise intensity D_L. Comparing panels (a) and (b), larger D_L lead to higher amplitudes for the same noise intensities $D_G = 0.01$ and $D_G = 0.05$.

In section 6.1 the power-law asymptotic of the stationary solution is proved. Figure 13 presents the stationary PDF on linear and log-log scales for $U(x) = |x|$, $\alpha = 1.5$, and $D_L = 0.05$. Panel (a) shows that smaller D_G values lead to higher amplitudes. Panel (b) shows that the tails of the stationary PDF satisfy $p_{st}(x) \simeq |x|^{-1.5}$ as $x \to \infty$. Specifically, we see that the noise intensity D_G has no effect on the power-law asymptotic, in accordance with result (66).
Stochastic dynamics driven by combined Lévy-Gaussian noise

6.2.2. Subharmonic potential \(U(x) = |x|^{0.5}/0.5 \) We now turn to the case \(U(x) = |x|^{0.5}/0.5 \) and perform a similar analysis.

Figure 14 shows the value \(p(x = 0, t) \) of the PDF, obtained from Monte Carlo simulations with the same setting as above, but with initial \(x(0) = 1.0 \). In figure 14 (a) \(p(x = 0, t) \) first increases and then decreases to a constant for \(\alpha = 1.7 \), consistent with the fact that the parameters \(\alpha = 1.7 \) and \(c = 0.5 \) satisfy the necessary condition (70) for stationarity. In contrast, for \(\alpha = 1.0 \), (70) is not satisfied, and panel (b) indeed shows that the stationary state is not reached.

For the case \(U(x) = |x|^{0.5}/0.5 \) and \(D_L = 0.2 \) figure 15 shows the effect of the noise intensity on the PDF, where panels (a) and (b) are for \(\alpha = 1.7 \) and (c) and (d) are for \(\alpha = 1.0 \). For \(\alpha = 1.7 \), for which the stationary state exists panel (b) indicates that smaller \(D_G \) lead to larger amplitudes of \(p(x = 0, t) \) for the same \(D_L \), and for all times except \(t = 0 \). In accordance with the findings of panel (b), panel (a) indicates that smaller \(D_G \) lead to higher amplitudes \(p_a(x = 0) \) for the same \(D_L \). Additionally, for \(\alpha = 1.0 \), panels (c) and (d) show similar tendencies for the PDF for different noise intensities, although the stationary state does not exist.

For those cases in which a stationary state exists the stationary solutions indeed have power-law tails. Figure 16 presents the stationary PDFs on a log-log scale for \(U(x) = |x|^{0.5}/0.5, \alpha = 1.7 \) and \(D_L = 0.1 \). Here panel (a) shows that smaller \(D_G \) lead to higher amplitudes of the PDF. Panel (b) shows that the tails of the stationary PDF satisfy \(p_a(x) \approx |x|^{-1.2} \) when \(x \to \infty \). The power-law tails of the stationary solutions are again indifferent to the noise intensity \(D_G \).

7. Conclusions

We derived the FFPKE corresponding to an SDE driven by a combination of Gaussian white noise and \(\alpha \)-stable Lévy white noise. The FFPKE is solved for different external potentials: \(U(x) = 0, U(x) = x^2/2, U(x) = x^{2m+2}/(2m+2) \) \((m = 1, 2, \ldots) \), as
Stochastic dynamics driven by combined Lévy-Gaussian noise

Figure 15. The PDF and time evolution of the the PDF at $x = 0$ under different D_G for $U(x) = |x|^{0.5}/0.5$ and $D_L = 0.2$. (a) and (b) $\alpha = 1.7$. (c) and (d) $\alpha = 1.0$.

Figure 16. Stationary PDFs for $U(x) = |x|^{0.5}/0.5$, $\alpha = 1.7$, and $D_L = 0.1$.
Stochastic dynamics driven by combined Lévy-Gaussian noise

well as \(U(x) = |x|^c/c \) with \(0 < c < 2 \). Analytical solutions are derived for some special cases and are verified by numerical solutions. The latter are obtained from the underlying SDE by a Monte Carlo scheme, and from the FFPKE through a finite difference scheme. Analytically, we proved that the solutions of the FFPKE have asymptotic power-law tails. These are of the form \(p(x,t) \approx |x|^{-(\alpha+1)} \) at \(|x| \to \infty \) for the constant-potential case. Here, as expected, the power-law exponent is the same as the stable index of the driving Lévy stable noise. For the case \(U(x) = x^{2m+2}/(2m + 2) \) \((m = 0, 1, 2, \ldots)\), the PDF will always reach a stationary state characterised by the power-law asymptotic \(p_{st}(x) \approx |x|^{-(\alpha+2m+1)} \) at \(x \to \infty \). In this case the power-law tails become increasingly steeper, such that for \(m \geq 1 \) the stationary solution has a finite variance, as unveiled earlier for the case of pure Lévy motion in superharmonic potentials [25–27]. In the harmonic case the power-law index of the stationary PDF is identical to the stable index of the driving Lévy noise as seen in [21]. Finally, we proved that in subharmonic potentials of the form \(U(x) = |x|^c/c \) the process reaches a stationary state when \(c > 2 - \alpha \). In this case the stationary PDF has the power-law asymptotic \(p_{st}(x) \approx |x|^{-(\alpha+1)} \) for \(x \to \infty \). In the limit \(c = 2 \) this result agrees with the asymptotic in an harmonic potential. For \(0 < c < 2 \) it thus has a power-law exponent \(-(c + \alpha - 1) < 1\) such that the PDF always remains normalisable.

Remarkably, in all cases the emerging power-law tails are independent of the additive Gaussian noise. While it seems fully intuitive that the power-law exponent in all cases is dominated by the extreme events inherent to the Lévy stable noise, it is nevertheless interesting that the tail behaviour remains unaffected by the noise strength \(D_G \) of the additive Gaussian noise. If we interpret the source of the Gaussian noise as a detrimental measurement or setup effect, this means that the asymptotic form of the measured distribution is fully stable against this additional noise. Of course, the pre-asymptotic behaviour of the PDF does show effects from the Gaussian noise, and in this regime our numerical modelling approach can be used to gauge the effect. We note that when we do not focus on the PDF of the process but the first-hitting (first-arrival) time encoded in the dynamics [71,72], the presence of the additional Gaussian noise is beneficial, as it leads to an effective finite size of the target and thus a faster location [44,53]. Indeed, the probability to find a point target for Lévy search with \(0 < \alpha \leq 1 \) is zero, that is, such a random search dynamics is absolutely unreliable. However, for the combined Lévy-Brownian search the situation is drastically different: adding Gaussian noise to the equation of motion makes such search completely reliable for \(\alpha = 1 \) (i.e., the probability to find a point target is 1), whereas the probability for \(0 < \alpha < 1 \) takes on a nonzero value between 0 and 1, which depends on the intensity of the Gaussian noise. This is completely equivalent to the case of pure Lévy search of a finite-size target. Thus, the intensity of the additive Gaussian noise plays the role analogous to that of the target size [44].

Another remark concerns the potential shapes. In this paper we consider the simplest cases of symmetric external potentials. More complicated shapes will doubtlessly induce new. For instance, it is known that for pure LFs in an anharmonic
Stochastic dynamics driven by combined Lévy-Gaussian noise

single-well potential of the form \(U(x) = ax^2 + bx^4 \) with non-negative constants \(a \) and \(b \) a unimodal-bimodal transition in the shape of the stationary PDF takes place on increasing the ratio \(b/a \) [25]. Similarly, for pure LFs in a symmetric double-well potential the positions of the maxima of the stationary PDF do not coincide with the positions of the minima of the potential well [73]. It would be of interest to investigate the influence of Gaussian noise on these two effects. Even more complex time evolutions and stationary states are expected for odd and asymmetric potentials. The Langevin dynamics for several systems embedded in specific potentials of such kind and disturbed by Lévy noise have been studied in [74–77].

An interesting extension of the present results would be to combine the Markovian dynamics of the combined, white noises with a non-Poissonian waiting time dynamics in a continuous time random walk formulation [15,78], or to combine the Lévy white noise with a non-Markovian noise, for instance, fractional Gaussian noise [79]. It will also be of interest to generalise the results obtained here for asymmetric Lévy stable distributions [80]. Finally, we note that recently generic examples of Lévy walks have been considered in confining potentials, demonstrating fundamentally different dynamics from LFs [81–83].

Appendix A. Numerical methods

In this appendix, the numerical methods used in this paper are introduced. Appendix A introduces the finite difference method used for solving fractional FPK equation. Appendix B shows the Monte Carlo method for the stochastic differential equation with Gaussian and Lévy noise.

Appendix A.1. Finite difference method

In the Appendix A.1., the finite difference method scheme is presented for the cases \(1 < \alpha \leq 2 \) (the finite difference method for the \(0 < \alpha < 1 \) case is similar) and \(\alpha = 1 \).

Case1: \(1 < \alpha \leq 2 \). For fractional FPK equation

\[
\frac{\partial p(x,t)}{\partial t} = \frac{\partial}{\partial x} \left(\frac{U'(x)}{m \gamma} p(x,t) \right) + D_L \frac{\partial^\alpha}{\partial|\mathbf{x}|^\alpha} p(x,t) + D_G \frac{\partial^2}{\partial x^2} p(x,t),
\]

the finite difference method is stated as follows. The time domain \([0,T]\) is divided as \(t_n = n \Delta t, \) \(n = 0,1,\ldots,L \), where \(\Delta t = T/L \). And the spatial domain \([x_{\text{min}}, x_{\text{max}}]\) is discretised into \(N \) parts, the length of each part is \(\Delta x \) and \(x_j = x_{\text{min}} + j \Delta x, j = 0,1,\ldots,N \).

The Riesz space fractional derivative \(\frac{\partial^\alpha}{\partial|\mathbf{x}|^\alpha} \) is defined as follows [58,60]

\[
\frac{\partial^\alpha}{\partial|\mathbf{x}|^\alpha} p(x_j,t_n) = -\frac{D_+^\alpha p(x_j,t_n) + D_-^\alpha p(x_j,t_n)}{2 \cos(\pi \alpha/2)},
\]

where

\[
D_+^\alpha p(x,t) = \frac{1}{\Gamma(2-\alpha)} \frac{d^2}{dx^2} \int_{x_{\text{min}}}^{x} \frac{p(\eta,t)d\eta}{(x-\eta)^{\alpha-1}}.
\]
Stochastic dynamics driven by combined Lévy-Gaussian noise

and

\[
D_\alpha^p(x,t) = \frac{1}{\Gamma(2-\alpha)} \frac{d^2}{dx^2} \int_x^{x_{\text{max}}} \frac{p(\eta,t) d\eta}{(\eta-x)^{\alpha-1}}.
\]

(A.4)

Then, according to shifted Grünwald-Letnikov estimates [61–63], we express the fractional space fractional operator as

\[
D_+^{\alpha} p(x_j, t_n) = \frac{1}{\Delta x^\alpha} \sum_{k=0}^{N} c_k p_{j+1-k}^{n},
\]

(A.5)

and

\[
D_-^{\alpha} p(x_j, t_n) = \frac{1}{\Delta x^\alpha} \sum_{k=0}^{N} c_k p_{j-1+k}^{n},
\]

(A.6)

where \(c_k = (-1)^k \binom{\alpha}{k} = (-1)^k \frac{\Gamma(\alpha+1)}{\Gamma(k+1)\Gamma(\alpha-k+1)}\), and \(p(x_j, t_n) = p_j^n\). By using the difference approximation for the first order derivatives, equation (A.1) can be discretised as

\[
\frac{p(x_j, t_{n+1}) - p(x_j, t_n)}{\Delta t} = \frac{U''(x_j)}{m\gamma} p(x_j, t_{n+1})
\]
\[
+ \frac{U'(x_j)}{m\gamma} p(x_{j-2}, t_{n+1}) - 8p(x_{j-1}, t_{n+1}) + 8p(x_{j+1}, t_{n+1}) - p(x_{j+2}, t_{n+1})
\]
\[
- \frac{D_L}{2 \cos(\pi \alpha/2) \Delta x^\alpha} \left(\sum_{k=0}^{N} c_k p_{j+1-k}^{n+1} + \sum_{k=0}^{N} c_k p_{j-1+k}^{n+1} \right)
\]
\[
- \frac{D_G}{12 \Delta x^2} \left(p(x_{j-2}, t_{n+1}) - 16p(x_{j-1}, t_{n+1}) + 30p(x_j, t_{n+1}) - 16p(x_{j+1}, t_{n+1}) + p(x_{j+2}, t_{n+1}) \right).
\]

(A.7)

Moving terms of different time \(t\) in equation (A.7) to different sides, equation (A.7) becomes

\[
p_j^n = \left(-\frac{U'(x_j)}{m\gamma} \varepsilon_1 + \varepsilon_2 + M c_3 \right) p_{j+1}^{n+1} + \left(\frac{8U'(x_j)}{m\gamma} \varepsilon_1 - 16\varepsilon_2 + M c_0 + M c_2 \right) p_{j-1}^{n+1}
\]
\[
+ \left(1 - \frac{U''(x_j) \Delta t}{m\gamma} + 30\varepsilon_2 + 2M c_1 \right) p_j^{n+1} + \left(\frac{8U'(x_j)}{m\gamma} \varepsilon_1 - 16\varepsilon_2 + M c_0 + M c_1 \right) p_{j+1}^{n+1}
\]
\[
+ \left(\frac{U'(x_j)}{m\gamma} \varepsilon_1 + \varepsilon_2 + M c_3 \right) p_{j+2}^{n+1} + M \left(\sum_{k=4}^{N} c_k p_{j+1-k}^{n+1} + \sum_{k=4}^{N} c_k p_{j-1+k}^{n+1} \right).
\]

(A.8)

where \(\varepsilon_1 = \Delta t/(12\Delta x)\), \(\varepsilon_2 = \Delta t D_L/(12\Delta x^2)\), \(M = D_L \Delta t/[2 \cos(\pi \alpha/2) \Delta x^\alpha]\). Equation (A.8) can be expressed in a matric form as (A.7) becomes

\[
[T]{p}^{n+1} = {p}^n,
\]

(A.9)
Stochastic dynamics driven by combined Lévy-Gaussian noise

where \(\{p\} = [p_1, p_2, \ldots, p_{N-1}]^T \) and

\[
T_{ij} = \begin{cases}
1 - \frac{U'(x_j)\Delta t}{m\gamma} + 30\varepsilon_2 + 2Mc_1, & i = j \\
-\frac{U'(x_j)}{m\gamma}\varepsilon_1 + \varepsilon_2 + Mc_3, & j = i - 2 \\
\frac{8tU'(x_j)}{m\gamma}\varepsilon_1 - 16\varepsilon_2 + Mc_0 + Mc_2, & j = i - 1 \\
-\frac{8tU'(x_j)}{m\gamma}\varepsilon_1 - 16\varepsilon_2 + Mc_0 + Mc_1, & j = i + 1 \\
\frac{U'(x_j)}{m\gamma}\varepsilon_1 + \varepsilon_2 + Mc_3, & j = i + 2 \\
Mc_{j-i+1}, & j \leq i - 3 \\
Mc_{j-i+1}, & j \geq i + 3
\end{cases}
\]

\text{(A.10)}

where \(i, j = 1, 2, \ldots, N - 1 \). And we consider the natural boundary condition \(p_0 = p_N = 0 \). Besides, the sum of the PDF at each time satisfies the normalisation condition \(\sum_{k=0}^{N} p_k = 1/\Delta x \).

Case2: \(\alpha = 1 \)

\[
\frac{\partial}{\partial t} p(x, t) = \frac{\partial}{\partial x} \left(\frac{U'(x)}{m\gamma} p(x, t) \right) + D_L \frac{\partial^2}{\partial x^2} p(x, t) + D_G \frac{\partial^2}{\partial x^2} p(x, t), \quad \text{(A.11)}
\]

The time division and space division are the same as case1. But the fractional derivative \(\frac{\partial}{\partial x} p(x_j, t_n) \) is divided as [57]

\[
\frac{\partial}{\partial x} p(x_j, t_n) = \frac{1}{\pi \Delta x} \sum_{k=1}^{N} \frac{p(x_{j+k}, t_n) - 2p(x_j, t_n) + p(x_{j-k}, t_n)}{k(k+1)}. \quad \text{(A.12)}
\]

Following the derivation processes like Case 1, a similar iteration in matrix form can be derived as \(\{T\}\{p\}^{n+1} = \{p\}^n \), with \(\{p\} = [p_1, p_2, \ldots, p_{N-1}]^T \) and

\[
T_{ij} = \begin{cases}
1 - \frac{U'(x_j)\Delta t}{m\gamma} + 2M\left(1 - \frac{1}{N+1}\right) + 30\varepsilon_2, & i = j \\
\frac{U'(x_j)}{m\gamma}\varepsilon_1 - \frac{M}{6} + \varepsilon_2, & j = i - 2 \\
\frac{U'(x_j)}{m\gamma}\varepsilon_1 - \frac{M}{6} + \varepsilon_2, & j = i + 2 \\
\frac{8tU'(x_j)}{m\gamma}\varepsilon_1 - \frac{M}{2} - 16\varepsilon_2, & j = i - 1 \\
\frac{8tU'(x_j)}{m\gamma}\varepsilon_1 - \frac{M}{2} - 16\varepsilon_2, & j = i + 1 \\
\frac{M}{(j-i)(j-i+1)}, & j \leq i - 3 \\
\frac{M}{(j-i)(j-i+1)}, & j \geq i + 3
\end{cases}
\]

\text{(A.13)}

where \(i, j = 1, 2, \ldots, N - 1 \) and \(\varepsilon_1 = \Delta t/(12\Delta x) \), \(\varepsilon_2 = \Delta tD_G/(12\Delta x^2) \), \(M = D_L\Delta t/(\pi \Delta x) \). And the normalisation condition \(\sum_{k=0}^{N} p_k = 1/\Delta x \) is also satisfied.

Appendix A.2. Monte Carlo method

For the SDE (1), the Monte Carlo method is adopted based on the solution of Runge-Kutta algorithm as the following form [56]

\[
k_1 = f(x(k\Delta t))
\]
Stochastic dynamics driven by combined Lévy-Gaussian noise

\[
k_2 = f(x(k\Delta t) + \Delta t \times k_1/2)
\]

\[
k_3 = f(x(k\Delta t) + \Delta t \times k_2/2)
\]

\[
k_4 = f(x(k\Delta t) + \Delta t \times k_3)
\]

\[
x([n+1]\Delta t) = x(n\Delta t) + \Delta t \times (k_1 + 2k_2 + 2k_3 + k_4)/6 \\
+ \Delta t^{1/\alpha} \xi_n + \Delta t^{1/2} \omega_n.
\]

(A.14)

Here, \(\xi_n\) is Lévy distributed random variables with noise intensity \(D_L\) and stability index \(\alpha\). And \(\omega_n\) is random variables with zero mean and variance \(2D_G\). In the above \(\Delta t\) is time step used for iteration. The trajectory of the sample path \(x(t)\) is obtained through the Runge-Kutta method. And we carry out the Monte Carlo experiment experiment for 50000 times and obtain the solution by counting the number of the points in each parts of the interval \(\Delta x\) of the real line \(x\).

Acknowledgments

This paper was supported by the National Natural Science Foundation of China under Grant No. 11772255, the Fundamental Research Funds for the Central Universities, the Research Funds for Interdisciplinary Subject of Northwestern Polytechnical University, the Shaanxi Project for Distinguished Young Scholars, and Shaanxi Provincial Key R&D Program 2020KW-013 and 2019TD-010. The Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University. RM acknowledges funding from the German Research Foundation (DFG) as well as an Alexander von Humboldt Polish Honorary Research Scholarship from the Foundation for Polish Science (Fundacja na rzecz Nauki Polskiej).

References

[1] Langevin P 1908 Sur la théorie de mouvement brownien *Comptes Rendues Hebd. Seances Acad. Sci.* **146** 530
Stochastic dynamics driven by combined Lévy-Gaussian noise

[34] Li YG, Mei RX, Xu Y, Kurths J, Duan JQ and Metzler R 2020 Particle dynamics and transport enhancement in a confined channel with position-dependent diffusivity, New J. Phys. 22, 053016
[36] Li YG, Xu Y, Kurths J and Duan JQ 2019 The influences of correlated spatially random perturbations on first passage time in a linear-cubic potential Chaos 29 101102
[37] Xu Y, Zan WR, Jia WT and Kurths J 2019 Path integral solutions of the governing equation of SDEs excited by Lévy white noise J. Comp. Phys. 394, 41
Stochastic dynamics driven by combined Lévy-Gaussian noise

[48] Viswanathan GM, Afanasyev V, Buldyrev SV, Murphy EJ, Prince PA and Stanley HE 1996 Lévy flight search patterns of wandering albatrosses Nature 381, 413
[58] Podlubny I 1998 Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Elsevier, Amsterdam)
[60] Zeng L and Xu B 2010 Effects of asymmetric Lévy noise in parameter-induced aperiodic stochastic resonance Physica A 389, 5128
Stochastic dynamics driven by combined Lévy-Gaussian noise

[70] Sandev T, Sokolov IM, Metzler R, Chechkin A 2017 Beyond monofractional kinetics *Chaos, Solitons and Fractals* **102**, 210

