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Heterogeneous diffusion processes (HDPs) with space-dependent diffusion coefficients D(x) are found in a
number of real-world systems, such as for diffusion of macromolecules or submicron tracers in biological cells.
Here, we examine HDPs in quenched-disorder systems with Gaussian colored noise (GCN) characterized by a
diffusion coefficient with a power-law dependence on the particle position and with a spatially random scaling
exponent. Typically, D(x) is considered to be centerd at the origin and the entire x axis is characterized by a
single scaling exponent α. In this work we consider a spatially random scenario: in periodic intervals (“layers”)
in space D(x) is centerd to the midpoint of each interval. In each interval the scaling exponent α is randomly
chosen from a Gaussian distribution. The effects of the variation of the scaling exponents, the periodicity of the
domains (“layer thickness”) of the diffusion coefficient in this stratified system, and the correlation time of the
GCN are analyzed numerically in detail. We discuss the regimes of superdiffusion, subdiffusion, and normal
diffusion realisable in this system. We observe and quantify the domains where nonergodic and non-Gaussian
behaviors emerge in this system. Our results provide new insights into the understanding of weak ergodicity
breaking for HDPs driven by colored noise, with potential applications in quenched layered systems, typical
model systems for diffusion in biological cells and tissues, as well as for diffusion in geophysical systems.
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I. INTRODUCTION

Anomalous diffusion processes [1–11] are abundant in the
dynamics of nanoparticles [12–14], in plasma [15] and spin
glasses [16,17], in the cytoplasm of living cells [11,18–27], in
groundwater transport [28–30], for atmospheric meteorolog-
ical changes [31], etc. These systems follow the power-law
time dependence for the mean-squared displacement (MSD),

〈x2(t )〉 � tβ, (1)

where β is the anomalous scaling exponent [1,6,7,32]. For β

= 1 normal diffusion is realized, while for β < 1, 1 < β < 2,
β = 2, and β > 2 the process is called subdiffusive, superdif-
fusive, ballistic, and hyperdiffusive, respectively [1,33,34].
The case β = 0 is the limit of complete particle localisation
[35]. To obtain an MSD of the form Eq. (1), a number of
mathematical models have been proposed, including the de-
scription by fractional Brownian motion, fractional Langevin
equation, Lévy walks, continuous time random walks, etc
[1,5–7,9]. Although most of these models describe spatially
homogeneous scenarios, the diffusivity may be an explicit
local function of the tracer’s position, D(x). For diffusion
of pollutants in underground aquifers, for instance, spatial
variations in the transport characteristics of D(x) are due to
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soil stratification [35,36]. For eukaryotic [21] and prokaryotic
cells [37] the local diffusivity of endogeneous and artificially
introduced tracers also shows significant variations from one
location to another. Moreover, when the tracer’s size is com-
parable to the periodicity of the local compartmentalized
structure in cells, the motion of the tracer can also be hindered
by cage effects [38,39]. Such heterogeneous and stratified sys-
tems require that a position-dependent diffusivity is included
in the description giving rise to the so-called heterogeneous
diffusion processes (HDPs) [40–44].

Recently, anomalous diffusion in conjunction with disor-
dered environments and ergodic properties of these systems
have attracted considerable attentions [45–53]. For example,
the effects of ergodicity (see below), symmetry breaking,
and velocity relaxation for anomalous diffusion in peri-
odic systems have been considered [45]. Ergodicity breaking
and aging for Brownian dynamics (without damping) with
quenched disorder were also investigated [46]. These two
models belong to the class of generalized grey Brownian mo-
tion. Nonergodicity, fluctuations, and criticality of HDPs were
studied in detail in Refs. [40,41,47]. The random-diffusivity
approach on the level of stochastic differential equations
has been considered and two models of Brownian yet non-
Gaussian diffusion were recently proposed [48]. Moreover,
anomalous diffusion was investigated in random dynamical
systems, see Ref. [49].

The presence of quenched disorder often prevents a sys-
tem from reaching thermodynamic equilibrium [54]. For
instance, the behavior of ferromagnetic quantum transits [55],
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orientational glasses [56], and creep rupture of composites
[57] possess quenched-disorder characteristics. In amorphous
semiconductors, quenched traps affect anomalous diffusion
and ageing [58–61]. Quenched disorder is revealed for nonin-
teracting particles on lattices and for crystal-growth processes
[62]. Therefore, the studies of diffusion in quenched dis-
ordered environments are called for. The effects of various
types of noise, such as Lévy noise [63–66], Poisson noise
[67], fractional Gaussian noise [68], and Gaussian noise [69]
on stochastic systems have been extensively studied. Dif-
fusion under nonstandard noise excitations is of interest in
its own right. There exist numerous studies on anomalous
diffusion with different kinds of noise sources. The influ-
ence of Gaussian white noise (GWN) on particle trajectories
in some disordered systems [70] and the phenomenon of
ergodicity breaking for HDPs were studied [40,41,47]. Sub-
diffusion within a single protein molecules was examined
[71–74], in particular with fractional Gaussian noise (see also
Refs. [75,76] for the ergodic properties of fractional Brownian
motion). Furthermore, the exact results for the nonergodicity
of d-dimensional generalized Lévy walks [77] and neuronal
messenger ribonucleoprotein transport following aging Lévy-
type walks [78] were recently explored.

In practical applications, there are several types of colored
noise such as pink, blue, grey, etc. [79]. From the noise
perspective, Gaussian colored noise (GCN) is widely studied
in stochastic dynamical systems, for instance, for stationary
distributions of rare events [80], the wing model [81], in non-
linear vibration energy-harvesting system [82], for transport in
a confined ratchet [83], etc. However, the influence of colored
noise on the properties of HDPs has not been reported so far,
to the best of our knowledge. The main objective of the current
study is to examine the dynamics and nonergodicity of HDPs
with position-dependent diffusivity in layered quenched sys-
tems agitated by exponentially correlated GCN source.

The paper is organized as follows. In Sec. II HDPs driven
by GCN are introduced. In Sec. III we provide the mathemat-
ical definitions of the main physical observables we study.
In that section, we also analyze the effects of the model
parameters on particle diffusion in terms of the MSD and
the time-averaged MSD (TAMSD), including the correlation
time of GCN, the domain periodicity of the system, and the
variance of the diffusivity exponent. In Sec. IV the ergodic-
ity breaking and non-Gaussianity parameters are investigated
for different diffusion scenarios. Finally, our conclusions are
summarized in Sec. V.

II. MODEL DESCRIPTION AND MAIN EQUATIONS

We consider one-dimensional HDPs driven by GCN and
with a position-dependent random diffusivity. The governing
Langevin equation for the particle position x(t) at time t is
[84–87]

dx(t )

dt
=

√
2D(x)ξ (t ), (2)

where the diffusion coefficient has the form

D(x) = D0(|x|α + Doff ). (3)

We fix below D0 = 0.01 and Doff = 0.001. Doff is a small
constant added to avoid a singularity of D(x) at x = 0 [40,47].
Generally, for a given, fixed exponent α < 0 in the D(x)
function yields subdiffusion, α = 0 is the limit of normal dif-
fusion, and α > 0 corresponds to superdiffusion [40,41,47].
However, in some physical systems, such as for tracer diffu-
sion in the cell cytoplasm or in groundwater transport, due
to the existence of layers with varying diffusivity, D(x) may
change its form (also in a disordered fashion). Therefore,
α may be considered as a random variable, rather than a
fixed constant. In Fig. 1 we show some schemes of such a
quenched-disorder scenario, developed now. For HDPs driven
by GWN this distributed α modification was considered in
Ref. [47]. Namely, we prescribe α to obey a Gaussian distri-
bution with mean α0 and variance σ 2,

p(α) = 1√
2πσ

exp

[
− (α − α0)2

2σ 2

]
. (4)

Figure 1 shows the influence of different σ on the diffusion
coefficient D(x) in different diffusion scenarios.

The driving Gaussian colored noise term ξ (t ) in Eq. (2) is
now taken to be the Ornstein-Uhlenbeck (OU) process, which
takes the form

dξ (t )

dt
= − 1

τ
ξ (t ) + 1

τ
Ẇ (t ), (5)

where τ is the correlation time, and W (t ) represents the
standard Brownian motion, and Ẇ (t ) is the Gaussian white
noise. For a given initial position ξ0, the solution of Eq. (5)
is ξ (t ) = ξ0e−t/τ + 1

τ

∫ t
0 e−(t−s)/τ dWs. Thus, the correlation

function yields in the form

〈ξ (t )ξ (s)〉 =
(

〈ξ0〉2 − 1

2τ

)
e− 1

τ
(t+s) + 1

2τ
e− 1

τ
|t−s|. (6)

As the last ingredient for our study, we perform the fol-
lowing stratification of the medium into a layered system
corresponding to quenched disorder. For each domain, its
midpoint xc,i is selected as the origin in the local nonuniform
diffusion process and in each layer the law Eq. (3) with the
local value for α is employed. The domain periodicity (or the
layer thickness) is denoted below as 2δx. The shape of the
resulting D(x) changes with x for different α0; see Fig. 1.
Note that the domain center xc,i = (. . . ,−2, 0, 2, . . .)δx is
the region of slowest diffusion at α0 = 1, while for α0 = −2
it is the fastest diffusion region, compare Figs. 1(a) and 1(b).

Another important parameter to study is the domain pe-
riodicity, 2δx (stratification of the environment). At each
domain boundary, a particle jumps from one domain to an-
other, or (when the size of individual steps becomes of the
order of δx) also over several layers at once.

To compute Eq. (2) numerically, we take the discrete
form in the Itô sense, namely, taking the prepoint. We refer
the reader here to Refs. [88,89] for the detailed investiga-
tion of implications of different stochastic calculi applied
to HDPs. In short, for a stochastic differential equation one
distinguishes Itô (prepoint) [90], Stratonovich (middle-point)
[91,92], and Hänggi-Klimontovich (post-point, also called
“kinetic”) [87,93] conventions, see also Refs. [84–86,94–
96] for more details and a recent overview. When ξ (t )
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FIG. 1. Diffusion coefficient D(x) for a stratified layered medium with local particle diffusion governed by HDPs. Panels (a) and (b)
correspond to the cases of, respectively, α0 = 1 and α0 = −2. Other parameters are σ = 0.05, 0.5, and 1 (corresponding to very weak,
intermediate, and strong disorder) and δx = 1 (meaning that 2δx is the domain periodicity). These values of parameters α0 and σ are often
used in the analysis below.

is a Gaussian white noise, for a system satisfying the
fluctuation-dissipation theorem, Eq. (2) can achieve the de-
sired Boltzmann distribution with the Hänggi-Klimontovich
interpretation; while for systems with a constant friction coef-
ficient and position-dependent diffusivity, Eq. (2) in the Itô
interpretation turns out to be more appropriate [96]. In the
current study, we consider ξ (t ) as an Ornstein-Uhlenbeck
process, which is a second-order moment process with a con-
tinuous path. Thus,

√
2D(x)ξ (t ) is square-integrable for finite

time, namely, it is equivalent to take any of these integral
forms. With the second-order Runge-Kutta algorithm [97], the
discrete form of Eqs. (2) and (5) is [97–99]

x(i + 1) = x(i) + 	t[F1(i) + F2(i)]/2, (7)

ξ (i + 1) = ξ (i) + 	t[H1(i) + H2(i)]/2 +
√

2	t/τ 2μ, (8)

where f (x, ξ ) = √
2D(x)ξ (t ), 	t is the iteration step, and μ is

a random number taken from the standard normal distribution.
Here, the following notations are used

F1(i) = f [x(i), ξ (i)],

F2(i) = f [x(i) + 	tF1(i), ξ (i) + 	tH1(i)],

H1(i) = h[ξ (i)], H2(i) = h[ξ (i) + 	tH1(i)],

f [x(i), ξ (i)] =
√

2D[x(i)]ξ (i), hξ (i) = −ξ (i)/τ. (9)

Based on this simulation algorithm, the influence of the
model parameters τ, δx, and σ is investigated. In all simu-
lations for each set of the model parameters we use the same
time step 	t = 0.1, the length of the trajectories is T = 104

(each trace contains 105 simulation points), and the number of
generated trajectories is N = 103.

III. MAIN RESULTS: PARTICLE SPREADING IN TERMS
OF THE MSD AND TAMSD

A. Definition of the observables

We describe the spreading dynamics of a test particle for
these stratified random-exponent HDPs using the concepts of
MSD and TAMSD. The MSD is defined as the mean over the

ensemble of diffusing particles [1,5–7,9],

〈x2(t )〉 =
∫ ∞

−∞
x2P(x, t )dx, (10)

where P(x, t ) is the probability density function, while the
TAMSD for the k th trajectory is defined as

δ2
k (	) = 1

T − 	

∫ T −	

0
[xk (t + 	) − xk (t )]2dt, (11)

where 	 is the lag time and T is the total length of the trajec-
tory. The mean over the ensemble of N independent TAMSD
realizations (the ensemble-averaged TAMSD) is computed at
every lag time according to

〈
δ2(	)

〉 = 1

N

N∑
k=1

δ2
k (	). (12)

Therefore, the MSD involves averaging over space, while
the TAMSD is based on a sliding-window of with 	 averaging
along the trajectory. When the MSD and TAMSD are equal,
for long observation times and for short lag times, i.e., when
	/T → 0, the process is called ergodic [1,6,100,101],

〈x2(	)〉 = lim
	/T →0

δ2(	). (13)

This formula combines the time- and ensemble-averaged
views of a statistical observable.

B. The case of a fixed diffusivity scaling exponent
in a single layer

To understand the impact of GCN, we list here some re-
sults for HDPs with a constant diffusivity exponent driven by
GWN, as obtained in Refs. [40,47]. According to the general
consideration, the MSD and mean TAMSD of HDPs follow
the relations [40]

〈
x2

HDP+GWN(t )
〉 = 1√

π



(
2

2 − α
+ 1

2

)

×
[

2

/(
2

2 − α

)]2 2
2−α

(D0t )
2

2−α ∝ t
2

2−α ,

(14)
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and

〈
δ2

HDP+GWN(	)
〉 = 〈

x2
HDP+GWN(	)

〉(	

T

)1− 2
2−α

∝ 	1, (15)

correspondingly. We immediately note the difference in the
scaling exponents of the MSD and mean TAMSD and the ap-
parent nonergodicity of this system [40]. For α = 0 the MSD
was shown to coincide with the mean TAMSD (pure Brow-
nian diffusion). For α = 1 the MSD was found to be smaller
in magnitude than the mean TAMSD and to grow superdif-
fusively, Eq. (14). For α = −2, on the contrary, the MSD
is larger in magnitude than the mean TAMSD and grows
subdiffusively. Remarkably, for all three choices of the scaling
exponents of D(x) the mean TAMSD was shown to grow
strictly linearly with lag time, as predicted by Eq. (15) (only
the TAMSD prefactor is a function of α). This MSD versus
TAMSD discrepancy gave rise to the phenomenon of weak
ergodicity breaking for standard HDPs [40,41,47]. It was also
demonstrated [47] that the nonergodic behavior of standard
HDPs is remarkably similar to that of continuous-time random
walks [10,70,101], as is their aging behavior [40,41,102].

As we show below, the values of the model parameters
σ and δx strongly impact the magnitudes and characteristic
features of the MSD and TAMSD. In what follows, we report
the new properties for HDPs with GCN in stratified environ-
ments and compare the results to nonstratified HDPs driven
by GWN. First, we obtain some scaling relations for the MSD
and mean TAMSD for HDPs driven both by GWN and GCN.
Starting with the standard HDP [40,47], the MSD scaling of

〈
x2

HDP+GWN(t )
〉 ∼ C(α)t

2
2−α ∝ t

2
2−α , (16)

where C(α) = [( 2−α
2 )

2
2D0]

2
2−α . This differs only by an α-

dependent prefactor from the exact solution Eq. (14). For the
TAMSD computed at short lag times (	 
 T ) using Eq. (16),
one gets in the leading order the relation between the MSD
and mean TAMSD identical to Eq. (15). We employ the same
method for HDPs driven by GCN. For this process with D(x)
= const, the MSD follows the Ornstein-Uhlenbeck law [9],

〈
x2

GCN(t )
〉 = 2D0

∫ t

0

∫ t

0
〈ξ (t ′)ξ (t ′′)〉dt ′dt ′′

= 2D0

∫ t

0

∫ t

0

[(
〈ξ0〉2 − 1

2τ

)
e− 1

τ
(t ′+t ′′ )

+ 1

2τ
e− 1

τ
|t ′−t ′′|

]
dt ′dt ′′. (17)

If we take ξ0 as a fixed constant ξ0 = 0, then 〈ξ0〉2 = 0, and
the formula can be simplified as

〈
x2

GCN(t )
〉 = D0

τ

∫ t

0

∫ t

0

[
e−|t ′−t ′′ |/τ − e−(t ′+t ′′ )/τ ]dt ′dt ′′

= D0
(
4τe− t

τ − τe− 2t
τ + 2t − 3τ

)
. (18)

In this case, at short times, i.e., t 
 τ , expanding Eq. (18)
around zero with scale t/τ yields

〈
x2

GCN(t )
〉 ≈ 2D0t3

3τ 2
. (19)

For the long-time behavior, i.e., t  τ , the exponential
parts in Eq. (18) vanish and the MSD becomes 〈x2

GCN(t )〉 ≈
2D0t , which is independent of the correlation time τ .

If we take ξ0 as a random number, and let it satisfy
the equilibrium distribution of the OU process, i.e., ξ0 ∼
N (0, 1/

√
2τ ), then the MSD can be simplified as

〈
x2

GCN(t )
〉 = D0

τ

∫ t

0

∫ t

0
e−|t ′−t ′′ |/τ dt ′dt ′′

= 2D0t
[
1 − τ

t

(
1 − e− t

τ

)]
. (20)

In this case, at short times, i.e., t 
 τ , analogously,

〈
x2

GCN(t )
〉 ≈ D0t2

τ
. (21)

For the long-time behavior, the MSD is always 〈x2
GCN(t )〉 ≈

2D0t .
Thus, at short times the MSD is sensitive to the initial value

ξ0 of the OU process, which will change the power of the
MSD scaling. However, although the correlation time τ also
affects the short-time behavior significantly, it does not affect
the scaling exponent of the long-time behavior. In addition, τ

has no influence on the long-time behavior for α = 0. Analo-
gously, for other α the long-time behavior mainly depends on
the quenched disorder, i.e.,

〈
x2

HDP+GCN(t )
〉 ∼ C(α)t

2
2−α , (22)

which is corroborated in the following figures.
The results of simulations for different α under the condi-

tions of both fixed and random initial position ξ0 are presented
in Fig. 2. We target here the scaling behavior of the particle
displacements and are aware of the fact that the α-dependent
prefactors of these scaling relations (not predicted correctly
by the scaling-based analytical estimations above) cause the
discrepancy in the magnitude between theory and simulations.
We mention that in Figs. 2(a)–2(c), the initial value ξ0 of
the OU process is fixed as ξ0 = 0, while in Figs. 2(d)–2(f)
ξ0 is random and satisfying ξ0 ∼ N (0, 1/

√
2τ ), which is the

steady state distribution of Eq. (5). In addition, to highlight
the short-time behavior for the case α = −2, we take x0 = 0.7
away from the origin point.

At α = 0, the spread of individual TAMSD realizations
is very small at short lag times (reflecting very reproducible
particle displacements) and it increases due to worsening
statistics at longer lag times (the standard cone-like scatter of
TAMSDs). Moreover, the theoretical short-time MSDs, i.e.,
Eqs. (19) and (21), are in good agreement with simulations
for both fixed ξ0 = 0 and random ξ0. This phenomenon in-
dicates that the MSD is indeed sensitive to the initial value
of the OU process. For ξ0 = 0 in Fig. 2(b), the MSD in-
creases with the power 3, which is faster than the power 2
for ξ0 ∼ N (0, 1/

√
2τ ) in Fig. 2(e). In addition, for the long-

time behavior the predicted result MSD = 2D0t also agrees
well with the simulation results, which is consistent with the
conjecture Eq. (22) for all α.

At α = −2, the MSD features some “jumps” at short times
and the spread of individual TAMSDs is significant both at
short and at long lag times. We observe some trajectories that
exhibit large jumps from the region of large diffusivity (near
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FIG. 2. MSD, individual TAMSDs, and mean TAMSD for the unconfined HDPs with constant α-exponents driven by GCN, plotted for
different values of the scaling exponent of the diffusion coefficient (values provided in the plots) as function of diffusion time. Here, as well
as in other plots, the MSDs 〈x2(t )〉 are the thick green curves, the individual TAMSDs δ2

k (	) are the red lines, and the mean TAMSDs
〈
δ2(	)

〉
are the thick blue curves. The MSD asymptotes at short and long times as well as the TAMSD asymptote are the dashed and solid lines,
respectively. The black dot-dashed line is the Brownian asymptote, 〈x2(t )〉 = 2D0t . In panels (a)–(c), the initial position of the OU process is
taken as a fixed constant ξ0 = 0. In panels (d)–(f), the initial position ξ0 is a random number satisfying the equilibrium distribution of the OU
process Eq. (5), i.e., ξ0 ∼ N (0, 1/

√
2τ ). In panels (a), (d), to make the slope of MSD clear, we assume x0 = 0.7, while in panels (b), (c), (e),

(f), x0 = 0.1. In all the figures, the relaxation time is τ = 20.

x = 0 for this value of α) to the region of small diffusivity (far
from x = 0) and “get stuck” there. This gives rise to dramatic
jumps in the final MSD at these time instances and to some
rather stalled individual TAMSD trajectories. However, these
“jumps” will make it difficult to distinguish the slope of the
MSD, thus we choose merely trajectories without “jumps”
within T = 104 in Fig. 2 to clearly present the power.

We observe that at short times the TAMSD is close to
ballistic for α = 0, 1, and -2 in both cases of ξ0 = 0 and
ξ0 ∼ N (0, 1/

√
2τ ). However, the short-time MSD scaling is

cubic in case of fixed ξ0 = 0 and ballistic in case of random
ξ0 ∼ N (0, 1/

√
2τ ) for all α = 0, 1, and -2. This phenomenon

indicates that α almost has no influence on the short-time
scaling, where the OU process plays the key role. Particularly,
the initial value ξ0 is able to change the power of the MSD
scaling, while the correlation time τ only changes its starting
value. Moreover, at long times, we find that the mean TAMSD
and MSD are roughly linear for α = 0, while the MSD is sub-
diffusive for α < 0 and superdiffusive for α > 0, as expected
in Eq. (22). At the last point of the trajectory the MSD is
equal to the mean TAMSD, as they should. In particular, both
simulations and the conjecture Eq. (22) show that the MSD
scaling at long times does not depend on the correlation time.
The only effective factor is the exponent index α. This can

be explained by viewing the OU process as a white correlated
process in the scale of τ when t is large enough. Thus, at the
long-time limit D(x) functions as the main effective factor.

In Fig. 2 we show the Brownian asymptote to be able to
assess whether the diffusion for HDPs with GCN is enhanced
or suppressed compared to the Brownian limit in a single
layer. The correlation time τ shows a significant influence on
the MSD at short times; however, it does not affect the long-
time behavior. With different exponent index α, the MSD and
mean TAMSD correspond to subdiffusion, normal diffusion
and superdiffusion with respect to α = −2, 0, and 1. Next, we
determine the exact effects of GCN and a stratified medium on
the HDPs.

C. The case of distributed scaling exponent of the diffusivity:
Effects of correlation time τ of GCN

In this section, we analyze the influence of the GCN cor-
relation time τ on the diffusive behavior and characteristics
of particles in a stratified medium when the local dynamics
is governed by random-exponent HDPs. In all the following
figures in this section, the initial value of the OU process is
fixed ξ0 = 0. Note that trajectories with “jumps” are specifi-
cally considered in these figures.
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FIG. 3. Dynamic characteristics of particles obeying stratified HDPs with random exponents diffusing in a medium with a quenched
disorder. Panels (a)–(c) show stratified HDPs with mean diffusivity exponent α0 = 0, 1, −2, respectively. The graphs are plotted by
systematically varying τ , as indicated in the plots. The black dot-dashed line is the Brownian asymptote, 〈x2(t )〉 = 2D0t . Other parameters:
variance of the HDP exponent variation σ = 1, domain periodicity of the medium δx = 1, initial particle position x0 = 0.1 + δx (as in
Refs. [47]), and ξ0 = 0. We fix the constants D0 = 0.01 and Doff = 0.001 throughout the paper. The notations for curves and lines are the
same as described in the caption of Fig. 2.

Before describing the Fig. 3 in detail, let us take a brief
glance at the whole picture. It is obvious that τ should not
affect the long-time behavior for any α: No matter how τ

changes the system will eventually perform normal diffusion
at sufficiently long times. The only difference is that the effec-
tive diffusion coefficient varies with α. Thus, when we only
consider the long-time dynamics, Eq. (2) driven by GCN can
be reduced to the simple Gaussian white noise case, namely,
dx(t )/dt = √

2D(x)Ẇ (t ). In a multilayer medium, particles
will jump between adjacent layers and induce a multimodal
PDF [47]. If we view each layer as a point, then two adjacent
layers corresponds to two point with a distance of 2δx. Then

the HDP in the stratified medium reduces to a random walk
process. We give each point a label symmetric about the origin
and assume that a particle at the k th point will jump to
the (k-1)th and (k + 1)th points with equal probability 1/2.
Particularly, a successful jump either to the left or right has a
rate λ, which corresponds to the steady state escape rate from
the middle point of a layer to its adjacent layers. Then the
change of the probability that a particle stays at the k th layer
comes from the input from and output to its adjacent layers.
Then we can write the master equation as

d pk (t )

dt
= 1

2
λpk−1(t ) + 1

2
λpk+1(t ) − λpk (t ). (23)
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From this we obtain the mean 〈x(t )〉, and the MSD as

〈x(t )〉 =
+∞∑

k=−∞
(2kδx)pk (x) = 0, (24)

by symmetry, and

〈x2(t )〉 =
+∞∑

k=−∞
(2kδx)2 pk (x). (25)

The MSD can be solved in the form

d〈x2(t )〉
dt

=
+∞∑

k=−∞
(2kδx)2 d pk (t )

dt

= 4λδx2
+∞∑

k=−∞
k2

(
1

2
λpk−1(t ) + 1

2
λpk+1(t ) − λpk (t )

)

= 4λδx2
+∞∑

k=−∞
pk (t )

= 4λδx2. (26)

Thus, the MSD is

〈x2(t )〉 = 4λδx2t . (27)

It should be emphasized that although the analysis is based
on a fixed α, the result has direct significance even for random
α. We find that 〈x2(t )〉 = 4λδx2t is consistent with the numer-
ical results in Figs 3–5, that after passing many layers, the
system performs normal diffusion and the effective diffusion
coefficient is Deff = 2λδx2. Therefore, the key to determine
Deff is finding the escape rate λ. Generally, λ can be given by
the inverse of the mean first passage time T , that a particle
starts from the middle of a layer and reaches either middle
point of its adjacent layers.

When D(x) = D0, it is known that λ = D0/2δx2, thus the
MSD is 〈x2(t )〉 = 2D0t . This is analogous to the classic result.
When α �= 0, the mean first passage time can be obtained
by solving the Pontryagin equation [112], which is given in
the appendix in detail. Note that the theoretical result from
the Pontryagin expression is valid for small |α| when D(x)
changes slowly. When |α| is large, D(x) changes quickly
and this approach cannot be applied. Thus, for large |α|, we
generate λ by numerical simulation, while for small |α|, we
use theoretical results from the Pontryagin equation.

We start with the simplest situation of α0 = 0 (little vari-
ation of the diffusivity in space due to 〈α〉 = 0). In panel
(a1) of Fig. 3 we observe that when τ is relatively small
(τ = 1), the diffusion characteristics change only slightly as
compared to the nonlayered system and pure Brownian diffu-
sion. Namely, the spread of the TAMSDs increases slightly,
while the deviations in the magnitude of the MSD and mean
TAMSD from the Brownian asymptote only occur at short
times (in the regime t <∼ τ ). As the noise correlation time
increases to τ = 10 and τ = 100 in Figs. 3(a2) and 3(a3),
respectively—the MSD and mean TAMSD are reduced sig-
nificantly in their magnitude at short times ({t,	} <∼ τ ). The
MSD drop is particularly pronounced and the MSD scaling

is more superdiffusive (as compared to that of the TAMSD)
in the short-time regime. This drop in the MSD and mean
TAMSD magnitudes is similar to the trends observed for free
HDPs driven by GCN at α = 0, for which Eq. (19) shows that
the MSD depends sensitively on τ . For example, the MSD of
τ = 1 is 104 times that of τ = 100 at short times, also see
Figs. 2(b) and 2(e). Both the MSD and mean TAMSD in this
time domain reveal superdiffusive behaviors (the scaling of
the mean TAMSD is approximately ballistic at short times
for α0 = 0, 1). At much longer times, after the diffusing
particles cross a large number of layers, the MSD and mean
TAMSD magnitudes start following the Brownian asymptote
〈x2(t )〉 = 2D0t . The spread of individual TAMSD realizations
changes only slightly with increase of τ for the case α0 = 0,

both at short and long lag times. For long correlation times,
as in Fig. 3(a3), it becomes visible that the MSD and mean
TAMSD (respectively, the green and blue curves in Fig. 3)
feature generally two regimes: the domain of fast growth at
short times and steady growth at long times.

For α0 = 1 we observe very similar trends with variation
of the correlation time in the range τ = 1, 10, 100, as we
observed for α0 = 0; see, respectively, Figs. 3(b1)–(b3). The
only detectable differences are that the spread of individ-
ual TAMSDs becomes slightly smaller than for α0 = 0 (but
almost does not change with τ ) and significantly smaller
than for free HDPs driven by GCN, as analyzed in Fig. 2.
Also, varying τ from τ = 1 to τ = 100 the magnitudes of
the MSD and mean TAMSD progressively decrease com-
pared to the Brownian asymptote; the effect is particularly
pronounced at short lag times. The MSD and mean TAMSD
are superdiffusive at short times and their behavior turns fully
Brownian with nearly equal magnitudes at long times (after
particles cross many layers of this stratified medium). As
given by Eq. (27) and the Appendix, the MSD for the long-
time behavior is 〈x2(t )〉 = 2D0δx

ln(2δx)−1 t for fixed α = 1. This
approximation is only valid for large δx [see Figs. 4(b2),
4(b3), and 11(c)], while for δx = 1 in Fig. 3, it actually
loses its validity. However, we numerically calculate λ and
presents the result 〈x2(t )〉 = 4λδx2t in the figure, which fits
well the simulation results. Note that although Eq. (27) is for
deterministic α, it also works well for random α with a small
σ . Moreover, the MSD and mean TAMSD are always below
the Brownian-motion asymptote. In particular, for long corre-
lation times it is apparent that the MSD and mean TAMSD
magnitudes are very different (both in scaling and magnitude)
at short times (indicating the nonergodic behavior), while at
long times the system behaves ergodically [3,6,8], with MSD
(t ) ∼ TAMSD (t ).

For α0 = −2 the behavior of the system is similarly
ergodic at long times, with the MSD and mean TAMSD
magnitudes significantly above the Brownian asymptote, see
Figs. 3(c1)–(c3). The result 〈x2(t )〉 = 4λδx2t fits well with the
long-time MSD. At short times the discrepancy between the
MSD and mean TAMSD increases slightly for larger values of
τ. In other words, the shorter the correlation time τ , the more
ergodic the overall particle diffusion at short times becomes.
We emphasize here that the approximation 〈x2(t )〉 = 4λδx2t is
always valid, but it is difficult to give an effective expression
of the escape rate λ when |α| is large. This can be verified by
Figs. 11(e) and 11(f), where λ is obtained numerically.
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FIG. 4. The same as described in the caption of Fig. 3, with the same notations for different curves and asymptotes, plotted for three values
of the scaling exponents of D(x) and for varying layer thickness, δx = 1, 10, and 100. Note that in Figs. 3(c1)–3(c3) the initial position
is taken as x0 = 0.1 and D0 = 0.2. The gray lines correspond to Eq. (A2) or Eq. (27). In panel (c3) the gray line is not given because the
corresponding mean first exit time is too large to compute its exact value. Parameters: σ = 0.05, τ = 20, and ξ0 = 0.

D. Distributed scaling exponents: Effects of varying layer
thickness δx

Below, we analyze the influence of the domain periodic-
ity of stratified GCN-driven HDPs on the MSD and mean
TAMSD behavior as well as on the spread of individual
TAMSDs.

For α0 = 0 the varying domain periodicity essentially has
no visible effect because for the relatively small spread of
scaling exponents of the diffusivity (σ = 0.05) the system ap-
pears almost homogeneous, see Figs. 4(a1)–4(a3), so that the
trends we observe are identical to those for free HDPs driven
by GCN, see Fig. 2(b). As one can see, even at the longest

time we have in the simulations the squared displacements of
the particles are considerably around or smaller than δx2 for
relatively large δx, so the particles stay mostly in the same
layer of the medium in this case. Thus, it is natural that the
varying periodicity does not affect the system’s behavior for
α0 = 0.

For α0 = 1 we observe that at δx = 100 the behavior of the
system is similar to that for free HDPs driven by GCN, com-
pare Fig. 4(b3) and Fig. 2(c). But Fig. 4(b3) tends to normal
diffusion, while in Fig. 2(c) the MSD is proportional to t2 at
long times. When δx is large, the result 〈x2(t )〉 = 2D0δx

ln(2δx)−1 t is
valid as shown in the figure. It can be seen from the effective
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FIG. 5. Particle-diffusion characteristics for HDPs with GCN in a quenched-disorder medium plotted for different variance σ of the scaling-
exponent distribution p(α); see Eq. (4). Parameters: δx = 1, τ = 20, and ξ0 = 0. The notations for curves and lines are the same as described
in the caption of Fig. 3.

diffusion coefficient Deff = D0δx
ln(2δx)−1 that Deff increases with

δx for large δx. Therefore, as the layer thickness δx decreases,
the magnitudes of the MSD and mean TAMSD in the entire
range of diffusion times drop significantly. At δx = 1 the
long-time MSD and mean TAMSD magnitudes drop below
the Brownian asymptote. Consequently, with decreasing δx
the diffusion distances of the particles become shorter and the
spreading dynamics is impeded. In stark contrast, the MSD
magnitude at short time stays almost unaffected by varying δx
values. We detect that the long-time domain, where the MSD
is nearly equal to the mean TAMSD, becomes progressively
large as the δx values decrease and more separate layers of
this stratified system are visited by diffusing particles. We also

observe the prominent trend of a considerable narrowing of
the distribution of individual TAMSDs with decreasing peri-
odicity δx; see Figs. 4(b1)–4(b3). This “shrinkage” tendency
is similar to the trend detected previously for standard HDPs
driven by GWN; see Fig. 4 of Ref. [47].

For α0 = −2, we find that for smaller δx values the range of
times for which our computer simulations yield close results
for the MSD and the mean TAMSD increases. Specifically, at
δx = 100 we find a pronounced MSD versus mean TAMSD
discrepancy for the entire range of times simulated (except
for the very last point of the trajectory), while at δx = 1 the
simulations reveal that the MSD is very close to the mean
TAMSD almost in the entire domain of observation times.
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We mention a nonsmooth, spiky behavior of the MSD at
large δx, stemming from particles displaced from the region
of extremely high diffusivity into the region of low diffusivity
(in the tail of D(x) distribution) in a single heterogeneous
domain. A single trajectory with a large position jump of
this kind can ultimately give rise to a nonsmooth, jumpy
behavior for the MSD. For small δx, the particles cover many
layers in the stratified medium and jump between the adjacent
diffusivity domains rather frequently. This leads to averaging
of the heterogeneities of the diffusion coefficient and diffu-
sion takes place effectively like in a uniform or homogenized
environment. This results in nearly equivalent magnitudes of
the MSD and mean TAMSD in the long-time limit for small
medium periodicities and diffusion appears nearly ergodic for
long times.

The role of the layer periodicity 2δx has a decisive effect
on the diffusion properties. For small values of 2δx the par-
ticles rapidly explore the layer containing the initial position.
Relatively early the particle then crosses to the vicinal layers.
After several “barrier crossings” normal, ergodic diffusion
with an effective diffusion constant emerges. For large 2δx the
particle initially only explores the layer it was seeded in and
does not feel the layering geometry. The amplitude spread of
the TAMSDs is pronounced, as is the nonergodic behavior,
the inherent characteristics of HDPs at α0 �= 0 driven both by
GWN and GCN.

E. Distributed scaling exponents: Dependence on the variance σ

of the distribution p(α) of the diffusivity scaling exponents

We now present the results for varying spread σ of the
scaling exponents α of D(x), see Eq. (4). In Fig. 5 the results
of computer simulations are presented for a rather small layer
periodicity δx = 1 and for the GCN correlation time τ = 20.

For α0 = 0 and rather small values of σ we do not observe
any detectable change from the behavior of free HDPs with
GCN, comparing Fig. 5(a1) and Fig. 2(b). This is because
when σ is small, the exponent α will be so small that D(x)
changes slightly within the domain (−δx, δx). As the vari-
ance increases to σ = 0.5 and σ = 1 individual TAMSDs
acquire a larger spread, but the overall MSD and mean
TAMSD behaviors and their magnitudes remain quite similar
to the case of small σ . When we increase δx, the spread will be
even larger with increasing σ , but the long-time behavior will
remain unchanged. The only visible difference is the increase
of the MSD magnitude at short times for the case σ = 1.
Specifically, the long-time domain (at t  τ ) where the MSD
becomes nearly equivalent to the mean TAMSD (and to the
standard Brownian asymptote) remains nearly unchanged.
This long-time ergodic behavior is, however, complemented
by the nonergodicity at short times where the magnitudes of
the MSD and mean TAMSD are observed to be substantially
different, in particular for small-to-moderate σ values [see
Figs. 5(a1) and 5(a2)].

For α0 = 1 we also observe that the initial and final values
of both the MSD and mean TAMSD do not change much with
σ (for its variation in the range chosen here). The scatter of
individual TAMSDs increases with σ and the magnitude of the
effect is similar to that observed for α0 = 0 case. The differ-
ence is in the fact that the MSD and mean TAMSD magnitudes
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FIG. 6. Ergodicity breaking parameter, normalized to the refer-
ence behavior for Brownian motion, EEB/E0, plotted as function
of lag time, 	. The colors of symbols are specified in the legend.
The line types from thin to thick correspond to τ = 1, 10, and 100,
respectively. Other parameters are σ = 0.05, δx = 10, and ξ0 = 0.

for α0 = 1 are always below the Brownian asymptote. In the
long-time limit ergodic behavior is realized.

In the case α0 = −2, likewise, the initial and final values of
the MSD and mean TAMSD almost do not change with σ (the
MSD becomes larger only when σ = 1) and the amplitude
scatter of individual TAMSDs becomes somewhat larger as σ

grows. The same trend is observed in Figs. 5(a) and 5(b) for
α0 = 0 and α0 = 1, respectively. As compared to the situation
α0 = 1, the MSD and mean TAMSD magnitudes are above
the Brownian asymptote at long times. The results of simula-
tions also reveal that at smaller σ the time domain where the
MSD nearly coincides with the mean TAMSD is larger. The
nearly ergodic behavior realized in this domain, thus, occupies
a larger portion of the time domain employed in our computer
simulations (see also the ergodicity analysis in Fig. 6 below).

It should be emphasized that for a small δx = 1 shown in
Fig. 5, the influence of σ is small. But it will be different
for a large δx, where D(x) changes significantly. Moreover,
when |α0| > 3σ , the sign of the exponent α is left almost
unchanged, and the influence of σ is small. However, for
|α0| < 3σ , the sign of α switches between negative and posi-
tive, which will induce a significant difference.

IV. RESULTS: ERGODICITY BREAKING
AND NON-GAUSSIANITY

A. Definition of the observables

In recent years, nonergodic dynamics have been observed
in a number of cellular and biological systems [3,6]. For in-
stance, it was detected in the short-time motion of submicron
particles in living yeast cells [11], single-particle diffusion on
the surface of cell membranes [103,104], blinking dynamics
of quantum dots [105,106], diffusion of granules and internal
vacuoles [107], as well as of artificial tracers inside living
cells [3,5,9–11,14,26]. The indicators of nonergodicity help
us to determine the type and statistical characteristics of the
measured observables for a given diffusion process. One of
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them is the ergodicity breaking parameter. It is defined as the
ratio of the relative variance and the TAMSD at a given lag
time 	 [1,6,10,11,75],

EEB(	) = lim
	/T →0

〈
δ2(	)

2〉
〈
δ2(	)

〉2 − 1. (28)

This parameter characterizes the degree of irreproducibil-
ity and quantifies relative spread of individual TAMSD
realizations. For classical Brownian motion one obtains
[3,75,76,108,109]

E0(	) = 4	

3T
, (29)

which means that the process is fully reproducible at long
measurement times. Even for simple Brownian motion E0(	)
approaches zero asymptotically as 	/T → 0 and vanishes
only at vanishing lag-time values. This says that fluctuations
may be relevant for finite 	/T values. Another nonergodicity
characteristic is the ratio of the mean TAMSD to the MSD
[47,110],

ENE(	) =
〈
δ2(	)

〉
〈
x2(	)

〉 . (30)

This parameter equals unity for ergodic diffusion processes
(indicating the equivalence of the MSD and mean TAMSD).

The non-Gaussianity parameter, G(	), is a sensitive (both
theoretical and experimental) indicator used to distinguish the
type of a diffusion process observed (e.g., in single-particle
tracking experiments [18,111]). In one dimension this param-
eter is defined as [5,43,47]

G(	) = 1

3

〈
δ4(	)

〉
〈
δ2(	)

〉2 − 1, (31)

where the fourth moment of the time-averaged particle dis-
placement is

δ4(	) = 1

T − 	

∫ T −	

0
[x(t + 	) − x(t )]4dt . (32)

For Gaussian processes (such as Brownian motion) the
non-Gaussianity parameter G is zero, while it can deviate
from zero substantially for non-Gaussian processes (e.g., in
the diffusing-diffusivity pictures [50], for the dynamics of
particles in crowded lipid bilayer membranes [78,104], etc.).
We analyze below the behavior of these three higher-order
parameters for random-exponent HDPs driven by GCN and
experiencing a stratified medium.

B. Distributed scaling exponents: Ergodicity breaking variation
with lag time

We here analyze the variation of the ergodicity breaking
parameter with the lag time for a stratified, HDP-controlled
medium, with a smaller scatter (σ = 0.05) of the diffusivity-
scaling exponent and for an intermediate value of the
periodicity, δx = 10, focusing on the influences of different τ

values on EEB for different types of diffusion (negative, zero,
and positive values of α0).

We find that for α0 = 0 the stratified HDP-GCN system
reveals the behavior closest to ergodic at short times and the
smallest EEB in the whole domain of lag times are realized,
followed by EEB for α0 = 1 and α0 = −2 (for α0 = −2 the
EEB values are the largest). For all these three choices of the
scaling exponent the ratio EEB/E0 is found to decay rapidly
for increasing lag times; see the results in Fig. 6. This reflects
the respective scatter distributions of individual TAMSD real-
izations. At very long lag times, supporting the trends of the
MSD equivalence to the mean TAMSD at long times in most
of the situations, EEB approaches the Brownian limit, so that
the ratio EEB/E0 gradually approaches unity for all choices
of the scaling exponent α0. In this limit, the layered HDPs
driven by GCN behave effectively as Brownian motion in a
homogenized medium (see the long-time limits presented in
Figs. 3–5 for confirmation) after the diffusing particles repeat-
edly cross the barriers between locally heterogeneous layers
many times. Generally, we observe that for HDPs driven by
GCN in stratified media EEB decays with the lag time faster
than E0 does. At short lag times we observe a scaling of
the form EEB(	) ∼ (	/T )γ with γ < 1 such that the ratio
EEB(	)/E0(	) ∼ (	/T )γ−1, apart from the case of larger τ

for α0 = −2.
For a fixed α0 = 0 value, when 	 is small the ratio EEB/E0

increases as τ increases. The effect of increasing τ is only
weakly pronounced for α0 = 1, and for α0 = −2 the effect of
increasing τ is nonsystematic in the regions of short and long
lag times, comparing the trends in Fig. 6.

C. Distributed scaling exponents: Nonergodicity
variation with lag time

To complement the results for ergodicity breaking, we an-
alyze in Fig. 7 the parameter ENE, Eq. (30), as a function of
the lag time. We observe that at short lag times for α0 = 0
ENE only moderately increases with increasing correlation
time τ , while for α0 = 1 the growth of ENE is much more
dramatic (about two orders of magnitude for the range of τ

considered), and for α0 = −2 the effect of correlation time is
not very systematic. We also find that for α0 = 1 in the region
of short lag times Fig. 7 demonstrates that ENE decreases as
a power-law function of the lag time 	. The data of Fig. 7
also shows that in the limit of long times (at 	  τ ) ENE

for all choices of the diffusivity scaling exponent becomes
nearly insensitive to variation of the correlation time τ and
it approaches the value ENE = 1 in this limit. This reflects the
MSD-mean-TAMSD equality, as already demonstrated in the
long-time limits in Figs. 3–5.

D. Distributed scaling exponents: Ergodicity breaking
dependence of correlation time τ

Here, we study the effects of variation of the model pa-
rameters τ , σ, and δx on EEB; see Fig. 8. We find that EEB

increases with increasing τ regardless of the diffusion type
(the effect is observed for all values of the scaling exponent,
for α0 = −2, 0, and 1). For small variance σ the growth of
EEB with increasing τ is approximately linear, as indicated in
Fig. 8(a). When σ is varied the effects on EEB are not very
conclusive, comparing the behaviors in Figs. 8(a) and 8(b).
As shown in Fig. 8(c) for α0 = −2, EEB gets progressively
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FIG. 7. Complementary ergodicity parameter, ENE, as function of the lag time. The green, blue, and pink curves represent HDPs with
GCN for α0 = 0, 1, −2 (the color scheme is similar to that in Fig. 6). Parameter: σ = 0.05, δx = 1, and ξ0 = 0. (a) α0 = 0; (b) α0 = −2; (c)
α0 = 1.

smaller for gradually decreasing layer periodicity δx, while
the growth of EEB with τ remains roughly linear at small σ

[see the indicated slopes in Fig. 8(c)]. The same phenomenon
occurs for α0 = 0 and α0 = 1 (not shown). This trend of a
more ergodic behavior at smaller periodicity is consistent with
the pronounced data overlap and equivalence of the MSD and
mean TAMSD for these situations, see Figs. 4(a1), 4(b1), and
4(c1).

E. Distributed scaling exponents: Non-Gaussianity parameter
for varying � and α0

We now analyze the behavior of the non-Gaussianity pa-
rameter G(	) Eq. (31) in dependence on 	 and α0. We
observe that for small σ values [σ = 0.05 in Fig. 9(a)] the
parameter G at α0 = −2 is larger than that at α0 = 1 and the
values of G for the case α0 = 0 are the smallest, indicative of
the most Gaussian behavior in this situation (as expected for a
homogeneous medium). Moreover, the values of G get smaller
as the lag time 	 increases (some G values for α0 = 0 and
α0 = 1 are very small and not shown in Fig. 9). For α0 = −2
(both for small and large values of variance σ of the diffusivity
exponents) the decrease of G(	) with lag time is found to be
roughly G(	) ∼ 	−1, see the scaling shown in Fig. 9. Here,

for comparison, we refer the reader to Fig. 5(a) of Ref. [47]
with the variation of G(	) for standard HDPs with GWN.
When σ becomes comparatively large (σ = 1), the behavior
of G(	) at α0 = −2 almost does not change, as compared to
the situation of σ = 0.05 [comparing Figs. 9(a) and 9(b)]. The
largest increase of the non-Gaussianity parameter at larger σ

are observed for the case α0 = 0 so that the diffusion becomes
progressively non-Gaussian for larger scatters of the scaling
exponent of D(x), as intuitively expected.

Finally, in Fig. 10 we present the non-Gaussianity parame-
ter G(	 = 1) for varying exponents of D(x) in a wide range.
In this figure, the G parameter at the shortest lag time of
	 = 1 is evaluated. We find that for a small spread of scaling
exponents [Fig. 10(a)] both for positive and negative values
of α the non-Gaussianity parameter attains very large values
(strongly non-Gaussian diffusion), while the values of G are
small only in the close proximity of α = 0, as expected. We
refer here to Fig. 5(b) of Ref. [47] where the analysis of
G(α,	 = 1) dependence was performed for standard HDPs
with GWN. We emphasize that G(α) behavior is asymmet-
ric at α = 0. As the spreading of the diffusivity exponent
increases [see Fig. 10(b)] the values of G(α) increase sub-
stantially in the whole range of α, including the case with
α0 = 0. We therefore conclude that a considerable spread

FIG. 8. Variation of EEB as function of the correlation time τ of GCN. The red, green, and blue curves and corresponding symbols
indicate the cases α0 = −2, 0, and 1, respectively. Parameters: ξ0 = 0, and (a) 	 = 1, δx = 1, σ = 0.05; (b) 	 = 1, δx = 1, σ = 1; (c)
α0 = −2, 	 = 1, σ = 0.05. The lines from thin to thick in panel (c) indicate the situations with δx = 1, 10, and 100, respectively.
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FIG. 9. Variation of the non-Gaussianity parameter G(	) versus lag time 	, for the values of α0 given in the legends. Parameters: τ =
20, δx = 10, ξ0 = 0 and (a) σ = 0.05 and (b) σ = 1.

of the scaling exponents of D(x) yields considerably larger
values of G, as intuitively expected too.

V. CONCLUSIONS

We have examined the diffusive, nonergodic, and non-
Gaussianity characteristics of distributed-exponent HDPs
driven by GCN in a stratified medium with quenched disorder.
We mainly analyzed the influences from the GCN and diffu-
sion coefficient D(x), namely, the noise correlation time τ , the
layer width 2δx and the variance of the p(α) distribution. The
list of the standard statistical classifiers we employed included
the MSD, the mean TAMSD, and the distribution of indi-
vidual TAMSDs. The resulting motion was further quantified
in terms of the nonergodicity parameters (EEB and ENE) and
non-Gaussianity parameter G. In periodic layers of thickness
2δx the diffusion coefficient has a quenched, random value
of the scaling exponent α (following a Gaussian probability
density).

For the MSD and TAMSD, we find that the GCN mainly
affects the short-time behavior, while it has little influence on
the MSD scaling at long times. In detail, the correlation time
will induce a pronounced MSD drop at short times, and the
initial value of the OU process will impact significantly the

scaling exponent. Conversely, the diffusion coefficient D(x)
plays the key role in the long-time behavior. The domain
length δx can change the diffusion type at long times, e.g.,
the system changes from normal diffusion to superdiffusion
at long times for α0 = 1, and changes to subdiffusion for
α0 = −2. Moreover, the fluctuation intensity σ also affects re-
markably on the short-time behavior, while it does not change
the diffusion type at long times. In fact, when the periodicity
of the system is small, the diffusing particle rather rapidly
crosses over to vicinal layers. After exploring several layers
the diffusion became effectively Brownian. For larger period-
icities, the initial motion does not feel the boundary to the
next layer, and the resulting motion is more nonergodic. This
nonergodicity is the inherent property of anomalous diffusion
in a medium with space-dependent diffusivity [40,47].

Layered HDPs reflect quenched heterogeneous systems
consisting of periodic layers, in which each layer itself is
characterized by a position-varying diffusivity. Depending
on the exact value of the associated local scaling exponent
the resulting effective drift directs the particles preferentially
to the layer center or to the boundaries to the vicinal lay-
ers. This could correspond to the motion of biopolymers or
tracers in layers of cells, for instance, in some biological
tissues, in which each cell has somewhat different densities

FIG. 10. Non-Gaussianity parameter as function of α0, plotted for noise correlation times τ = 1, 10, and 100 (respectively, the red,
blue, and green symbols). Parameters: medium periodicity δx = 10, lag time 	 = 1, ξ0 = 0 and for panels (a) and (b) the variance of p
(α) distribution is σ = 0.05 and 1, correspondingly. A Gaussian distribution, for comparison, has G = 0 for all 	.
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of macromolecules acting as obstacles of tracer motion, and
additionally each cell is inhomogeneous by itself. Similar
situations may occur in artificial systems such as liquid crys-
talline layers or layered structures in groundwater aquifers.
We note that thermophoresis of Brownian particles driven
by colored noise was studied in Ref. [111]. It was demon-
strated that as a response to temperature gradients the particles
can accumulate in colder (positive thermophoresis) or hot-
ter (negative thermophoresis) regions depending on their
temperature-varying mobility. Further studies of spatial corre-
lations, diffusivity forms different from power-law functions
of position x, or slowly time-varying α-values or medium peri-
odicities 2δx will be of interest. Understanding the differences
between the overdamped and underdamped limits of this and
related problems would also be interesting to rationalise in
the future. Finally, our results may provide new mathematical
understanding of heterogeneous diffusion and nonergodic-
ity observed in various physical systems in the presence of
quenched disorder, especially when the asymptotic behavior
has not yet been reached.
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APPENDIX

From Eq. (27), we derive the MSD for a stratified medium.
The only parameter to be determined is the escape rate λ.
Generally, λ can be given by the inverse of the mean first
exit time T that a particle starts from the middle of a layer
and reaches either middle point of its adjacent layers. For a
particle within the interval (−2δx, 2δx) starting from point x,
we denote the mean first exit time as T (x).

When |α| is small, it means D(x) = D0(|x|α + Doff ) does
not vary quickly in the domain of (−2δx, 2δx). Then T (x)
can be well approximated by the Pontryagin equation [112],
which takes the form

D(x)
∂2

∂x2
T (x) = −1,

(A1)
T (−2δx) = T (2δx) = 0,

FIG. 11. When |α| � 1 in panels (a)–(d), the blue line is the theoretical result given above. The theoretical results fit well with numerical
simulations for large δx. When |α| > 1 in panels (e) and (f), λ is obtained by numerically calculating the mean first exit time from the Langevin
equation. The blue line is 〈x2(t )〉 = 4λδx2t , which fits well with numerical simulation for small δx. The initial position is x0 = 0.1, the gray
line is the MSD and yellow line is the mean TAMSD.
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and λ = 1/T (0). When α = 1, Eq. (A1) can be solved and
the escape rate takes λ = D0/(2δx[ln(2δx) − 1]) omitting the
small number Doff . Consequently, we get the approximate
MSD as

〈x2(t )〉 = 2
D0δx

ln(2δx) − 1
t . (A2)

We find that when δx is large, the approximation fits well
with the numerical result for the long-time behavior [see
Fig. 4(b3) and Figs. 11(c) and 11(d)], while a small δx value
leads to discrepancies. For example, when δx = 1, λ is nega-
tive such that the approximation Eq. (A2) is invalid. Similarly,
we can get the MSD for small |α|, such as α = 0.2 for
〈x2(t )〉 = 144D0δx2

25(2δx)0.8 t ; α = 0.5 for 〈x2(t )〉 = 3D0
√

δx
2
√

2
t ; α = −0.5

for 〈x2(t )〉 = 15D0

4
√

2δx
t . The corresponding theoretical results

and numerical simulations are presented in Fig. 11, and show
a good match.

When |α| is large, D(x) = D0(|x|α + Doff ) varies quickly
in the domain of (−2δx, 2δx). It is no longer appropriate
to use the Pontryagin equation. Moreover, when δx is large,
the diffusivity in a layer has huge maximum and minimum
values. Especially, when α = −2, D(x) is so small for large
|x| that it is difficult for a particle to cover a large distance and
jump to another layer. Consequently, it will even fail to take
the heterogeneous diffusion as a random walk at any finite
time. However, when δx is small, the method still works. To
examine the validity, we numerically get the mean first exit
time of a particle starting from x0 where D(x) has the minimal
value, and exiting either x0 + 2δx or x0 − 2δx. Then with
〈x2(t )〉 = 4λδx2, we can still get a good result, see Figs. 11(e)
and 11(f).
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