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Diffusion of antibiotics through a biofilm in the presence of diffusion and absorption barriers
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We propose a model of antibiotic diffusion through a bacterial biofilm when diffusion and/or absorption
barriers develop in the biofilm. The idea of this model is: We deduce details of the diffusion process in a medium
in which direct experimental study is difficult, based on probing diffusion in external regions. Since a biofilm
has a gel-like consistency, we suppose that subdiffusion of particles in the biofilm may occur. To describe this
process we use a fractional subdiffusion-absorption equation with an adjustable anomalous diffusion exponent.
The boundary conditions at the boundaries of the biofilm are derived by means of a particle random walk
model on a discrete lattice leading to an expression involving a fractional time derivative. We show that the
temporal evolution of the total amount of substance that has diffused through the biofilm explicitly depends on
whether there is antibiotic absorption in the biofilm. This fact is used to experimentally check for antibiotic
absorption in the biofilm and if subdiffusion and absorption parameters of the biofilm change over time. We
propose a four-stage model of antibiotic diffusion in biofilm based on the following physical characteristics:
whether there is absorption of the antibiotic in the biofilm and whether all biofilm parameters remain unchanged
over time. The biological interpretation of the stages, in particular their relation with the bacterial defense
mechanisms, is discussed. Theoretical results are compared with empirical results of ciprofloxacin diffusion
through Pseudomonas aeruginosa biofilm, and ciprofloxacin and gentamicin diffusion through Proteus mirabilis
biofilm.
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I. INTRODUCTION

Bacterial biofilms play a key role in persistent infections.
Bacteria in a biofilm develop increased resistance of antimi-
crobial agents. A biofilm changes as a result of bacterial
interaction with antibiotics. There are many ways bacteria
defend against antibiotic molecules. Transport limitation is an
important factor in antimicrobial resistance of biofilm bacteria
[1–5]. One of the strategies of bacterial defense against antibi-
otics is to slow down diffusion and retain antibiotic molecules
in the biofilm. Observation of antibiotic diffusion through a
bacterial biofilm allows us to understand the physical and
biological processes occurring in the biofilm.

We present a model of antibiotic diffusion through a bac-
terial biofilm in which absorption of antibiotic molecules can
occur. To describe this process, normal diffusion or normal
diffusion-reaction equations have been usually used [5–19].
Because the biofilm has a gel-like consistency, the movement
of antibiotic molecules is rather strongly hindered. Therefore,
similar to gel-like media [20–27], subdiffusion may occur in
the biofilm. In this case, the subdiffusion–reaction equation
with fractional time derivative is a convenient approach. The
model is of a general nature and can be used to study diffusion
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processes in media in which experimental diffusion investiga-
tions are difficult. The application of this model is based on
the idea: We can specify details of the diffusion process in a
medium in which observation of diffusion is difficult, based
on diffusion properties observed in external regions.

We show that the temporal evolution of the total amount
of substance that has diffused through the medium explicitly
depends on whether there is absorption of diffusing particles
in the medium. We divide the antibiotic diffusion through a
biofilm process into different stages according to the follow-
ing criteria:

(i) whether there is absorption of diffusing particles in the
medium or not;

(ii) whether the diffusion and absorption parameters are
constant or change over time.

The division into stages is made according to physical, not
biological criteria. Determining the order of stages and their
duration may help in the biological interpretation of antibi-
otic interaction with bacteria. We present possible criteria for
defining which of the biofilm defense mechanisms can be con-
sidered as dominant at each stage. However, this topic is still
open and requires further research, as more mechanisms are
being discovered. The potential application of this model goes
beyond the specific problem we use as a guiding example.
Namely, it is a generic model to deduce diffusion proper-
ties from particle currents exchanged with the immediate
environment.
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One of the key problems is to find the boundary conditions
of the biofilm. Particle random walk models on a discrete lat-
tice are effective at deriving boundary conditions at interfaces.
Some models assume that there is a point at the boundary be-
tween media at which molecules must be stopped temporarily
[28–32]. In other models, it is assumed that molecules can
jump without having to stop at the border [33,34]. In general,
both models lead to different boundary conditions. In our
model, we assume that a molecule that tries to get out of the
biofilm can do it without having to stop at the edge of the
biofilm. Therefore, in the following the latter model will be
used to derive the boundary conditions.

Various experimental techniques are used to study the pro-
cesses occurring in the biofilm in the presence of antibiotics,
such as imaging microprocesses in biofilm, disk diffusion
methods, chromatography, etc. [35,36]. Another technique
for measuring the effect of antibiotics on bacteria based on
measuring the temporal evolution of the amount of a specific
antibiotic that has diffused through the biofilm, WB, has been
shown in Refs. [37,38]. We will show that the function WB dif-
fers qualitatively among the stages mentioned earlier, which
gives the opportunity to experimentally check the stage of
the process. As examples, we show that the theory describes
empirical results of ciprofloxacin diffusion through Pseu-
domonas aeruginosa PAO1 biofilm, and ciprofloxacin and
gentamicin diffusion through Proteus mirabilis O18 biofilm
appropriately [37,38].

II. ANTIBIOTIC DIFFUSION IN A BIOFILM

Bacteria exist mainly as free living bacteria and in biofilms.
Biofilms are complex microbial communities of cells embed-
ded into a matrix of self-produced extracellular polymeric
substance. The organization of bacteria in biofilm helps in
defending bacteria against antibiotics. Bacteria in biofilms
can have up to 1000 times greater resistance to antibiotics
compared to free living bacteria. In a biofilm, bacteria have
many different ways of defense against an antibiotic. The most
often considered biofilm defense mechanisms are [1–3]

(i) the biofilm matrix as a diffusion barrier;
(ii) microenvironments with slower bacterial growth. In

these regions, the effect of antibiotics is weakened, because
antibiotics act mainly on fast-growing bacteria. Examples of
this are regions where oxygen and nutrient access are reduced;

(iii) persisters, which are a small subpopulation of bacteria,
which weaken the effect of antibiotics;

(iv) with resistance genes, which regulate the biofilm de-
fense mechanism.

Which way of defense is dominant depends on both the
biofilm and the specific antibiotic. In addition to the above,
there are many other factors, such as some nontoxic col-
loidal particles [39] and increased extracellular polymeric
substance production in older biofilms [40], that increase the
defense ability of bacteria against the action of antimicrobial
molecules. Bacteria may also exchange plasmids and pass
on successful mutations increasing the immune properties of
the biofilm. Quorum sensing is a cell-to-cell communication
phenomenon, which affects the cell population density and
regulates their behavior. This phenomenon also influences the
increase of biofilm resistance to the antibiotic [1,2,41].
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FIG. 1. Schematic of the system. The biofilm separates two
regions in which normal diffusion occurs, C is the antibiotic concen-
tration, D is the normal diffusion coefficient in regions A and B, DM

is the subdiffusion coefficient, α is the subdiffusion parameter and κ

is the absorption coefficient in the biofilm, qA and qB are probabilities
of stopping a diffusing particle by the biofilm boundaries.

As we mentioned earlier, models of antibiotic diffusion
in a biofilm have been based mainly on normal diffusion or
normal diffusion-reaction equations. In Ref. [6] the interaction
of an antibiotic with the biofilm was modeled taking into
account the antibiotic depletion process and reduced bacterial
growth rates in biofilm. Normal diffusion-reaction equations
with different reaction terms were considered in Ref. [7]. In
both papers, simple boundary conditions at the biofilm bound-
aries are assumed, namely, vanishing of the diffusion flux of
the antibiotic or keeping a constant antibiotic concentration
at the biofilm boundaries. The diffusion-adsorption equation
has been used to describe antibiotic diffusion in a Pseu-
domonas aeruginosa biofilm [12]. This equation is equivalent
to the normal diffusion equation with diffusion coefficient
controlled by an adsorption parameter. Normal diffusion
equations taking into account the absorption and desorption
processes were used to model transport of ciprofloxacin and
levofloxacin in Pseudomonas aeruginosa biofilms [8]. In ad-
dition to the diffusion of antibiotics, other factors affecting
the biofilm have been included in the models, such as oxygen
diffusion into biofilm [15], influence of persister cells to an-
tibiotic diffusion [42], and the quorum sensing phenomenon
[13,41].

Here we present an approach based on a fractional dif-
fusion mechanism. This means that the model can describe
antibiotic subdiffusion in a biofilm; normal diffusion can
be treated as a special case of subdiffusion. We explicitly
derive the corresponding boundary value problem involving
a fractional time derivative. Our results are shown to be
consistent with experimental observations in two different
biofilm-forming species.

III. MODEL

In this section, we present the system, the general assump-
tions adopted in the model, and the boundary conditions at the
border between biofilm and normal-diffusion medium.

A. System

We consider a three-dimensional system, which is homo-
geneous in planes perpendicular to the x axis. Thus, later
in this paper we treat this system as one dimensional. We
consider the system, which is schematically presented in
Fig. 1. The system consists of three parts: A, (−∞, x1), and
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B, (x2,∞), represent normal diffusion media, the middle part
M, (x1, x2), represents a biofilm. A molecule that attempts
to jump from the media A or B to the biofilm can do it
with probabilities 1 − qA and 1 − qB, respectively. A molecule
that tries to get out of the biofilm can do it without any
hindrance.

B. Assumptions

The model of diffusion of antibiotic molecules through a
biofilm is based on the following assumptions:

(i) There may be subdiffusion in the biofilm. Subdiffu-
sion is due to the complex structure of the medium, which
makes diffusion of molecules very difficult [43,44]. Indeed,
the polymeric structure connecting cells in a biofilm is similar
to gels, e.g., aqueous agarose solution [20,21,33]. Moreover,
similar to mucus, charge effects may came into play. In many
cases diffusion in similar environments may be anomalous.
We therefore base our description on subdiffusion of antibiotic
molecules in a biofilm, although normal diffusion is included
as a limiting case.

(ii) Absorption of antibiotic molecules may occur in the
biofilm. Absorption is treated here as an irreversible reaction,
the result of which is to switch off the antibiotic molecule
from further action. The molecule can be trapped in a dense
biofilm or it can interact with the bacterium.

(iii) We use an approximation of a homogeneous biofilm. We
assume that the subdiffusion and absorption parameters in the
biofilm do not depend on the spatial variable. This assumption
has been often used in the models presented in the articles
cited in the previous sections.

(iv) The antibiotic molecule that attempts to jump from a
diffusion medium to a biofilm can do it with a certain proba-
bility, and the molecule that tries to leave a biofilm will do it
without any hindrances. Getting an antibiotic molecule inside
the biofilm can be affected by biofilm defense mechanisms.
Moreover, a molecule that tries to jump into a biofilm from an
external diffusive medium has to hit one of the channels in the
biofilm. A molecule that tries to get out of the biofilm does not
encounter such obstacles. Although we use the approximation
of a homogeneous biofilm, we assume that the probabilities
of retaining diffusing molecules at biofilm surfaces qA and
qB may be different. The motivation for this assumption is
that the external concentrations of the antibiotic, which may
be different at both biofilm boundaries, affect bacterial de-
fense mechanisms at the boundaries. We also assume that the
boundaries of the biofilm do not significantly change their
position over time.

(v) Parameters of subdiffusion and/or absorption in the
biofilm can change over time; in the considerations we
use a quasistatic approximation. It is supposed that the
subdiffusion–absorption process in the biofilm is slow. Then,
the solutions to the subdiffusion equation with parameters
changing over time will be obtained in the following way.
First, we will solve the equation with fixed parameters and
then we will change the parameters into time-dependent func-
tions. This assumption is consistent with the concept of the
stationary phase in the modeling of antibiotic diffusion in the
biofilm [1,45].

C. Equations

We assume that in parts A, M, and B of the system the
process is described by the following equations:

∂CA(x, t )

∂t
= D

∂2CA(x, t )

∂x2
, (1)

∂CM (x, t )

∂t
= DM

∂1−α

∂t1−α

[
∂2CM (x, t )

∂x2
− κ2CM (x, t )

]
, (2)

∂CB(x, t )

∂t
= D

∂2CB(x, t )

∂x2
, (3)

where DM has physical dimension m2/secα . The Riemann-
Liouville fractional derivative, which is present in Eq. (2), is
defined for 0 < β < 1 as

dβ f (t )

dtβ
= 1

�(1 − β )

d

dt

∫ t

0
dt ′ f (t ′)

(t − t ′)β
. (4)

The diffusive fluxes are defined as JA,B(x, t ) = −D∂CA,B

(x, t )/∂x and JM (x, t ) = −DM (∂1−α/∂t1−α )∂CM (x, t )/∂x. We
mention that various forms of the subdiffusion-absorption
equation have been considered [46–52], specifically, absorp-
tion is considered here as an irreversible reaction. Equation
(2) was derived in Ref. [48], see also discussion of different
forms of the subdiffusion-absorption equation and methods of
their derivation in Ref. [53].

For α = 1 we have normal diffusion whereas for 0 < α <

1 there is subdiffusion. The appearance of the fractional time
derivative in the subdiffusion equation means that the process
is non-Markovian with a long memory. In this case, according
to the continuous time random walk model, the time distri-
bution for the next jump of the molecule ψ has a heavy tail,
ψ (t ) ∼ 1/t1+α when t → ∞, which gives rise to an infinite
characteristic sojourn time 〈t〉 [43].

D. Boundary conditions

It is essential to determine the boundary conditions at the
boundaries of the biofilm. In order to derive them we use
a particle random walk model in a system with a one-sided
fully permeable wall [34]. Within the model we assume that
both variables, the particle position m and time n, are discrete
and particle random walk is described by difference equations.
The model based on difference equations allows us to deter-
mine the probabilities of a sequence of successive particle
positions for any particle step number n. Then, we move to
continuous time t and to continuous spatial variable x in two
consecutive steps. By properly rescaling the time variable, we
can model subdiffusion as well as normal diffusion of a parti-
cle. Such a model is convenient when we consider diffusion
in a system consisting of two different media [33,34]. We
mention that in this method a random variable is the waiting
time τ for the next particle jump whereas the length of the
jump is a parameter ε. This model is thus a special case of the
continuous time random walk model in which generally both
τ and ε are random variables [43].

As an example, we derive the boundary conditions at x1.
Since the boundary conditions for normal diffusion and subd-
iffusion are local, for the sake of simplicity we assume that
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FIG. 2. Random walk of a particle in a discrete system with
one-sided fully permeable wall represented by the vertical line, more
detailed description in the text.

there is one partially permeable wall in the system located
between sites N and N + 1, which corresponds to the biofilm
boundary at x1, see Fig. 2. The difference equations describ-
ing a random walk in this system are

PA,n+1(m; m0) = 1

2
PA,n(m − 1; m0)

+ 1

2
PA,n(m + 1; m0), m � N − 1, (5)

PA,n+1(N ; m0) = 1

2
PA,n(N − 1; m0) + 1

2
PM,n(N + 1; m0)

+ qA

2
PA,n(N ; m0), (6)

PM,n+1(N + 1; m0) = 1 − qA

2
PA,n(N ; m0) + 1

2
PM,n(N + 2; m0)

− RPM,n(N + 1; m0), (7)

PM,n+1(m; m0) = 1

2
PM,n(m − 1; m0) + 1

2
PM,n(m + 1; m0)

− RPM,n(m; m0), m � N + 2, (8)

where Pi,n(m; m0) is the probability to find the particle at site
m in region i after n steps, m0 is the initial position of the
particle, and R is the probability of particle absorption in
the medium M. In the procedure of moving from discrete to
continuous time convolutions of functions with respect to a
time variable occur. Since the Laplace transform P̂(m, s) ≡
L[P(m, t )] ≡ ∫ ∞

0 exp(−st )P(m, t )dt of a convolution of two
functions is equal to the product of the Laplace transforms of
these two functions, it is convenient to use the Laplace trans-
form in the considerations. In terms of the Laplace transform,
the Green’s functions for continuous time are

P̂i(m, s; m0) = 1 − ψ̂i(s)

s
Si(m, ψ̂i(s); m0), (9)

where Si(m, z; m0) = ∑∞
n=0 znPi,n(m; m0) is the generating

function, and ψi is the probability density of time, which is
needed for the particle to take its next step in the medium
i. Moving from a discrete to a continuous spatial variable,
we use the following relations x = εm, x1 = εN , x0 = εm0,
and P̂(x, s; x0) = P̂(m, s; m0)/ε, where ε is the distance be-
tween neighboring sites. We then take the limit of small ε.
As was shown in Ref. [34], the following functions ψ̂A(s) =
1/(1 + ε2s/2D) and ψ̂M (s) = 1/(1 + ε2sα/2DM ) should be
taken into consideration. The rules how to involve the func-
tions ψ̂ and ψ̂M into the model are described in Appendix A.
The relation between probability R and the absorption

coefficient κ defined in the system with continuous variables
is R = κ2ε2/2.

Let us assume that the molecule is in region A initially,
such that the initial conditions are PA,0(m; m0) = δm,m0 and
PM,0(m; m0) = 0. After some calculations we get (details are
presented in Appendix A)

P̂A(x, s; x0) = 1

2
√

Ds

[
e−|x−x0|

√
s
D

+
√ s

D −(1 − qA)
√

κ2+ sα

DM√ s
D + (1 − qA)

√
κ2+ sα

DM

e−(2x1−x−x0 )
√

s
D

]
,

(10)

P̂M (x, s; x0) = (1 − qA)sα−1

DM
(√ s

D + (1 − qA)
√

κ2 + sα

DM

)
× e

−(x1−x0 )
√

s
D −(x−x1 )

√
κ2+ sα

DM . (11)

The Laplace transforms of diffusive fluxes read

ĴA(x, s; x0) = −D
∂P̂A(x, s; x0)

∂x
, (12)

ĴM (x, s; x0) = −DMs1−α ∂P̂M (x, s; x0)

∂x
. (13)

Using Eqs. (10)–(13) evaluated at x1 we get the boundary
conditions in terms of the Laplace transform

(1 − qA)DP̂A(x−
1 , s; x0) = DMs1−αP̂M (x+

1 , s; x0), (14)

ĴA(x−
1 , s; x0) = ĴM (x+

1 , s; x0). (15)

Using the formula L−1[sβ f̂ (s)] = ∂β f (t )/∂tβ , 0 < β < 1, we
obtain the boundary conditions in the time domain

(1 − qA)DPA(x−
1 , t ; x0) = DM

∂1−αPM (x+
1 , t ; x0)

∂t1−α
, (16)

JA(x−
1 , t ; x0) = JM (x+

1 , t ; x0). (17)

Assuming that the molecules diffuse independently of one
another and all diffusing particles are initially located in the
medium A, the concentration of molecules can be calculated
by means of the formula

CA,M (x, t ) =
∫ x1

−∞
PA,M (x, t ; x0)CA(x0, 0)dx0. (18)

Due to Eq. (18) the boundary condition for the function P and
concentration C are the same. In a similar way, we can derive
the boundary conditions at the point x2. Then, the boundary
conditions at both biofilm boundaries are

(1 − qA)DCA(x−
1 , t ) = DM

∂1−αCM (x+
1 , t )

∂t1−α
, (19)

JA(x−
1 , t ) = JM (x+

1 , t ), (20)

DM
∂1−αCM (x−

2 , t )

∂t1−α
= (1 − qB)DCB(x+

2 , t ), (21)

JM (x−
2 , t ) = JB(x+

2 , t ). (22)
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Thus, the diffusive flux is continuous at the boundaries be-
tween the media, and the concentration at the boundary in the
diffusive medium depends on the concentration in the biofilm
at previous times. Such an ageing behavior is not surprising
in the naturally nonstationary scenario of fractional diffusion,
equivalent to a continuous time random walk with diverging
〈t〉 [54,55]. However, when normal diffusion occurs in the
biofilm, the boundary conditions (19) and (21) assume a fixed
ratio of concentrations at each biofilm boundary.

IV. THEORETICAL RESULTS

In the following, we consider a system in which at the
initial moment there is a homogeneous solution of antibiotic
in the part A, while in the other parts of the system there is
no antibiotic. The boundary conditions (19)–(22) are used to
solve Eqs. (1)–(3) for the following initial condition:

CA(x, 0) = C0,

CM (x, 0) = 0, (23)

CB(x, 0) = 0.

We are interested in calculating the time evolution of the
amount of antibiotic WB that has diffused through the biofilm
to region B,

WκB(t ) = �

∫ ∞

x2

CB(x, t )dx, (24)

where � is the area of a biofilm surface in a plane perpendic-
ular to the x axis. The function WB is the basis for our further
consideration. Below we present the function (24) in the long
time limit. The form of this function depends on the parameter
κ . Details of the calculations are shown in Appendix B.

A. Case of κ = 0

For κ = 0 we obtain

W0B(t ) = C0�(a0

√
t − b0t1−α ), (25)

where

a0 = 2(1 − qA)
√

D

(2 − qA − qB)
√

π
, (26)

b0 = a2
0

πd (1 − qB)

2DM�(2 − α)
, (27)

d = x2 − x1.

B. Case of κ = const. �= 0

Assuming qA, qB 
= 1, we get for κ 
= 0

WκB(t ) = C0�

(
aκ − bκ

1√
t

− cκ

1

tα

)
, (28)

where

aκ = 1

(1 − qB)κ sinh(κd )
, (29)

bκ = aκ

coth(κd )√
πD

(
1

1 − qA
+ 1

1 − qB

)
, (30)

cκ = aκ

1 + κd coth(κd )

2κ2DM�(1 − α)
. (31)

The characteristic feature of the function WκB Eq. (28) is
that, unlike the function W0B, it reaches a plateau for t �
max((bκ/aκ )2, (cκ/aκ )1/α ).

C. Biofilm parameters change over time

The results presented in Secs. IV A and IV B have been
obtained assuming that the biofilm parameters are constant.
However, when the antibiotic acts on the bacteria, a biofilm
structure can change and biofilm parameters evolve over time.
Since, in such cases, the parameters appearing in the equations
and boundary conditions depend on time, the derivation of
the function WB requires additional considerations. However,
we postulate the use of a quasistatic approximation. In this
approximation, we use functions derived for constant pa-
rameters, and then assume that these parameters are certain
functions of time. For κ 
= 0 the simplest version of this is
the following function defined in the case in which antibiotic
absorption occurs and biofilm parameters change over time:

Wκ̃ (t )B(t ) = ρ(t )WκB(t ), (32)

where ρ(t ) is to be determined from experimental data. The
parameters aκ , bκ , and cκ for the function Wκ̃ (t )B are the same
as for WκB in Eq. (28). Then, Eq. (32) can be written as

Wκ̃ (t )B(t ) = C0�

(
ãκ (t ) − b̃κ (t )

1√
t

− c̃κ (t )
1

tα

)
, (33)

where ãκ (t ) = ρ(t )aκ , b̃κ (t ) = ρ(t )bκ , and c̃κ (t ) = ρ(t )cκ .
The practical usefulness of this function is shown in
Sec. VI. Assuming that κd � 1, which provides sinh(κd ) ≈
1/ coth(κd ) ≈ κd , the function Wκ̃ (t )B(t ) Eq. (33) can be ob-
tained from the substitution

κ → κ

ρ(t )
, 1 − qA,B → (1 − qA,B)ρ(t ), DM → DMρ2(t )

(34)

in Eqs. (28)–(31). The above relations define the temporal
evolution of the biofilm parameters gives Eq. (32).

V. FOUR-STAGE MODEL OF ANTIBIOTIC
DIFFUSION THROUGH A BIOFILM

Based on the results presented in Sec. IV, we divide the
process of antibiotic diffusion in a biofilm into different stages
with respect to the following physical characteristics. First,
the process can occur with or without absorption. These dif-
ferences appear to be related to the type of bacterial defense
mechanism in the biofilm. Second, the process can be static,
without changing any parameters, or dynamic when at least
one of the biofilm parameters changes over time, which is
related to the development of biofilm defense mechanisms.
Considering the criteria described above, we propose to distin-
guish four stages described below in the process of antibiotics
diffusion in a biofilm. Moreover, for subdiffusion the process
is ageing, i.e., the mean mobility is a decreasing function
of time. If we start the measurement some time after the
antibiotic first enters the biofilm, the measurement depends
on the aging time.

It is important to link the stages with the possible defense
mechanisms of bacteria in the biofilm. Although the relation

032408-5



TADEUSZ KOSZTOŁOWICZ AND RALF METZLER PHYSICAL REVIEW E 102, 032408 (2020)

of the defense mechanisms to the stages is not immediately
obvious, we give below examples of biophysical interpreta-
tions of processes that may occur in each stage. We mention
here that the absorption is treated as a permanent immobiliza-
tion or disintegration of a molecule. Formally, this process is
equivalent to diffusion with an irreversible reaction. However,
if the diffusing antibiotic molecule is immobilized temporarily
and may continue to diffuse after some time, we treat this
process as diffusion with a reversible reaction. The parameters
α, DM , qA, qB, and κ may change due to changes in the biofilm
structure. The stages are defined as follows.

Stage I: There is no absorption of the antibiotic in the biofilm
and no biofilm parameters change over time. Examples of
processes occurring at this stage are the efflux-pump effect
and the diffusion of antibiotic molecules in a biofilm in which
rapid bacterial growth has been temporarily inhibited, e.g.,
by limiting the oxygen or nutrient access to bacteria. In this
situation, the antibiotic molecules may weakly interact with
the bacteria because the antibiotic mainly attacks fast-growing
bacteria. The efflux pump is a defense mechanism of bacteria
that removes antibiotic molecules from the bacteria relatively
quickly. In this case, absorption of the antibiotic molecules
does not occur.

Stage II: There is no absorption of the antibiotic, and
at least one of the biofilm parameters changes over time.
During the initial period, when the concentration of antibiotic
in the biofilm is subinhibitory (i.e., at a concentration that does
not trigger the bacterial defense mechanisms), the defense of
bacteria against antibiotics is not strong. Then, the bacteria
produce little extracellular polymeric substance (EPS). The
concentration of antibiotic in the biofilm increases over time,
then the EPS gets denser, which makes diffusion of antibiotic
molecules more difficult. However, the density of EPS does
not reach such a high concentration that irreversible retention
of the antibiotic molecules is possible.

Stage III: There is absorption of antibiotics in the biofilm,
κ 
= 0, and biofilm parameters do not change over time. If ab-
sorption of antibiotic molecules appears and the values of the
parameters are not changed, it may mean that the absorption is
carried out by certain absorption centers, which have appeared
as a defensive effect of the bacteria. It is also possible that
the density of EPS has reached a constant, high value and
the retention of antibiotic molecules occurs with a constant
probability.

Stage IV: There is absorption of antibiotics in the biofilm
and at least one of the biofilm parameters changes over time.
Examples of processes occurring at this stage are

(i) The diffusion parameters and the absorption parameter
change over time. This effect may be due to the increasing
high EPS production by bacteria. The density of mucus is
so great that it causes immobilization of antibiotic molecules
with increasing probability as well as slowing down diffusion.

(ii) Only the absorption parameter changes, the subdif-
fusion parameters remain constant. Some absorbing centres
in bacteria are activated that immobilize or destroy an-
tibiotic molecules. The intensity of this process increases
over time as the antibiotic concentration increases. During
this time, the production of EPS by the bacteria is not so
large and changes in subdiffusion parameters are negligibly
small.
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FIG. 3. Experimental results (squares) and theoretical func-
tion W0B Eq. (25) (dashed line) for diffusion of ciprofloxacin
through P. mirabilis O18 biofilm, fitting parameters are a0 = 0.90 ×
10−5 m/

√
s and b0 = 0.95 × 10−6 m/s0.05, and α = 0.95; here C0 =

1.5 mol/m3 and � = 7.0 × 10−5 m2.

The division into stages is determined by various forms
of the function WB, which can be measured experimentally.
Based on the empirical results discussed in Ref. [56] and in
Sec. VI, the division of the process into stages is supplemented
with the following remark: The order of steps depends on
both specific antibiotic and biofilm, moreover some stages
may not be observed at all. While a form of the function in
Stages I and III is given by Eqs. (25) and (28), respectively, the
determination of the function for variable parameters, Stages
II and IV, requires additional considerations. We have not
considered the function WB for Stage II since in the examples
considered in the next section, this stage is not observed.

VI. DIFFUSION OF CIPROFLOXACIN AND GENTAMICIN
THROUGH Pseudomonas aeruginosa AND Proteus mirabilis

BIOFILMS

Diffusion of the antibiotics ciprofloxacin and gentam-
icin through Pseudomonas aeruginosa and Proteus mirabilis
biofilms was studied experimentally [37,38]. The experimen-
tal setup described in these papers corresponds to the system
presented in Fig. 1. At the initial moment, a homogeneous
aqueous antibiotic solution (medium A) was separated by a
biofilm layer (medium M) from pure water (medium B). For
technical reasons, the observation of concentration profiles
was possible only in region B. Measurements were made
in the time interval 〈100 s, 2400 s〉. Concentration profiles
of diffusing substances were measured by means of laser
interferometry. Absorption of antibiotic can occur in the
biofilm only. Biofilms were cultured on a nucleopore mem-
brane. Since such a membrane is quite permeable to antibiotic
molecules, we assume that this membrane did not signifi-
cantly affect the biofilm diffusion properties. The thickness
of P. mirabilis biofilm was d = 5.7 × 10−5 m. In Figs. 3–5
the experimental data (symbols) and theoretical function WB

(lines) are presented. The experimental data on diffusion of
ciprofloxacin through Pseudomonas aeruginosa PAO1 biofilm

032408-6



DIFFUSION OF ANTIBIOTICS THROUGH A BIOFILM IN … PHYSICAL REVIEW E 102, 032408 (2020)

0 500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

0.8

t1

W
B
(t)

 [1
0-7

 m
ol

]

t [s]

FIG. 4. Experimental results (squares) and theoretical func-
tions W0B Eq. (25) (dashed line) and WκB Eq. (28) (solid line)
for diffusion of ciprofloxacin through Psudomonas aeruginosa
biofilm, the parameters are a0 = 0.86 × 10−5 m/

√
s, b0 = 1.90 ×

10−5 m/s0.05, aκ = 0.44 × 10−3 m, bκ = 2.10 × 10−3 m/
√

s, cκ =
8.57 × 10−2 mol/s0.95, and α = 0.95; here t1 = 1560 s, C0 =
3.0 mol/m3, and � = 7.0 × 10−5 m2.

were taken from Ref. [37] (presented in Fig. 4 in this paper)
and the experimental data on diffusion of ciprofloxacin and
gentamicin through Proteus mirabilis O18 biofilm were taken
from Ref. [38] (the data are presented in Figs. 3 and 5 in this
paper).

In Figs. 3–5 dashed lines represent the plot of the function
W0B Eq. (25), solid lines represents the plot of WκB Eq. (28),
and dot-dashed lines are the plots of Wκ̃B Eq. (35). In general,
a good agreement between the theoretical functions and the
empirical results is observed. In Fig. 3 the experimental data
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FIG. 5. Experimental results (squares) and plots of the func-
tions WκB Eq. (28) (solid line) and Wκ̃ (t )B Eq. (35) (dot-dashed line)
for diffusion of gentamicin in the system with P. mirabilis O18
biofilm, the parameters are aκ = 0.30 10−3m, bκ = 0.43 10−3m/

√
s,

cκ = 17.1 10−3m/s0.95, α = 0.95, and a = 1.35, b = 350 1/s, t2 =
1000 s; the experiment was performed for C0 = 1.5 mol/m3 and
� = 7.0 × 10−5 m2.

on ciprofloxacin diffusion through P. mirabilis O18 biofilm
are well approximated by the function W0B for t > 1000 s.
For t < 1000 s, the experimental data are not described by
Eq. (25). This is probably due to the finite time needed for
ciprofloxacin to pass through this biofilm. In Fig. 4 the exper-
imental data, presented for the case of ciprofloxacin diffusion
through the Pseudomonas aeruginosa PAO1 biofilm, are well
described by W0B for t < t1 = 1560 s and by WκB for t > t1.
Analyzing the function WB obtained experimentally for dif-
fusion of gentamicin through P. mirabilis O18 biofilm (see
Fig. 5), we note that for a long time there a stage persists in
which absorption of antibiotic occurs and biofilm parameters
change over time. In this case we assume that the function
Wκ̃ (t )B is given by Eq. (32). In order to determine the function
ρ, we considered the series of points [ti,WexpB(ti )/WκB(ti)],
where WexpB(ti ) are the experimentally determined values of
the function WB for the times ti, and WκB is given by Eq. (28).
In the case considered here, a function of the form ρ(t ) =
1/(a − b/t ), t > b/a, fits well with these points. Thus, we get

Wκ̃ (t )B(t ) = C0�(
a − b

t

)(
aκ − bκ

1√
t

− cκ

1

tα

)
. (35)

The parameters aκ , bκ , and cκ are the same as for the case of
κ = const. 
= 0, a and b are parameters to be determined. In
Fig. 5 the functions WκB (for t < t2 = 1000 s) and Wκ̃ (t )B (for
t > t2) describe the experimental data obtained for gentamicin
diffusion through P. mirabilis O18 biofilm.

In the time interval 〈1000 s, 2400 s〉 we observed the
Stage I only for ciprofloxacin diffusion through P. mirabilis
biofilm (see Fig. 3). In this case we suppose that the bacte-
rial defense mechanisms have not been activated yet. In the
case of gentamicin diffusion through P. aeruginosa biofilm
Stages I and III are observed (Fig. 4). The interpretation is
that during the initial period t < 1560 s, when the concen-
tration of the antibiotic in the biofilm is subinhibitory, the
defense of bacteria against antibiotics is not strong and sub-
diffusion without absorption with constant biofilm parameters
is observed. However, in the next period of time, when the
concentration of the antibiotic in the biofilm increases, the an-
tibiotic molecules can be retained or destroyed in the biofilm.
Then, bacteria show more active defense against the effects
of the antibiotic. Stage III and then Stage IV are observed for
diffusion of gentamicin through P. mirabilis biofilm (Fig. 5).
In this case, the subinhibitory concentration of the antibiotic in
the biofilm occurs in a period of time shorter than the time of
the first measurement. Activation of the defense mechanisms
of bacteria causes that the antibiotic particles are eliminated
from the diffusion process initially with a constant probability,
and then this probability increases over time, finally reaching
a constant value when t � b/a. According to Eq. (34), the
subdiffusion parameter DM decreases and the absorption pa-
rameter κ increases over time. In this stage thickening EPS is
probably the dominant bacterial defense mechanism.

The question arises whether subdiffusion or normal dif-
fusion occurs in the biofilm. For the results presented in
Figs. 3–5, the plots of W0B and WκB are best matched with em-
pirical results when α = 0.95. If the parameter α is less than 1,
subdiffusion occurs in the biofilm and the process is described
by a subdiffusion equation with fractional time derivative.

032408-7



TADEUSZ KOSZTOŁOWICZ AND RALF METZLER PHYSICAL REVIEW E 102, 032408 (2020)

0 500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

0.8

4

3

4

2

2
1

1

W
B

(t)
 [1

0-7
 m

ol
]

t [s]

FIG. 6. Different stages for the situation of Fig. 4. Dashed lines
No. 1 and 2 represent W0B Eq. (25), solid lines No. 3 and 4 rep-
resent WκB Eq. (28). Lines No. 1 and 3 are for α = 0.95, red
lines No. 2 and 4 are for α = 1.0. The other parameters are a0 =
0.86 × 10−5 m/

√
s and b0 = 1.90 × 10−5 m/s0.05 for the functions

No. 1 and 2, aκ = 0.44 × 10−3 m, bκ = 2.10 × 10−3 m/
√

s, and
cκ = 8.57 × 10−2 mol/s0.95 for the function No. 3, and aκ = 0.42 ×
10−3 m with the same bκ and cκ as in the previous case for the
function No. 4.

Unfortunately, the empirical data taken from Refs. [37,38] do
not allow a reliable estimation of the measurement error for
this parameter. Because the biofilm constitution is similar to
the 1 % concentration of aqueous agarose solution for which
α = 0.95 [33], the assumption that there occurs subdiffusion
in the biofilm appears well justified. In Fig. 6 we present
the plots of theoretical functions obtained for α = 0.95 and
α = 1.0 for diffusion of ciprofloxacin through Psudomonas
aeruginosa biofilm. We indeed observe a better fit of the
theoretical functions to the empirical results for α = 0.95.

VII. FINAL REMARKS

We proposed and studied a four-stage model of antibiotic
diffusion through a biofilm, along with a possible biological
interpretation of the processes occurring in these stages. Sub-
diffusion of antibiotic molecules may occur in the biofilm;
in this case the transport of an antibiotic in a biofilm can
be described by a fractional subdiffusion-absorption equa-
tion. Physically, this equation describes irreversible antibiotic
molecule immobilization with power-law sojourn time. The
above conclusions have been obtained by analyzing the tem-
poral evolution of the amount of antibiotic that has diffused
through the biofilm WB. Because the function WB is mea-
surable experimentally, this model gives the opportunity to
experimentally check whether absorption occurs in the biofilm
and whether the biofilm parameters change over time. Our
model provides the function WB in the limit of long time as
a combination of power functions of time. If WB were not a
combination of power functions, then the model should be
changed, the considerations presented in Ref. [34] would be
helpful in this. For example, if logarithmic functions appeared

in WB, it would indicate that slow subdiffusion (ultraslow dif-
fusion) may occur in the biofilm. Then, diffusion in the biofilm
could be described by slow subdiffusion equation with new
boundary conditions at the biofilm boundaries. We mention
that the method of solving slow subdiffusion equations in a
system consisting of different media has been described in
Ref. [34]. However, since the empirical data considered in
the paper are well approximated by a combinations of power
functions of time, we feel encouraged to use the subdiffusion-
absorption equation (2) to describe the antibiotic transport in
a biofilm.

Biofilm does not have a homogeneous structure. Details of
how much biofilm is locally inhomogeneous are not known
for the processes considered here. Biofilm heterogeneity is
certainly related to the triggering of bacterial defences against
the action of an antibiotic, which cannot be predicted in ad-
vance. Thus, models leading to homogenization of a medium
are unlikely to apply here. However, we apply an approxi-
mation of a homogeneous biofilm, assigning to the biofilm
effective parameters as for a homogeneous biofilm. This
assumption gives theoretical results consistent with the empir-
ical ones. Such an approximation of a homogeneous biofilm
has a practical aspect. The effective biofilm parameters control
the function WB. We assume that the change in the structure
of the biofilm is manifested in the changes of the effective
parameters, and provides the change of parameters occurring
in Eqs. (25) and (28).

Biofilm has a structure that changes over time. Specific
changes in the biofilm structure occur when the bacteria
defense mechanisms against the action of the antibiotic are
activated. There is no universal scenario for the course of
the process of antibiotic diffusion through a biofilm. Many
such processes are not well known. In some cases, the de-
fense mechanism of bacteria is the effect of increased EPS
production, which causes the biofilm to thicken and to form a
diffusion barrier. In other cases, the opposite effect occurs as
a defense mechanism of the bacteria. When various defense
mechanisms may be activated, determining how far from
equilibrium the system is seems to be almost impossible. For
this reason, we do not consider biofilm parameters defined in
equilibrium conditions. However, the parameters have proba-
bilistic interpretations.

The course of the process for a particular system depends
on the type of antibiotic, its concentration, and the species
of biofilm. Not all stages of the process of antibiotic dif-
fusion through the biofilm are always observed. Moreover,
in some cases the order of the stages may be different than
the one presented in Sec. VI. We mention here ciprofloxacin
diffusion through a biofilm, which has a plum-pudding struc-
ture [56]. The pudding background represents the artificial
sputum medium and the plums represent the Pseudomonas
aeruginosa biofilm. An antibiotic can only interact with the
bacteria in plums, the pudding is only a diffusion barrier for
the antibiotic. A plum-pudding bioflim is typical for a cystic
fibrosis biofilm in which another bacterial infection is present.
In this case, the sequence of stages is as follows: Stage I,
Stage IV, Stage III. This order is different from that seen in
Fig. 5 in the present paper, where Stage III precedes Stage IV.
The precise interaction of bacteria with the antibiotic is thus
qualitatively different in the two cases mentioned above. In the
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dense biofilm, considered here, the antibiotic can interact with
bacteria all the time from the moment it enters the biofilm. In
the biofilm having the plum-pudding structure, the bacteria
located in the plums defend against antibiotic action after
some time, when the antibiotic in the appropriate concentra-
tion reaches the plums. In this case, the temporary increase
in the antibiotic concentration attacking the bacteria is slower
than for a dense biofilm. This fact causes a different intensity
of developing bacterial defense mechanisms. Observation of
the sequence of stages in experiments may therefore allow one
to conclude a more detailed structure of the biofilm.

We emphasize that the experimental measurement is not
carried out inside the biofilm, but in an outer region, and is
thus noninvasive to the biofilm. The change of biofilm param-
eters is identified here with the change of parameters of the WB

function. Such physical properties may be useful in deriving
new strategies to fight biofilms. We mention that changes in
a biofilm structure under the influence of various external
factors have been recently intensively studied [57–60]. How-
ever, a general model of the interaction of an antibiotic with
a biofilm is so far not known. We believe that knowledge of
the properties of the WB function can be helpful in determin-
ing which mechanism of bacterial defense against the effects
of an antibiotic dominates the process under consideration.
An example of this is diffusion of ciprofloxacin through a
Pseudomonas aeruginosa biofilm. This process is presented
in Fig. 4, in which absorption (i.e., the elimination of antibi-
otic particles from further diffusion in the biofilm) occurs for
longer time t > t1. However, it is argued in Ref. [61] that the
diffusion barrier should not appear in this case. It can therefore
be hypothesized that other biofilm defense mechanisms have
been activated that lead to the retention or destruction of
antibiotic molecules. Another hypothesis worth considering
is that in this case the diffusion barrier may depend on the
concentration of the antibiotic.

If a change in biofilm parameters is observed, it appears
likely that the bacteria are actively defending themselves
against the effects of the antibiotic. However, if this process
is followed by a stage in which the biofilm parameters reach
constant values, it probably means that the bacteria do not
increase the intensity of their defense despite the fact that
the concentration of the antibiotic in the biofilm continues to
increase. We therefore hypothesize: If a process with a change
in biofilm parameters occurs and a final process is observed
in which the parameters are constant when the antibiotic
concentration in the biofilm increases, the beginning of the
later process is the time at which the bacteria are not able
to further enhance an effective defense against the antibiotic
using the same defense mechanisms. A possible biological
interpretation is that bacteria were probably killed at that time.
For the situation presented in Fig. 5, the final process with
constant parameters occurs when the function Wκ̃ (t )B reaches
a plateau.

We suppose that the temporal evolution of antibiotic con-
centration has the same properties as the function WB. In
practice, this means that when calculating antibiotic con-
centration profiles in a biofilm, one may use the quasistatic
approximation in a similar way as it has been done for the
WB function. Considering the diffusion of an antibiotic in
a three-dimensional space, the boundary conditions on the

biofilm boundary Eqs. (19) and (20) can be set in a direction
normal to the biofilm surface.
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APPENDIX A

The generating functions of Eqs. (5)–(8) read

SA(m, z) = η
|m−m0|
A (z) + �A(z)η2N−m−m0

A (z)√
1 − z2

, (A1)

SM (m, z) = �M (z)ηm−N−1
M (z)ηN−m0

A (z)√
(1 + Rz)2 − z2

, (A2)

where ηA(z) = (1 − √
1 − z2)/z, ηM (z) = (1 + Rz −√

(1 + Rz)2 − z2)/z, �A(z) = [q − ηA(z) + (1 − q)ηM (z)]/
[1/ηA(z) − q − (1 − q)ηM (z)], and �M (z) = [(1 − q)(1 −
η2

M (z))]/[1/ηA(z) − q − (1 − q)ηM (z)]. Moving from
discrete to continuous time we change the variable z to
ψ̂A(s) or ψ̂M (s) in the generating functions. In Ref. [34] it
was proved that ηA depends on ψ̂A(s) only, similarly ηM

depends on the ψ̂M only. This rule, the equations presented
in Sec. II and the approximations ψ̂A(s) = 1 − ε2s/2D,
ψ̂M (s) = 1 − ε2sα/2DM provide Eqs. (10) and (11) in the
limit of small ε.

APPENDIX B

The Laplace transforms of solutions to the diffusion equa-
tions (1)–(3) with the boundary conditions (19)–(22) and the
initial condition (23) are

ĈA(x, s) = C0

s
− C0(1 − qA)βM (s)

s
e−β(s)(x1−x)

× �+
B (s) + �−

B (s)e−2βM (s)d

�+
A (s)�+

B (s) − �−
A (s)�−

B (s)e−2βM (s)d
, (B1)

ĈM (x, s) = C0(1 − qA)Dβ(s)

s2−αDM

× �+
B (s)e−βM (s)(x−x1 ) − �−

B (s)e−βM (s)(2x2−x1−x)

�+
A (s)�+

B (s) − �−
A (s)�−

B (s)e−2βM (s)d
,

(B2)

ĈB(x, s) = 2C0(1 − qA)

�+
A (s)�+

B (s) − �−
A (s)�−

B (s)e−2βM (s)d

× β(s)βM (s)

s
e−β(s)(x−x2 )−βM (s)d , (B3)

where �±
A,B(s) = β(s) ± (1 − qA,B)βM (s), β(s) = √

s/D,

βM (s) =
√

κ2 + sα/DM , and d = x2 − x1. The Laplace
transform of the time evolution of the amount of substance
that has diffused through the biofilm is calculated by means
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of the following formula:

ŴκB(s) = �

∫ ∞

x2

ĈB(x, s)dx. (B4)

From Eqs. (B3) and (B4) we get

ŴκB(s) = 2(1 − qA)�C0βM (s) e−βM (s)d

(�+
A (s)�+

B (s) − �−
A (s)�−

B (s)e−2βM (s)d )s
. (B5)

We calculate the inverse Laplace transform in the limit of
small s, corresponding to the limit of long time. Keeping the

leading terms with respect to s we obtain

ŴκB(s)

�C0
=

{
ã0

s3/2 − b̃0
s2−α , κ = 0,

ãκ

s − b̃κ√
s
− c̃κ

s1−α , κ 
= 0,
(B6)

where ã0 = (1 − qA)
√

D/(2 − qA − qB), b̃0 = ã2
0d (1 − qB)/

DM , ãκ = 1/[(1 − qB)κ sinh(κd )], b̃κ = ãκ coth(κd )[1/(1 −
qA) + 1/(1 − qB)]/

√
D, c̃κ = ãκ [1 + κd coth(κd )]/2DMκ2.

From Eq. (B6) we get Eqs. (25) and (28).
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