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ABSTRACT

The escape from a potential well is an archetypal problem in the study of stochastic dynamical systems, representing real-world situations
from chemical reactions to leaving an established home range in movement ecology. Concurrently, Lévy noise is a well-established approach
to model systems characterized by statistical outliers and diverging higher order moments, ranging from gene expression control to the
movement patterns of animals and humans. Here, we study the problem of Lévy noise-driven escape from an almost rectangular, arctangent
potential well restricted by two absorbing boundaries, mostly under the action of the Cauchy noise. We unveil analogies of the observed
transient dynamics to the general properties of stationary states of Lévy processes in single-well potentials. The first-escape dynamics is
shown to exhibit exponential tails. We examine the dependence of the escape on the shape parameters, steepness, and height of the arctangent
potential. Finally, we explore in detail the behavior of the probability densities of the first-escape time and the last-hitting point.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021795

The escape from a potential well is an archetypal process under-
lying many noise induced phenomena. The escape protocol is
sensitive to the noise type; therefore, escape induced by equi-
librium, thermal, Gaussian noise is very different from escape
induced by non-equilibrium α-stable white Lévy noise driving.
In general, in the presence of Gaussian driving, the height of
the potential barrier determines the transition rate while in the
non-equilibrium regime, the transition rate is determined by the
barrier width. As we show, in special situations, escape rates as
well as first passage times are sensitive to both the width and the
height of the potential barrier—as a particle may escape from
the system not only via a single long jump but also by follow-
ing a sequence of short jumps. The escape protocol affects not
only the transition rates but also the time-dependent probability
densities. Already for finite depths of a rectangular-like poten-
tial well, e.g., the arctangent potential well considered here, the
part located within the potential well is similar to a stationary

density recorded in a similar single-well potential. At the same
time, extra modes are placed outside the potential well. Due to
the presence of absorbing boundaries, the probability of find-
ing a particle in the domain of motion decays exponentially over
time, typical for Markovian diffusion in finite domains. Finally,
the escape scenario is also reflected in the last hitting point distri-
bution. Escapes performed by a single long jump are responsible
for the emergence of a dominating peak at the initial position,
while short jumps produce peaks in the vicinity of the absorbing
boundaries.

I. INTRODUCTION

After the theoretical description of thermal diffusion by Ein-
stein, Sutherland, Smoluchowski, and Langevin1–4 in his seminal
1916 work, Smoluchowski applied these insights to develop the
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theory of coagulation of two colloidal particles.5 His approach is
still essential for many calculations of chemical reaction rates, and
it is based on the first-hitting time of the two diffusing particles.
However, for a successful chemical reaction, in addition to the
diffusion-limitation to find each other, in order to react, the acti-
vation (Gibbs) energy barrier needs to be overcome, as originally
proposed by Arrhenius.6 Typically, this requires the particles to
collide multiple times before a successful reaction occurs.7,8 Con-
sidering this reaction-limited step on top of the diffusive search
leads to a considerable further defocusing of the associated reaction-
times,9,10 an important factor especially for reactions in the low-
concentration limit, e.g., in gene expression.11–13 Today, barrier
crossing in chemical reactions (association and dissociation) is at the
heart of reaction-rate theory.14 Originally worked out by Kramers
in 1940,15 many additional facets of noise-driven barrier crossing
have been explored. Among the most prominent features, we men-
tion stochastic resonance and resonant activation,16–18 breaking of
detailed balance and thermal ratcheting19,20 underlying processes
such as the motion of Brownian motors,21 and transition-state
theory.22,23

In the overdamped regime, the state of a classical particle is
characterized by its position coordinate only. In the absence of noise,
the particle settles in any local minimum of the potential. In this
sense, all minima of the potential are stable. In contrast, in the
presence of noise, e.g., thermal fluctuations, the relative stability
of potential minima becomes modified, and typically deeper min-
ima are more stable. Moreover, noise may facilitate the escape from
a given potential minimum. Noise-driven escape is well studied14

when the driving noise is white and Gaussian.24,25 However, the
assumption of the Gaussianity of the noise might have to be relaxed
as non-equilibrium fluctuations may often have large non-Gaussian
outliers. In fact, heavy-tailed distributions of fluctuations may still be
white but approximated by Lévy-type, heavy-tailed noise densities
generalizing Gaussian densities.26 Conceptually, Lévy-stable noise is
utilized in many theoretical models.27–35 In fact, the generalized cen-
tral limit theorem for identically distributed, independent variables
with diverging variance gives rise to Lévy-stable densities as limiting
distributions.36,37 Lévy statistics may also emerge from deterministic
nonlinear systems near a critical point.38 Lévy-type fluctuations have
been observed in a wide variety of systems. These include fundamen-
tal physical systems such as heat transport anomalies,39 transport
in Lorentz-like gases40 and weakly turbulent systems,41 light prop-
agation in disordered optical media,42 quantum optical systems,43

and fluctuations in plasma devices.44 Lévy relocation statistics may
emerge in dimensionally reduced systems, e.g., when excitations
or molecules moving on long polymers may jump across short-
cuts where the polymer loops back on itself.45,46 In a biological
context, we mention molecular-motor motion,47,48 spreading of can-
cer cells,49 generalized models for gene transcription dynamics,50

and stability in gene regulatory networks.51 In climate models,
Lévy noise represents extreme fluctuations.52 An important field, in
which Lévy-stable relocation statistics have been widely explored, is
macroscopic movement. These systems include individual albatross
birds and sea predators,42,53–55 human hunter-gatherer foraging,56

pedestrian movement,57 modern-day human movement dynamics,58

and optimal robotic search.59 Further applications of non-local,
Lévy-type search are found in computer algorithms such as

simulated annealing.60 Recently, evidence for Lévy-type statistics
was reported in the Covid-19 pandemic propagation.61

Other prominent properties of systems driven by α-stable
noises are related to stationary states in single-well potentials. For
Gaussian white noise in such potential, stationary states are of
the Boltzmann–Gibbs type, i.e., they are unimodal. In the non-
equilibrium regime, i.e., under action of α-stable noises, if stationary
states exist, they are not of the Boltzmann–Gibbs type.62,63 Particu-
larly, they can be multimodal.64–68 Multimodality of stationary states
emerges due to the competition between deterministic and ran-
dom forces. The deterministic force is the restoring force, while
the random force is responsible for long excursions. If a particle
cannot return to the origin before the next noise-induced excur-
sion, for V(x) = |x|ν with ν > 2, the stationary state is multimodal
with modes located in the vicinity of maxima of the potential
curvature.64,65,68 Moreover, the scenario of emergence of bimodal
stationary states has unexpected properties, because the transient
densities between initial delta peak and final bimodal distribu-
tion can be trimodal.65 The trimodal transient density appears
because the initial peak disappears slower than the outer modes
emerge.

Lévy noise-driven barrier escape, the central topic of this study,
in the above-mentioned systems is relevant, inter alia, for the depar-
ture from locally stable climate states as outlined in Ref. 52 or as a
proxy for the escape of animals from their home range. Studying the
barrier crossing dynamics may shed new light on confinement of
plasmas or the transport of heat across insulating layers. Similarly, it
might help us to understand how in genetic systems seemingly stable
states may be left. The barrier crossing dynamics of a stochastic sys-
tem driven by Lévy-stable white noise is significantly different from
the scenario under Gaussian noise.52,67,69–74 Thus, in the Gaussian
case, the continuous particle trajectories force the particle to actu-
ally surmount the potential barrier such that the mean escape time
depends exponentially on the depth of the potential well.14,15 In con-
trast, under Lévy-stable noise, the trajectories exhibit long jumps,75,76

and the particle may simply jump across the barrier without actu-
ally reaching the top of the potential barrier.52 Due to the possibility
of anomalously long jumps, the escape time becomes sensitive to
the width of the potential barrier,52,72,77,78 and the dependence of the
mean escape time is, approximately, inversely proportional to the
noise strength.71

Here, we explore several aspects of the barrier crossing dynam-
ics of stochastic processes driven by Lévy-stable noise, using a
specific arctangent potential well in a finite interval delimited by two
absorbing boundaries. Putting these boundaries a distance from the
edges of the potential well, we are able to follow a rich time evolu-
tion of the probability densities and uncover interesting properties
of the escape dynamics. In particular, we disclose the dependence of
the escape times on both the width and depth of the potential. Apart
from the escape times, we also examine the last-hitting point dis-
tribution. For the probability densities, we find multimodal states
reflecting the competition between long jumps and confinement
by the potential. This relates the examination of the noise-induced
escape with general properties of stationary states in single-well
potentials. Our results from extensive Monte Carlo simulations
are compared with numerical solutions of the space-fractional
Smoluchowski–Fokker–Planck equation.
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The paper is structured as follows: in Sec. II, we formulate the
model and review some properties of Lévy noise-driven motion in
confining potentials relevant for the study of the time-dependent
probability densities. In Sec. III, we then present our main results
corresponding the Cauchy (α = 1) noise for the pre-asymptotic sys-
tem (Sec. III A), the last-hitting point behavior (Sec. III B), and the
escape time statistics (Sec. III C). Section IV shows similarities and
differences between Cauchy (α = 1) and general α-stable driving.
Finally, Sec. V concludes the paper.

II. FORMULATION OF THE MODEL

The overdamped Langevin equation,

ẋ(t) = −V′(x) + ξ(t), (1)

is the typical starting point for the description of a large variety of
stochastic dynamical systems.24,79 It governs motion of a test par-
ticle under the combined action of a deterministic potential force
−V′(x) and a random force ξ(t). The stochastic force approximates
the complex interactions of the test particle with its environment.
Here, we assume that noise ξ(t) is of α-stable type, i.e., it is the for-
mal time derivative of the symmetric α-stable process L(t),67,80 whose
increments 1L = L(t + 1t) − L(t) are independent and identically
distributed according to the α-stable density. We restrict ourselves
to symmetric α-stable noises only. Symmetric α-stable distributions
are unimodal densities with the characteristic function26,80

ϕ(k) = 〈 eik1L〉 = exp
[

−1tσ α|k|α
]

. (2)

The stability index α (0 < α 6 2) determines the tail of the distri-
bution, which for α < 2 is of power-law type P(x) ' |x|−(α+1). The
positive parameter σ is the scale parameter, i.e., it controls the width
of the distribution, typically defined by an interquantile width or
by fractional moments, as variance of α-stable variables with α < 2
diverges. In the numerical studies presented below, the scale param-
eter is set to unity, i.e., σ = 1. Moreover, we mainly focus on the
case of Cauchy noise, i.e., α-stable noise with α = 1. Nevertheless,
for illustration, we show some results corresponding to other values
of the stability index α, including α = 2, which corresponds to the
Gaussian white noise driving.

Within the current study, we assume that the random walker
moves within a bounded domain, restricted by two absorbing
boundaries, in the particular external, arctangent, potential

V(x) =
h

π
arctan

(

nx2 − n
)

. (3)

The shape of the potential given by Eq. (3) is determined by the two
parameters n and h. Parameter n controls the steepness of the poten-
tial—the larger the value of n, the steeper the potential is around
|x| = 1, and, in the limit n → ∞, it becomes the rectangular poten-
tial well. Parameter h characterizes the depth of the potential well.
In other words, changes in n affect the width of the potential bar-
rier, within x ≈ ±1 beyond which the potential rapidly grows. This
rapid growth of the potential is associated with a significant value
of the deterministic force. At the same time, changes in h affect
the barrier height. For large n and h → ∞, the potential given by
Eq. (3) merges into an infinite rectangular potential well, which is
frequently applied in quantum mechanics,81 the study of hard sphere

FIG. 1. Potential V(x) (solid lines) and potential curvature κ(x) (dashed lines)
for n = 5 (top panel) and n = 20 (bottom panel). Blue lines correspond to h = 1,
and orange lines to h = 10.

systems,82 the Percus–Yevick approximation,83 or the study of sta-
tionary states under Lévy noises,84 to name a few. For finite h, the
potential can be used to approximate a finite rectangular potential
barrier. Therefore, the potential given by Eq. (3) is especially suit-
able to study various hypotheses regarding the escape protocol, as it
allows for easy control of the depth and width of the potential bar-
rier. Exemplary potentials of the form given by Eq. (3) are depicted
in Fig. 1 along with the corresponding curvatures κ(x)

κ(x) =
V′′(x)

[

1 + V′(x)2
]3/2 . (4)

The curvature κ(x) plays an important role in determining the shape
of stationary states in single-well potentials,64,68 as modal values of
the stationary densities can be attributed to extremes of curvatures.
Since the motion is restricted to a finite domain by the two absorbing
boundaries, there are no stationary states in this system. Neverthe-
less, the time-dependent densities can still be multimodal. As it will
be shown below, the location of the modes can be still attributed to
maxima of the potential curvature [see Eq. (4)].
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The Langevin equation (1) takes the following discretized80,85

form:

x(t + 1t) = x(t) − V′(x)1t + ξt × (1t)1/α , (5)

where ξt represents a sequence of independent identically dis-
tributed symmetric α-stable random variables,86–88 i.e., their char-
acteristic function is given by Eq. (2) with 1t = 1 [as 1t is explicitly
present in Eq. (5)]. The particle starts its motion in the center of
the potential well, i.e., x(0) = 0, while the absorbing boundaries are
located at x = ±3. Due to the presence of the absorbing boundaries,
the motion is continued as long as |x| < 3. Such a location of the
absorbing boundaries is motivated by two criteria: (i) it cannot be
too far from the origin because the mean first passage time (MFPT)
grows with increasing interval half-width [see Eq. (12)] and (ii) it
needs to be far enough to assure that there is a flat part of the poten-
tial. The positions of the absorbing boundaries at ±3 assure that for
any reasonably large n, there is a flat part of the potential outside the
potential well, i.e., the absorbing boundaries are outside the poten-
tial well and the average escape time is not overly large. Under such
conditions, the obtained results do not change qualitatively with the
change in the location of potential barriers. Every time a particle
crosses the absorbing boundary, it is immediately removed from the
system. Consequently, the amount of particles present in the system
decays over time. Asymptotically, for t → ∞, all particles escape
from the potential well. As we already mentioned in Sec. I, taking
into account dynamics both inside the arctangent potential well and
on the flat part of the potential allows us to unveil a rich and inter-
esting time evolution determined by the mixture of these two escape
problems.

Equation (1) describes the system’s time evolution on a sin-
gle trajectory level. From ensemble of trajectories x(t), it is possi-
ble to obtain the macroscopic evolution of the probability density
P(x, t|x0, 0) = 〈δ(x − x(t))〉. The evolution of the probability den-
sity function (PDF) P(x, t|x0, 0) is provided by the space-fractional
Smoluchowski–Fokker–Planck89–91 equation

∂P

∂t
=

∂

∂x

[

V′(x)P
]

+ σ α ∂αP

∂|x|α
. (6)

The space-fractional derivative ∂αP/∂|x|α of the Riesz–Weyl type92,93

can be defined by its Fourier transform

F

[

∂αP

∂|x|α

]

= −|k|αF(P). (7)

For details of the numerical method for solving Eq. (6), we refer the
reader to Appendix B of Ref. 94.

A particle moving in the potential (3) restricted by two absorb-
ing boundaries will surely leave the interval [−3, 3]. For such a
system, it is possible to calculate the survival probability

S(t) =

∫

|x|<3
P(x, t|x0, 0) dx, (8)

which gives the fraction of particles that at time t are still in the
system, i.e., in the interval [−3, 3]. Moreover, using the survival

probability, it is possible to define quasi-stationary state95–97

Q(x) = lim
t→∞

P(x, t|x0, 0)

S(t)
, (9)

which can be conveniently used as the auxiliary quantity in exami-
nation of some time-dependent probability densities.

III. RESULTS FOR THE CAUCHY CASE α =1

The problem of escape from the arctangent potential well we
consider here shares some features of solvable models driven by Lévy
noises: free motion,26 escape of a free particle from a finite interval
restricted by two absorbing boundaries,98,99 and stationary states in
an infinite rectangular potential well84 or in single-well potentials of
V(x) ∝ x2m type under Cauchy noise.66 Nevertheless, the model is
studied numerically, as it does not fully belong to any solvable case
and it does not allow for the use of approximations developed in
Refs. 52, 69, 77, and 78, because, as it is demonstrated below, the
mean first passage time is sensitive to both the width and height of
the potential barrier. We start by studying the detailed properties of
the time-dependent densities for the generic case α = 1 (Sec. III A).
Next, we switch to the escape kinetics by exploring the last hitting
point distributions (Sec. III B) and the first passage times along with
the mean first passage time (MFPT) (Sec. III C). As the driving
noise in Secs. III A–III C, we use Cauchy noise, i.e., α-stable noise
with α = 1. The details of the escape kinetics for α 6= 1 in our setup
require separate study and will be discussed in Sec. IV. Within the
following studies, we set the scale parameter σ to unity, i.e., σ = 1.

A. Time-dependent densities

Time-dependent densities P(x, t|x0 = 0, 0) have been con-
structed numerically by ensemble averaging of trajectories x(t)
generated by Eq. (5) and by numerical methods for the fractional
Smoluchowski–Fokker–Planck equation (Appendix B of Ref. 94).
Sample time-dependent densities are depicted in Figs. 2 and 3.

The time-dependent densities are constructed for the symmet-
ric initial condition, x(0) = 0, which corresponds to P(x, 0|0, 0) =

δ(x). Therefore, the shape of densities is determined by the inter-
play of three processes: the decay of the initial peak, the emergence
of outer peaks within the potential well, and the ultimate absorption
of particles. The time-dependent densities consist of two parts. The
first part is located within the potential well, with x ∈ (−1, 1), while
the second, outer part corresponds to 1 < |x| < 3. The evolution of
the inner part (|x| < 1) is related to the scenario of reaching station-
ary states in single-well potentials,65,100 while the outer part (|x| > 1)
is determined by the jump length distribution. As the domain of
motion is restricted by two absorbing boundaries, asymptotically
all particles escape from the domain of motion. Consequently, the
number of particles decays over time. Nevertheless, for t > 2, the
time-dependent densities do not perceivably change their shape.
This phenomenon reflects the effect that quasi-stationary state Q(x)
has been reached [see Eq. (9)].

In the scenario of emergence of bimodal stationary densities
in single-well potentials of |x|ν (ν > 2), two regimes are observed.65

For ν > 4, the initial peak crosses over into a final bimodal state
via a transient trimodal state, while for 2 < ν 6 4, there is direct
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FIG. 2. Time-dependent probability densities P(x, t|x0 = 0, 0) ≡ P(x, t) corresponding to various parameters n and h characterizing the potential (3) at various times t.
In the plots, the red points denote the results obtained by stochastic simulation of the Langevin equation (5), while the black solid lines represent the numerical solution of
the corresponding space-fractional Smoluchowski–Fokker–Planck equation (6). The panels show the time-dependent densities at times t = 1 (top) and t = 5 (bottom). The
columns correspond to n = 5 (left) and n = 20 (right).

crossover from unimodal to bimodal state.65 Analogous scenarios
are recorded for the inner part of the time-dependent densities for
|x| < 1 [see Fig. 2 (transient trimodal state) and Fig. 3 (transient
bimodal state)]. With increasing n, the outer peaks move further
toward the barrier,84,101 i.e., they approach x = ±1. Moreover, peaks
located outside the potential well, on the flat part of the potential
profile, are amplified because with the increasing n (with increas-
ing steepness of the potential barrier), the potential curvature is also
increased.

The analysis of the potential curvature κ(x) suggests that for
finite n it is possible to select h such that the inner (|x| < 1) part
of the time-dependent densities will be unimodal. Indeed, such a
behavior is seen in Fig. 3, which presents the same results as Fig. 2
but for h = 10 instead of h = 1. With increasing h, we observe weak-
ening of the modes of time-dependent densities at |x| ≈ 1. Finally,
for h large enough, the inner part of the time-dependent densi-
ties becomes unimodal. Importantly, we observe deviations from

the typical, ν > 4, crossover scenario, mentioned above, because
transient states are invariably unimodal: we do not see a trimodal
transient state. Nevertheless, for a fixed h, the bimodality of the
inner part of the probability density can be reintroduced (see bot-
tom left and bottom right panels of Fig. 3 in which n is increased
from n = 5 to n = 20). Therefore, we conclude that, contrary to
stationary states in single-well potentials, the modality of the inner
(|x| < 1) part of time-dependent densities is determined by both
the steepness of the potential well (n) and height of the potential
barrier (h).

The local maxima of P(x, t|x0 = 0, 0) at |x| > 1 are produced
by those particles which managed to jump out of the potential well
and landed on the flat part of the potential. The deterministic force
and the random force produced by the central part of α-stable den-
sity produce minima of the time-dependent densities at x = ±1, as
the deterministic force with a little help of random force move par-
ticles, which landed at |x| ≈ ±1 back to the potential well. With
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FIG. 3. The same as in Fig. 2 for h = 10.

increasing n, the barrier width decreases, locating the minima and
outer maxima closer to the barriers at x = ±1. Moreover, minima
become deeper and the maxima higher.

The shape of the time-dependent densities for |x| > 1 can be
explained by the properties of α-stable densities, which induce ran-
dom jumps. On the one hand, the central part x ≈ 0 of the jump
length distribution is responsible for the penetration of the system.
Subsequently, particles that penetrate the system are responsible for
tails of the survival probability as they are absorbed after a longer
time. On the other hand, the tails of the jump length distribution
allow a particle to leave the domain via a single long jump. The
intermediate part of the jumps length distribution produces local
maxima of P(x, t|x0 = 0, 0) at 1 < |x| < 3. Due to the monotonous
decay of α-stable densities, in general, time-dependent densities on
the flat part of the potential decay with increasing |x|. Local minima
of the time-dependent densities are placed close to the barrier, i.e.,
at x ≈ ±1, because of the finite width of the barrier and the central
part of jump length distribution, which move some of particles back
to the potential well.

Finally, Fig. 4 shows the bifurcation diagrams corresponding to
inner (|x| < 1) parts of time-dependent densities from Figs. 2 and 3.
They display the locations of the maxima (solid lines) and the min-
ima (dashed lines) of the time-dependent densities. From Fig. 4, it
is clearly visible that the time-dependent densities can attain vari-
ous multimodal states. Typically, after sufficiently long time, they are
bimodal, but they can also be unimodal (see the bottom left panel of
Fig. 4). Moreover, the phenomenology of the transient probability
densities can be very different: depending on parameters character-
izing the potential, they can change their modality from 1 → 3 → 2
(top left), 3 → 2 (top right), 3 → 1 (bottom left), and 3 → 1 → 2
(bottom right) modes. Additionally, in Fig. 4, crossover times are
included.

B. Last hitting point density

The last hitting point, xlast, is the last visited point before the
escape from the domain |x| 6 3

xlast = {x(t − 1t) : |x(t − 1t)| 6 3 ∧ |x(t)| > 3}. (10)
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FIG. 4. Bifurcation diagrams for stability index α = 1 corresponding to |x| < 1 parts of Figs. 2 and 3. Solid lines show the positions xmax of the maxima (global and
local), and the dashed lines indicate positions of the minima (global and local). The panels show the bifurcation times for h = 1 (top) and h = 10 (bottom). Columns
correspond to n = 5 (left) and n = 20 (right). The thin vertical lines indicate the bifurcation times. The results are obtained by numerical solution of the space-fractional
Smoluchowski–Fokker–Planck equation (6) with time step 1t = 0.0001 and space increment 1x = 0.001.

The last hitting point is a random variable. Therefore, from an
ensemble of points xlast, it is possible to estimate the last hitting point
density P(xlast). Sample last hitting point densities are depicted in
Fig. 5.

From examination of the last hitting point densities, it is dis-
tinct that there are two main escape scenarios from the system (see
Fig. 5). The first scenario is typical for Lévy flights: a particle might
escape from any finite domain by a single very long jump. This
scenario produces a part of the last hitting point density, which
bears similarities to the quasi-stationary states or time-dependent

probability densities at long time (see bottom panels of Figs. 2 and
3). More precisely, the last hitting point density consists of the sin-
gle peak superimposed on the quasi-stationary density. In Fig. 5, the
dominating peak at the origin is associated with the initial condition
and its persistence at short times, while the remaining |x| < 2 part
corresponds to the quasi-stationary density. In the second scenario,
a particle jumps out of the potential well but does not manage to
escape from the domain. After leaving the potential well, especially
for large n, a particle is almost free as the potential profile is quite flat.
If a particle starts to move along the flat part of the potential, it might
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FIG. 5. Last hitting point densities for the potential (3) with n = 5, h = 1 (top)
and n = 5, h = 10 (bottom).

escape from the system via many short jumps. Analogously like in
the case of escape from finite intervals,102 also here, the sequence of
short jumps is responsible for the emergence of maxima of the last
hitting point densities near the boundaries, because short jumps give
the highest chances to approach the absorbing boundary.

Figure 5 presents histograms of the last hitting point for two
exemplary sets of parameters: n (barrier width) and h (depth of the
potential well). In the top panel, which depicts results for n = 5 and
h = 1, one may observe the central dominating peak and two smaller
ones. The central peak corresponds to the initial condition while
the smaller peaks correspond to the modes of the quasi-stationary
density, which have emerged in the potential well. Moreover, in the
vicinity of the absorbing boundaries, there are two modes in the
last hitting point density produced by escapes via a series of jumps.
The bottom panel of Fig. 5 displays results for n = 5 and h = 10,
for which the inner (|x| < 1) part of the time-dependent density is
always unimodal (see Fig. 3). Therefore, the last hitting point den-
sity is composed of a narrow peak in the central part corresponding

TABLE I. Values of the fitted parameter in Eq. (13).

h 1 4 10

a 0.385 0.374 0.373
b 0.44 0.84 1.23

to particles, which have escaped via a single jump from the poten-
tial well and two outer peaks in the proximity of the absorbing
boundaries.

C. First passage times

The first passage time τ is defined as

τ = min(t : x(0) = 0 ∧ |x(t)| > 3), (11)

while the mean first passage time (MFPT) is the ensemble average
first passage time, i.e., T = 〈τ 〉.

From Fig. 6, it is clearly visible that with increasing steepness of
the potential barrier (increasing n), the MFPT is reduced. For finite
barrier width, n, the MFPT is also sensitive to the barrier height h.
From computer simulations, we see that in the limit of n → ∞, the
MFPT becomes insensitive or weakly sensitive to the barrier height
(see Refs. 52, 78, and 102). The lack of sensitivity to the barrier
height can be intuitively justified by the fact that with the increas-
ing n width of the barrier decreases making the domain where the
deterministic force acts narrower. Consequently, only a very limited
number of particles feel the deterministic force, whereas the majority
of particles moves practically as free particles. Moreover, the MFPT
is dominated by the flat parts of the potential. More precisely, the
escape process is constituted of three phases: approaching the barrier
(|x| = 1), passing over the barrier, and approaching the absorbing
boundaries (x = ±3). For n → ∞, with any finite h, the width of
the potential barrier tends to zero. The transition over the “zero”
width potential barrier is immediate; thus, the process of approach-
ing the barriers and boundaries determines the value of the MFPT.
Finally, for any finite h, in the limit of n → ∞, the MFPTs are the
same. Moreover, for n → ∞, the MFPT tends to the MFPT98,99 of a
free particle from a finite domain of half-width L,

T0 =
1

0(1 + α)

Lα

σ α
. (12)

For the given setup L = 3 and the MFPT is equal to T0 = 3.
Additionally, in Fig. 6, to the numerically obtained values of the
differences between MFPTs and T0, power-law functions,

T − T0 = b × x−a, (13)

have been fitted and depicted by solid lines. Values of the obtained
parameters are included in Table I. Note that the exponents a
corresponding to different potential barrier heights are similar.

The process x(t) [see Eq. (1)] is Markovian. Consequently, the
survival probability S(t) given by Eq. (8) has exponential tails S(t) ∝

exp(−λt) (see Fig. 7 and Ref. 103). The survival probability S(t) is
related to the first passage time density ℘(t) via ℘(t) = − dS(t)

dt
. At

short times, the survival probabilities S(t) corresponding to vari-
ous parameters are similar (see Fig. 7), because those particles that
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FIG. 6. Difference between mean first passage times T for the considered poten-
tial and T0 for the free particle, given by Eq. (12) with L = 3, as a function of the
barrier width (n) for different depths (h) of potential wells. Solid lines correspond
to the power-law fits given by Eq. (13).

have not escaped via a single jump need some time to approach the
boundary. The differences between various S(t) show up at longer
times t, because particles that have stayed longer in the system were
capable of penetrating the potential barrier.

Top panel of Fig. 7 shows survival probabilities for the fixed
height h = 4 of the potential barrier and varying width of the barrier
n (n ∈ {5, 10, 20, 40, 80}). The bottom panel of Fig. 7 depicts sur-
vival probabilities for the fixed width n = 20 of the potential barrier
and varying height of the barrier h (h ∈ {1, 4, 10}). The decay rate
of survival probabilities is related to the mean first passage time.103

For fixed n with increasing h the MFPT increases, while for fixed
h with increasing n MFPT decreases. With decreasing MFPT, the
decay of the survival probability becomes faster, i.e., the exponent λ

characterizing the exponential decay increases103 (see Fig. 7).

IV. TIME-DEPENDENT DENSITIES FOR THE CASE α 6=1

While in the remainder of the text we concentrate on the
guiding example of Cauchy (α = 1) white noise, in this section,
we present a comparison of results for the time-dependent PDFs
P(x, t|x0, 0) with stable indices α = 0.5, 1, and 1.5 for different
parameters n and h, as depicted in Figs. 8 and 9. For clarity rea-
sons, in the top panels of Figs. 8 and 9, we have restricted the range
of the ordinate axis. Otherwise, single peaks of P(x, 0.02) would hide
details of the lower parts of the probability densities. Moreover, in
Figs. 10 and 11, we demonstrate the bifurcation diagrams showing
crossovers between different shapes of the within the potential well
PDFs with one, two, and three maxima for the cases α = 0.5 and 1.5,
respectively.

In the left panels of Fig. 8, we show results for the PDF
P(x, t|x0 = 0, 0) in the presence of the external arctangent poten-
tial (3) with n = 5 and h = 1 for different times. As can be seen,
for α = 0.5 the trimodal intrawell state with one main and two
additional symmetric peaks emerge early on, while for α = 1 and
α = 1.5 at short times, there still exists the unimodal intrawell state.

FIG. 7. The survival probability S(t), i.e., the probability that a particle has not
escaped from the potential well up to time t for fixed h = 4 with various n (top
panel) and for fixed n = 20 with varying h (bottom panel).

In a more detailed analysis (not shown), we checked that this uni-
modal state turns into a trimodal state at times t ≈ 1.1 and t ≈ 2.47
(not shown), respectively (see also the top left panels in Figs. 4 as
well as in Figs. 10 and 11). At intermediate times, the trimodal state
changes into a bimodal state at times t ≈ 3.2, t ≈ 1.63, and t ≈ 2.66
for α = 0.5, 1, and 1.5, respectively (see also the top left panels in
Figs. 10 and 11).

In the right panels of Fig. 8, the PDF P(x, t|x0 = 0, 0) is shown
for the same fixed h = 1 and the same times as in the left panels,
however, for the larger value n = 20. As it is clear from the figure,
with increasing steepness parameter n, the lifetime of the trimodal
intrawell state for α = 0.5 increases (see also the top right panel of
Fig. 10). For α = 1, the trimodal intrawell state develops already at
very short times and then changes into the bimodal intrawell state at
t ≈ 2.05 (see also the top right panel of Fig. 4). Moreover, in the case
of α = 1.5, we recognize a crossover from a trimodal to a unimodal
state and back at times t ≈ 0.05 and t ≈ 0.59, respectively, while at
t ≈ 1.83, the crossover to the bimodal state occurs (see also the top
right panel of Fig. 11).

Similarly, in Fig. 9, we demonstrate the time-dependent PDFs
with parameters n = 5, h = 10 (left panels) and n = 20, h = 10
(right panels) at different times. For α = 0.5 and α = 1 in the poten-
tial well on the left, there are two additional symmetric peaks which

Chaos 30, 123103 (2020); doi: 10.1063/5.0021795 30, 123103-9

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 8. Time-dependent PDFs for various param-
eters n and h characterizing the arctangent potential
(3) at different times t = 0.02, 1, 2, 5, and 10 (top to
bottom). The columns correspond to n = 5 (left) and
n = 20 (right). Results are obtained by
numerical solution of the space-fractional Smolu-
chowski–Fokker–Planck equation (6) with time step
1t = 0.0001 and space increment 1x = 0.001.
For clarity, the (unimodal) peaks of time-dependent
densities in the top panel are not shown, while in the
bottom panel, the densities for α = 2 are plotted using
the right vertical axis.
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FIG. 9. The same as in Fig. 8 for h = 10.
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FIG. 10. The same as in Fig. 4 for α = 0.5.

disappear at short times t ≈ 0.46 and t ≈ 0.09, respectively, while
for α = 1.5, we have a unimodal intrawell state at all times (see also
the bottom left panels in Figs. 10 and 11). In the right panels, the
lifetime of the trimodal intrawell state decreases for α = 0.5 (see
the bottom right panel of Fig. 10). For α = 1, there is the crossover
from a trimodal to a unimodal state and back at times t ≈ 0.19 and
t ≈ 1.14, respectively, then at time t ≈ 1.27 a crossover to a bimodal
state takes place (see the bottom right panel of Fig. 4). For α = 1.5,
there occurs a crossover from a trimodal to a unimodal state at time
t ≈ 0.04 and from a unimodal to a bimodal state at t ≈ 1.38 (see the
bottom right panel of Fig. 11).

Additionally, in Figs. 8 and 9, we have depicted the time-
dependent densities for the Gaussian white noise driving. The escape

for α = 2 is significantly slower than for α < 2; consequently, under
Gaussian white noise driving, less particles become absorbed. This
increases the probability densities P(x, t|x0 = 0, 0) with α = 2 com-
pared to analogous densities with α < 2. With increasing time,
this effect becomes amplified. For clarity, therefore, for t = 10
(bottom panels of Figs. 8 and 9) values of P(x, t|x0 = 0, 0) with
α = 2 are plotted using right vertical axes. For α = 2, the time-
dependent densities are clearly unimodal. Moreover, for t � 1, if
the potential well is deep enough, e.g., h = 10, the escape rate is
so low that time-dependent densities can be very well approxi-
mated by the quasi-stationary density given by Eq. (9). It is given
by the renormalized Boltzmann–Gibbs state, i.e., P(x, t|x0 = 0, 0) ≈

NS(t) exp[−V(x)] (see Fig. 9), where S(t) is the fraction of particles
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FIG. 11. The same as in Fig. 4 for α = 1.5.

(survival probability), which stay in the system and N is the normal-
ization factor N = 1/

∫ 3
−3 exp[−V(x)]dx. For h = 1, such an approx-

imation does not fully work. It can indeed provide an approximation
within the well part of P(x, t), but it cannot reproduce nonzero
probabilities outside the potential well, i.e., for |x| > 1.

In Figs. 10 and 11, we demonstrate the bifurcation dia-
grams for stability indices α = 0.5, 1, and 1.5, respectively. As
can be seen, depending on the parameters n and h, differ-
ent crossovers between the unimodal, bimodal, and trimodal
intrawell states occur. For example, for the case n = 5, h = 1 for
α = 0.5, we observe the crossover from trimodal to bimodal states
at the bifurcation time t ≈ 3.2 (see the top left panel of Fig. 10),
while for α = 1 and α = 1.5, the crossover from unimodality to

trimodality occurs at times t ≈ 1.1 and t ≈ 2.47 (see the top left
panel of Fig. 4 as well as the top left panel of Fig. 11, respectively).
Moreover, a crossover from a trimodal to a bimodal state occurs at
the bifurcation time t ≈ 1.63 for α = 1 and at t ≈ 2.66 for α = 1.5.

For the stability index α = 0.5, on increasing parameter n from
5 to 20 with the same h = 1, the crossover time from the trimodal
to the bimodal intrawell state increases from t ≈ 3.2 to t ≈ 3.87 (see
the top panels in Fig. 10). For α = 1 and h = 1, with increasing n
from 5 to 20 the unimodality disappears, the lifetime of the trimodal
state increases, and the bimodal state emerges at time t ≈ 2.05 (see
the top right panel of Fig. 4). Moreover, for α = 1.5 in the cases
h = 1 and n = 20, the crossover from the trimodal to the uni-
modal state occurs at the short time t ≈ 0.05, then the trimodal state
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emerges from the unimodal one at t ≈ 0.59, and finally a crossover
from the trimodal to the bimodal state at t ≈ 1.83 is observed (see
the right panel of Fig. 11).

With the same n = 5, by increasing h from 1 to 10 for the stabil-
ity indices α = 0.5 and α = 1, there exist crossovers from trimodal
to unimodal intrawell states at the bifurcation times t ≈ 0.46 and
t ≈ 0.09, respectively (see the bottom left panels in Figs. 4 and 10).
At the same time, for α = 1.5 with n = 5 and h = 10, the PDF is
always unimodal (see the bottom left panel of Fig. 11).

Finally, we notice that for α = 0.5 with n = 20, by increasing
the parameter h from 1 to 10 the lifetime of the trimodal intrawell
state decreases from t ≈ 3.87 to t ≈ 2.86 (see the right panels in
Fig. 10). For α = 1 with n = 20 and h = 10, the crossovers occur
from a trimodal to a unimodal state at t ≈ 0.19, then back from uni-
modal to trimodal at t ≈ 1.14, and finally from trimodal to bimodal
at t ≈ 1.27 (see the bottom right panel of Fig. 4). Moreover, for
α = 1.5 with n = 20 and h = 10, the trimodal–unimodal crossover
appears at t ≈ 0.04, and the unimodal–bimodal crossover appears at
t ≈ 1.38 (see the bottom right panel of Fig. 11).

V. CONCLUSIONS

Noise is a well-established and frequently used concept in
statistical physics. It is employed to approximate complicated,
irregular collisions of a test particle with its environment. More-
over, Lévy flights are applied in various biological applications
including search strategies.55,104,105 In the context of the current
research, there are two very related problems induced by Lévy noise:
the escape from potential wells and the emergence of stationary
states.

Within the current study, we examined the problem of Lévy
noise-driven escape of a particle from a box-like potential well.
Moreover, we assumed that the whole domain of motion is restricted
by two absorbing boundaries. We focused on the qualification of
the time-dependent densities, the last hitting point densities, and the
first passage problems.

Time-dependent densities are constituted of two parts. The
part located within the potential well is similar to the stationary
densities recorded in single-well potentials. Analogously, like in
single-well potentials, the time-dependent densities can be tran-
siently trimodal. The outer part of the time-dependent densities is
determined by the shape of the α-stable densities and diffusion along
the flat part of the potential profile. Due to the presence of absorb-
ing boundaries, the probability of finding a particle in the domain of
motion decays exponentially over time.

The examination of the last hitting point densities reveals pos-
sible escape scenarios. A particle can escape from the system via
a single long jump or in a sequence of short jumps. Long jumps
relate the last hitting point density to the time-dependent densities,
while short jumps produce peaks in the vicinity of the absorbing
boundaries.

Finally, the examination of the first passage problem confirms
that for high potential barriers, the escape time is determined by the
barrier width. Moreover, the substantial contribution to the first pas-
sage time is produced by a part of the motion which explores flat
parts of the potential profile.
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