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Abstract
Fractional Brownianmotion (FBM) is aGaussian stochastic process with stationary, long-time
correlated increments and is frequently used tomodel anomalous diffusion processes.We study
numerically FBMconfined to afinite interval with reflecting boundary conditions. The probability
density function of this reflected FBMat long times converges to a stationary distribution showing
distinct deviations from the fullyflat distribution of amplitude 1/L in an interval of length L found for
reflected normal Brownianmotion.While for superdiffusion, corresponding to amean squared
displacement (MSD) á ñ a( )X t t2 with 1<α<2, the probability density function is lowered in the
centre of the interval and rises towards the boundaries, for subdiffusion (0<α<1) this behaviour is
reversed and the particle density is depleted close to the boundaries. TheMSD in these cases at long
times converges to a stationary value, which is, remarkably,monotonically increasingwith the
anomalous diffusion exponentα. Our a priori surprising resultsmay have interesting consequences
for the application of FBM for processes such asmolecule or tracer diffusion in the confines of living
biological cells or organelles, or other viscoelastic environments such as dense liquids inmicrofluidic
chambers.

1. Introduction

Diffusive transport is quite ubiquitous, ranging fromquantumprocesses such as laser cooling over thermally
activated transport in living biological cells, to the dispersal of tracer chemicals in geophysical aquifers.While
theoretical works on diffusion often consider infinite or semi-infinite domains, inmany cases the particle
motion is restricted to afinite interval. Such a scenario is relevant, inter alia, for the dispersal of light in
disordered optical cavities, for themotion of thermally driven particles in confiningmicrofluidic chambers, gels,
or for themolecular and (sub)micron tracermotion in the confines of biological cells or their organelles. For
normal Brownian diffusion in an interval of length L the probability density tofind the particle anywherewithin
this interval has the constant amplitude 1/L at sufficiently long times: in the stationary state the particle can be
found everywhere equally likely. This property is so engrained in our intuition for randomprocesses thatwe
typically would not question its validity. Indeed, even for generalised randomprocesses such as the continuous
time randomwalk, such equidistributions naturally occur [1–4].We here show that for thewidely used,
Gaussian process of fractional Brownianmotion (FBM) describing overdamped viscoelastic diffusion, this
property is strikingly violated: the inherent negative or positive correlations of FBM in a finite interval effect a
pronounced depletion or accretion of the probability density in the vicinity of the boundaries, respectively4.
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While normal diffusion is characterised by the linear time dependence á ñ µ( )X t t2 of themean squared
displacement (MSD)5, anomalous diffusion typically classifies the power law time dependence

á ñ = a
a( ) ( )X t K t2 , 12

of theMSD,where the generalised diffusion coefficientKα has physical dimension of length2/timeα, andα is the
anomalous diffusion exponent. Depending on the value ofα one distinguishes between subdiffusion
(0<α<1) and superdiffusion (α>1) [2, 4].

Anomalous diffusion has been observed experimentally and numerically in awide array of systems [2, 4].
Thus, experimentally subdiffusion is frequently observed for passive particlemotion inside living biological cells
[5–11] and in crowded, viscoelastic solutions [6, 12–14]. It was also reported from supercomputing studies of
lipid and proteinmoleculemotion in bilayermembranes [15–18]. Subdiffusionmoreover occurs in other
systems, such as for charge carriermotion in amorphous semiconductors [1] or chemical tracers in
underground aquifers [19]. Superdiffusion has been observed for themotion ofmolecularmotor-transported
particles inside biological cells [20–22], themotion of tracers in two-dimensional rotatingflows [23], and for
bulk-mediated surface diffusion at liquid–solid interfaces [24].

Normal Brownianmotion is characterised by the universal Gaussian probability density [2]. Anomalous
diffusion processes lose this universality, and the various possibilities to break the attraction of the basin of the
central limit theorem give rise to differentmathematicalmodels [25]. For instance, the existence of power-law
sojourn times betweenmotion events with a divergingmeanwaiting time, as indeedmeasured in single particle
tracking experiment [10, 12], lead to anomalous diffusion (1) in the continuous time randomwalkmodel
[1, 2, 4, 25]. The second very prominent anomalous stochastic process is FBM,first introduced byKolmogorov
[26] and later studied byMandelbrot and vanNess [27]. FBM is a self-similar, Gaussian process with stationary,
long-time correlated increments to describe anomalous diffusion of the power law type (1) in the sub- and
superdiffusive range 0<α<2, see below. FBMhas been identified as the governing type ofmotion, or an
important ingredient of themotion, for the subdiffusion of various tracers in complex environments both
in vivo and in vitro [9, 11, 14–16, 28], but also for completely different stochastic processes such as electronic
network traffic [29] orfinancial time series [30, 31]. In the superdiffusive regimewith a<1 2 positive
increment correlations and single trajectory power-spectra consistent with FBMwere observed for the actively
drivenmotion of endogenous granules inside amoeba cells as well as for themotion of the amoeba
themselves [21, 32].

Concurrent to its wide use in diversefields FBMhas been studied inmathematical literature quite
extensively, see, for instance, [31, 33, 34]. Nevertheless,many of its fundamental properties remain elusive,
especially in the presence of non-trivial boundary conditions. Thus, themethod of images6 typically applied for
Brownianmotion or randomwalkswith long-tailed waiting time distributions [35] fails and there is no known
generalised diffusion equation for FBM that could be solvedwith directmethods for a given set of boundary
values. Among the few results known are the (asymptotic) density offirst passage times of FBMconfined in a
semi-infinite domain [36, 37] and conjectures for awedge domain [38], as well as the probability density of FBM
confined in a semi-infinite interval with an absorbing boundary at the origin in afirst order perturbation theory
approach [39] 7. The approach of choice to study FBM in the presence of boundary conditions inmost cases is
therefore by simulations.Wemention thatwhile FBM is asymptotically ergodic, that is, the time average of its
MSD in the long time limit converges to the ensemble limit [40], it is transiently ageing [41] and non-ergodic in
an external confinement [14, 42].Wefinally note that FBM is the basis for a class of stochastic processes called
generalised grey Brownianmotion [43], whichwas used tomodel anomalous diffusion in biological
systems [44].

Motivated by a recent study of FBM in a semi-infinite interval with a reflecting boundary at the origin [46],
we here investigate by extensive simulations FBMconfined to afinite interval with reflecting boundary
conditions. The central result is that the naively expected constant amplitude 1/L in an interval of length L in the
stationary limit for Brownianmotion is replaced by a solution for FBM inwhich the amplitude closer to the
boundaries is decreased or increased for subdiffusive and superdiffusive FBM.We analyse this reflected FBM in
terms of the probability density function and theMSD. In section 2we briefly introduce FBM (section 2.1) and

5
Herewe restrict our discussion to the one-dimensional processX(t)with initial valueX(0)=0. In higher dimensions themotion along

different coordinates is viewed as independent.
6
Similar to the imagesmethod in electrodynamics a reflecting or absorbing boundary condition at x=0 for Brownianmotionwith initial

position x0>0 can be taken into account by placing a second, imaginary particle (the ‘image’) at the reflected point−x0 and then summing
up (reflecting boundary) or subtracting (absorbing boundary) the respective Green’s functionsP(x, t)with P(x, 0)=δ(x), such that the full
solution of the boundary value problem isQ(x, t)=P(x−x0, t)±P(x+x0, t) [35].
7
Wenote that FBM should not be confusedwith scaled Brownianmotion (SBM) defined in terms of a diffusion equationwith a power-law

time dependent diffusivityD(t);tα−1 with 0<α<2 [45]. SBM isMarkovian and its probability density function obeys a generalised
diffusion equation that can be solved for given boundary conditions.
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discuss the implementation of reflecting boundary conditions leading to reflected FBM (section 2.2). In section 3
we present and discuss our results.We present ourConclusions and an outlook in section 4. A comparison of
our results for an alternative implementation of reflecting boundary conditions is given in the appendix.

2. A primer on FBMand its numerical implementation

2.1. Fractional Brownianmotion
FBM is a centredGaussian process with covariance function

á ñ = + - -a
a a a( ) ( ) ( ∣ ∣ ) ( )X t X t K t t t t 21 2 1 2 1 2

and continuous sample paths defined for anomalous diffusion exponents in the interval 0<α<2 [31]. For
α=1 FBM is aWiener process describing Brownianmotion. Fromdefinition (2) it follows that FBM starts at
the origin,X(0)=0, has theMSD (1), and the free-spaceGaussian probability density function

p
= -

a
a

a
a

⎛
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⎞
⎠⎟( ) ( )P x t

K t
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K t
,

1

4
exp

4
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Furthermore, the increments of FBMare stationary but—except for the case of Brownianmotion (α=1)—
long-time correlated and hence not independent. For superdiffusion (α>1) and subdiffusion (α<1),
respectively, the increments are positively and negatively correlated [31], see below. These correlations are the
cause for the strongly non-Markovian nature of FBMand the lack of a completemathematical apparatus to
analytically deal with the process in the presence of afixed length (and, by virtue of theMSD, thus time) scale.
FBM is a self-similar process with parameterα/2: for all c>0, in distributionX(ct)=cα/2X(t). Thismeans that
the paths of FBMare time scale-invariant up to a constant factor, that is, they statistically appear the same in
rescaled time intervals.

Despite the deceivingly simple formof the probability density function (3), naively employing themethod of
images to construct thefirst passage time density leads to erroneous results [37, 38, 47]8. Passing over to a
discrete time version of FBM that can be implemented numerically, we here define reflected FBMas follows.
Discrete time FBM is taken asYn=X(òn), where ò>0 is a time step. Its increment processRn=Yn+1−Yn is
discrete time fractional Gaussian noise (FGN). From this definition it follows that discrete FGN is a stationary,
centredGaussian process with covariance

á ñ = + + - -a
a a a a

+ ( ∣ ∣ ∣ ∣ ∣ ∣ ) ( )R R K j j j1 1 2 . 4i i j

The randomvariables defined by FGN are thus identically Gaussian-distributed, but, except for the case of
Brownianmotionwithα=1, long time correlated and hence not independent, such that the emerging process
FBM is strongly non-Markovian. For superdiffusion (subdiffusion) the increments are positively (negatively)
correlated
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In the long-time limit  ¥j the correlations tend to zero, the asymptotic form reading
 a aá ñ ~ -a
a a

+
-( )R R K j1i i j

2.
Using the definition of discrete time FGN, discrete time FBM satisfies the recursion relation

= = ++ ( )Y Y Y R0, 6n n n0 1

with the solution

å=
=

-

( )Y R . 7n
i

n

i
0

1

Discrete time FBMcan thus be considered as a randomwalkwith identically Gaussian distributed but long-time
correlated steps. By simulating discrete time FGNand using the recursion relation (6), discrete time FBMcan be
directly obtained.

8
Expression (3) is in fact identical with the probability density function of scaled Brownianmotion in unbounded space for which the

generalised diffusion equation is known andMarkovian. Using themethod of images based on solution (3) to determine the survival of a
particle for an absorbing boundary is consistentwith thefirst passage behaviour of scaled Brownianmotion.
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2.2. Reflected FBM
To implement the reflecting boundary condition and thus define discrete time reflected FBMZnweuse discrete
time FGNandmodify the recursion relation (6) appropriately. On the semi-infinite interval ¥[ )0, wedefine
reflected FBMby

=
= ++ ∣ ∣ ( )

Z
Z Z R

0,
. 8n n n

0

1

Thismeans that if the particle attempts to jump across the boundary of the interval by a distance d>0 to the left,
that is, attempts to perform themove   + = - <Z Z R d0 0n n n , it is instead reflected and placed inside
the interval with the same distance to the boundary.While definition (8) is local in space and identical to the one
used for normal Brownianmotion, due to the built-in correlations of FGN, the probability density function of
reflected FBMdoes not possess a horizontal derivative at the boundary for a ¹ 1, as was reported in [46]. The
standard horizontal-derivative boundary condition for a reflecting boundary is thus not valid for FBM,which is
intimately connectedwith the above statement that themethod of images cannot be applied.

The definition of the recursion relation for discrete time reflected FBM in a finite interval [a, b] (a<0<b)
is based on the same idea for either of the two boundaries. However, for afinite interval one has to consider the
possibility that the particle jumps across the boundary by a distance greater than the interval length L=b−a,
that is, d>L. Then, simply reflecting the particle as for the semi-infinite interval would place it outside the
interval.While in our simulations below the interval length L ismuch larger than the average single jump length
and thus such effects essentially never occur, to fully rule out this possibility the particle is kept reflecting
alternately at both boundaries until it isfinally reflected into (placed inside) the interval. This procedure indeed
works for any L and d and leads to the recursion relation (A.1). Our study here demonstrates that even in the
stationary limit for  ¥n the probability density function is not given by the constant value 1/L, apart from
the normal Brownian casewithout correlations. Instead the value of the probability density is significantly
depleted or accreted for sub- and superdiffusion. This phenomenonwill effect non-negligible consequences on
natural systems inwhich tracer particles follow the laws of FBM, aswe discuss in section 4.

Note that reflected FBMcould, in principle, also be defined differently. In appendix Awe demonstrate that
this alternative choice does not lead to the same behaviour and already produces inconsistent results for normal
Brownian diffusion. In the followingwe employ themeaningful definition of reflected FBMgiven in
equation (8).

3. Probability density function andMSDof reflected FBM

For the simulation of discrete time FGNwe employed theCholeskymethod [48], which can be used to simulate
an arbitraryGaussian process, given its expectation and covariance function. As underlying randomnumber
generator we used the Saito andMatsumoto SIMT-oriented FastMersenne Twister. The anomalous diffusion
coefficient was set toKα=1/2 in units of cm2/sα and the anomalous diffusion exponentα ranged from0.5 to
1.8.We used a symmetric interval [−L/2, L/2] centred at the origin, and the interval length Lwas changed from
10 to 2000 in units of cm. The time stepwas set to ò=1 in units of s, andwe performed simulationswith up to
N=2×104 time steps andM=5×105 trajectories, chosen such as to guarantee sufficient convergence of
the results. In all runs the initial condition placed the particle at the origin,X0=0. In the following all quantities
corresponding to unconfined FBMare called ‘free’.

3.1. Probability density function
Figure 1 shows the probability density function of reflected FBM for three different anomalous diffusion
exponents.Wemake the following observations. (i)At all times the shape of the probability density is symmetric
with respect to the origin, P(−x, t)=P(x, t), consistent with the symmetric definition of the process. (ii)At
sufficiently short times the probability density coincides with that of the corresponding free FBM, equation (3),
as it should be. (iii)At longer times the effect of the boundary becomes significant and the probability density
deviates from that of free FBM.Wenote that even in the superdiffusive case infigure 1(c) the solution of free
FBM still shows very good agreement with reflected FBMat intermediate times, apart from the region close to
the boundaries, demonstrating a relatively slow propagation of the boundary-effected disturbance of the
probability density. In the limit of very long times the probability density function converges to a stationary
limit. (iv) Strikingly, while for normal Brownian diffusion the stationary formof the probability density has the
constant amplitude 1/L, for sub- and superdiffusion the stationary shape deviates significantly from this
equidistribution.Namely, compared to the 1/L-equidistribution, for subdiffusion the stationary probability
density is increased in the central region of the interval andmonotonically decreases towards the boundary,
attaining amplitudes significantly below 1/L over an appreciable boundary zone. In contrast, for superdiffusion
the stationary probability density is decreased in the central region of the interval andmonotonically increases
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towards the boundary.Moreover, for superdiffusion at intermediate times the behaviour of the probability
density is non-monotonic between the origin and the boundary.

The behaviour of the probability density of reflected FBMcan be explained qualitatively as follows. For
subdiffusion the jumpsRn that the particle performs are negatively correlated. Therefore, if the particle jumps
across the boundary and gets reflected in one step, in the next step it tends to jump to the opposite direction,
away from the boundary. Hence, the particle on average tends to stay away from the boundary region and thus
the probability density in that region is depleted. For superdiffusion the jumps are positively correlated and
therefore, if the particle jumps across the boundary and gets reflected in one step, in the next step it tends to jump
in the same direction, towards the boundary. This leads to an accretion of particle probability in the boundary
region. For normal Brownian diffusion, in contrast, the jumps are uncorrelated and hence the particle has no
tendency to stay in or stay away from the boundary region. This effects the simple equidistributionwith
amplitude 1/L. Figure 2 shows a typical sample path for normal Brownian diffusion, sub- and superdiffusion,
and nicely illustrates this behaviour.

3.2.Mean squared displacement
Wenow show that the effects observed for the probability density function also translate to the behaviour of the
MSD. Figure 3 shows theMSDof reflected FBMwith interval length L=60 for different anomalous diffusion
exponents (top) andwith anomalous diffusion exponentα=0.7 for different interval lengths (bottom). At
short times theMSDbehaves like that of the corresponding free FBM, as it should. However, at long times the

Figure 1.Probability density function of reflected FBM shown at different times (see figure legend) for three different anomalous
diffusion exponents, from top to bottom: (a) subdiffusion,α=0.6; (b)normal Brownian diffusion,α=1; (c) superdiffusion,
α=1.8. The respective interval length is L=40, 40, and 160. The coloured lines show the theoretical probability density function of
free FBM, the black line shows the equidistributionwith amplitude 1/L on the interval.
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MSDconverges to the stationary value a = á ñ¥( ) ( )x L X t, limtst
2 2 , which ismonotonically increasing with the

anomalous diffusion exponentα and the interval length L. Since in the case of reflected Brownianmotion
(α=1) the stationary probability density is given by the equidistribution Pst(x)=1/L, in that case the
stationary value of theMSD simply becomes

Figure 2. Sample paths of reflected FBMas function of time on the interval L=20 for the three anomalous diffusion exponents
α=0.6, 1, and 1.8 (top to bottom).

Figure 3.MSDof reflected FBMwith interval length L=60 for different anomalous diffusion exponents (top) andwith anomalous
diffusion exponentα=0.7 for different interval lengths (bottom). The solid lines show the theoreticalMSDof the corresponding free
FBM (1). The dashed line shows the stationary value L2/12 of theMSD in the Brownian caseα=1, see equation (9).
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This value is shown as dashed line infigure 3.
We determined theMSDof reflected FBM for a range ofα values and several interval lengths L for eachfixed

α (the caseα=0.7 is shown infigure 3). From thesewe determined the stationary values of theMSD asmean
values from the stationary plateaus. Figure 4 shows the stationary value of theMSDversus the interval length for
the different anomalous diffusion exponents. The dashed lines corroborates that the stationary value of theMSD
is proportional to the squared interval length, independent of the anomalous diffusion exponent.We fitted9 the
stationary values of theMSD for eachα as a function of Lwith the fit-function f (L)=aLb andfit parameters a
and b. The resulting values of the fit parameters shown in table 1 nicely corroborate the conjecture of the
L2-proportionality. The slight deviation from the value 2 for the caseα=0.5 is likely due tofinite size effects, as
for thismost subdiffusive value the attained value is quite short, and infigure 3 the plateau has not been fully
reached.

From theα dependence of the stationaryMSD shown infigure B1 for different interval lengths Lwe deduce
that the data are consistent with the functional form a a= ´( )x L L, 12c

st
2 2 , where L2/12 is its value in the

Brownian limitα=1, and c>0.

4. Conclusion

We studied by simulations the stochastic process of reflected FBM,which is confined to afinite interval with
reflecting boundary conditions, a situation that is typical for tracer particles in the viscoelastic confines of
biological cells or their organelles, as well as in artificially crowded liquids inmicrofluidic devises and similar.We
found that the stationary probability density function of this reflected FBM significantly deviates from the

Figure 4. Stationary value a( )x L,st
2 of theMSD as a function of the interval length L for different anomalous diffusion exponentsα.

The dashed lines are proportional to L2.

Table 1.Values of thefit parameters a and b, resulting fromfits
of the stationary value of theMSD as a function of L for eachα.
The statistical uncertainties of thefit-parameter values are
smaller than 10−2.

α a b

0.5 0.05 1.91

0.7 0.06 1.98

0.9 0.07 2.00

1.0 0.08 2.00

1.3 0.11 2.01

1.5 0.14 2.00

1.8 0.18 2.00

9
Weused the gnuplot fit routine based on the nonlinear least-squareMarquardt–Levenberg algorithm.
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equidistributionwith amplitude 1/L found for reflected Brownianmotion (α=1). In particular, for
superdiffusion (1<α<2) the stationary probability density is decreased in the centre of the interval and
particle accretion occurs towards the boundaries, reaching amplitudes above 1/L. For subdiffusion (0<α<1)
this behaviour is reversed, andwe observe a distinct depletion of the probability density in an appreciable region
around the boundaries. TheMSD at long times converges to a stationary value, which ismonotonically
increasingwith rising anomalous diffusion exponent 0<α<2 and interval length L>0.Our simulation
results corroborate that the stationary value of theMSD is proportional to L2 for allα.

The formof the stationary probability density function can be qualitatively explained as a result of the
interplay between the positive or negative correlations of the discrete time FGN (the steps used to generate
reflected FBM) and the boundary conditions. It is tempting to ask towhich extent the observed formof the
stationary probability density function is universal for centredGaussian processes with stationary, positively
(negatively) long-time correlated increments under confinement with reflecting boundary conditions. In the
case of positive correlations, it is conjectured in [46] that for increments asymptotically decaying for large n as
nα−2 with 1<α<2 the stationary probability density equals that of the corresponding reflected FBM, and for
a decay faster than n−1 the stationary probability density agrees with that of reflected Brownianmotion. For
short-time correlations (positive or negative with at least exponentially fast decay)wenaturally expect the
stationary probability density to agree with that of reflected Brownianmotion. Amore detailed study of such
processes will be of interest. Similarly, it should be analysed how the relaxation behaviour of both theMSDand
the probability density function looks likewhenwe introduce hard or soft cutoffs to the FGN, as recently studied
in [49]. Finally, it will be interesting to see how corresponding stochastic processes fuelled by FGNbutwith
distributed (superstatistical) diffusivities [50] behave under confinement.

Asmentioned above FBM iswidely used tomodel anomalous diffusion in various complex systems,
particularly for (sub)micron-sized tracer particles such as vesicles, granules, viruses, or tracer beads in the
crowded cytoplasmof biological cells or in artificially crowded liquids. Inside cells, but also inmany situations
in vitro, boundaries in the formof cellularmembranes ormicrofluidic chambers play an essential role.
Cognisance of depletion layers around boundaries in the case of passive subdiffusion or accretion layers for
actively driven, superdiffusive particles will likely affectmodel calculations for interactions with the boundaries,
for instance, the binding tomembrane embedded receptors. It is an interesting question how these boundary
effects conspire with other, concurrent effects. Thus, in amicrofluidic chamber or inside a simplemembrane
vesicle, the depletion/accretion effects due to reflected FBMmay superimposewith transient sticking to the
boundary. This could be studied quantitatively in a reflected FBMmodel with a sticking time distribution to the
reflecting boundary, or in terms of reactive (Robin) boundary conditions. In real biological cells, we could think
of evenmore complicated situations. Thus,many cells have an enriched layer of actin cytoskeleton close to the
cell wall. Passive tracer particlesmay therefore be trapped intermittently in cages [12, 51], counteracting the
depletion effects due to subdiffusive FBM. Both experiments and detailed simulationswill be necessary to
scrutinise this phenomenon. In this context wemay venture a simple scaling argument. The fact that the
stationaryMSDdata show an L2 dependencewith a prefactor different from1/12 implys that the extra
contribution to the probability density caused by the boundaries is not confined to afinite interval close to the
walls, as otherwise a convergence to the value 1/12 for large L should be observed. Indeed, such a situationwould
not be surprising if we assume that the behaviour of the probability density is similar to the power-law found for
a semi-infinite domain in [46].We also note that the L2 proportionality of the stationaryMSDputs a constraint
on the exact formof the probability density. If we assume naive scaling, at least in the limit aL K1 2 at unit
timewewould expect a functional behaviour of the stationary probability density of the form P(x, L)=(1/L)g
(x/L), where g(·) is a scaling function. Consistent with our arguments, the depletion/accretion zonewidth thus
scales with L and becomes a non-negligible effect. The exact determination of thewidth of the depletion or
accumulation layer as function of L,Kα andαwill be the topic of future research.

It is instructive to compare our results for theMSD in our finite interval Lwith those for FBMconfined in an
harmonic potential =( ) ( )V x k x2 2 (k>0) as studied in [42, 47]. Themain difference, for any stochastic
process, is that the randommotion in an interval with reflecting boundaries (infinitely steep confining potential)
is athermal, that is, its stationary state does not involve the diffusion coefficient. In a confining potential,
processes such as normal Brownian diffusion or continuous time randomwalks with any distribution of waiting
times always converge to the corresponding Boltzmann solutionwith awell defined temperature [4, 25]. FBM,
in contrast to the fractional Langevin equation fulfilling Kubo’sfluctuation-dissipation relation [52, 53],
converges to a stationary state depending on both the generalised diffusivityKα and the anomalous diffusion
exponentα, a fact that follows from the corresponding (overdamped) Langevin equation fuelled by FGN
[42, 47]. At short times theMSDof this process grows like that of unconfined FBM.At long times it converges to
the stationary value a a= G +a

a( ) ( ) ( )x k K k, 1st
2 in terms of theΓ-function. Its stationary value, in contrast
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to the strictlymonotonic dependence onα of xst
2 for reflected FBM, is in general a non-monotonic function ofα

[47].Moreover, it can be shown that the transition of theMSD to the stationary value is exponential with the
single characteristic time scale 1/k, such that stationarity is reached at a time independent ofα [42]. In contrast,
for reflected FBM the time atwhich stationarity is reached strongly depends onα, as evidenced byfigure 3 (top).
Hence, theMSDof reflected FBMbehaves fundamentally different from that of FBMconfined tomove in an
harmonic potential.We expect that this fundamental differences between reflected and potential-confined FBM
persists when the harmonic potential is generalised to steeper potentialVn(x)=kx2 n/(2n)with n>2.
However, what happens in the limit  ¥n ? In this case, the potential essentially describes a potential well in
[−1, 1]with infinitely highwalls. Hence, the particles canmove freely inside that region, but are still confined to
it (by the infinitely high potential walls), similar to the casewith reflecting boundary conditions. This argument
is indeed corroborated by the data infigure 5. It remains open exactly for which n such a crossover can be
observed andwhat the associated relaxation dynamics is.

The case of an ever steeper external potentialmay also be used as an argument in favour of the approach
chosen hereinwith respect to the FGNdriving the reflected FBMprocess. Namely, we once create a time series of
noise increments that we use as input in our simulations, upon reflection at one of the twowalls the FGN time
series is simply continued.Onemay askwhether thememory of the FGNdue to the built-in power-law
correlations should not be reset once a reflection event occurs. No such complication is expectedwhenwe
consider FBM in amoderate external potential, for instance, the above-mentioned harmonic potential. Here the
action of the potential is taken to superimpose to the FGN, consistent with the quantativemodelling of
experiments [14]. If we nowmake the external potentialmuch steeper, wewould expect that the argument of
un-interrupted FGN still holds. However, as we demonstrate infigure 5 for the superdiffusive case already in this
case significant accretion zones are created10. The ultimate answerwhether the approachwith invariant FGN is
justified in systems such as biological cells will, of course, have to come from experiments.
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Figure 5.Probability density function of superdiffusive FBMwithα=1.8 in the external potentialV16(x)=x32/160 for varying
times. Similar to reflected FBM, accretion zones emerge in thewings of the stationary distribution.

10
Note that this effect is similar to the emergence ofmultimodal distributions for strongly confined Lévy flights [54].

9

New J. Phys. 21 (2019) 022002



AppendixA. Alternative boundary conditions produce inconsistent results

Basedon theprocedureof alternate reflectionsdescribed in section2.2onearrives at a recursion relation fordiscrete
time reflectedFBMinafinite interval by the following argument.Denotewith = + -{∣ ∣D Z R amin ,n n n

+ -∣ ∣}Z R bn n thedistanceof theparticle to thenearest boundary after its (n+1)th jump. If this leads theparticle
across aboundary (for instance,Zn+Rn>b),Dn is thedistanceof theparticle to this boundary.ThenSn=DnmodL
is the jump lengthof the last reflection, bywhich theparticle isfinallyplaced inside the interval. If the interval lengthL
‘fits into’ thedistanceDn evenly (⌊ ⌋D Ln even) the last reflectingboundary is equal to theone jumpedacrossfirst11. If
⌊ ⌋D Ln is odd, the last reflectingboundary is opposite to theone jumpedacrossfirst.Hence,wedefinediscrete time
reflectedFBMin thefinite interval [a,b]byZ0=0and

 

=

+ +
- + >

+ <
+ + >

+ <

+

⎧

⎨
⎪⎪

⎩
⎪⎪

⌊ ⌋
⌊ ⌋
⌊ ⌋
⌊ ⌋

( )Z

Z R a Z R b
b S Z R b D L

Z R a D L

a S Z R b D L

Z R a D L

,
, and even or

and odd

, and odd or

and even.

A.1n

n n n n

n n n n

n n n

n n n n

n n n

1

One can easily think of other boundary conditions which can justifiably be called ‘reflecting’ andwhich thus
lead to corresponding ‘reflected’ FBM.A particular simple choice is defined such that if the particle jumps across
the boundary, it is placed exactly on this boundary.We call this a ‘condensed reflecting boundary condition’.
Hence, the corresponding condensed reflected FBM in the interval [a, b] is defined byZ0=0 and

Figure A1. Left panels: Probability density of reflected (points) and condensed reflected (lines and points) FBMat different times for
different anomalous diffusion exponents, from top to bottom: a = 0.6, 1.0, and 1.8 (for L=40, 40, and 160, respectively). Right
panels:MSDof reflected (points) and condensed reflected (lines and points) FBM for different interval lengths, from top to bottom:
L=20, 40, 100. respectively.

11
The symbol⌊·⌋denotes thefloor function. For any real number x,⌊ ⌋x is the largest integer less than or equal to x: = Î⌊ ⌋x maxn

for n x .

10

New J. Phys. 21 (2019) 022002



 
=

+ +
+ <
+ >

+

⎧
⎨⎪
⎩⎪

( )Z
Z R a Z R b
a Z R a
b Z R b

,
,
,

. A.2n

n n n n

n n

n n

1

In this appendixwe compare our simulation results for reflected FBMdefined by (A.1) shown in themain text
with results for condensed reflected FBM (A.2).

In the left panels offigure A1we show the probability density of reflected and condensed reflected FBM for
different anomalous diffusion exponents. At short times the behaviour for both boundary conditions coincide.
This is due to the fact that boundary effects become significant only at longer times, when a significant portion of
particles had enough time to reach the boundary. At longer times the probability density of condensed reflected
FBM shows a distinct cusp at the boundary, where the values of the probability density are larger than those for
reflected FBM.This cusp persists also in the stationary distribution, and is present for normal Brownian
diffusion, as well. The cusp naturally stems from the ‘condensation’ of all reflected particles right at the position
of thewall. Clearly, this boundary condition is not consistent with the known results for Brownian diffusion, and
we therefore discard this alternative definition. To complement this claim, in the right panels offigure A1we
show theMSDof reflected and condensed reflected FBM for different interval lengths. At short times theMSD
for both boundary conditions coincide. At longer times they deviate, the stationary value for condensed reflected
FBMbeing larger than that for reflected FBM.This is due to the fact that the condensed particles at the
boundaries contribute to theMSDwith a higher amplitude than the distributed reflected particles in the proper
reflected FBMprocess. Of course, the deviations due to the exact choice of how to implement reflecting
boundary conditions is expected to become increasingly less relevant when the size L of the interval becomes

larger, aL K1 2 at unit time.
Figure A2 shows the ratio a a( ) ( )x L x L, ,st,crfbm

2
st,rfbm
2 of the stationaryMSDs for condensed reflected FBM

and reflected FBM. For the largest interval length, L=100, the ratio becomes practically unity, demonstrating
that the definition of the reflecting boundary condition only disturbs afinite zone around the boundaries.

Appendix B. StationaryMSDversusα

Figure B1 shows the dependence of the stationaryMSD a( )x L,st
2 on the anomalous diffusion exponentα. The

dashed lines show a linearfit while the full lines represent fits to the quadratic form g(α, L)=aα c×L2/12with
thefit parameters a and c listed in table B1. The fact that a≈1 in all cases corroborates the L2/12-prefactor in
the functional form a a= ´( )x L L, 12c

st
2 2 , while c clearly increases withα.

Figure A2.Ratio of the stationaryMSDs for condensed reflected FBMand reflected FBMas function ofα, and for three different
interval lengths L.
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