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The problem of trapping of diffusing particles by identical, per-
fectly absorbing rings periodically distributed along an otherwise
reflecting infinite cylindrical tube is very difficult for analytical treat-
ment due to the mixed boundary conditions on the tube surface.
Analytical solutions to this problem are considered in two recent
papers.1,2 Among other results reported in these works, the authors
propose approximate expressions for the mean lifetime τ of a particle
whose starting point is uniformly distributed over the tube surface,
and the tube is surrounded by an outer concentric tube which is a
reflecting boundary for diffusing particles. These expressions can be
written in a unified form as

τ = [L(R2
− ρ2

)/(2πDρ)] f , (1)

where ρ and L are the radius and half-period of the inner tube, R is
the outer tube radius, and D is the particle diffusivity. The factor f
is, in general, a dimensionless function of three dimensionless geo-
metric parameters: ρ/L, R/L, and ε = πl/L, where l is the half-width of
the absorbing ring, and hence, l/L is the surface fraction of the inner
tube covered by the rings. The two papers give different expressions
for this factor, denoted by f 1 and f 2. In this note, these expressions
are tested against exact values of f obtained by solving the mixed
boundary-value problem numerically by the finite element method.

Being motivated by search problems in biology, the authors
of Ref. 1 studied the binding of a particle diffusing inside a finite-
length outer cylinder (a “bacillus-shaped bacteria”) to a partially

absorbing ring located on the surface of a concentric inner cylinder
in the geometry shown in Fig. 1. Such trapping problems arise, for
example, in modeling protein binding to specific sequences on DNA
molecules or on specific locations of the nucleolus that generates
cascades of biochemical reactions that support the functioning of
living systems.3–8 The focus of Ref. 1 is on the mean particle lifetime
considered as a function of the particle initial position, geometric
parameters of the system, the intrinsic reactivity of the ring surface,
and the particle diffusivity. To solve the problem, the authors adopt
the approximate approach proposed in Ref. 9. This allows them to
obtain an analytical expression for the mean lifetime. In the special
case where the ring is perfectly absorbing and the particle starting
point is uniformly distributed over the surface of the inner cylinder,
their general result reduces to the expression for τ in Eq. (1) with the
factor f given by

f ≈ f1 = 2
∞

∑
n=1

(Gn/n)[sin nε/(nε)]2, (2)

with

Gn =
I1(πnR/L)K0(πnρ/L) + I0(πnρ/L)K1(πnR/L)
I1(πnρ/L)K1(πnR/L) − I1(πnR/L)K1(πnρ/L)

, (3)

where Iν(z) and Kν(z) are the modified Bessel functions of the first
and second kind.

By symmetry, the trapping problem analyzed in Ref. 1 is equiv-
alent to that in the case of two infinite concentric cylindrical tubes
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FIG. 1. Schematic view of the diffusion domain studied in Ref. 1. A particle diffuses
between the two concentric cylinders of radii R and ρ ≤ R. The intercylinder space
is constrained by two reflecting walls separated by distance L, which are perpen-
dicular to the cylinder axis. The particle is trapped by a partially absorbing ring of
length l located on the inner cylinder near the reflecting wall. The rest of the inner
cylinder surface and that of the outer cylinder are reflective.

with partially absorbing rings of width 2l periodically arranged on
the inner tube, with period 2L. Trapping by infinite periodically
striped cylindrical surfaces is studied in Ref. 2, assuming that the
stripes are perfectly absorbing. The analysis is performed for three
orientations of the stripe direction with respect to the tube axes: per-
pendicular, parallel, and at the angle π/4 to the axis. This is done
for both internal and external problems, where the particles diffuse
inside and outside the striped tube, respectively. The key approx-
imation used in Ref. 2 is the so-called boundary homogenization
which is the replacement of nonuniform boundary conditions on
the surface by an effective radiation boundary condition with prop-
erly chosen reactivity that is uniform over the surface. Since a striped
cylindrical surface can be formed by “rolling” a corresponding flat
striped surface, it is hypothesized that its reactivity is the same as
that of the flat surface, for which the effective surface reactivity is
known.10 For the mean particle lifetime discussed above, this leads
to the expression for τ in Eq. (1) with the factor f given by

f ≈ f2 = 2 ln(1/sin(ε/2)), (4)
which is much simpler than its counterpart in Eq. (2). In contrast
to the factor f 1, the factor f 2 depends only on ε = πl/L, i.e., on the
strip surface fraction, and is independent of two other parameters,
ρ/L and R/L. Note that f 1 and f 2 have the same asymptotic behavior
in the limiting case of ε → 0, where the strip width tends to zero,
and both expressions for the factor f diverge as 2ln(1/ε). As might

FIG. 2. Contour plots showing the absolute values of the relative error of the
two approximate expressions for the factor f, given in Eqs. (2) and (4), in per-
cent, 100|1 − f i /f |, i = 1, 2, as functions of the geometric parameters δ = R
− ρ and ρ, where δ is the distance between the inner and outer cylinders,
rescaled by the system length L. The contour plots are presented for two val-
ues of the surface fraction occupied by the absorbing ring on the inner cylinder,
l/L = 0.1 [panels (a) and (c)] and l/L = 0.5 [panels (b) and (d)]. The relative
errors of Eqs. (4) and (2) are shown in panels (a) and (b) and panels (c) and
(d), respectively. The numbers indicate the magnitudes of the relative error.

be expected, both f 1 and f 2 vanish when ε→ π since the entire inner
tube surface becomes absorbing.

Below we compare the expressions in Eqs. (2) and (4) with the
exact solution for the factor f obtained numerically with the aim
to establish their accuracy and limitations. This is done for a wide
range of inner and outer tube radii at two values of the ring sur-
face fraction, when the rings occupy one tenth and one half of the
inner tube surface, ε = π/10 and ε = π/2, respectively. The results of
the comparison are presented in Fig. 2 that shows the contour plots
of the absolute values of the relative error of the two expressions
in percent, 100|1 − f i/f |, i = 1, 2, as functions of δ/L and ρ/L,
where δ = R − ρ is the distance between the inner and outer tubes.
The relative error of Eq. (4) is shown in panels (a) and (b) for
l/L = 0.1 and 0.5, respectively. Corresponding results for Eq. (2) are
presented in panels (c) and (d). As ρ/L and δ/L tend to infinity, the
relative errors approach their asymptotic values. For the expression
in Eq. (4), this asymptotic value is zero (by construction) since the
cylindrical geometry becomes effectively flat in this limiting case.
The asymptotic value of the relative error of the expression in Eq. (2)
is a function of ε: it is 8% at ε = π/10 and about 20% at ε = π/2. From
Fig. 2, one can see that the simple expression in Eq. (4) fails for
narrow—compared to the system period 2L—inner cylinders and
when the outer tube is too close to the inner one—the distance δ
is shorter or equal to the period 2L. Otherwise, i.e., when both ρ and
δ exceed 2L, this expression accurately predicts the factor f. This is
true for both values of the ring surface fraction. It is important that
when Eq. (4) does not work, at small l/L, one can use Eq. (2) that
predicts the factor f with high accuracy over the entire range of both
parameters, ρ/L and δ/L, provided that the ring surface fraction is
low.

To summarize, the expression for the factor f in Eq. (2) works
better than its counterpart in Eq. (4) at small ring surface fractions.
For example, at l/L = 0.1, the relative error of its predictions is less
than 10% over the entire range of ρ/L and δ/L. As might be expected,
this relative error increases with the ring surface fraction, but even at
l/L = 0.5, it does not exceed 50%. As concerns the simple expression
in Eq. (4), it is reliably applicable at an arbitrary ring surface fraction
on condition that both ρ/L and δ/L are greater than unity. These two
approximations complement each other.
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