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Biased continuous-time random walks for
ordinary and equilibrium cases: facilitation of
diffusion, ergodicity breaking and ageing

Ru Hou, ab Andrey G. Cherstvy, b Ralf Metzler *b and Takuma Akimotoc

We examine renewal processes with power-law waiting time distributions (WTDs) and non-zero drift via

computing analytically and by computer simulations their ensemble and time averaged spreading

characteristics. All possible values of the scaling exponent a are considered for the WTD c(t) B 1/t1+a.

We treat continuous-time random walks (CTRWs) with 0 o a o 1 for which the mean waiting time

diverges, and investigate the behaviour of the process for both ordinary and equilibrium CTRWs for 1 o
a o 2 and a 4 2. We demonstrate that in the presence of a drift CTRWs with a o 1 are ageing and

non-ergodic in the sense of the non-equivalence of their ensemble and time averaged displacement

characteristics in the limit of lag times much shorter than the trajectory length. In the sense of the

equivalence of ensemble and time averages, CTRW processes with 1 o a o 2 are ergodic for the

equilibrium and non-ergodic for the ordinary situation. Lastly, CTRW renewal processes with a 4 2—both

for the equilibrium and ordinary situation—are always ergodic. For the situations 1 o a o 2 and a 4 2 the

variance of the diffusion process, however, depends on the initial ensemble. For biased CTRWs with a 4 1

we also investigate the behaviour of the ergodicity breaking parameter. In addition, we demonstrate that

for biased CTRWs the Einstein relation is valid on the level of the ensemble and time averaged

displacements, in the entire range of the WTD exponent a.

I. Introduction
A. Anomalous diffusion

Anomalous diffusion processes feature a nonlinear scaling
of the particle mean squared displacement (MSD) with the
diffusion time,1–13

MSD(t) = 2Kbtb, (1)

where Kb and b are the generalised diffusion coefficient and the
MSD-based anomalous scaling exponent (in one dimension).
Depending on the value of this exponent, one can distinguish
subdiffusion (0 o b o 1), Brownian motion (b = 1), super-
diffusion (1 o b o 2), ballistic motion (b = 2), and superballistic
diffusion (b4 2), see ref. 3, 8 and 12. For modified processes of a
Brownian-motion type—such as fractional Brownian motion and
fractional Langevin equation motion8,12—the directions of particle
displacements at consecutive time steps appear negatively and

positively correlated for anti-persistent subdiffusion and persistent
superdiffusion, respectively. Sub- and superdiffusive continuous-
time random walks (CTRWs) are locally Markovian and thus do not
contain correlations of increments of this type.12,14

Subdiffusive stochastic processes (for dispersive transport)
are often used for the mathematical description of diffusion in
crowded9–11,15 and viscoelastic14 environments of living biological
cells. They have been applied, e.g., to rationalise the properties
of spreading of various macromolecules—such as proteins and
nucleic acids—in the cell cytoplasm,16–23 motions of DNA
chromosomal loci,25–31 diffusion of various ion channels along/in
cell membranes,32–36 heterogeneous subdiffusion24 of short trans-
membrane proteins on the plasma membranes of T-cells,37

diffusion of water molecules along38 and of lipids within39–42

lipid membranes, thermally-driven motion of lipids and insulin
granules in cells,43,44 diffusion of proteins involved in membrane
crowding,42,45–47 diffusion of polymeric mRNA molecules in visco-
elastic cell cytoplasm,20 and motion of colloidal tracers in entangled
networks of actin filaments.48 Some subdiffusive models with
binding-unbinding kinetics also need to be mentioned.49,50

Superdiffusive processes (for enhanced or subballistic transport)
are adapted to describe faster than Brownian or active motions.
From the biological perspective, superdiffusive motions are detected
for migrating bacteria, protozoa, and other microorganisms,51,52
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motor-driven53,54 transport of virus particles along microtubuli
inside living cells,55 intracellular motor-driven motions of nano-
and micro-particles,56–59 persistent walks performed by motile cells
and some microswimmers,60–67 transient superdiffusion and age-
ing observed for amoeboid cells62,68,69 and nematode worms,70

active dynamics of neuronal messenger ribonucleoproteins,71 as
well as superdiffusion of self-propelled Brownian particles.64,72,73

Generally, diffusion with accelerating diffusivity occurs in tilted/
washboard potentials74–77 and superdiffusion takes place in models
of driven lattice Lorentz gas.78 Other examples include geometry-
induced superdiffusion,79 tracer diffusion in plasma turbulence,80

and field-induced superdiffusion81 in actively-driven colloidal
systems.82,83

Superballistic (or hyperdiffusive84) stochastic processes may
occur at non-equilibrium conditions, e.g., upon heat influx into
the system, or for particle motion upon growing temperature.85

Diffusion is accelerating also in tilted periodic potentials86 and
under non-equilibrium starting conditions. The classical
Richardson–Batchelor relative spreading of particles in turbulent
flows87,88 should also be mentioned, as one of the first examples of
superballistic diffusion, where MSD(t) B t3 (see also ref. 1, 2, 67, 89
and 90 on superballistic diffusion, turbulence, and Lévy walks).

B. Continuous-time random walks

The paradigmatic CTRWs—recently completing a 50-year history91—
is a class of renewal processes92–97 featuring, i.a., a well-studied case
of power-law waiting time distributions (WTDs), c(t) B t�1�a. These
processes with power-law WTDs are broadly and successfully used to
describe the dynamics of transiently trapped particles,2,67,98–102 for
instance, in random energy landscapes, comb-like structures2,5 and
quenched trap models,103 anomalous transport in disordered
environments,2,98 diffusion of tracers in ground water in porous
and heterogeneous media,104–110 transport properties in granular,
fractal,5,111 and glassy112,113 media as well as in supercooled
liquids.114 For particle diffusion in random energy landscapes,
e.g., the power-law WTDs correspond to exponentially distributed
energy barriers between neighbouring sites.2,115 On a biological
macroscale, CTRW-type processes with fat-tailed trapping times
and of Lévy-type with broad jump-length distributions were dis-
cussed, e.g., as possible mechanisms governing human mobility
patters.116–121 Applications of CTRWs for analysing the properties
of financial time series is another important domain of research.122

Subdiffusive Montroll–Weiss CTRWs—with particle displace-
ments MSD(t) B ta, with 0 o a o 1 and divergent mean waiting
times1,4,8,12,98,123–139—form a widely used class of anomalous
non-ergodic and ageing processes. Mathematically, subdiffusive
CTRWs were shown to be non-ergodic in terms of non-
equivalence of the ensemble and time averaged displacements
even at long times7,12,137 and to reveal strong deviations
from predictions of the Boltzmann–Gibbs theory.140 Ultraslow
Sinai diffusion,2,98 persistent Sinai-like diffusion in correlated
Gaussian landscapes,141 random walks with chaotically-driven
bias,142 as well as logarithmic diffusion in ageing jump processes143

were also studied.
Ageing effects for the standard subdiffusive12,137,139,144,145

and ultraslow146 CTRWs were considered recently and identified,

i.a., in protein dynamics.147 CTRWs with correlated trapping
times were also investigated,110,148,149 including effects of
external constant and time-dependent force fields,12,150,151 see
also ref. 152–154. Noisy155 and heterogeneous156 walks, as well
as CTRWs with coupled jump-lengths and waiting-time distribu-
tions,3,149,157–159 walks in space- and time-dependent force fields,160

CTRWs with periodicity and irreversible detachments161 were
studied too. On the level of ensemble averages, some scaling
properties of CTRWs in the presence of bias and velocity fields
were considered in ref. 130 and 162 (see also ref. 163 for the
dynamics of Lévy walks in external fields, and the recent study
of non-ergodicity for d-dimensional generalised Lévy walks90).
Physically, the bias at each diffusion site can reflect inclined
potential surfaces, existence of pressure gradients, etc.98 For
general analytical and numerical results for the time averaged
MSD and ergodicity breaking of CTRWs we refer the reader
to the studies.7,8,12,134,150,164–173 Occupation times and weak
ergodicity breaking (WEB) phenomena for biased CTRWs were
considered also in ref. 174. As an important historical note, we
mention that the superdiffusive behaviour of biased subdiffusive
CTRW processes for 1/2 o a o 1 was already pointed out in the
seminal studies of Shlesinger125 and Scher and Montroll,126 see
also eqn (91) below.

C. Structure of the paper

The paper is organised as follows. In Section II we present the
main equations of the model and their detailed derivations. We
start in Section IIA with the Laplace transform expansions of
the WTD, shortly list the details of simulations in Section IIB,
and continue in Section IIC with presenting the general expres-
sions for the ensemble and time averaged particle displace-
ment characteristics. The general properties of renewal
processes are used in Section IID to evaluate the two-point
correlation functions for the walker positions in terms of the
number of jumps taken. The main analytical results for the
ensemble and time averaged particle displacements of biased
CTRWs (see Fig. 1) are described in Section III, including a
comparison to the findings from computer simulations. In
Sections IIID, IIIB, and IIIA we derive the power-law scaling
relations for particle spreading for biased CTRWs with a o 1,
1 o a o 2, and a 4 2, correspondingly, both in leading
and subleading orders in the (lag) time. For the limiting cases
of a = 1, 2 particle displacements acquire logarithmic correc-
tions (not considered here). For all possible realisations of the
WTD exponent a we check in Section IIIE the validity of the
Einstein relation for the ensemble and time averaged displace-
ments. We compute the degree of non-ergodicity for these

Fig. 1 Schematic representation of asymmetric particle jumps for biased
CTRWs, with some parameters indicated.
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biased walks, both in terms of the non-equivalence of the
ensemble and time averaged observables as well as via assessing
the ergodicity breaking parameter, EB, for the case a 4 1,
Section IIIC. The results for the EB parameter are in agreement
with simulations as well. In Section IV the main results and
conclusions of the current study are summarised.

D. Summary of main results

Here, we overview the main results, see the phase diagram of
Fig. 2 and Table 1. Case 0 o a o 1: for subdiffusive biased
CTRWs we obtain, as expected, a non-ergodic and ageing
diffusion stemming from the non-equivalence of the
variance-based ensemble and time averaged displacements.
These are denoted below as Var[x(D)] = hx2(D)i � hx(D)i2 and

dd2ðDÞ, respectively, and defined by eqn (13) and (15) below. In
this case, Var[x(D)] contains in the long-time limit the
standard125,126 subdiffusive term pDa and a field-induced con-

tribution pD2a. The time averaged displacement dd2ðDÞ con-
tains linear and superdiffusive terms, pD1 and pD1+a, which
both decrease in magnitude with the length of the trajectory T as
p1/T1�a. We mention here that the WTD exponent a differs
from the anomalous diffusion exponents realised for the ensem-
ble and time averaged particle–displacement characteristics.

Case 1 o a o 2: for superdiffusive exponents of WTDs we
observe some marked differences for ordinary versus equilibrium
processes. Namely, for ordinary processes (initiated simultaneously
with the start of the measurement) Var[x(D)] contains linear and
subdiffusive terms, pD1 and pD2�a, as well as a field-induced

Fig. 2 Phase diagram of scaling regimes of particle spreading for equili-
brium processes, shown on the example of ensemble averaged variance-
based displacements. The leading scaling terms in hxeq

2(D)i � hxeq(D)i2
are shown in the plane of the WTD exponent a and asymmetry parameter
e = p � q. Dark and light colours in each region of the phase space
correspond to, respectively, at least 99% and 90% of particle displacements
dominated by a given scaling term in respective hxeq

2(D)i � hxeq(D)i2
expressions. The graph is based on the analytical results of eqn (54), (74)
and (91) obtained in the main text, evaluated for p = 0.7 (as in other plots
below) and for the lag time of D = 105 (long-time limit). Note that sharp
variations close to the boundary values a = 1 and a = 2 may get smoothened
when respective logarithmic corrections are computed (not shown). T
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superdiffusive term pD3�a. The time averaged displacement

dd2ðDÞ for ordinary processes is demonstrated to contain terms
linear and superdiffusive in the lag time, namely pD1,
pD1/Ta�1, and pD3�a. The last term is induced by the bias
present in the system. For equilibrium CTRWs with WTD
exponents in the range 1 o a o 2 we find that Var[x(D)]
contains linear and superdiffusive terms, pD1 and pD3�a.
Also, ensemble averaged displacements for equilibrium pro-

cesses are identical to time averaged displacements, dd2ðDÞ,
indicating ergodicity (dd2ðDÞ contains no dependence on the
trace length T in this case). Biased CTRWs with superdiffusive
exponents a approach ergodicity anomalously slow, so that
the variance-based ergodicity breaking parameter, see for
definition eqn (77) below, decays with the trace length as
dEB B 1/Ta�1.

Case a 4 2: for biased CTRWs with superballistic exponents
both ensemble and time averaged displacements of the particles
contain terms linear in time and lag time (bias-free and field-
induced terms, respectively). In this case, ensemble and time
averaged displacements are identical, indicating ergodicity. The
ergodicity breaking parameter decays as dEB B 1/T with the
trace length T, similarly as for a number of other anomalous
diffusion processes.12

Table 1 also contains some scaling relations for the Scher–
Montroll transport parameter—the ratio of dispersion to mean
defined as Z(D) in eqn (100), for an ensemble of particles
spreading in external fields—for all realisations of WTD
scaling exponents a as outlined above. Biased CTRWs for
subdiffusive WTD exponents a feature a constant value of this
coefficient.125,126 For superdiffusive exponents 1 o a o 2 the
scaling is shown below to be pD�(a�1)/2. Finally, the relation
Z(D) B D�1/2 is found in the long-time limit for biased CTRWs
with WTD exponents a 4 2.

II. Main equations and their derivations
A. Waiting time distributions

Here, we consider a non-equilibrium CTRW stochastic process
with a bias, e.g., due to the presence of an external field. In such
a system the probability for a Brownian particle to jump to
the left,

q = 1 � p, (2)

and to the right, p, are not equal, see the schematics in Fig. 1.
We are interested below primarily in the effects of a bias on the
ensemble and time averaged particle displacements. We con-
sider the displacement by one lattice unit a at each particle
jump, that is the step-size distribution is l(x) = 1/2d(|x| � a),
where d(x) is the Dirac delta-function. On each site random
trapping times are drawn independently (renewal property) and
distributed in the long-time limit identically on all sites accord-
ing to the standard power-law (or Pareto-like) WTD,7,8,12,175

cðtÞ ¼ ata0
t1þa

; (3)

with a microscopic time-scale t0 (scaling factor) and WTD
exponent a. For the normalised WTD given by eqn (3) with
a 4 1, the mean waiting time htwaiti exists,

ma ¼
ð1
t0

tcðtÞdt ¼ a
a� 1

t0: (4)

This is in contrast to the case a o 1 with divergent mean
waiting time, when the process is scale-free and the long-time
dynamics is governed by rare but long trapping events, as, for
instance, measured in ref. 32. For a 4 2 the variance of waiting
times sa

2 with the WTD (3) also attains a finite value, namely

sa2 ¼
ð1
t0

ðt� maÞ2cðtÞdt ¼
a

a� 2
t02 � ma

2: (5)

The Laplace transform of the WTD (3) is given by

ĉðsÞ � LsfcðtÞg ¼
ð1
t0

e�tscðtÞdt: (6)

This can be written to leading order for st0 { 1—that is, in the
limit of long diffusion times, t/t0 -N—for different choices of
the exponent a as follows

ĉðsÞ �

1� kas
a; 0o ao 1

1� masþ kas
a; 1o ao 2

1� masþ
1

2
sa2 þ ma

2
� �

s2; a4 2

8>>>><
>>>>:

: (7)

In this expansion, the constant ka assumes the values

ka(0 o a o 1) = G(1 � a)ta0,

ka(1 o a o 2) = |G(1 � a)|ta0. (8)

We mention here, for the sake of completeness, that the
expansions for a o 1 and 1 o a o 2 are obtained using,
correspondingly, eqn (3.14) and (3.16) from ref. 175, see also
ref. 178. The expansion for a 4 2 follows from the Taylor
expansion of the exponent in eqn (6), see also eqn (1.7) and
(1.8) in ref. 97. Without a bias, broad and fat-tailed distribu-
tions with a o 1 give rise to a power-law subdiffusion.8,12

B. Details of numerical simulations

In Fig. 3 we exemplify typical trajectories generated in compu-
ter simulations of different biased CTRWs. To generate an
ensemble of waiting times distributed according to the power
law (3), first a random variable X with the uniform distribution
on the interval [0,1] is seeded, from which a random variable Y
is constructed in simulations as

Y(X) = X�1/a. (9)

Therefore, the required WTD is given by c(t) = at�1�a for t 4 1
and it is 0 otherwise (we set t0 = 1 in all the simulations).

C. Ensemble and time averaged displacements of continuous-
time random walks with a drift: general expressions

For CTRWs with a bias, we define the analogues of the ensemble
and time averaged MSDs of the particles via the respective variances.
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This procedure ‘‘removes’’ non-zero means from the observables
and enables us to derive the scaling relations for the particle
spreading properties with respect to the mean in the long-time
limit. For the first moment of particle displacements after time
D—with the initial condition x(0) = 0—one gets

hx(D)i = a(p � q) hN(D)i a 0. (10)

Here N(D) is the number of jumps of the walker up to time D,
see Fig. 1 and 3. Note that relation (10) follows from the fact
that the total particle displacement after N jumps (or renewals)
is the sum of identically distributed independent random
variables. The mean displacement after one jump is

hdxi = a(p � q), (11)

so one has

XN
j¼1

dxj

* +
¼ NðDÞh i dxh i: (12)

Here and below, the angular brackets stand for ensemble averaging,
while the overline denotes time averaging, consistent with our
previous notations.8,12 The variance-based displacement—or the
second centred moment—is given by (using Wald’s formula96)

Var[x(D)] = Dispersion2[x(D)] � hx2(D)i � hx(D)i2

= ( p � q)2a2(hN2(D)i � hN(D)i2) + 4pqa2hN(D)i. (13)

Here, we used the relation (see ref. 95 and 96, and also eqn (9)
in ref. 162)

XN
j¼1

dxj

 !2* +
�

XN
j¼1

dxj

* +2

¼ NðDÞh i dx2
� �

� dxh i2
� �

þ dxh i2 N2ðDÞ
� �

� NðDÞh i2
� � (14)

and the fact that for displacements after one step hdx2i = a2.

The ensemble averaged time averaged variance-based dis-
placements can similarly be defined with respect to the mean of
the increments as

dd2ðDÞ
D E

¼ 1

T �D

ðT�D
0

ðxðtþDÞ�xðtÞÞ� hxðtþDÞ�xðtÞi½ �2
D E

dt;

(15)

where D is the lag time along the trajectory of length T. Here,

the new notation dd2ðDÞ symbolises the respective deviations
from the mean increments of particle positions in the inte-
grand of (15), as compared to the standard definition of the
time averaged MSD for drift-free processes,8,12

d2ðDÞ ¼ 1

T � D

ðT�D
0

½xðtþ DÞ � xðtÞ�2dt: (16)

The latter is routinely used to analyse and interpret, e.g., single-
particle tracking data.8,12,20,179,180 We consider the time averaged
properties in the limit D { T, the standard limit used for other
anomalous diffusion processes.8,12 The integrand of (15) equals
the variance of particle increments with respect to the mean, that
can be written as

h(x(t + D) � x(t))2i � hx(t + D) � x(t)i2 � Var[dx(t,t + D)]

= hx(t + D)2i � hx(t + D)i2 + hx(t)2i � hx(t)i2 � 2{hx(t + D)x(t)i
� hx(t + D)ihx(t)i}. (17)

Using the fact that the particle position correlator has the form
(see also ref. 96)

hx(t + D)x(t)i = a2hN(t)i + a2( p � q)2hN(t)(N(t + D) � 1)i,
(18)

we get

h(x(t + D) � x(t))2i � hx(t + D) � x(t)i2 = 4pqa2[hN(t + D)i
� hN(t)i] � a2( p � q)2[hN(t + D)i � hN(t)i]2

+ a2(p � q)2[hN(t + D)2i � hN(t)2i � 2hN(t)(N(t + D) � N(t))i].
(19)

In what follows we use the definition of ergodicity of a
stochastic process in the Boltzmann–Khinchin sense168 in the
limit of D/T { 1 as the equivalence of the ensemble and time
averaged MSDs,7,8,12,181

MSDðDÞ ¼ ½xðDÞ � xð0Þ�2
� �

¼ lim
T=D!1

d2ðDÞ; (20)

(and not any stricter definition such as mixing properties).
Analogously, we call processes with non-zero mean displace-
ments ergodic7,8,12,181 if for short lag times and long trajec-
tories the condition

x2ðDÞ
� �

� xðDÞ2
� �

¼ lim
T=D!1

dd2ðDÞ (21)

is satisfied.8,12 We refer the reader to ref. 182 for the discussion
of the effects of initial ensemble onto the ensemble and time
averaged properties of some renewal processes. Note also here
that comparison of higher-order time and ensemble averaged

Fig. 3 Typical particle trajectories x(t) obtained from computer simulations
for different biased CTRWs. The values of the exponent a and analytical
mean particle displacements (10) are given in the plot. Other parameters for
this and other figures are: the lattice constant is unity (a = 1) and t0 = 1. The
long stalling events for the subdiffusive case are to be noted, in contrast to
rapid position changes of the walker for superdiffusive situations.
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moments of particle displacements as a check of ergodicity
breaking can also be employed, see ref. 144 and 152.

As we quantify below, for some choices of a we reach fully
ergodic behaviour for long times, whereas, for instance, for
a o 1 the process is inherently non-ergodic and ageing12,137,139

even in the long-time limit. Although some results for the
ensemble averaged displacements of field-induced CTRWs are
available,98,130,139,150,162,177 the main focus of the current study
is on the time averaged properties of particle spreading with
respect to the mean, and also on quantifying the non-ergodicity
of the process. This per se presents a considerable mathema-
tical challenge.

D. Renewal properties and two-point correlation functions:
ordinary and equilibrium processes

The diffusive properties of CTRWs can be understood from the
theoretical concepts of renewal processes, see, e.g., ref. 92–97,
177 and 178. Below, we use the renewal theory to compute the
first and second moments of the number of particle jumps, as
well as the correlator hN(t)(N(t + D) � N(t))i which enter
eqn (10), (13), (19), and (15) for the ensemble and time averaged
displacements. We start with defining Sr as the sum of waiting
times after r steps,

Sr ¼
Xr
j¼1

tj : (22)

Then, using Kr for the cumulative distribution of Sr, for the
probability of exactly r jumps occurred during the time interval
[0, t] one gets

Pr½NðtÞ ¼ r� ¼ KrðtÞ � Krþ1ðtÞ4 0: (23)

Then, the probability generating function—we here follow the
derivations of Section 3.2 of Cox’s classical book92—becomes

Gðt; zÞ ¼
X1
r¼0

zr Pr½NðtÞ ¼ r� ¼ 1þ
X1
r¼1

zr�1ðz� 1ÞKrðtÞ: (24)

In Laplace space, using the relation between the cumulative
probability distribution and the associated probability density kr(t)

K̂rðsÞ ¼ k̂rðsÞ=s; (25)

one obtains the general expression

Ĝðs; zÞ ¼ 1

s
þ 1

s

X1
r¼1

zr�1ðz� 1Þk̂rðsÞ: (26)

In what follows, we split the consideration for the two typical
renewal processes, namely for the ordinary (subscript ‘‘or’’
below) and equilibrium (subscript ‘‘eq’’) processes.92,178 The
fundamental difference between them is the fact that ‘‘an
equilibrium renewal process can be regarded as an ordinary
renewal process in which the system has been running a long-
time before it is first observed’’.92 Therefore, for the ordinary
renewal process—which is physically initiated at the start of the
observation, at t = 0—the probability density functions for the
distribution of all waiting times are identical. This yields92,95

k̂r,or(s) = k̂r�1,or(s) � ĉ(s) = [ĉ(s)]r, (27)

while for the equilibrium renewal process the first waiting time
follows a different distribution, namely92

k̂1;eqðsÞ ¼
1� ĉðsÞ

ms
; (28)

that gives rise to (see also Section 2.5 in ref. 92)

k̂r;eqðsÞ ¼ k̂1;eqðsÞ � ĉðsÞ
h ir�1

¼
ð1� ĉðsÞÞ ĉðsÞ

h ir�1
ms

: (29)

Clearly, equilibrium renewal processes can only be considered
if the mean waiting time m exists. In the subdiffusive case
ageing renewal theory has to be applied.97,136,139

Inserting relations (27) and (29) into (26) we get the prob-
ability generating function for the ordinary and equilibrium
renewal processes as, respectively,

Ĝorðs; zÞ ¼
1� ĉðsÞ

s½1� zĉðsÞ�
(30)

and

Ĝeqðs; zÞ ¼
1

s
þ z� 1

ms
Ĝorðs; zÞ: (31)

The first and second moments of the number of jumps of the
walker can be obtained from the probability generating
function95,96,178 as

NðtÞh i ¼ Ls
�1 @Ĝðs; zÞ

@z

					
z¼1

8<
:

9=
;;

N2ðtÞ
� �

¼ NðtÞh i þ Ls
�1 @2Ĝðs; zÞ

@z2

					
z¼1

8<
:

9=
;:

(32)

Here Ls�1 denotes the inverse Laplace transform over the
respective variable. Using the generating functions (30) and
(31), for the ordinary and equilibrium renewal processes we
arrive at, respectively, (see ref. 92 for a detailed derivation; see
also the supplement of ref. 118)

NorðtÞh i ¼ Ls
�1 ĉðsÞ

s 1� ĉðsÞ
h i

8<
:

9=
;;

Nor
2ðtÞ

� �
¼ NorðtÞh i þ Ls

�1
2 ĉðsÞ
h i2

s 1� ĉðsÞ
h i2

8><
>:

9>=
>;

(33)

and

NeqðtÞ
� �

¼ Ls
�1 1

ms2


 �
;

Neq
2ðtÞ

� �
¼ NeqðtÞ
� �

þ Ls
�1 2ĉðsÞ

ms2 1� ĉðsÞ
h i

8<
:

9=
;:

(34)

Inserting these expressions into eqn (13) we compute the
variance-based ensemble averaged displacements.
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To evaluate the time averaged variance-based displacements (19),
we obtain the relation for hN(t)(N(t + D) � N(t))i in terms of the
double Laplace transform with respect to u1 and s1 performing the
calculations according to the scheme developed in ref. 177 and 183.
The variables u1 and s1 are related to the diffusion time t and lag
time D, correspondingly, and the indices are used for the Laplace
operator in order not to mix with the analysis above, where the
Laplace variable s was related to t. Specifically, using eqn (18) and
(19) of ref. 177 and eqn (5) and (6) in ref. 183, we get the joint two-
point probability function for the walker to make N(t) jumps during
time [0, t] and N(t + D) � N(t) jumps during time interval [t, t + D],

^̂
PNðtÞ;NðtþDÞ�NðtÞðu1; s1Þ

¼
ĉðu1Þ
h iNðtÞ

ĉðs1Þ
h iNðtþDÞ�NðtÞ�1
s1ðu1 � s1Þ

� 1� ĉðs1Þ
h i

ĉðs1Þ � ĉðu1Þ
h i

:

(35)

Also, based on the renewal property of CTRWs, one can write the
probability for the walker to perform N(t) jumps up to time t and no
jumps from time t to time t + D as

^̂
PNðtÞ;0ðu1; s1Þ ¼

ĉðu1Þ
h iNðtÞ

s1

� 1� ĉðu1Þ
u1

� ĉðs1Þ � ĉðu1Þ
u1 � s1

" #
:

(36)

This expression is used to normalise the overall probability
distribution, namely

X1
NðtÞ¼0

X1
NðtþDÞ�NðtÞ¼1

^̂
PNðtÞ;NðtþDÞ�NðtÞðu1; s1Þ

þ
X1

NðtÞ¼0

^̂
PNðtÞ;0ðu1; s1Þ ¼

1

s1u1
:

(37)

The correlator of particle jump numbers can then be expressed in
terms of the joint probabilities (35) and (36) as the standard mean
over independent random variables N(t) and N(t + D)� N(t), namely

NðtÞðNðtþ DÞ �NðtÞÞh i

¼
X1

NðtÞ¼0

X1
NðtþDÞ�NðtÞ¼0

NðtÞ½Nðtþ DÞ �NðtÞ�

� Lu1
�1Ls1

�1 ^̂
PNðtÞ;NðtþDÞ�NðtÞðu1; s1Þ
n o

:

(38)

For the ordinary and equilibrium renewal processes we then
obtain, respectively,

NorðtÞðNorðtþ DÞ �NorðtÞÞh i

¼ Lu1
�1Ls1�1

ĉðu1Þ ĉðs1Þ � ĉðu1Þ
h i

s1ðu1 � s1Þ 1� ĉðu1Þ
h i2

1� ĉðs1Þ
h i

8><
>:

9>=
>;

(39)

and

NeqðtÞðNeqðtþ DÞ �NeqðtÞÞ
� �

¼ Lu1
�1Ls1�1

ĉðs1Þ � ĉðu1Þ
mu1s1ðu1 � s1Þ 1� ĉðu1Þ

h i
1� ĉðs1Þ
h i

8<
:

9=
;:

(40)

Note that to derive eqn (40) we took into account the different
distribution of the waiting time for the first jump, eqn (28). The
derivations of eqn (39) are given in eqn (7) of ref. 183; see
also eqn (8.6) of ref. 97 (for the case a o 1). Performing the
long-time expansions of eqn (33) and (39) for the ordinary and
of eqn (34) and (40) for the equilibrium renewal processes we
have all the ingredients to evaluate the long-time variance-
based ensemble and time averaged particle displacements for
each choice of the WTD exponent a.

Note that for ensemble averaged quantities long diffusion
times are assumed, which are compared in eqn (48) and similar
equations below with the lag time D for the time averaged
quantities. For the latter, in the displacement increments D is
assumed to be much shorter than the running time t along the
trajectory, see eqn (45) below. Therefore, the comparison of the
variance-based expressions (13) and (15), as we perform below
for each choice of a, is a mathematically valid procedure when
the condition

t0 { D { {t,T} (41)

is satisfied (for which t0 should be the shortest time scale in the
problem).

Below, we use the long-time ĉ(s) expansions (7) for different
a values. To take the inverse Laplace transform, we use the
(strong) Tauberian theorem (see, e.g., Ch. XIII.5 in ref. 94, Ch.
5.1.5 in ref. 93, Ch. 2.2 in ref. 95, and ref. 184) to approximate

the Laplace transform of the form f̂ðsÞ � Lð1=sÞs�r at s - 0 via
the long-time scaling

f(t) B tr�1L(t)/G(r), (42)

where L(t) is a slowly varying function at t -N, and G(x) is the
Gamma function.

III. Main results: particle spreading
characteristics and non-ergodicity

We now connect the results of the renewal theory from Section
II to the physically measurable quantities for the relevant
ranges of exponent a.

A. Displacements for a 4 2: ordinary and equilibrium
processes

For WTDs of the form (3) with a 4 2 both ma and sa
2 attain

finite values and the consideration is fairly simple, so we start
with this scenario. Below, the results are presented separately
for the ordinary and equilibrium case. For the ordinary process,
the leading order terms in the long-time limit (t - N) for the
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average number of steps and the second moment follow from
eqn (33) using (42),

NorðtÞh i ¼
xðtÞor
� �
aðp� qÞ � Ls

�1 1þ sðsa2 � ma
2Þ=ð2maÞ

mas2


 �

� t

ma
þ sa2 � ma

2

2ma2

(43)

and

Nor
2ðtÞ

� �
� t2

ma2
þ 2sa2 � ma

2

ma2
t

ma
: (44)

Similarly, the expressions for the variance and the correlator of
the number of steps (39) in the limit

u1 { s1 (45)

can be obtained as, respectively,

Nor
2ðtÞ

� �
� NorðtÞh i2 � sa2

ma2
t

ma
(46)

and

NorðtÞðNorðtþ DÞ �NorðtÞÞh i � tD
ma2
þ ðsa

2 � ma
2ÞD

2ma3
: (47)

Then, the temporal evolution of the ensemble averaged particle
displacements (13) and the trajectory-local displacement incre-
ments (19) in the long-time limit are

xor
2ðDÞ

� �
� xorðDÞh i2 � 4pqa2

D
ma

þ a2ðp� qÞ2sa
2

ma2
D
ma

� ðxorðtþ DÞ � xorðtÞÞ2
� �

� xorðtþ DÞ � xorðtÞh i2:

(48)

Therefore, the spreading of particles with respect to the mean
values is always linear in time D, indicative of Brownian
transport properties. For symmetric walks with p = q the second
term in expression (48) disappears. Importantly, the particle
displacements do not contain any t-dependence, indicating the
stationarity of displacement increments. This gives rise to the
equivalence of the time and ensemble averaged variance-based
displacements,

dd2ðDÞor
D E

¼ xor
2ðDÞ

� �
� xorðDÞh i2; (49)

rendering the underlying a 4 2 diffusion process ergodic.
For equilibrium96 CTRW processes with power-law WTDs

with exponent values a4 2, performing analogously the inverse
Laplace transform of eqn (34), we get

NeqðtÞ
� �

� t

ma
; (50)

Neq
2ðtÞ

� �
� t2

ma2
þ sa2

ma2
t

ma
; (51)

Neq
2ðtÞ

� �
� NeqðtÞ
� �

2 � sa2

ma2
t

ma
; (52)

and

NeqðtÞðNeqðtþ DÞ �NeqðtÞÞ
� �

� tD
ma2
: (53)

We refer the reader to Sections 4.1, 4.2, and 4.5 in ref. 92 for the
derivation of the mean and variance of the number of renewals for
a general ordinary and equilibrium process (when the variance
exists). In the equilibrium situation, the mean and the variance of
the number of particle jumps—see also Section 3.3 of ref. 92 for a
derivation—are the same as for the bias-free CTRW process, see,
e.g., ref. 41. The scaling results for hN(t)i and hN2(t)i � hN(t)i2 were
outlined for such a values in ref. 162, see also ref. 107.

Thus, eqn (50), (51) and (53) yield for the ensemble and time
averaged variance-based displacements for the equilibrium
process

hxeq
2(D)i � hxeq(D)i2 = hxor

2(D)i � hxor(D)i2 (54)

and

dd2ðDÞeq
D E

¼ dd2ðDÞor
D E

; (55)

i.e., the results which are identical to those for the ordinary
process, see eqn (48) and (49). Namely, we find a linear-in-time
spreading of the particles with respect to the mean in terms of
the ensemble and time averaged characteristics, see also Fig. 2
and Table 1. We mention that for hx(t)i and hx2(t)i � hx(t)i2
some scaling results were derived previously.162 Also, the reader
can compare eqn (54) to the ensemble averaged displacements
for stored energy-driven Lévy flights.176,178

From eqn (48) a critical exponent acrit can be obtained: below
this value the particle spreading properties get facilitated or
enhanced by the bias, as compared to symmetric diffusive
CTRWs with a 4 2 and p = q = 1/2. Namely, using the relation
4pq = 1 � (p � q)2, the condition for bias-enhanced spreading,

(hx2(D)i � hx(D)i2)|p,q 4 (hx2(D)i � hx(D)i2)|p=q=1/2, (56)

reduces to

sa
2 4 ma

2. (57)

This, using eqn (4) and (5), yields the condition for the WTD
exponent

2o ao acrit ¼ 1þ
ffiffiffi
2
p

: (58)

The presence of drift for the WTD exponents outside of this
range thus diminishes particle spreading.

The results of our computer simulations, performed as
outlined in Section IIB, together with the long-time analytical
scalings for the ensemble averaged variance, are presented in
Fig. 4a and b. We observe that for a = 3 the variance at a given
time t gets reduced for more asymmetric walks, i.e., for larger
jump asymmetry parameters

e = p � q. (59)

In virtue of normalisation condition (2), a given value for e
unequivocally defines the probabilities p and q. The linear scale
is chosen in Fig. 4 to demonstrate the linear growth of the
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ensemble averaged particle displacements. In contrast, for
a = 2.2 o acrit the variance-based displacement increases for
more asymmetric CTRWs, in agreement with relation (58).

B. Displacements for 1 o a o 2: ordinary and equilibrium
processes

For CTRW processes with WTD exponent in the range 1 o ao 2,
the Tauberian inversion (42) of the Laplace transforms (33)
yields for the first two moments and variance of the number
of particle jumps for the ordinary renewal processes that

NorðtÞh i � t

ma
þ kat

2�a

ma2Gð3� aÞ; (60)

Nor
2ðtÞ

� �
� t2

ma2
þ 4kat

3�a

ma3Gð4� aÞ; (61)

and

Nor
2ðtÞ

� �
� NorðtÞh i2 � 2kaða� 1Þ

ma3Gð4� aÞt
3�a: (62)

We mention the two different powers in the long-time scaling
for the first two moments, similar to the solutions of the
bi-fractional diffusion equation.138 The reader is also referred
to eqn (3.9) and (3.10) of ref. 97 for the mean and variance of the
number of renewal events in this a range. We note the existence
of two distinct power exponents describing the fluctuations of
N(t), see eqn (60) and (61).

For the correlator of the number of steps we find

NorðtÞðNorðtþ DÞ �NorðtÞÞh i

� tD
ma2
þ 2kat

2�aD
ma3Gð3� aÞ

� kaD3�a

ma3Gð4� aÞ þ
kat

1�aD2

2ma3Gð2� aÞ;

(63)

which is obtained via inverting the long-time expansion (39) in
the double-Laplace domain for u1 { s1, namely

Ls1Lu1 NorðtÞðNorðtþ DÞ �NorðtÞÞh if g

� 1

ma2u12s12
þ 2ka

ma3u13�as12

� ka

ma3u1s14�a
þ ka

ma3u12�as13
:

(64)

We emphasise that the asymptotic behaviours of the moments
and correlators of the jump numbers given above only contain
the ‘‘correction terms’’ that are linear in ka, as expected.

Inserting the long-time expansions (60)–(63) into eqn (13)
and (19) we find that the ordinary CTRW process with WTD
exponent in the range 1 o a o 2 is non-ergodic as the
ensemble averaged displacement after time D given by

xor
2ðDÞ

� �
� xorðDÞh i2 � 4pqa2

D
ma
þ ka

ma2
D2�a

Gð3� aÞ

� �

þ a2ðp� qÞ2 2kaða� 1Þ
ma3Gð4� aÞD

3�a

(65)

for finite trace lengths T is, strictly speaking, not equal to the
time averaged variance-based displacement,

dd2ðDÞor
D E

� 4pqa2
D
ma
þ kaD
ma2Gð3� aÞTa�1

� �

þ a2ðp� qÞ2 2kaD3�a

ma3Gð4� aÞ:
(66)

The latter is obtained via integrating

xorðtþ DÞ � xorðtÞð Þ2
D E

� xorðtþ DÞ � xorðtÞh i2

� 4pqa2
D
ma
þ kaD
ma2Gð2� aÞta�1

� �

þ a2ðp� qÞ2 2kaD3�a

ma3Gð4� aÞ:

(67)

We find that both the ensemble and time averaged displace-
ments (65) and (66) contain both linear and anomalous con-
tributions in diffusion time D. We also mention in eqn (67) the

Fig. 4 Ensemble averaged variance for CTRWs (17) with exponents a = 3
and a = 2.2 (panels (a) and (b), respectively) versus lag time D for varying
asymmetry parameter (59), as indicated in the plots. The results of
computer simulations (symbols) follow the long-time asymptotes (48)
(solid curves). In this and later plots of the particle displacements, ensem-
ble averaging is performed over M = 104 trajectories.
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explicit dependence on time t along the trajectory, that gives
rise to a transient ageing effect. Using expressions (4) and (8)
for ma and ka, a more physical representation of (66) in terms of
dimensionless time (D/t0) is

dd2ðDÞor
D E

� 4pqa2
a� 1

a
D
t0

� �
þ a� 1

a2ð2� aÞ
D
t0

� �
t0
T

� a�1� �

þ 2a2ðp� qÞ2ða� 1Þ2
ð3� aÞð2� aÞa3

D
t0

� �3�a
:

(68)

For the equilibrium renewal processes with 1 o a o 2 from
eqn (34) we get

NeqðtÞ
� �

¼
xðtÞeq
D E
aðp� qÞ �

t

ma
; (69)

Neq
2ðtÞ

� �
� t2

ma2
þ 2kat

3�a

ma3Gð4� aÞ; (70)

and

Neq
2ðtÞ

� �
� NeqðtÞ
� �

2 � 2kat
3�a

ma3Gð4� aÞ: (71)

The corresponding double Laplace space {u1,s1}-expansion of
eqn (40) has the form

Ls1Lu1 NeqðtÞðNeqðtþ DÞ �NeqðtÞÞ
� �� �

� 1

ma2u12s12
þ ka

ma3u13�as12

� ka

ma3u1s14�a
þ ka

ma3u12�as13
; (72)

which differs from eqn (64) for the ordinary processes by the
factor of 2 in one of the terms. This fact gets reflected in the
particle displacement characteristics, namely, we find that

NeqðtÞðNeqðtþ DÞ �NeqðtÞÞ
� �

� tD
ma2
þ kat

2�aD
ma3Gð3� aÞ

� kaD3�a

ma3Gð4� aÞ þ
kat

1�aD2

2ma3Gð2� aÞ: (73)

Therefore, the equilibrium process with WTD exponents in this
range, contrary to the ordinary process, remains ergodic in the
leading order in the sense of eqn (21). Namely, we get that the
ensemble averaged variance-based displacement,

xeq
2ðDÞ

� �
� xeqðDÞ
� �

2

� 4pqa2
D
ma
þ a2ðp� qÞ2 2kaD3�a

ma3Gð4� aÞ;
(74)

is equal to its time averaged partner,

xeqðtþ DÞ � xeqðtÞ
� �2D E

� xeqðtþ DÞ � xeqðtÞ
� �

2 ¼ dd2ðDÞeq
D E

:

(75)

Thus, the final results for the ensemble and time averaged
transport properties are given by eqn (65), (66) and (74), (75) for

the ordinary and equilibrium CTRW processes with 1 o a o 2,
respectively. For the equilibrium situation, both averages contain
terms linear in the lag time pD1 and superdiffusive contributions
pD3�a that emerge due to the drift present in the system, see
also Fig. 2 and Table 1. Also, the spreading of the particles with
respect to the mean governed by the biased CTRW is linear-to-
superdiffusive and it is always enhanced due to the bias, as
compared to symmetric walks with p = q = 1/2, see also details in
ref. 185. The reader is referred here to the detailed classification of
dispersive and enhanced ensemble averaged properties of CTRWs
with a constant velocity field.130

In this range of a exponents the factor (a � 1) o 1 and the
term pD2�a in eqn (65) is the difference of the ensemble averaged
displacement for the ordinary versus the equilibrium processes that
obey eqn (74). The time averaged particle displacements for these
two situations—see eqn (66) and (75)—differ by the term depend-
ing on the trace length T for the ordinary case. Therefore, for biased
equilibrium renewal processes in this a range the ensemble
averaged time averaged displacements do not depend on the trace
length T and such a process is ergodic (see Section IIIC for more
details), in contrast to the ordinary process in this range of a
exponent. More generally than the long-time equivalence of the
ensemble and time averages in (21), ergodicity can be defined
through the corresponding equilibrium ensemble average:181

biased CTRWs with 1 o a o 2 appear ergodic in this sense.
In Fig. 5a we demonstrate the agreement of the analytical

results and findings from computer simulations for the particle
displacements, for both ordinary and equilibrium superdiffu-
sive CTRW processes. For the chosen value of the WTD scaling
exponent, a = 3/2, the equilibrium processes have larger var-
iance of particle displacements, as compared to the ordinary
ones. Fig. 5a also supports the analytical trend that the variance
of the number of particle jumps for the ordinary diffusion
processes with 1 o a o 2 is (a � 1) times smaller than their
equilibrium counterpart, compare eqn (62) and (71). This result
is reminiscent to the observation for superdiffusive Lévy walks,
see ref. 6 and 186–188.

In Fig. 5b we show the variation of the ensemble averaged
variance-based displacements for systematically varying ageing time,
setting t = ta in eqn (67) for h(xor(t + D) � xor(t))

2i � hxor(t + D) �
xor(t)i2, see ref. 12 for more details on ageing. Here, the ageing time
is defined as the delay time between the initiation of the diffusion
process with the trapping time distribution (3) and the start of
displacement measurements, see ref. 8, 12 and 136. We find that
for longer ageing times the magnitude of the variance-based
particle displacements after a given diffusion time (denoted D in
Fig. 5b) grows. This is in agreement with the theoretical predic-
tion (67), compare the symbols and the asymptotes in Fig. 5b.
Note that subdiffusive CTRWs considered in Section IIID reveal
opposite ageing trends, as expected.

C. Ergodicity breaking parameter for a 4 1

The issue of irreproducibility or relative amplitude fluctuations
of individual time averaged realisations can be quantified in
terms of the relative standard deviation (RSD), which is the
square root of the EB parameter. The reader is referred to, e.g.,
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ref. 172 and 189 for the RSD consideration for both equilibrium
and ordinary renewal processes. The EB parameter itself is
typically defined via the time averaged fourth and second
moments of particle displacements via7,8,12,102,190,191

EBðDÞ ¼ d2ðDÞ
� 2� ��

d2ðDÞ
D E

2 � 1: (76)

For stochastic processes with non-zero mean displacements of
the walker, such as our biased renewal processes, the natural
generalisation of the EB parameter (76) is

dEBðDÞ ¼ dd2ðDÞ
� 2� ��

dd2ðDÞ
D E

2 � 1: (77)

The phenomenon of weak ergodicity breaking is the absence of
convergence of individual time averaged MSDs to their corres-
ponding ensemble averages at a given lag time D. Instead, the
‘‘distributional ergodicity’’7,8,170,178 or the convergence to a
final distribution of time averaged trajectories is often realised.

For some bias-free anomalous diffusion processes, such as
drift-free subdiffusive CTRWs7,8 and subdiffusive heterogeneous
diffusion processes,192–194 the EB parameter quantifies the intrinsic
irreproducibility of time averaged MSD magnitudes. In other
words, the generalised diffusion coefficient for each time averaged
MSD realisation is itself a random quantity, following a given
distribution.7,49,165,169,173 Note here that the properties of particle
diffusion in time-dependent and fluctuating diffusivity landscapes
were also studied in ref. 167, 195 and 196.

Moreover, assessing the EB parameter can help quantifying
extrinsic effects on particle diffusion, even if the underlying
idealised mathematical process is perfectly reproducible. These
effects may include, e.g., medium heterogeneities (viscosity,
friction, etc.),9,197 size or mass polydispersity of the tracers, and
possible population splitting based on mobility ranges of the
walkers.12,37,198

Thus, in addition to the comparison of the second moments
of the ensemble and time averaged variance-based particle
displacements, for a 4 1 we evaluate the EB parameter
as7,12,144,164,190,192,194 the short lag time limit of eqn (77). Being
based on the fourth moment of the time averaged displace-
ment, compared to the second moment it is generally con-
siderably harder to compute analytically for a number of
processes.144,164,190–192 However, for CTRWs with a 4 1 the
particle increments along the trajectory, needed to compute the
time averaged displacements (19), do not depend on time t
along the trace.

For situations when the mean waiting time ma exists (that
corresponds to a 4 1), to assess the change in fluctuations of

dd2ðDÞ with overall trace length T we use the following approxi-
mation

dd2ðDÞ � NðTÞ
T

haðDÞ þ
Ð T�D
0 xðtþ DÞ � xðtÞh i2dt

T � D
: (78)

This works rather well when the mean number of trapping and
jumping events grows linearly with the diffusion time. Note
that for a4 1 the integrand of the second term in eqn (78) does
not depend on t for large t values. After ensemble averaging
(15), one arrives at the identity

dd2ðDÞ
D E

� a2
NðTÞh i
T

haðDÞ þ
D
ma

� �2

a2ðp� qÞ2; (79)

where for a 4 2 the function ha(D) is given by

haðDÞ ¼ 1þ sa2 � ma
2

ma2
ðp� qÞ2

� �
D� D2

ma
ðp� qÞ2; (80)

while for 1 o a o 2 one has

haðDÞ ¼
2ðp� qÞ2ka
ma2Gð4� aÞD

3�a þ 4pqD� D2

ma
ðp� qÞ2: (81)

Inserting expression (78) into eqn (77) enables us to assess the
dependencies of the dEB parameter in terms of the variance of

Fig. 5 (a) Ensemble averaged variance of particle displacements for
CTRWs, hx2(D)i � hx(D)i2, with a = 3/2 and asymmetry parameter e = 0.4,
plotted for both the ordinary and equilibrium processes in log–log scale.
The results of computer simulations are the symbols and the asymptotic
relations for the ordinary and equilibrium cases (eqn (65) and (74) in the
text) are the solid curves. (b) Variance of particle displacements along the
trajectory for the ordinary process, h(xor(t + D) � xor(t))

2i � hxor(t + D) �
xor(t)i2, for different ageing times as indicated in the plot. We set t = ta for
ageing times in eqn (67) and compute the results for a = 3/2.
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the number of particle jumps as

dEBðT ;DÞ �

NðTÞ2
� �
NðTÞh i2 � 1

1þ 2TD2ðp� qÞ2
ma2haðDÞ NðTÞh i

: (82)

We now use the general expression (82) to derive the leading
scaling of the ergodicity breaking parameter separately for a4 2
and 1 o a o 2, both for ordinary and equilibrium situations. In
the limit D/T { 1, using the corresponding expression for dEB,
hN(T)i and hN2(T)i � hN(T)i2, the final results for dEB (D,T) can be
presented in the form

Thus, markedly different scaling relations for the ergodicity
breaking parameter (77) versus the trace length are predicted
by this approach. Namely, for a 4 2 eqn (83) yields a rather
standard decay law

dEB(T) B 1/T1. (84)

In contrast, a slower approach to ergodicity for WTD exponents
in the range 1 o ao 2 is found, namely anomalously slow decay

dEB(T) B 1/Ta�1. (85)

The dEB parameter for a 4 2 in this approach attains the same
limiting behaviour for the ordinary and equilibrium processes. For
1 o a o 2 the dEB parameter for the ordinary situation is (a � 1)
times smaller than that for the equilibrium case, see eqn (83).

Note that the evaluation of dEB for biased CTRWs with 0 o
ao 1 is a more involved mathematical problem, that deserves a
separate study (see ref. 7, 8, 41 and 168 for EB parameter
evaluations for bias-free CTRWs). Also, note that in the limit
D/T - 0 for unbiased subdiffusive walks the standard EB
parameter approaches the limiting value7,8,12

EBCTRW �
2½Gð1þ aÞ�2
Gð1þ 2aÞ � 1

� �
: (86)

Finally, the higher-order moments of the scatter distribution of
time averaged particle displacements for biased CTRWs can
also be interesting to analyse (albeit harder). For drift-free
subdiffusive CTRWs the skewness and kurtosis were examined
recently in ref. 144.

The results of numerical computer simulations together
with analytical predictions for the dEB parameter are presented

in Fig. 6. The quantitative agreement we observe for 1 o a o 2,
supports the validity of eqn (83) and the underlying approxi-
mation (78). We refer the reader to Fig. 7 where relations (80)
and (81) are checked for the cases a = 3 and a = 3/2, respectively
in panels (a) and (b). Excellent agreement is observed for a = 3/2,
while some evident discrepancies between theory and simula-
tions are found for a = 3. This gets reflected later in somewhat
inaccurate dEB values for biased CTRWs in the range a 4 2, as
illustrated in Fig. 6b. Numerical computer simulations results
agree well with the scaling (83) and support the power-law decay
dEB(T) with T for biased CTRWs with 1 o a o 2, particularly for
large D values. We should mention that the RSD evaluation is
the most computationally demanding part of the current study.

As an example, it takes about 6 hours on a standard workstation
to compute the RSD for Fig. 6 for M = 104 trajectories (for D = 103,
T = 106, and a = 3). For shorter lag times the relations of eqn (83)
appears less applicable.

For comparatively large a values, as in Fig. 6b for a = 3,
relation (83) describes the scaling of dEB(T) correctly for different
lag times. However, for the dEB magnitude at small D values the
theory deviates from the results of computer simulations.
Finally, further in-depth theoretical analysis via evaluation of
the fourth time averaged moment of particle displacements for
biased CTRWs with a 4 2 is needed. This, however, is beyond
the scope of the present study (to be considered elsewhere).

D. Displacements for 0 o a o 1: non-equilibrium process

Bias-free subdiffusive CTRWs with diverging mean waiting
times are known to be non-ergodic and ageing.7,8,12,134,168 For
biased CTRWs with 0 o a o 1 the derivations of ensemble and
time averaged variance-based drift-corrected particle displace-
ment characteristics are also somewhat more involved than for
the ergodic and non-ageing case of a 4 1. Here, analogously,
we perform the inverse Laplace transforms of a o 1 expansion
of ĉ(s) in eqn (7). We find for the heavy-tailed WTDs in the
leading order that (see also eqn (3.6) of ref. 97 and eqn (5.150)
of ref. 93)

NðtÞh i ¼ xðtÞh i
aðp� qÞ �

ta

kaGð1þ aÞ; (87)

N2ðtÞ
� �

� 2t2a

ka2Gð2aþ 1Þ; (88)

dEB �

sa2=ðmaTÞ

1þ 2D2ðp� qÞ2
mahaðDÞ

� 1=T1; 2o a; ðor:; eq:Þ

ða� 1Þ 2ka=T
a�1

1þ 2D2ðp� qÞ2
mahaðDÞ

� �
maGð4� aÞ

� 1=Ta�1; 1o ao 2; ðor:Þ

2ka=T
a�1

1þ 2D2ðp� qÞ2
mahaðDÞ

� �
maGð4� aÞ

� 1=Ta�1; 1o ao 2; ðeq:Þ

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

: (83)
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and

N2ðtÞ
� �

� NðtÞh i2 � 2½Gð1þ aÞ�2
Gð1þ 2aÞ � 1

� �
t2a

ka2½Gð1þ aÞ�2:
(89)

We find for the correlator of the number of jumps (39) that

NðtÞðNðtþ DÞ �NðtÞÞh i

� Ls1
�1Lu1

�1 1

ka2s12u
2a
1

� 1

ka2s12þaua1


 �

� t2a�1D
ka2Gð2aÞ

� ta�1D1þa

ka2Gð2þ aÞGðaÞ;

(90)

while the variance-based particle displacements are

x2ðDÞ
� �

� xðDÞh i2 � 4pqa2Da

kaGð1þ aÞ

þ 2½Gð1þ aÞ�2
Gð1þ 2aÞ � 1

� �
a2ðp� qÞ2D2a

ka2½Gð1þ aÞ�2:
(91)

The first moment and the variance expressions (87) and (91) are
to be compared to eqn (41) of ref. 130 obtained from the
generalised Galilei-invariant advection–diffusion equation
approach to CTRWs in the presence of a velocity field (see also
App. B of ref. 107). Also, for the increments of particle displace-
ments along the trajectory we find

ðxðtþ DÞ � xðtÞÞ2
� �

� xðtþ DÞ � xðtÞh i2

� 4pqa2ta�1D
kaGðaÞ

þ 2a2ðp� qÞ2ta�1D1þa

ka2Gð2þ aÞGðaÞ :
(92)

Here, the explicit dependence on time t along the trajectory—
that can also be considered in eqn (92) as ageing time, t = ta—
emphasises ageing in the system. In eqn (91) and (92) we also

Fig. 6 Relative standard-deviation parameter for biased CTRWs,

RSDðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dEBðTÞ

p
as defined in eqn (77), with a = 3/2 (panel (a)) plotted

versus the trace length T for lag time D = 103, both for ordinary and
equilibrium processes. The values of the asymmetry parameter e are
indicated in the plots. Straight lines represent the theoretical scaling (83).
Averaging over M = 104 traces was performed. When p value is not
explicitly mentioned, we set e = 0.4 and p = 0.7, coupled via (2). In panel
(b), the RSD results versus the trace length T are presented, computed for
a = 3, for two asymmetry parameter values, and for lag times D = 10 and
103. Simulation results are shown together with theoretical asymptotes
(83). As the measurement time is larger than the lag time D by definition,
for T = 103 the points for D = 103 are missing in panel (b).

Fig. 7 Theoretical relations for the time averaged variance-based MSD
(79)—with account for representations (80) and (81)—versus the results of
computer simulations of N = 102 trajectories, computed for a = 3 (panel
(a)) and a = 3/2 (panel (b)). Other parameters: e = 0.4, D = 103, T = 104 and
105. Note the extremely small range on the abscissa of panel (a).
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kept the terms of subleading order in the lag time D, to ensure
the correct limit for bias-free subdiffusive CTRWs, with
MSD(D) B Da at p = q = 1/2. For biased subdiffusive CTRWs,
in eqn (91) additionally a second contribution BD2a appears,
see also Fig. 2 and Table 1. It gives rise to a subdiffusive trend
for particle spreading for 0 o a o 1/2 and to a superdiffusive
spreading for the WTD exponent in the range 1/2 o a o 1, as
already pointed out by Scher and Montroll126 and Shlesinger.125

As we see from eqn (92)—see also eqn (59) in ref. 139 and
eqn (12) in ref. 125 for the dispersion of subdiffusive biased
CTRWs—the variance of particle displacement increments does
exhibit an explicit t-dependence. Therefore, the ensemble aver-

aged time averaged displacement dd2ðDÞ
D E

defined by eqn (15)

reveals ageing effects.8,12,136 Namely, its magnitude

dd2ðD;TÞ
D E

� 4pqa2D
kaGð1þ aÞT1�a

þ 2a2ðp� qÞ2D1þa

ka2Gð2þ aÞGð1þ aÞT1�a

(93)

decreases as a power law with the trajectory length T,

dd2ðD;TÞ
D E

� 1=T1�a, similarly to the ageing properties of

symmetric drift-free subdiffusive CTRWs.8,12,137 Eqn (93) thus
demonstrates that biased subdiffusive CTRWs are non-ergodic
and ageing. Namely, the growth of the ensemble averaged
variance-based displacements (91) with the lag time differs
from that of time averaged ensemble averaged variance-based
displacement (93), that is

x2ðDÞ
� �

� xðDÞh i2a dd2ðDÞ
D E

: (94)

In the limit of symmetric subdiffusive CTRWs (with p = q)
the net displacement of the particles (10) vanishes. Then, the
variance-based expressions (91) and (93) for the particle spread-
ing turn into the results for the ensemble and time averaged
MSDs of subdiffusive CTRWs. For the latter, in the limit D/T {
1, one gets the standard ageing and non-ergodic scaling7,8,12

x2ðDÞ
� �

� a2
sinðpaÞ
pa

� �
D
t0

� �a

� d2ðDÞ
D E T

D

� �1�a
: (95)

We note here that some non-ergodic and ageing properties of drift-
free subdiffusive CTRWs are similar to those observed for hetero-
geneous diffusion processes with power-law space-dependent dif-
fusivities, D(x), see ref. 192–194 (and also ref. 199 and 200).

The results for the ensemble averaged variance-based parti-
cle spreading of biased CTRWs with a o 1 are illustrated in
Fig. 8. We find that, in contrast to the findings for biased
CTRWs with 1 o a o 2 shown in Fig. 5, for subdiffusive biased
CTRWs the magnitude of particle displacements decreases for
longer ageing times ta. This is intuitively expected, as for a
progressive ageing the probability to draw long trapping events
from the distribution (3) increases, that in turn reduces the first
and second moments of displacements. We find that for
smaller values of the WTD exponent a—compare panels (b)
and (c) in Fig. 8—the magnitude of variance-based particle

displacements acquires stronger effects of growing ageing
times ta, in agreement with analytical predictions, eqn (92)
and (93). Note that for shorter traces in panels (b) and (c) of
Fig. 8 some discrepancy between the theoretical results and
simulations findings appears for long lag times. In this limit,
the lag time becomes comparable to the time along the

Fig. 8 (a) Variance-based ensemble averaged particle displacements for
CTRWs, hx2(D)i � hx(D)i2, with a = 0.8 and varying asymmetry parameter,
plotted in log–log scale. Theoretical asymptotes of eqn (91) and (92) are
the solid curves in both panels. The results for the variance of particle
position increments along the trajectory, h(x(t + D) � x(t))2i � hx(t + D) �
x(t)i2, according to eqn (92) plotted for varying ageing times t = ta are
presented for a = 0.8 (panel b) and a = 0.4 (panel c).
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trajectory, see Fig. 8b, c and eqn (41). Also, additional subleading
terms, neglected in our analytical relations, can contribute.

The reader is referred here to ref. 12, 137 and 139 for the
analytical results for ageing subdiffusive bias-free CTRWs. In
this case, the MSD of the particles scales as MSDa(t) = h[x(ta + t)�
x(ta)]2i B t/ta

1�a in the limit of short times t { ta and as
MSDa(t) B ta in the limit of long diffusion times, t c ta. The
time averaged MSD of such CTRWs grows, in contrast to the
ensemble average, always linearly with the lag time,12,137

d2ðDÞa
D E

¼
Ð taþT�D
ta

½xðtþ DÞ � xðtÞ�2dt
T � D

* +
� D1: (96)

Thus, the scalings of the ensemble and time averaged MSDs are
both linear only for long diffusion times and strong ageing
conditions,137 when a quasi-stationarity is achieved. On the
other hand, for large D values the time averaged variance for
biased subdiffusive CTRWs grows as pD1 and pD1+a, see
eqn (93) and also Table 1.

E. Einstein relation: ensemble and time averaged observables

Here, for biased CTRWs, we check the (second) generalised
Einstein relation2–4,6,7,56,57,131,139,182,188,201–207 that connects the
first ensemble averaged moment of particle displacements in
the presence of a (weak) constant force F, to the ensemble
averaged MSD in the absence of force. Mathematically, the
fluctuations of the force-free MSD are then connected to the
MSD via the standard linear response relation

hxðtÞiF ¼
F x2ðtÞ
� �

0

2kBT
; (97)

where kBT denotes the thermal energy and the applied forces are
weak enough so that aF/(kBT) { 1. Here and below, the subscript
after the ensemble average brackets denotes a positive force
applied, so that p 4 q in Fig. 1. At equilibrium the jump
probabilities between sites satisfy the detailed balance equation,

q

p
¼ exp � aF

kBT

� �
o 1: (98)

We thus find that the Einstein or the fluctuation–dissipation
relation (100) holds for biased CTRWs with arbitrary positive
exponents, a 4 0. Note that for the ordinary processes with
1 o a o 2 the term pD2�a in the force-free second moment
(65) compensates the second term in eqn (60).

The generalised Einstein relation for the time averaged
moments can be constructed similarly, see also ref. 7 for
subdiffusive CTRWs,

d1ðDÞ
D E

F
¼

F d2ðDÞ
D E

0

2kBT
: (99)

We refer the reader to ref. 188 and 203 on violation of (99) and
the effects of equilibrated starting conditions for superdiffusive
Lévy walks.67 Also note that for bias-free subdiffusive CTRWs
ergodicity is violated, but the time averaged Einstein relation in
form (99) holds.7,203 For biased CTRWs we obtain that—similar
to the ensemble averaged Einstein relation (97)—the time

averaged relation (99) holds to leading order in the entire range
of WTD exponents a.

IV. Discussion and conclusions

The main results of the current study, summarised in Table 1, reveal
important differences in the particle-spreading dynamics of ordinary
and equilibrium processes of biased CTRWs. We demonstrated, in
particular, that for power-law WTDs with a 4 2 ensemble and time
averaged variance-based particle displacements—denoted as

hx2(D)i � hx(D)i2 and dd2ðDÞ
D E

—are linear in time and lag time,

respectively, and the diffusion is fully ergodic.
In the range 1 o ao 2, for equilibrium processes the spreading

of the particles with respect to the mean contains both linear and
superdiffusive contributions, but the diffusion remains ergodic.
Depending on the time scale at which diffusion is monitored,
these additional terms—proportional to the field strength (or, the
asymmetry parameter e)—can dramatically affect the magnitude and
spreading characteristics of the particles. These features might
become imperative for interpreting the experimental single-particle
tracking data and proposing some CTRW-based physical mechan-
isms to rationalise them. For the ordinary situation in the same
range of a exponents, the ensemble and time averaged spreading
characteristics are not identical and the system exhibits ergodicity
breaking and ageing.

Finally, for the mathematically richest case 0 o a o 1, the
ensemble averaged displacement contains, in addition to the
standard BDa time scaling, the term BD2a. The latter can
result in a superdiffusive spreading of the particles governed
by biased CTRWs with the exponent 1/2 o a o 1, as known
from previous ensemble modelling.125,126 Biased CTRWs with
the exponents in the range 0 o a o 1 are non-ergodic and
ageing, similar to the drift-free CTRW processes.7,8,12,136

We also examined the behaviour of the ergodicity breaking
parameter for superdiffusive and superballistic realisations of
WTD exponents, a. We found the scaling behaviour dEB(T) B
1/T for a 4 2, while for 1 o a o 2 the approach to ergodicity is
anomalously slow, namely dEB(T) B 1/Ta�1. The calculation of
dEB(D,T) for subdiffusive CTRWs 0 o a o 1 requires a special
investigation (not presented here). Lastly, the ensemble and
time averaged Einstein relations appear to hold for biased
CTRW processes in the entire range of exponents a, see Table 1.

Our results can be of importance for quantifying various trans-
port properties dictated by anomalous and biased diffusion pro-
cesses, mathematically governed by the power-law distribution of
trapping times at individual sites. The classical example is
the Scher–Montroll transport126 in disordered media based
on the CTRW diffusion mechanism, recently also studied in
the presence of ageing.137,208 In Table 1—in addition to the
scaling behaviour for the ensemble and time averaged quan-
tities derived in Section III—we present the particle spreading
parameter defined as (dimensionless) dispersion-to-mean ratio

ZðDÞ ¼ DispersionðDÞ
MeanðDÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðDÞh i � xðDÞh i2

p
xðDÞh i : (100)
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This is the key parameter in the Scher–Montroll theory126

describing the universal transport properties of hopping
carriers in external fields biasing the motion. Considering a
moving packet of particles spreading via a subdiffusive CTRW
mechanism, Z(D) is known to become independent on time,
approaching the value ZðDÞ !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EBCTRW

p
for 0 o a o 1.125,126

Evaluating expression (100) for superdiffusive and superballistic
exponents, we find that for the biased CTRW processes with
1 o a o 2 the spreading parameter scales as Z(D) B D�(a�1)/2,
while for a 4 2 the scaling is Z(D) B D�1/2.

Here we also mention the non-equilibrium transport
in multi-particle systems (as flux or current) described via
the paradigmatic asymmetric simple exclusion process. This
includes exact results obtained via Bethe’s Ansatz for open-
boundary systems for flux and its variance (as first and second
ensemble-averaged moments).212–214 Note, however, that the
WTD in this situation is often exponential215 and the system
contains multiple particles on a finite interval which are
exchanging with a reservoir. Our CTRW approach is based on
power-law WTDs and delivers the results for infinite systems in
the long-time limit both on the level of ensemble and time
averaged MSD, as well as for the ergodicity breaking parameter.
Combinations of scale-free waiting times and exclusion pro-
cesses may become quite complex, but are definitely worth a
deeper consideration.

Extending the current approach to CTRWs with tempered or
truncated188 power-law WTDs

ctrðtÞ �
exp½�t=tc�

t1þa
; (101)

as well as implications of memory209,210 can be interesting to
unveil. The problems of front propagation and first-passage
time statistics211 can be posed for this biased system too.
Moreover, in the spirit of anomalous non-ergodic processes
with space-dependent diffusivity,192–194

DðxÞ � jxj
2ðb�1Þ

b ; (102)

which feature an MSD growth of the form (1), a dependence
of the WTD exponent and short time scale on the particle
position—namely, a - a(x) and t0 - t0(x)—may also be
considered. This generalisation mimics local random98

or systematic heterogeneities156 of the underlying physical
medium (diffusion substrate). Note here that effects of equili-
brium and ordinary ensembles on the displacement character-
istics for biased deterministic superdiffusion were considered
in ref. 182.

Abbreviations

WTD Waiting time distribution
CTRW Continuous-time random walk
MSD Mean squared displacement
RSD Relative standard deviation
WEB Weak ergodicity breaking
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16 I. M. Tolić-Nørrelykke, E.-L. Munteanu, G. Thon, L. Oddershede
and K. Berg-Sørensen, Anomalous diffusion in living yeast cells,
Phys. Rev. Lett., 2004, 93, 078102.

17 D. Banks and C. Fradin, Anomalous diffusion of proteins
due to molecular crowding, Biophys. J., 2005, 89, 2960.

18 K. Nørregaard, R. Metzler, C. Ritter, K. Berg-Sørensen and
L. Oddershede, Manipulation and motion of organelles and
single molecules in living cells, Chem. Rev., 2017, 117, 4342.

19 J. Szymanski and M. Weiss, Elucidating the origin of
anomalous diffusion in crowded fluids, Phys. Rev. Lett.,
2009, 103, 038102.

20 I. Golding and E. C. Cox, Physical nature of bacterial
cytoplasm, Phys. Rev. Lett., 2006, 96, 098102.

21 N. Gal, D. Lechtman-Goldstein and D. Weihs, Particle tracking
in living cells: a review of the mean square displacement
method and beyond, Rheol. Acta, 2013, 52, 425.

22 D. S. Banks, C. Tressler, R. D. Peters, F. Höfling and
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