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Non-Gaussianity, population heterogeneity, and
transient superdiffusion in the spreading dynamics
of amoeboid cells†

Andrey G. Cherstvy, * Oliver Nagel, Carsten Beta and Ralf Metzler *

What is the underlying diffusion process governing the spreading dynamics and search strategies

employed by amoeboid cells? Based on the statistical analysis of experimental single-cell tracking data

of the two-dimensional motion of the Dictyostelium discoideum amoeboid cells, we quantify their

diffusive behaviour based on a number of standard and complementary statistical indicators. We

compute the ensemble- and time-averaged mean-squared displacements (MSDs) of the diffusing

amoebae cells and observe a pronounced spread of short-time diffusion coefficients and anomalous

MSD-scaling exponents for individual cells. The distribution functions of the cell displacements, the

long-tailed distribution of instantaneous speeds, and the velocity autocorrelations are also computed.

In particular, we observe a systematic superdiffusive short-time behaviour for the ensemble- and

time-averaged MSDs of the amoeboid cells. Also, a clear anti-correlation of scaling exponents and

generalised diffusivity values for different cells is detected. Most significantly, we demonstrate that the

distribution function of the cell displacements has a strongly non-Gaussian shape and—using a rescaled

spatio-temporal variable—the cell-displacement data collapse onto a universal master curve. The

current analysis of single-cell motions can be implemented for quantifying diffusive behaviours in other

living-matter systems, in particular, when effects of active transport, non-Gaussian displacements, and

heterogeneity of the population are involved in the dynamics.

I. Introduction
A. Diffusion of amoebae: biophysical properties

Complex active processes1–8 are abundant in cell biology, ensuring
motility and locomotion of cells,9–14 swarming and chemotaxis of
bacteria15–18 and simple eukaryotes,19 propulsion of natural or
artificial micro-swimmers and microorganisms,1,17,20–31 and diffu-
sion of passive tracers in active bacterial suspensions.5,32 Directed
and collective motions10,33–37 of eukaryotic cells on various
substrates10,38,39 are known to affect the features of embryonic
development, wound healing, tumour migration40,41 and can-
cer spreading.14,42–45

The social amoeba Dictyostelium discoideum (denoted as
DICTY hereafter) is ubiquitously used as a eukaryotic model
system to study cell motility,19,46 aggregation and quorum
sensing,47 signal transduction, and cell-to-cell signalling.48,49

In their natural habitats, free-living DICTY amoebae sense food

sources (bacteria) at a distance and pursue their prey via
employing chemotactic mechanisms50–59 and sensitively detecting
chemoattractant gradients.54,56,60–64 In particular, the vegetative-
phase DICTY amoebae locate bacterial or yeast cells via folic-acid
signals the latter secrete.50,57 The dynamics of randomly-moving
and chemotactic57,59 DICTY cells were studied experimentally
for different strains.19,46,51,53,65–68 The reader is also referred to
the computational studies of gradient sensing by chemotactic
cells,69 shape-driven cell migration,70 and persistent pseudopodia
formation.71

The spreading dynamics of DICTY cells (see Fig. 1a and b
and the video files in the ESI†) involves the filopodia forma-
tion of (mainly) pseudopods.52,55,72 Similarly to other motile
cells,65,73 DICTY actively creates rapid actin-rich pseudopodia
protrusions on the leading edge (via actin polymerisation38)
and retracts them on the back of the cell49,52,72,74–77 with the
help of myosin-II motors. This migration strategy is also employed
by leukocytes and metastatic tumour cells.78 A statistical
analysis of pseudopod extension angles and centroid DICTY
motions has been conducted.71 The motion of pseudopodia is
chemotactically-regulated directing cell migration.72 The shape
dynamics, wave propagation,52 and migration of DICTY were
considered,79 see also ref. 47 for the DICTY social behaviour
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and life cycle. Signalling pathways and cell-adhesion models
of DICTY migration patterns were addressed as well.52,72,80 In
ref. 81 the details of recent atomic-force-microscopy measure-
ments on amoebae–surface interactions are reported. When a
starvation period begins, DICTY cells coordinate their motions,
increase persistence and speed, and start forming actively-moving
slug aggregates.46,47,56,64

For DICTY cells moving freely and without food sources on a
two-dimensional agar surface at very low densities of B1 cell
per cm2 (the AX4 strain) the directional persistence and turning
angles were examined.19 Importantly, the distribution of
turning angles was found to be non-Gaussian, featuring an
exponential tail. The time intervals between the directed DICTY
turns were also found to be exponentially distributed.19 Along the
trajectories of individual amoebae, the clock- and counter-clockwise
cell turning directions were shown to be anti-correlated.19 The
resulting zigzag motion of DICTY cells with long directional
persistence may be favourable, e.g., for optimising their food-
search strategies58 for sparse random targets.16,19,82–84,243

For other amoeboid cells (e.g., for Amoeba proteus), the speed and
turning angles were shown to be negatively correlated,86 indicating
that faster cells move more persistently, see Fig. 2 in ref. 47 and
Fig. 3c in ref. 66. The universal features of cell migration based on
actin-mediated flow patterns indicated pronounced correlations
between the instantaneous speed and persistence time of motion
for a number of different adherent cells,12,13 including some
amoebae. The measured speed distributions p(v) for planar

DICTY motion are roughly Maxwellian, but with fatter tails at
large cell speeds19,66 (as we also report below). The distribution of
the components p(vx,y) was found to be non-Gaussian and to
change drastically with the lag time.19 This and other experimental
evidence offer a field for an advanced statistical analysis and new
theoretical approaches, beyond the standard models of passive
diffusion.244 In this paper, we report novel important insight into
the properties of DICTY spreading/migration dynamics.

B. Anomalous diffusion and physical description

The properties of the active motion of amoebae and of tracer
particles87,88 actively-driven in the highly-crowded DICTY
cytoplasm89,90 are examples of biological matter out of equili-
brium.91,92 Faster-than-Brownian dynamics is pertinent to active
biological systems:20,93,94 it is observed, e.g., for swarming
bacteria,16 for the spreading of flagellate protozoa (transient
superdiffusion),29 and for the diffusion of some epithelial95 and
Hydra cells.26 Note that superdiffusive Lévy walks can also describe
collective motions of bacteria (with the outer region of expanding
swarms of Bacillus subtilis obeying a persistent Lévy walk16) and
motions of mRNA–protein complexes in a neuron.96 We mention
also correlated truncated Lévy processes proposed to rationalise
diffusion in dilute suspensions of algae and bacteria.97

For non-Fickian diffusion, the standard measure of particle
displacements—the ensemble-averaged mean-squared displacement
(MSD)—grows anomalously with time in the power-law form,8,98–107

MSD(t) C Kata, (1)

with the anomalous scaling exponent for superdiffusive motions
being a 4 1. Here Ka is the generalised diffusion coefficient. For
passive subdiffusive tracer motions, abundant in viscoelastic
and heterogenous biologically-relevant media,101,104,105,108–110

one finds 0 o a o 1. The sublinear scaling of the ensemble-
and time-averaged (a moving average defined in eqn (3) below)
MSDs is fairly common for crowded cellular systems: for diffusion
of lipids and proteins on two-dimensional membranes,111,112

for obstructed viscoelastic motion of granules inside living
cells,108,113,114 and for motions of chromosomal loci in
bacteria115–117 and mammalian cells.118 The cases a = 1 and
a = 2 in eqn (1) describe Fickian/Brownian diffusion and
ballistic motion, respectively.100,101

The diffusive motion of DICTY cells of different strains was
thoroughly analysed.19,46,51,65,66 For instance, it was shown66 that
the processes controlling DICTY speed and orientation involve a
deterministic periodic component. Stretches of fast persistent
motion were shown to be interrupted by slow phases, when
reorientations of cell direction take place.66 This intermittent DICTY
kinetics is reminiscent of the alternating active–passive transport
inside eukaryotic cells performed by dynein/kinesin motors3,93,94,119

along microtubuli (see ref. 89 for transport inside DICTY and
also ref. 87 and 120). An internal ‘‘clock’’ governs the cycles of
DICTY motility and crawling, which include frequent shape
deformations,73,79 pseudopodia extension and retraction,66,71,121

and formation of actin polymerisation waves.121–123 Also, the
‘‘turning rate’’ and the speed of DICTY persistent motion are
anti-correlated66 (also ref. 46, but contrast to Fig. 2 of ref. 47).

Fig. 1 Samples of experimentally recorded trajectories (at different starting
times) (a) and all reconstructed traces of the DICTY cells (b) tracked in our
experiments. Supporting video-microscopy files are provided in the ESI.†
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The amoebae diffusion can be viewed as directed motions with
intermittent directional turnings of the cells.66

A number of theoretical models have been proposed to
describe the dynamics of actively-driven tracers and bacteria,
with different noise terms employed to describe azimuthal
motions and axial propulsions, see a recent review.20 Some
physical models of active tracers14,19,20,124–134 were applied to cell
crawling, also for amoebae (see the recent study73 of crawling and
cell-shape dynamics of the fibroblast cells). Physically, for active
two-dimensional motions of an elongated particle at short times
a persistent motion is expected. For times much longer than the
typical persistence time of directed motions, t c tp, multiple
azimuthal turnings occur and the transition to Fickian diffusion
takes place for the center of mass of the particles. Note that the
short-time DICTY diffusivities are broadly distributed,19 indicat-
ing a cell-to-cell variability (fast, intermediate, and slow cells exist
in a population47). Finally, the Monte Carlo simulations19 for a
coloured noise-driven orientational ‘‘DICTY-particle’’ have repro-
duced the exponential distribution of the turning angles and
other features of amoeboid superdiffusion.

Still, some important details of the DICTY dynamics remain
to be quantified, which is our main focus here using detailed
statistical analysis. We quantify the ensemble- and time-
averaged MSDs, and also report the distribution of scaling
exponents and diffusivities of individual DICTY cells. Moreover,
we compute and rationalise the evolution of non-Gaussian
distributions of DICTY displacements and unveil the universal
features of amoeba spreading dynamics, which are consistent
with the anomalous MSD law we observe. These central novel
results of our combined experimental and data-analysis study
will also be relevant for the spreading dynamics of other self-
propelled cells.

II. Results of statistical data analysis

We perform a model-free analysis of the experimentally-recorded
DICTY traces, see Fig. 1, based on multiple statistical indicators.
We compute the ensemble- and time-averaged MSDs, the spread
and correlation of anomalous scaling exponents versus respective
instantaneous diffusion coefficients, the distribution of cell
displacements and speeds, and the velocity–velocity autocorre-
lation function.

A. Ensemble and time-averaged MSDs

The recorded single-cell trajectories for N E 1100 tracked
DICTY cells are presented in Fig. 1b. The trace length T is
broadly distributed, T E 60. . .940 time steps, due to experi-
mental limitations, see Section IV. One step (denoted s below)
corresponds to dt = 20 s, so that the total DICTY tracking time
is B0.3. . .5 hours, see Fig. 9. Based on the displacement data for
DICTY cells, we calculate both the ensemble- and time-averaged
MSDs, and compare their behaviour in Fig. 2. A two-parameter
fit of the short-time MSD growth shows that it is anomalous,

MSD(t) = h[x(t) � x(0)]2 + [y(t) � y(0)]2i B Kata, (2)

with the superdiffusive scaling exponent a E 1.28. Note that
a random component of the DICTY motion may stem from
internal noisy processes and as a response to medium inhomo-
geneities.51 The individual time-averaged MSD trajectories,
evaluated from displacements of the centre of mass of the
ith DICTY cell as100,101,103,113

di2ðDÞ ¼

Ð T�D
0 xiðtþ DÞ � xiðtÞ½ �2þ yiðtþ DÞ � yiðtÞ½ �2

n o
dt

T � D
;

(3)

Fig. 2 Panel (a): ensemble- and time-averaged MSDs plotted versus (lag) time t, D. The MSD and mean time-averaged MSD are the solid green and blue
curves, respectively. Individual di2ðDÞ traces are the red lines, while the red dots in panel (b) are the initial values di2ðD1Þ at D1 = 20 s. The asymptotes of
eqn (1) and (7) with a E 1.28 and b E 1.37 for the ensemble-averaged and mean time-averaged MSDs are the dashed black lines, respectively. For
comparison, in panel (a) we show as the blue stars the mean time-averaged MSD data from Fig. 1E of ref. 47 (for the DH1 DICTY strain). Panel (b): Scatter

of initial time-averaged MSD values di2ðD1Þ and their dependence on the trace length T, see eqn (7). The direct fit of di2ðD1;TÞ data as a power-law

function of T is the black dashed line. The results of averaging over first equidistantly-binned di2ðD1;TÞ data (the blue dots) is the dashed blue line. The
density of points in panel (b) reflects the p(T) histogram of Fig. 9, with Tmin = 60 steps being the minimal length of the analysed cell trajectories.
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reveal a pronounced spread of magnitudes and scaling exponents,
even for lag times much shorter than the trace length, D { T, see
Fig. 2. Such trajectory-to-trajectory variations emerge here, i.a., due
to inherent variations in physical dimensions of cells and different
propulsive characteristics in the cell population, as well as
variations of the actual age of a given cell being tracked. Such
variations of the time-averaged MSD are also quite typical for
non-ergodic anomalous diffusion processes taking place at, for
instance, heterogeneous conditions across the system, see
ref. 101 and 136–139 and also the discussion in Section III.
The spread of magnitudes and scaling exponents for individual
time-averaged MSD trajectories with the scaling

di2ðDÞ ’ Kb;iDbi (4)

also grows for progressively larger lag time values D. That is a rather
standard feature for various stochastic processes,100,101,114 including
standard Brownian motion (due to the decreasing sample size for
fixed T). Hereafter, the overline denotes time averaging and the
angular brackets indicate ensemble averaging. We define the mean
time-averaged MSD as the average over N trajectories,

d2ðDÞ
D E

¼ N�1
XN
i¼1

di2ðDÞ: (5)

As compared to the ensemble average (1), at short lag times

D the mean time-averaged MSD d2ðDÞ
D E

for the DICTY data set

grows with a slightly different exponent, bE 1.37. The reported
exponents a and bi are obtained here via two-parameter fits of
the first nfit = 15 points of the cell traces (using Wolfram
Mathematica). These rather small numbers of fitting points
describe the initial growth of individual time-averaged MSD
trajectories at short lag times, i.e., in the regime where the
mathematical description by moving averages is statistically
most reliable. Provided a limited total number of points in an
average track recorded, these fitting numbers seems realistic to
capture the short-time growth of the MSD. We refer the reader
to ref. 135 for effects of the number of lag-time fitting points on
the estimation of scaling exponents.

In Fig. 2a the MSD and mean time-averaged MSD are fairly
close, but do not match perfectly, both in terms of their amplitudes
and scaling exponents. This discrepancy between the ensemble-
and time-averaged particle displacements signifies the phenom-
enon of so-called weak ergodicity breaking, see ref. 8, 100, 101, 103,
136, 137 and 141–144. Note, however, that this relatively minor
discrepancy may be diminished further when more and longer
traces are used in the analysis, also provided via different data-
acquisition strategies. In Fig. 2a we additionally present the
ensemble- and time-averaged MSDs for the DH1 DICTY strain,
for comparison with our findings. As the diffusive dynamics of
DICTY cells is known to depend strongly on their strain or cell-
line,46 the sample preparation procedure, surface properties,
some ageing effects,47 etc., the discrepancy with ref. 47 in terms
of the MSD magnitude and scaling exponent we observe is not
that surprising.

The distribution of time-averaged MSDs of DICTY cells is
shown in Fig. 3 for varying lag-time values. Corroborating the

results of Fig. 2a, we find that the scatter of d2 magnitudes is
growing with the lag time.

The moderate transient superdiffusion we find for the AX2
DICTY strain differs from the findings of ref. 19 for the AX3
strain at similarly low cell densities. Namely, for the AX3 strain at
short times the time-averaged MSD grows roughly ballistically,
while diffusion turns Brownian at longer times, t \ 20 min. The
model of persistent two-dimensional random walks—with a
characteristic velocity vp E 5.4 mm min�1 and persistence time
tp E 8.8 min—was shown to fit the data,19 namely

dWLC
2ðDÞ

D E
¼ 2vp

2tp
2 D=tp � 1� e�D=tp

� �h i
: (6)

Here the subscript WLC refers to the worm-like-chain model.
The same functional form but with tp B 5 min was used to
describe diffusion for the DH1 strain,47 as well as in the classical
study46 for the NC4 strain. In ref. 46 significant correlations of
diffusion coefficients, D = K1 = vp

2tp/2, with mean cell velocities
were documented, in addition to inverse correlations of tp

with vp.245

B. Effects of trace-to-trace variability and the cell trajectory
length

As Fig. 2a illustrates, the scaling exponents of the ensemble-
and time-averaged MSDs are progressively decreasing with the

Fig. 3 Amplitude scatter of time-averaged MSDs in terms of number
distributions N x ¼ d2ðDÞ= d2ðDÞ

D E� �
for the data set of Fig. 2, plotted for lag

times D = {20, 60, 200, 600} s. Very small d2 magnitudes (nearly immobile
cells) are not shown.
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(lag) time. Towards the end of the trajectories, a much slower
growth of cell displacements is detected, with a E b E 0.3, a
feature of confined or ageing subdiffusion100,101,137 that may,
however, be caused by the current data-acquisition protocol
(with its intrinsic limitations) as well as by cell sample-
preparation methods, see Section IV for details. The fastest
DICTY cells quickly leave the field of observation (in the vertical
direction; see also Fig. 2 in ref. 16), possibly contributing to this
MSD slowing-down at later stages. Because of this experimental
limitation, longer trajectories in the data set may contain a
bias towards slower cells. Their subpopulation will be over-
represented in such an ensemble, thereby giving rise to overall
smaller magnitudes for cell displacements. A similar bias
towards slower walkers can emerge for longer minimal trace
lengths, Tmin, that are set at the start of the tracking experi-
ment, see the discussion in ref. 145, 147 and 155. Note that for
spreading of protozoa a similar dramatic reduction of the local
scaling exponent along the traces was detected, see Fig. 2b of
ref. 29 and 246–248.

As the trace length T varies among the trajectories, see Fig. 9,
in Fig. 2b we quantify the dependence of the initial time-

averaged MSD value at the first time-step di2ðD1 ¼ 1Þ on T.
We find that shorter trajectories yield slightly but system-

atically larger di2ðD1Þ values and a more pronounced spread,

see Fig. 2b. The d2ðD1Þmagnitudes decrease on average with T,
possibly due to some tracking-method-related bias towards
monitoring a subpopulation of slower cells for longer T.

Note that one expects an opposite behaviour of d2ðD1;TÞ versus
T for a free superdiffusive process. Some inherent ageing
effects—known to occur for DICTY motion46,47,148—and the
above-mentioned escape of faster cells from the view-field

may also contribute to the decrease of d2ðD1;TÞ with T reported
in Fig. 2b.

Fitting this dependence with a simple power law, the short-
lag-time diffusion law consistent with the data is

d2ðD;TÞ
D E

’ KbiD
bi

� �
=Ta�1; (7)

with broadly-spread generalised diffusion coefficients, Kb.
Fitting the data of Fig. 2b gives a E 1.28. . .1.3, consistent with
the MSD exponent of Fig. 2a and the spreading law (7). More-

over, the exponent of the decay of d2ðD1;TÞ
D E

with T stays

nearly unaltered if we first order the di2ðD1Þ values into equidi-
stant T-bins and then fit the data, see the black and blue
dashed lines in Fig. 2b.

The initial growth of the ensemble- and time-averaged MSDs
with (lag) time and their magnitudes provide an estimate of the
short-time diffusivity of the AX2 DICTY strain, namely hDi B
0.03 mm2 s�1 = 1.8 mm2 min�1 (note that cell motion is initially
slightly superdiffusive). This is considerably smaller than for a
slower subset in a DICTY DH1 population reported in ref. 47,
where hDiE 4.7 mm2 min�1. This discrepancy is reflected in the
MSD magnitude; compare the blue curve and blue data points
in Fig. 2a.

C. Generalised diffusion coefficients and anomalous scaling
exponents: anti-correlations

Fig. 1 and 2 illustrate strongly heterogeneous features of amoebae
diffusion. Specifically, some DICTY cells move in a rather persis-
tent manner, while others perform a fairly confined motion.
These two distinct types of motion result in, respectively, fast

superdiffusively growing and nearly stalling d2ðDÞ traces, Fig. 2a.
Moreover, the distributions of scaling exponents p(b) and gene-
ralised diffusion coefficients p(Kb) are also significant. We quan-
tify p(bi) in Fig. 10 via power-law fitting of initial nfit = {5, 15, 25}

points of di2ðDÞ trajectories.
We observe that the p(b) shape is somewhat asymmetric,

with the largest exponents b E 2 for nearly ballistic motion of
highly-motile cells. The error bars for extracted scaling expo-
nents get smaller when more points are used in the fitting
analysis. The initially stalling traces in Fig. 2a are the entries
with b E 0 in Fig. 10. We find that a smaller number of fit
points nfit at short lag times D/T { 1 gives larger exponents b,
compare the panels of Fig. 10; the DICTY motion we detect
becomes less persistent with time, turning from superdiffusion
into subdiffusion with increasing lag time D. The p(b) distribu-
tions provide well-defined mean values, hbi, which also shift by

a similar margin dhbi E 0.1 when the di2ðDÞ traces from Fig. 2
are fitted using smaller nfit values.

Naturally, the fitting procedure (4) depends on the number
of fitting points nfit and on data binning (linear, log, etc.),
making the results for Kb and b somewhat non-universal. We
refer here to the recent studies on optimisation methods for
evaluation of diffusion coefficients and anomalous scaling expo-

nents for d2ðDÞ from single-particle tracking data,149–151 also in
the presence of particle-localisation errors.152

The distribution of the short-lag-time generalised diffusion
coefficients, p(Kb), is shown in Fig. 11. For smaller nfit values the
shapes of p(Kb/hKbi) appear more peaked or localised. Moreover,
the ‘‘averaged’’ generalised diffusion coefficient increases with the
number of fitting points: for nfit = {5, 15, 25} we find, respectively,
hKbi E {0.020, 0.043, 0.100} mm2 per shbi, with scaling exponents
hbiE {1.37, 1.25, 1.15}, see Fig. 4, 10 and 11. Note that we compare
here generalised diffusion coefficients seemingly having different
units; one can ‘‘regularise’’ this inconsistency if Kb,i values are
multiplied by the unit lag time to the corresponding power bi,
eqn (4). Then, the corresponding spread of time-averaged displace-
ments will be effectively compared (as, for instance, in Fig. 7 of
ref. 153); see also recent studies155,156 as examples of quantifying
the spread of generalised diffusion coefficients directly. The mean
values of generalised diffusion coefficients and scaling exponents
are given here in the sense of ensemble averages, eqn (7).

The pronounced Kb-spread we find is consistent with (some)
previous findings (see, e.g., Fig. 3A of ref. 19). We also refer to
ref. 157 for quantifying the effects of statistical and instru-
mental spreading of diffusion coefficients via simulations. The
spread of generalised diffusion coefficients and scaling expo-
nents (see also ref. 75)—that stems, i.a., from different DICTY
shapes, sizes, and propulsion strategies—contributes to variable
migration and fitness properties of amoeboid cells.46
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Moreover, we detect pronounced anti-correlations of b versus
Kb, with the Pearson correlation coefficient for the {Kb, b}nfit

sets
being E{�0.56, �0.50, �0.51} for nfit = {5, 15, 25}, respectively.
The DICTY cells diffusing more persistently exhibit (on average)
smaller diffusivities. To quantify this important feature of the
dynamics, we show in Fig. 4 the Kb(b) data on a log–linear scale,
together with the two-parameter fitted exponential slopes

Kb(b) B exp[�c1b + c2]. (8)

To the best of our knowledge, none of the standard anomalous
diffusion processes100,101 features such anti-correlations, chal-
lenging the physical explanation and mathematical description
of the observed amoebae dynamics. For instance, for visco-
elastic diffusion of tracers in polymeric hydrogels146,147 Kb

versus b correlations are positive.158 A simplistic view of these
remarkable Kb versus b anti-correlations is that some cells use
the energy sources available so that more persistent active
motions at lower diffusivities are realised, while other cells
diffuse in a more random manner (less persistently), but
instead with larger diffusivities. These intrinsic heterogeneities
in the in vitro population of the DICTY cells may have impli-
cations, i.a., for optimising the food-search strategies19,58 they
employ in vivo.

D. Non-Gaussian displacement distributions

We examine the probability distribution functions of DICTY
displacements focusing on their pronounced non-Gaussian
features. The universal space–time rescaled distribution
function p(z E dx/(dt)0.615) found below is our central novel

result here. The distributions of displacements p(dx) for all
cells in the data set along the coordinate x for the chosen
time-shifts of

ds = 1, 3, 10, and 30 steps (9)

are shown in Fig. 5 on a log–linear scale (dt = ds � 20 s). The
distributions along the y-direction, p(dy), reveal nearly identical
non-Gaussian features, as confirmed in Fig. 12. We focus below
on the shapes of p(dx), which reveal pronounced cusps at dx = 0
for all ds values (9), see Fig. 13, a very distinct feature as
compared to the standard Gaussian. The decay of the tails of
p(dx) p N(dx) distributions is slower than Gaussian (here, N(dx)
is the number of cell displacements for given dx and dt values
in the data set).

We find that the exponent d—quantifying the decay of p(dx)
away from the cusp—is fairly close to unity, resulting in a
Laplace-like exponential (rather than in a Gaussian) distribution.
The exponent decreases slightly with dt so that the distribution
becomes roughly exponential at longer time-shifts, see Fig. 5
and 12. The decrease of exponent d with step-shift ds we find is
not surprising: as Fig. 2 illustrates, for longer lag times D the
dynamics of DICTY cells slows down in terms of the exponent
hb(D)i. To quantify these features, we fit the reconstructed
distributions p(dx) using Wolfram Mathematica with a two-
parametric zero-mean compressed exponential or stretched
Gaussian distribution,

pd;sðdxÞ �
1

2s2d1=dGð1þ 1=dÞ exp �
1

d
jðdxÞj
s

� �d
" #

; (10)

where s is the characteristic width of the distribution and G(x)
is the Gamma function. The notation d for the exponent in (10)

(following ref. 106) should not be mixed with d2ðDÞ and space or
time increments, dx or dt. The averaged squared cell displace-
ments along the x-direction, (dx)2, then scale with the time-shift
dt as

ðdxÞ2ðdtÞ
� �

¼ 2

ð1
0

ðdxÞ2pd;sðdxÞdðdxÞ

¼ s2ðdtÞ dh i2=hdiGð3= dh iÞ
Gð1= dh iÞ � s2ðdtÞ:

(11)

Here, we neglected a weak dependence of the exponent d on
the time-shift (see Fig. 5 and 12), using in further analysis
the average hdi value over all the time steps dt examined. This
provides a good description of the displacement data, see
Fig. 7 and 14.

From the best-fit parameters of the distribution functions
of Fig. 5, 12 and 13, we find that the width of the distribution
grows with dt in a non-Fickian manner,

s(dt) B (dt)0.615, (12)

identical for x- and y-displacements, as shown in Fig. 6. Thus,
introducing the rescaled space-time variable

z = (dx)/(dt)0.615 E (dx)/(dt)a/2, (13)

Fig. 4 Anticorrelation of scaling exponents and generalised diffusion
coefficients for the data of Fig. 2. The best-fit asymptotes (8) are the
dashed lines. The colours for nfit = {5, 15, 25} initial fitting points of the

di2ðDÞ are purple, red, and cyan, respectively (for these plots as well as for
Fig. 10 and 11).
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the rescaled displacement distributions for different time-shifts
should collapse onto the universal master curve, see Fig. 7 and 14,
namely

pd,s(dt)(dx) B exp(�[(dx)/(dt)0.615]d). (14)

Similar dependencies were recently detected also, e.g., in
ref. 111 and 159, see also Appendix B. The standard Gaussian
for normal diffusion follows from eqn (10) for a = 1 and d = 2.

Using eqn (12) and (13) we find that the superdiffusive expo-
nent is aE 2 � 0.615, which is close to a E 1.28 obtained from
the short-time MSD growth in Fig. 2a, in accordance with
eqn (11). The logarithmic and linear histograms of Fig. 5 and
13 demonstrate that eqn (10) and (14) describe the DICTY cell
displacement data very well.

The DICTY cells thus have pronouncedly non-Gaussian
displacement distributions and diffuse anomalously. There-
fore, the currently-investigated Brownian but non-Gaussian

Fig. 5 Log–linear histograms of the number of cell displacements along the x direction for different time-shifts dt, as indicated in the plots. Different
horizontal scales in the panels are to be noted. The asymptotes of eqn (10) are the blue curves, with the values of the best-fit exponent d provided in each panel.

Fig. 6 Width of the distributions s(ds) versus time-shift, as found via the
best fit of p(dx) and p(dy) of Fig. 5 and 12. The circles and diamonds are
the data for the x and y direction, respectively. The power law (12) is the
dashed line (dt = ds � 20 s).

Fig. 7 Collapse of probability distributions in terms of the rescaled variable z,
given by eqn (13), plotted for the time-shifts and mean scaling exponent hdi
from the data of Fig. 5.
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‘‘diffusing diffusivity’’ models159–166 should be modified to become
appropriate to describe these observations (see, e.g., ref. 164, 166
and the discussion in Section III below). Generally, superstatistical
approaches167 may be appropriate here due to the observed
heterogeneity in the DICTY dynamics on the population level.

E. Speed distribution and velocity–velocity auto-correlation
function

The instantaneous speed of a given cell at time-step i, is defined
as the ratio of displacement increments over the elementary
(finite) time step in the experiments,

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiþ1 � xiÞ2 þ ðyiþ1 � yiÞ2

q
=dt: (15)

This quantity fluctuates broadly along the recorded DICTY
trajectories (not shown). Theoretically, the shape of the p(v)
distribution delivers important information regarding the type
of underlying active dynamics.20,131 The profile of DICTY speeds
p(v) in Fig. 8—obtained after averaging over all cells and time
steps—cannot be satisfactorily fitted via the one-parameter
Rayleigh-like distribution

pRayðvÞ ¼
v exp �v2

	
2sv2

 �� 

sv2
: (16)

This would correspond to the Maxwell–Boltzmann profile
expected for an equilibrium system with average squared
particle speed hv2i ¼ 2sv2 ¼ 2kBT eff=m, where T eff is the effec-
tive temperature and m is the particle mass, see also ref. 5
and 32. The measured DICTY p(v) function grows faster at small
speeds and has more pronounced tails at high speeds, see
Fig. 8. The latter were indeed observed in the earlier examina-
tions of the DICTY motility (see Fig. 2 and 5 of ref. 46 and Fig. 6
of ref. 66).

Fitting our data with the two-parameter generalised Gamma
distribution

pGamðvÞ ¼
gveg�1 exp½�vg�

GðeÞ (17)

provides a much better agreement. The fit function shown in
Fig. 8 is pGam(v) E 0.90e�v0.96v1.06 B ve�v, meaning that the
high-speed tail of the distribution p(v) is approximately expo-
nential. Note here that generalised Gamma speed distributions
were also applied to the spreading dynamics of protozoa cells.29

The distribution p(v2) can also be fitted with eqn (17) (not
shown). The heavier-than-Gaussian tails were quantified pre-
viously, see Fig. 4 in ref. 168. Regarding the nearly exponential
tails of the speed distribution we observe for the AX2 strain,
Fig. 8 here can be compared with similar p(v) shapes in Fig. 4F
of ref. 65 measured for the AX4 strain of DICTY (we refer also to
Fig. 2B and Fig. S1, S4 of ref. 169 and to Fig. 8 of ref. 170 for p(v)
distributions of motile fibroblast cells). The mean instanta-
neous speed we find for the cells of the AX2 DICTY strain is
hvi E 2.3 mm min�1.249

Finally, the velocity–velocity auto-correlation func-
tion8,100,101,112,113

CdtðtÞ ¼
½rðtþ dtÞ � rðtÞ� � ½rðdtÞ � rð0Þ�h i

ðdtÞ2 (18)

was also computed from the two-dimensional cell traces
recorded in our tracking experiments. Here, the time-shift dt
takes a fixed value, the time t runs along each trace ri(t) until a
given time-step, and in (18) averaging is thus performed over
initial parts of all the trajectories (to exclude possible effects of
ageing and cell slowing-down along the traces). The results of
Fig. 15 show that the normalised function, Cdt(t)/Cdt(0), decays
fast for short times, at 0 o t o dt. Reaching a positive value at
time t = dt, the velocity correlation function starts decaying
slower at t 4 dt, but remains slightly positive (on average). This
feature is consistent with superdiffusive motion: the DICTY
cells follow the previous directions of motion statistically more
often, but these correlations decay with time (see also Fig. 3 in
ref. 46). Experimentally, such persistent behaviour was also
observed for the intracellular diffusion of granules in amoeba
cells.7 The typical time of this second decay is B5. . .10 steps,
or B100. . .200 s. The variations of Cdt(t)/Cdt(0) at longer times
are due to insufficient statistics.

Note that the periods of persistent run-and-turn cycles of
DICTY were reported to be in the range B1. . .3 min.19,46,47,66

Also, the cell dynamics was shown to reveal more than one
internal time scale, with a ‘‘knee’’ in the velocity autocorrela-
tion function at B1.5. . .2 min, see Fig. 3 in ref. 51. Note that a
persistent walk at short times can differ for longitudinal and
transversal directions of cell motion due to a pronounced cell
asymmetry.51,250

III. Discussion

Here, we summarise the main results of the current study,
discuss their major implications, and scrutinise the mathe-
matical stochastic models that are potentially applicable to
describe the observed dynamics of the DICTY cells (the AX2
strain). We quantified the diffusive spreading of the amoeboid
cells on two-dimensional surfaces based on (i) the ensemble-
and time-averaged MSDs, (ii) the distributions of diffusivities

Fig. 8 Distribution of instantaneous cell speeds p(v) and its fit by the
Rayleigh (16) and generalised Gamma (17) distributions (the dashed and
solid curves, respectively).
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and scaling exponents of individual cells, (iii) the non-Gaussian
distributions of cell displacements, (iv) the long-tail speed dis-
tributions of the cells, and (v) the velocity–velocity auto-correlation
function. Specifically, we detected (i) and (ii) pronounced hetero-
geneities and dramatic scatter in the distributions of the diffu-
sion coefficients and scaling exponents along individual trajec-
tories. The ensemble- and time-averaged MSD magnitudes were
found not to match each other exactly, manifesting a certain
degree of weak non-ergodicity100,101,103 of an underlying
diffusion process. The anomalous scaling exponents decrease
from often superdiffusive values at the start to rather small
subdiffusive values towards the end of the trajectories. The
(iii) DICTY displacements after a given time-shift were found to
be severely non-Gaussian, featuring rather close-to-exponential
distributions.

Note that additional observables to quantify the features of
anomalous diffusion processes are known: (a) the so-called
ergodicity breaking parameter,8,100,101,103 (b) higher-order
moments of the distribution of the time-averaged MSD trajec-
tories, such as skewness and kurtosis,95,174 (c) the non-
Gaussianity parameter,8,105,109 and (d) the shape asymmetry
of the trajectory in space.146 This analysis can be performed in
the future, on larger data sets of DICTY positions, recorded for
varying experimental conditions and parameters. We refer the
reader here also to ref. 107, 108, 112, 135, 146, 149, 151
and 175–181 for a comparative statistical analysis of multiple
anomalous-diffusion characteristics, model-comparison tests
for single-particle trajectory data (we do not perform such tests
here, see ref. 182), and for uncertainties in estimation of the
model parameters.

Taken together, the observed features of the DICTY
dynamics do not directly match any of the simple standard
mathematical models of anomalous diffusion (see also ref. 19).
A mixture of two or more stochastic processes of different type
is needed, as proposed and considered in ref. 107, 110, 112,
114, 178 and 183–186. Such combined models—for instance, a
combination of fractional Brownian motion and continuous
time random walks—were already implemented to rationalise
experimental data on ageing subdiffusion inside cells,114 see
also ref. 187. To disentangle the sources and origins of underlying
stochastic physical processes,188,189 additional quantitative input
from experiments will be required. The key experiments to be
done to clarify this have to yield a larger number of longer traces
recorded at systematically-varying environment conditions.

The list of conditions includes varying cell densities, ambi-
ent temperatures (to probe non-equilibrium features and viola-
tions of energy equipartitioning), delay times after the cell
culture preparation (possible ageing46,47 of the DICTY cells),
cell adhesion properties onto substrates, etc. The implications of
surface confinement of the DICTY cells in the lab environment
onto the patterns of their three-dimensional motion as occurs
in vivo—as, e.g., for surface-confined sperm cells23,190—may
also need quantification. The simultaneous tracking of neigh-
bouring amoebae is highly-desirable to study collective
cell-density-dependent behaviours,6,23,36,145,191 dynamics of
moving cell aggregates192 and mutual cell–cell correlations193

(propagating, possibly, via hydrodynamic interactions5,6,16,21,22,35).
This however goes beyond the scope of the present study.

Regarding possible models, the continuous-time random
walks100,101,103,194,195 and heterogeneous diffusion proces-
ses101,136–139 are examples of non-ergodic anomalous diffusion
processes with a pronounced spread of time-averaged MSDs.
Subdiffusive continuous-time random walks are based on the
power-law distribution of waiting times for the next particle
jump, namely c(t) B 1/t1+a with 0 o a o 1.101,103 Hetero-
geneous diffusion processes describe particle propagation in a
medium with position-dependent power-law-varying diffusivity,
D(x) B |x|2(a�1)/a. For this choice of the scaling exponent, these
two different stochastic processes yield an MSD growth of
form (1). For these two processes for the subdiffusive case
and in the absence of confinement the MSD scaling exponent
is 0 o a o 1, but the time-averaged MSD is always a linear
function of the lag time, that is b = 1.100,101,195 This is not the
case for the DICTY diffusion data in Fig. 2a, with the exponents
a and hbi being measurably superdiffusive and quite close to
one another. Also, the magnitudes of the time-averaged MSD,
decreasing with the trajectory length T, see Fig. 2b and eqn (7),
would be characteristic for a subdiffusive process. For superdiffu-
sive stochastic processes one expects rather increasing time-
averaged MSD for longer traces, as, for instance, for heterogeneous
diffusion processes with a 4 1, where the dependence on the lag

time and trace length is dHDP
2ðD;TÞ

D E
� D=T1�a, see ref. 136,

137 and 139.
For another class of diffusion processes—namely, for ergo-

dic motion driven by fractional Brownian noise and described
by the fractional Langevin equation—the ensemble- and time-
averaged MSDs are identical for long trajectories. These pro-

cesses feature only a tiny spread among independent d2 realisa-
tions at fixed parameters,100,101,114,174,176 similar to Brownian
motion, both for the amplitudes and scaling exponents. The
distribution of particle displacements for these two processes
is strictly Gaussian.101 Our observations in Fig. 2a and 5
indicate, however, a very different behaviour for the DICTY
spreading dynamics, thus challenging the applicability of existing
anomalous-diffusion models and underlying physical assump-
tions. In particular, a possible slowing-down or ageing of indivi-
dual cells after the sample preparation,47 some intrinsic cell-to-cell
variations, population splitting (fast and slow particles196–198),
environment-induced heterogeneities,199,200 implications of local
and global confinement and compartmentalisation,138,201 and
non-Gaussian displacement distributions (see Appendix B) are
the most important new features to be incorporated in future
theoretical models for this motile amoeboid system. Given the
strong observed heterogeneity of DICTY stochastic properties on
the population level, generalised superstatistical or diffusing-
diffusivity models may be natural candidates.

Future research should be focused on the understanding of
these aspects, to make the current experimental findings and
statistical data analysis approaches applicable to other single-
cell tracking systems. In general, data sets, where cell densities,
growth conditions, culture age, and other environmental factors
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are systematically varied, will ultimately provide the answers to
these important questions and enable us to pinpoint the best
stochastic model underlying the observed DICTY motion.

IV. Materials and methods

Here, we describe the experimental technique, the data-acquisition
strategy, the protocol for measuring cell positions, and the
software used for computing and analysing the recorded data.
In experiments, we used an AX2 strain of the wild-type DICTY
cells cultivated in the HL5 medium (Formedium, Norwich,
England) at 22 1C on polystyrene Petri dishes (Primaria, Falcon,
BD Becton Dickinson Europe, France), or shaken in suspension
at 150 rotations per min. The cells were washed, the HL5
medium was renewed, and then the cells were placed on a
plastic Petri dish (Sarstedt, Nümbrecht, Germany) for 30 minutes
to allow them to attach to the surface. Polystyrene beads of 15 mm
in diameter were placed on the dish as well, as a size reference,
see Fig. 1a and the movie in the ESI.† In the analysis of cell
positions, only those cells without contacts with the beads were
considered. At the start of the single-cell tracking experiment,
the cell density was r E 1. . .2 � 104 cells per cm2 (a rather
standard value19,46,47), corresponding to the cell-to-cell separa-
tion B100. . .70 mm.

The DICTY cells are in contact with a polystyrene Petri-dish
surface, in contrast to ref. 47 where glass surfaces were used.
This can be one of the reasons for the observed differences in
the cell diffusivity, in addition to the implications of different
cell densities and the DICTY strain used. The environment for
cell diffusion is considered to be homogeneous, isotropic, and
time-independent (consistent with our data), so that no coor-
dinated DICTY cell-migration patterns or flows occur. Note,
however, that even on the homogeneous agar surface the DICTY
cells are capable of sensing and following the paths taken by
previously diffusing cells, see Fig. 2 in ref. 51.

The recording of cell positions was performed for 6 hours
with a bright-field microscope at a frame-rate of 0.05 s�1, see
Fig. 1a and video files in the ESI.† We track the centre of mass
of cells by segmenting the microscopy images first into black-
and-white images and then calculating and tracking the centre
of mass of every white area. For sedimentation and tracking
a custom-made MATLAB algorithm and Image Processing
Toolbox were implemented (MathWorks, Ismaning, Germany)
using well-established particle-tracking methods.239,240 The
trajectories were analysed afterwards with Mathematica
(Wolfram Research Inc., Champaign, USA). In Fig. 1b the cell
positions were recorded at different times; crossings of the
traces do not imply physical interactions or contacts between
the cells, see also ref. 241. We refer the reader to the classical
study46 for the thorough examination of DICTY cell–cell contacts,
with broadly-distributed contact durations, lasting on average for
5–10 min (for the NC4 strain).

We monitor the vegetative DICTY cells in the HL5 medium;
the cells are B15 mm in size, but very variable in shape (see
video files in the ESI†). Here, we refer the reader also to Fig. 1A

of ref. 55 illustrating the shape variability for AX2 strain cells.
The pixel-width in our microscopy images is 1 px E 0.3227 mm
and the (automatic and manual) accuracy in determining cell
positions is B0.3. . .1 mm. The experiments are started 30 minutes
after placing the cells on the dish, but the recorded tracks can
start at any later time point tstart during the experiment. Waiting
times up to tstart were not recorded, and thus possible ageing
effects on the DICTY dynamics cannot be quantified in our
current analysis.

Some cells may be lost during the tracking procedure—some
leave the view-field, collide with their neighbours, possibly
divide, etc.—so the tracking algorithm ceases to distinguish
them, see video files in the ESI.† For these events the recorded
tracks end, and the cell coordinates start to be recorded again
when a new cell emerges in the view-field. Thus, the total number
of trajectories we record is about 3 times larger than the number
of distinct cells producing the traces. Only trajectories with a
minimum number of 60 time-steps were used in the analysis. To
improve the statistics of ensemble averaging, longer trajectories
in the data set can in principle be segmented into several
fragments of the same partial length, see ref. 64, 112 and 242,
but we avoid doing so to exclude spurious effects. The reasons are
possible ageing, confinement, and non-stationarity effects that
can vary along the trajectories, see also Section III.
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Appendix A: supplementary figures

Here, we collect additional figures to support the claims in the
main text of the paper. The length distribution of the recorded
DICTY traces is shown in Fig. 9. The distributions of the
computed short-time scaling exponents and generalised diffu-
sion coefficients are presented in Fig. 10 and 11, respectively.
The evolution of the non-Gaussian displacement distributions
of DICTY cells along the y-direction for varying time-shifts dt is

Fig. 9 Length distribution of recorded DICTY trajectories, shown as counts
on a linear–log scale (one step is dt = 20 s).
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illustrated in Fig. 12. The distributions of cell displacements
along the x-direction are shown in Fig. 13 on a linear scale. The
power-law scaling of the width of displacement distributions
with varying time-shifts, s(dt), is presented in Fig. 6. The
velocity–velocity correlation function for varying time-shifts
(in steps) is shown in Fig. 15.

Appendix B: non-Gaussianity and
diffusing diffusivity

Here, we provide an overview of non-Gaussian behaviours
observed recently for other biological and cell-related systems
featuring normal and anomalous diffusion. The issue of non-
Gaussian displacement distributions p(dx) originated from the
by-now seminal works of Granick et al.160,161,202 Namely, they
observed that fluorescently-tagged unilamellar lipid vesicles
diffusing in nematic solutions of F-actin filaments exhibit
Fickian yet non-Gaussian diffusion.161 The linear MSD growth
was shown to coexist with exponential rather than Gaussian
p(dx). Since then, the concepts of distributed/fluctuating diffu-
sivity and non-Gaussian p(dx) have led to flourishing progress of
experimental,8,16,29,95,108,112,159,201,203–221 theoretical,163–166,222–228

and computer simulation109,111,229–234 studies (see also the
earlier study of non-Gaussian effects in complex heterogeneous
media and gels145). Varying diffusivities were detected, i.a., for
lateral subdiffusion of lipids, proteins, and water molecules
along231,234–236 and for permeation of small molecules across232

lipid membranes.
We touch here on a few recent biological examples of non-

Gaussianity. (i) Ergodic and non-ergodic motions of Kv2.1
channels on plasma membranes of human embryonic kidney
cells were found by Krapf et al. to coexist.237 The distribution
function of particle displacements was non-Gaussian, with a
pronounced peak at small displacements and a broad spread of
diffusivities, p(Kb).237 (ii) For intracellular subdiffusive non-
ergodic ageing motion of insulin granules in pancreatic
b-cells the distributions p(dx) were shown to have non-Gaussian
long-tail statistics, with strongly enhanced probabilities of large
displacements. Similar to our observations for DICTY cells in
Fig. 2a, the individual time-averaged MSD traces were shown to
feature a wide spread of Kb (consistent with a continuous-time
random walk mechanism and indicating system heterogeneities).
However, rather ‘‘stable’’ scaling exponents along each time-
averaged MSD trace were detected, with b(D) B 0.7. . .0.8,114

indicative rather of fractional Brownian motion. The ageing
behaviour in ref. 114 was consistent with a decaying magni-
tude of time-averaged MSDs with trace length T of the form

d2ðDÞ
D E

� 1=T1�b,114 characteristic again for (ageing) subdiffu-

sive continuous-time random walks.197,198 A ‘‘hybrid’’ model
incorporating the features of these two processes was proposed
to rationalise the observed granule dynamics.114 (iii) Super-
diffusive motion of the membrane-targeting C2 domains on
supported lipid bilayers212 was shown to emerge due to bulk-
mediated particle excursions. The non-Gaussian distribution
p(dx) was fitted with a combination of a two-dimensional
Gaussian propagator for surface-mediated diffusion and a Cauchy
function describing long-distance hops.212 (iv) For aqueous
solutions crowded with entangled dextran molecules, the MSD
of diffusing proteins was measured to grow linearly and ergodi-
cally with time, whereas the propagator of particle displacements
at short length-scales was non-Gaussian.210 (v) The dynamics of
nanoparticles in microfabricated arrays of nanoposts was shown

Fig. 10 Probability distribution p(b) of the scaling exponents of time-
averaged MSDs for the data set of Fig. 2, computed for nfit = {5, 15, 25}
initial points of di2ðDÞ trajectories.

Fig. 11 Distribution of generalised diffusion coefficients, Kb/hKbi, for the
data set of Fig. 2, in the same colour scheme as in Fig. 10.
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to yield a Brownian MSD growth, but a stretched-Gaussian
p(dx) distribution.211 (vi) The spreading of polyethylene-glycol
polymers on nanopatterned surfaces was found to be slightly
subdiffusive,205 but featuring strongly non-Gaussian step-size
distributions. A sharp peak at small displacements was attrib-
uted to a subpopulation of immobile chains and long tails of
p(dx) distributions were shown to feature a non-Fickian scaling
for their width.205 (vii) The diffusion of polymers and some
proteins along a solid–liquid interface was shown by Schwartz
et al.216,218,220 to have a pronounced spike in the van Hove
correlation function Gs(dx) for small displacements (due to
confined motion). Slower-than-Gaussian tails of Gs(dx) were
shown to coexist with a weakly subdiffusive or normal MSD
growth of the particles.216,218 (viii) A slower-than-Gaussian decay
and linear MSD growth were also detected for nanoparticle
diffusion in porous 3D media,219 with likely heterogeneous and
space-dependent mobilities of the particles.

(ix) We describe now one recent example of a non-Gaussian
distribution Gs(dx) in detail. The rescaling of the width of
DICTY displacement distributions we observe is similar to the
non-Gaussian fat-tail behaviour detected by Spakowitz et al.159

They quantified subdiffusive non-ergodic motion of RNA–protein
complexes (tracers) in the cytoplasm of Escherichia coli and
Saccharomyces cerevisiae cells. Heterogeneous features of the
cytoplasm and variations of diffusion characteristics were probed,
see also ref. 165. The authors demonstrated a close-to-exponential
p(Ka) distribution of tracer diffusivities and the existence

of a scaling variable z = dx/(dt)a/2, similar to our eqn (13).
Then, convoluting the exponential distribution,163,164 p(Ka) =
1/hKaiexp[�Ka/hKai], with the Gaussian propagator for a given
diffusivity,

Pðdx; dt;KaÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pKaðdtÞa
p exp � ðdxÞ

2

4KaðdtÞa

� �
; (B1)

one can arrive at an exponential distribution,159

Pðdx; dtÞ ¼
ð1
0

pðKaÞPðdx; dt;KaÞdKa

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 Kah iðdtÞa

p exp � jdxj1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kah iðdtÞa

p
" #

:

(B2)

The observations of ref. 159 agree with the theoretical pre-
dictions.161,163–165 Note that for subdiffusive motion of chromo-
somal loci the same group detected a wide spread of
diffusivities Kb and scaling exponents b.115 The reader is
referred to ref. 164 and 238 for more examples of non-
Gaussianity. (x) The diffusion of nematode Phasmarhabditis
hermaphrodita in heterogeneous populations on agar plates
was shown to be normal at the level of individual worms, but
overall anomalous spreading with broadly-distributed diffusivities
was detected.162 The Gamma-distribution pGam(D) was used
to fit it. The distribution of displacements in an ensemble of
worms was shown to have a pronounced longer-than-Gaussian
(exponential) tail.162

Fig. 12 The same as in Fig. 5, but for cell displacements along the y direction.
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Some computational and theoretical examples of non-Gaussian
p(dx) are as follows. (i) Recent computer simulations of anomalous
non-ergodic subdiffusion of phospholipids and proteins in visco-
elastic environments of crowded lipid membranes by Vattulainen
et al. revealed a number of pronounced non-Gaussian features.111

(ii) The dynamics of membrane-binding proteins interacting with
specific lipids was shown—via coarse-grained Molecular Dynamics
simulations—to induce a fluctuating-diffusivity landscape.234 The
diffusion of protein domains remained ergodic, but featuring
temporally-fluctuating short-time diffusivities. Moreover, a longer-
than-Gaussian tail in p(dx) was detected in this in silico study.234

(iii) Recent simulations of tracer diffusion in heterogeneously-
crowded circular domains—mimicking macromolecular crowding
inside eukaryotic cells—was shown to reveal non-Gaussian and
anomalous-diffusion features.109 (iv) We refer the reader to the
superstatistics-based study164 where the mathematical framework
was developed for the analysis of MSDs and displacement distribu-
tions in the systems with fluctuating diffusivities. (v) Lastly, anom-
alous and non-Gaussian diffusion in non-stationary time-fluctuating
diffusivity landscapes with the Rayleigh-like distribution of diffu-
sivities pRay(D) was examined in ref. 227 by computer simulations.

Fig. 13 The data set for cell displacements of Fig. 5, but presented as the probability distribution on a linear scale.

Fig. 14 The same as in Fig. 7 but on a semi-log scale.
Fig. 15 Velocity auto-correlation function (18) plotted for different time-
shifts dt (one step is 20 s).
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243 The vegetative DICTY cells diffuse significantly faster at
low densities47 (up to 5 times faster as the cell density r
decreases from 3 � 104 to just 50 cells per cm2), and the
amount of quorum-sensing factors governs the motility.47

Moreover, there exists a critical cell-to-cell distance of
B100 mm (or B104 cells per cm2) below which the cells
(the DH1 strain) can measurably sense one another.47

Additionally, the effects of ageing in the DICTY dynamics
are also important, with the diffusion coefficient dropping
within 12 hours for a cell density of r E 104 cells per cm2

from B8 to B3 mm2 min�1, see Fig. 3A and B in ref. 47.
Moreover, ageing effects depend on the medium condi-
tions and additional flows.47 Recently, the effects of ageing
and stress on the motility of superdiffusive nematode
worms Caenorhabdits elegans were studied85.

244 Superdiffusive motion of another free-living amoeba,
Acanthamoeba castellanii, was studied in ref. 7. The relation of
intracellular motions87 and the effects of cytoskeletal elements
on cell locomotion were established. The implications of treat-
ments with blebbistatin (inhibiting myosin-II motors) and
nocodazole (inducing microtubuli depolymerisation) were
analysed, see also ref. 8. The motion of intra-amoeboid particles
was found to stay superdiffusive after the inhibition of poly-
merisation of the cytoskeletal elements,7 while the motion was
almost localised when myosin motors were switched off7.

245 Note also that for human granulocites130 the MSD was also
shown to grow with time as dWLC

2ðDÞ
D E

, see also ref. 5, 32,
51, 95 and 129. This correlated motion at short times,
interrupted by random changes in cell directions, is remi-
niscent of the run-and-tumble dynamics of Escherichia
coli15,127,140 and other bacteria16,27,241.

246 Persistent DICTY motion was previously characterised in
ref. 75 based on the model of fractional Brownian motion,
with the average Hurst exponent H = a/2 E 0.6. A Bayesian
estimation154 of the self-similarity exponent was performed.
For short trajectories the values of H were shown to vary from
about 0.2 to 0.8,75 with the distribution of H changing for short
(50–150), intermediate (150–500), and long (4500 steps) traces
(a time step of 2 s).75 For longer DICTY tracks the motion was
shown on average to be more persistent, with smaller fluctua-
tions of H along the trajectory. To study the time dependence
of H, a sliding-window approach was used. As compared to the
Bayesian analysis,75 we compute the exponents bi from the
short-lag-time slopes of the time-averaged MSD trajectories.

247 We mention that shorter cell trajectories in the analysed,
data set—statistically attributable to faster and more persis-
tent cells in the population—are severely over-represented,
see Fig. 9. This fact—when ensemble averaging the
recorded traces (5)—will result in a more superdiffusive
behaviour of d2ðDÞ

D E
in the region of short lag times. To

avoid a bias emerging from a non-uniform distribution of
p(T), the proportion of trajectories of all lengths should
(ideally) be kept the same in the experiments (see also the
discussion in ref. 155). This was not enforced for the current
data set, certainly affecting the results of the analysis,

in particular regarding the magnitude and scaling exponent

of ensemble-averaged d2 in the region of intermediate and
long lag times, as compared to the results of Fig. 2.
Evidently, the non-Gaussian features of cell-displacement
distributions, see Fig. 5 below, may also be somewhat
affected by these details of data acquisition.

248 Note also here that ensemble averaging of time-averaged
trajectories, eqn (5), clearly smears out some diffusive features,
such as trajectory-to-trajectory variation. A more statistically-
insightful way could be to divide the whole set of fdi2ðDÞg into
subpopulations of most superdiffusive and strongly confined
trajectories, as well as subsets in between, see ref. 145–147, and
then perform averaging among these subsets separately. To do
so and to extract statistically-meaningful results, the data set
should be much larger than the current one, for which we
performed no data pre-treatment (e.g., removal of a fraction of
confined/stalling as well as of the fastest trajectories).

249 This is smaller than hvi E 5.6 mm min�1 reported for non-
chemotactic cells of the AX3 strain after 4–6 hours into the
development cycle in ref. 66, hvi E 4.3 mm min�1 estimated
for heterogeneous populations of vegetative DICTY cells of
the DH1 strain in ref. 47, hvi E 7 mm min�1 for freely-
diffusing AX4 strain cells in ref. 19, hvi E 7.2 mm min�1 for
pre-aggregative cells of the NC4 DICTY strain in ref. 46, and
hviE 8 mm min�1 for chemotactically-active wild-type cells of
the AX3 strain in ref. 53. This discrepancy can have multiple
reasons: different DICTY strains used in experiments, vari-
able cell–substrate adhesion properties,171 different buffer
compositions or diffusion media, and variable cell densities.
Note that the cell shape also strongly affects its motile
properties, with more elongated cells moving on average
considerably faster than ‘‘round’’ and ‘‘split’’ ones (see
Fig. 3D in ref. 56 for the AX2 DICTY strain). The minimal
speed for a motile DICTY sub-population was set in ref. 56 to
hviE 2.4 mm min�1, close to the average speed we observed
for the same AX2 strain. The reader is referred here to Table 6
of ref. 46 summarising the dramatic discrepancy in the
values of average speeds, diffusion coefficients, and persis-
tence times for different DICTY strains and mutants, includ-
ing NC4, P2, N15F, and AX3 (see also ref. 172 for the history
of strains). The variations of motility for vegetative cells of
DH1-10 DICTY cells were analysed before,148 including the
effects of cell density (the DH1 strain)47.

250 Let us also mention some aspects of the data-acquisition
frequency for tracking DICTY cells. In ref. 51 the time step
was dt = 5 s, with a data recording time of B11–23 hours. In
ref. 19 the time step was dt = 10 s, with an overall tracking
time of E8–10 hours (compare to dt = 1/3 min used here), see
also ref. 168. Thus, the DICTY dynamics at very short times
cannot be accessed in our statistical analysis and the features
of repetitive run-and-turn dynamics (expected for these cells)
may be smeared out. Based on the average speed of DICTY
cells we monitored, their Reynolds number is Re B 10�6

(for comparison, Re B 10�5 for a full-speed swimming
Escherichia coli173), while the Péclet number is Pe B 10.
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