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Historical context

The beginning of the 20th century was a tumultuous time in science. The strongholds of 
physics were shaken at several ends: Einstein’s special and later general relativity questioned 
Newtonian mechanics for particles at high speeds; the discovery of spontaneous radioactivity 
by Becquerel and later the successful isolation of radium by the Curies; Rutherford, Geiger, 
and Marsden’s gold foil scattering experiment; and the advent of quantum mechanics pushed 
by Bohr and his colleagues.

Another topic soaring at that time was the quest to understand the stochasticity observed in 
the motion of colloidal particles in liquids. Originally reported by Ingenhousz [1] and system-
atically investigated by Brown [2], the jittery motion was soon disproved to be due to some 
animate cause. Both Ingenhousz and Brown proved that the jiggling, seemingly erratic motion 
was not the active motion of animalcules but was due to physical principles. Yet the exact 
cause for this diffusive motion remained somewhat of a mystery.

It was reserved for the genius of scientists such as Einstein [3], Sutherland [4], and 
Smoluchowski [5], to derive the physical laws that describe diffusive motion, in particular, 
Fick’s second law or the diffusion equation  on the one hand and, on the other hand, the 
link between Brownian motion and thermodynamic and statistical mechanical laws. This 
established the connection of Brownian motion to the unit kBT  of thermal energy and to 
Avogadro’s number, in turn related to the liquid’s viscosity in what we now call the Einstein–
Smoluchowski–Sutherland relation. Einstein, and more explicitly Smoluchowski, also 
achieved the connection to Pearson’s random walk [6]. Building on their pioneering work, it 
was Langevin who then introduced the concept of a stochastic force [7].

The link between Avogadro’s number and the diffusion coefficient of Brownian parti-
cles—and his close friendship with Langevin—inspired Perrin, on his quest to determine 
the best possible value for Avogadro’s number, to pursue very detailed single trajectory 
measurements of microscopic putty particles [8]. Only a few years later Nordlund invented 
the method of stroboscopic illumination of a moving film plate to create much longer time 
series of single trajectories, enabling him to take single trajectory averages and significantly 
improve Perrin’s results [9]. The subsequent race for ever better diffusive measurements 
was finally topped by Kappler with his torsional diffusion experiments [10]. Based on mod-
ern superresolution microscopy, experimentalists can now measure the diffusive motion 
of fluorescently labelled particles such as single green fluorescent proteins of some two 
nanometres in size in living biological cells, achieving unprecedented spatial and temporal 
resolution [11].
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After his seminal papers on diffusion [12], Einstein’s mind soon focused on other funda-
mental topics, the consequences of the photoelectric effect and general relativity. In contrast, 
Smoluchowski did not let go of the topic of diffusion. Two additional major achievements in 
the theory of stochastic motion bear his name. One is the Smoluchowski equation describ-
ing the motion of a diffusive particle in an external force field, in the Western literature long 
known as the Fokker–Planck equation [13]. The second one, maybe underlining his genius 
best, is Smoluchowski’s theory of the diffusion limited coagulation of two colloidal particles 
[14]. This work may be viewed as one of the fundamental cornerstones of molecular physical 
chemistry and, as we will see, of cellular biochemistry. A reprint of Smoluchowski’s original 
paper can be found at the end of this special issue collection, reproduced with permission from 
the Polish Academy of Science and Arts.

Smoluchowski’s life: a biographic sketch

Marian Smoluchowski was born in 1872, into an upper-class family living in a town near Vienna, 
where Smoluchowski later studied physics. He was influenced by his teachers Exner and Stefan. 
After some years in Paris, Glasgow, and Berlin, Smoluchowski found his first long term faculty 
position in 1899, in the then Austro-Hungarian city of Lemberg, nowadays Lviv in western 
Ukraine. In 1913 Smoluchowski moved to the Polish city of Kraków. There, at Jagiellonian 
University, he worked until his untimely death in 1917. Smoluchowski regarded Boltzmann with 
profound admiration and was inspired by him throughout his scientific life [15]. He was even 
called Boltzmann’s intellectual successor—‘der geistige Nachfolger Boltzmanns’ [16].

The best known picture of Smoluchowski shows him at his well kept desk as depicted 
in figure 1. In addition, a number of pictures are preserved in which Smoluchowski can be 
seen pursuing his favourite pastimes: skiing and hiking in the mountains, both in the Alps 
and the Tatra Mountains of Southern Poland. He also had a keen interest in the arts, pursuing 
watercolours and piano playing. Marian Smoluchowski was married to Zofia Baraniecka, with 
whom he had two children, Aldona and Roman.

Throughout his career Smoluchowski worked at the forefront of research at the time, at the 
interface of what might now be called applied mathematics and statistical physics. He had the 
ability to combine mathematical rigour with physical insight, a prime example being his work 
on the theory of diffusion, nowadays considered a start-up of the theory of stochastic pro-
cesses. His unprecedented mathematical achievements were, among others, the clarification 
of the role of the ergodic hypothesis of Boltzmann and the probabilistic interpretation of the 
Second Law of thermodynamics [17]. Smoluchowski’s influence on today’s scientific land-
scape in Poland to a large extent is owed to his ability to explain science in plain language, an 
idea supported at the time by Niels Bohr, and to arrive at the physical basics of the phenomena. 
The legacy of Smoluchowski cannot be overrated, and it is highlighted in the annual Marian 
Smoluchowski Symposium on Statistical Physics organised by Jagiellonian University. The 
2017 Smoluchowski meeting held in Kraków celebrating Smoluchowski’s centennial is a par
ticular witness to his tribute.

Smoluchowski’s theory of coagulation

One of Smoluchowski’s major achievements, then a scientific breakthrough, is the statistical 
description of the coagulation of two diffusing particles. The diffusional encounter of two 
particles—colloids or even single molecules—in a solution is the first step for any reaction 
occurring between these two particles. If the reaction rate itself is high, that is, if the particles 
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react rapidly upon encounter, then the longer time it takes the particles to diffuse toward one 
another dominates the process. Such reactions are called diffusion-limited.

If one of the two particles is much larger (and hence usually much heavier) than the other, 
then the large particle can be viewed as immobile and we can straightforwardly arrive at 
Smoluchowski’s result. The smaller, mobile particle has diffusivity D, and its target is assumed 
to be of ‘size’ b (with the notion of ‘size’ dependent on geometry), much larger than the size 
of the mobile particle. Assuming spherical geometry, consider the steady state solution of the 
radially symmetric diffusion equation for the volume density n of the diffusing particle,

∂n
∂t

= D3d
1
r2

∂

∂r

(
r2 ∂n
∂r

)
= 0,� (1)

with the boundary conditions of a fixed density far away from the target, n → nbulk as r → ∞, 
and immediate absorbtion at the surface of the target, n|r=b = 0. From the time-independent 
solution

n = nbulk

(
1 − b

r

)
,� (2)

the Smoluchowski rate constant kS
on for the coagulation reaction can be obtained from the 

stationary binding flux jstat as

kS
on =

jstat

nbulk
=

1
nbulk

4πb2D
∂n
∂r

∣∣∣∣
r=b

= 4πDb.� (3)

This is exactly the famed Smoluchowski result in the limit of a static target, that is, when 
one particle is much larger than the other [5]. If both particles are of comparable size and 
mobile, a good approximate solution is to replace the size b by the combined sizes of the 
particles, and the diffusion coefficient by the sum of the two individual diffusion coefficients 
[5]. Smoluchowski’s result (3) is one of the pillars of molecular physical chemistry to this day.

Note that this on-rate has physical dimension [kS
on] = cm3 s−1. Consider, for instance, a 

typical regulatory protein, responsible for signalling in biological cells, with diameter of 5 nm. 

Figure 1.  Marian Smoluchowski in his office in Lviv. Source: Private collection. 
Reproduced with permission from Mrs Teresa Jaroszewska.
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What is the diffusion limited on-rate of this protein to its binding site on a DNA molecule, 
an important step in cellular signalling? By Stokes’ formula we obtain D ≈ 102 µm2 s−1 
for the protein diffusivity, and the typical target site size of one base-pair on the DNA mol-
ecule corresponds to 2b ≈ 0.3 nm. Consequently kS

on ≈ 108/((mol l−1)× s) in biochemi-
cal units. Even though this number does not include the binding of the transcription factor 
itself, it is much smaller than some measured on-rates: for the Lac repressor, for instance, 
kon ≈ 1010/((mol l−1)× s) was found [18]. This latter observation then led scientists to 
the facilitated diffusion picture, which in some sense may be viewed as a consequence of 
Smoluchowski’s seminal result (3). Even now, any new theory for the facilitated search of 
their designated binding site by signalling proteins needs to be compared to the Smoluchowski 
limit [19].

Smoluchowski’s heritage

Smoluchowski is still one of the most revered scientists in Poland. Up until now there are 
numerous renowned schools following in his footsteps in statistical physics and applied math-
ematics. His work also inspired a large number of scientific directions worldwide, and in sev-
eral disciplines. To name but a few disciplines inspired by his 1916 result for the diffusional 
coagulation of particles:

First passage processes in molecular context

Smoluchowski’s treatment of the coagulation process helped establish the parallel of molecu-
lar first passage processes with the stochastic encounter of two particles. Especially after the 
invention of superresolution microscopy, extremely precise measurements of this first passage 
process are possible [11].

Anomalous diffusion

Smoluchowski’s treatment of diffusion processes, much in the spirit of Pearson’s random 
walk, allows the straightforward extension to random walks leading to anomalous diffusion, 
for instance, in the Scher–Montroll picture [20].

Facilitated diffusion

The fact that signalling proteins find their target on a DNA molecule faster than predicted 
by the Smoluchowski rate (3) paved the way for the facilitated diffusion model championed 
by Berg and von Hippel [21]. In this model the faster rates can be explained by dimensional 
reduction: intermittent diffusion in one dimension along the DNA chain itself switching with 
diffusion in three dimensions indeed leads to a speedup of the search process [21].

Random search

When systems are too complex to be described by first principles, in physics we often resort 
to statistical treatments. Thus, the search for food by higher animals or the motion patterns of 
humans are often described by direct extension of Smoluchowski’s ideas. Random search in 
movement ecology typically uses the idea of (extensions of) the diffusional encounter. One of 
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the generalisations relevant for the search of rare targets is based on random walks with long-
tailed, Lévy stable jump lengths, leading to the celebrated Lévy foraging hypothesis [22].

In a time when tracing biochemical reaction steps in cells, one molecule at a time, is no 
longer science fiction, Smoluchowski’s ideas of diffusional limitations of (bio)chemical pro-
cesses are more timely than ever.

Centenary special issue

In this special issue we collected papers from different fields inspired by Smoluchowski’s 
1916 landmark publication. Roughly, these works can be categorised as follows.

First passage dynamics

The theory and applications of the first passage of stochastic particles are studied in the fol-
lowing contributions:

Ben-Naim and Krapivsky investigate questions of escape and the associated finite time 
scaling of diffusion limited annihilation reactions [23]. Related to this topic is the question of 
how sparse initial conditions influence the kinetics of such reactions [24].

Levernier et al present new results for the mean first passage time (or, in other words, the 
diffusion limited rate constant) of anisotropically diffusing particles [25].

The question of how sparse obstacles influence the intermittent diffusion of particles is 
scrutinised by Berezhkovskii and Bezrukov [26].

Following a randomly searching forager, Bénichou et al study how the subsequent deple-
tion of targets (food sources) feed back on the forager [27].

Dybiec et al follow up on the transient behaviour of random searchers with long-tailed 
jump length distributions, as they may easily overshoot their target [28].

Combining short-tailed and long-tailed random walk motion, Palyulin et al examine the 
reliability and efficiency of the resulting random search [29].

The first detection time of a quantum walk is evaluated in terms of a quantum renewal 
approach by Friedman et al [30].

Facilitated diffusion and biochemical signalling

Signalling by diffusing molecules in a biochemical context is investigated by the following 
contributions:

Berg et al follow up on the question of how the molecular structure of the DNA molecule 
may be beneficial for the binding rate of DNA binding proteins [31].

The details of how other proteins (‘roadblocks’) bound to a DNA influence the motion of a 
specific DNA binding protein, searching for its specific binding site on this DNA chain, is studied 
by Koslover et al as well as Krepel and Levy [32, 33], highlighting different aspects of this process.

Kochugaeva et al concentrate on the conformational dynamics of the searching DNA bind-
ing protein itself, quantifying the resulting search efficiency [34].

Vasilyev et al study the binding of a diffusing molecule to a specific location on a linear 
antenna molecule when, in addition to three-dimensional diffusion, it may diffusively slide on 
the antenna molecule [35] similar to the key elements of facilitated diffusion.

An exhaustive review on the impact of Smoluchowski’s work on the modelling of stochas-
tic processes in a biochemical context is provided by Holcman and Schuss [36].

J. Phys. A: Math. Theor. 50 (2017) 380301
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Active and collective particle motion

One of the new modern aspects considered in the context of stochastic particle motion is that 
of elements of active motion. This could pertain to actually moving ‘particles’ such as biologi-
cal cells, or transport within cells by molecular motors. The following articles deal with such 
active motion:

Molecular signalling in linear arrangements such as long neuron cells are shown to be 
beneficial for signalling precision by Godec and Metzler [37].

The role of activity of stochastically moving particles in the context of chemical kinetics is 
highlighted by Oshanin et al [38].

What happens when a system of active particles is hindered by obstacle crowding is ana-
lysed by Huang et al [39].

A concrete model for active particle motion with stable noise driving for the torque of these 
particles is presented by Nötel et al [40].

Effects of collective particle motion also generalise the original Smoluchowski picture. 
The following works consider such effects:

Majka and Góra span the range from effective interactions to spatially correlated noise for 
the collective motion of colloidal particles [41].

Lizana et al demonstrate that collective interaction with a two-dimensional elastic network 
leads to logarithmically slow diffusion [42].

Fundamentals of stochastic processes

The following papers study new aspects of the fundamental nature of stochastic processes:
The Onsager coefficients for a Brownian particle are derived in the case of space-periodic 

and time-periodic potentials by Rosas et al [43].
Giuggioli et al consider a linear delayed Langevin equation with additive Gaussian noise 

and derive the associated Fokker–Planck equation [44].
As an effective description of the spatiotemporally coupled Lévy walk process, Magdziarz 

and Teuerle consider the formulation in terms of fractional diffusion equations with a distrib-
uted-order material derivative [45].

The higher-dimensional mathematical properties of such Lévy walks are analysed by 
Fuxon et al [46].

Fulinski considers some new concepts of fractional Brownian motion, such as the diffusion 
velocity and correlation functions [47].

In a continuous time random walk setting, Poloczanski et al study the cumulative distribu-
tion function [48].

Acknowledgments

We thank all our colleagues and friends, who kindly agreed to contribute to this special issue, 
for their interesting and well presented papers. We also thank the editorial staff of the Journal 
of Physics A for their professional handling of the special issue.

ORCID iDs

Ralf Metzler  https://orcid.org/0000-0002-6013-7020

J. Phys. A: Math. Theor. 50 (2017) 380301

https://orcid.org/0000-0002-6013-7020
https://orcid.org/0000-0002-6013-7020


Preface

7

References

	 [1]	 Ingenhousz J 1785 Nouvelles Expériences et Observations sur Divers Objets de Physique (Paris: T 
Barrois le jeune)

	 [2]	 Brown R 1828 Phil. Mag. 4 161
		  Brown R 1828 Ann. Phys. Chem. 14 294
	 [3]	 Einstein A 1905 Ann. Phys. 17 549
		  Einstein A 1906 Ann. Phys. 19 371
	 [4]	 Sutherland W 1905 Phil. Mag. 9 781
	 [5]	 von Smoluchowski M 1906 Ann. Phys. 21 756
	 [6]	 Pearson K 1905 Nature 72 294
	 [7]	 Langevin P 1908 C. R. Acad. Sci. Paris 146 530
	 [8]	 Perrin J 1908 C. R. Paris 146 967
		  Perrin J 1909 Ann. Chim. Phys. 18 5
	 [9]	 Nordlund I 1914 Z. Phys. Chem. 87 40
	[10]	 Kappler E 1931 Ann. Phys. 11 233
	[11]	 Nørregaard K, Metzler R, Ritter C M, Berg-Sørensen K and Oddershede L B 2017 Chem. Rev. 

117 4342
	[12]	 Fürth R 1956 Investigations on the Theory of the Brownian Movement ed A Einstein (New York: 

Dover)
	[13]	 Risken H 1989 The Fokker–Planck Equation (New York: Springer)
	[14]	 Smoluchowski M 1916 Phys. Z. 17 557
	[15]	 Chandrasekhar S, Kac M and Smoluchowski R 1999 Marian Smoluchowski—His Life and Scientific 

Work (Warsaw: Polish Scientific Publishers PWN)
	[16]	 Mazo R M 2002 Brownian Motion. Fluctuations, Dynamics and Applications (Oxford: Clarendon)
	[17]	 Ulam S M 1986 Science, Computers and People (Boston, MA: Birkhäuser)
	[18]	 Riggs A D, Bourgeois S and Cohn M 1970 J. Mol. Biol. 53 401
	[19]	 Sheinman M, Bénichou O, Kafri Y and Voituriez R 2012 Rep. Prog. Phys. 75 026601
		  Klenin K V, Merlitz H, Langowski J and Wu C-X 2006 Phys. Rev. Lett. 96 018104
		  Kolesov G, Wunderlich Z, Laikova O N, Gelfand M S and Mirny L A 2007 Proc. Natl Acad. Sci. 

USA 104 13948
		  Koslover E F, Díaz de la Rosa M A and Spakowitz A J 2011 Biophys. J. 101 856
		  Pulkkinen O and Metzler R 2013 Phys. Rev. Lett. 110 198101
		  Bauer M, Rasmussen E S, Lomholt M A and Metzler R 2015 Sci. Rep. 5 10072
	[20]	 Scher H and Montroll E W 1975 Phys. Rev. B 12 2455
	[21]	 Berg O G, Winter R B and von Hippel P H 1981 Biochemistry 20 6929
	[22]	 Viswanathan G E, da Luz M G E, Raposo E P and Stanley H E 2011 The Physics of Foraging: 

an Introduction to Random Searches and Biological Encounters (Cambridge: Cambridge 
University Press)

	[23]	 Ben-Naim E and Krapivsky P L 2016 J. Phys. A: Math. Theor. 49 504004
	[24]	 Ben-Naim E and Krapivsky P L 2016 J. Phys. A: Math. Theor. 49 504005
	[25]	 Levernier N et al 2017 J. Phys. A: Math. Theor. 50 024001
	[26]	 Berezhkovskii A M and Bezrukov S M 2016 J. Phys. A: Math. Theor. 49 434002
	[27]	 Bénichou O et al 2016 J. Phys. A: Math. Theor. 49 394003
	[28]	 Dybiec B et al 2016 J. Phys. A: Math. Theor. 49 504001
	[29]	 Palyulin V V et al 2016 J. Phys. A: Math. Theor. 49 394002
	[30]	 Friedman H et al 2017 J. Phys. A: Math. Theor. 50 04LT01
	[31]	 Berg O G et al 2016 J. Phys. A: Math. Theor. 49 364002
	[32]	 Koslover E F et al 2017 J. Phys. A: Math. Theor. 50 074005
	[33]	 Krepel D and Levy Y 2016 J. Phys. A: Math. Theor. 49 494003
	[34]	 Kochugaeva M P et al 2016 J. Phys. A: Math. Theor. 49 444004
	[35]	 Vasilyev O A et al 2017 J. Phys. A: Math. Theor. 50 264004
	[36]	 Holcman D and Schuss Z 2017 J. Phys. A: Math. Theor. 50 093002
	[37]	 Godec A and Metzler R 2016 J. Phys. A: Math. Theor. 49 364001
	[38]	 Oshanin G et al 2017 J. Phys. A: Math. Theor. 50 134001
	[39]	 Huang M-J et al 2017 J. Phys. A: Math. Theor. 50 074001
	[40]	 Nötel J et al 2017 J. Phys. A: Math. Theor. 50 034003
	[41]	 Majka M and Góra P F 2017 J. Phys. A: Math. Theor. 50 054004

J. Phys. A: Math. Theor. 50 (2017) 380301

https://doi.org/10.1002/andp.18280901016
https://doi.org/10.1002/andp.18280901016
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19063240208
https://doi.org/10.1002/andp.19063240208
https://doi.org/10.1080/14786440509463331
https://doi.org/10.1080/14786440509463331
https://doi.org/10.1002/andp.19063261405
https://doi.org/10.1002/andp.19063261405
https://doi.org/10.1038/072294b0
https://doi.org/10.1038/072294b0
https://doi.org/10.1002/andp.19314030208
https://doi.org/10.1002/andp.19314030208
https://doi.org/10.1021/acs.chemrev.6b00638
https://doi.org/10.1021/acs.chemrev.6b00638
https://doi.org/10.1016/0022-2836(70)90074-4
https://doi.org/10.1016/0022-2836(70)90074-4
https://doi.org/10.1088/0034-4885/75/2/026601
https://doi.org/10.1088/0034-4885/75/2/026601
https://doi.org/10.1103/PhysRevLett.96.018104
https://doi.org/10.1103/PhysRevLett.96.018104
https://doi.org/10.1073/pnas.0700672104
https://doi.org/10.1073/pnas.0700672104
https://doi.org/10.1016/j.bpj.2011.06.066
https://doi.org/10.1016/j.bpj.2011.06.066
https://doi.org/10.1103/PhysRevLett.110.198101
https://doi.org/10.1103/PhysRevLett.110.198101
https://doi.org/10.1038/srep10072
https://doi.org/10.1038/srep10072
https://doi.org/10.1103/PhysRevB.12.2455
https://doi.org/10.1103/PhysRevB.12.2455
https://doi.org/10.1021/bi00527a028
https://doi.org/10.1021/bi00527a028
https://doi.org/10.1088/1751-8113/49/50/504004
https://doi.org/10.1088/1751-8113/49/50/504004
https://doi.org/10.1088/1751-8113/49/50/504005
https://doi.org/10.1088/1751-8113/49/50/504005
https://doi.org/10.1088/1751-8121/50/2/024001
https://doi.org/10.1088/1751-8121/50/2/024001
https://doi.org/10.1088/1751-8113/49/43/434002
https://doi.org/10.1088/1751-8113/49/43/434002
https://doi.org/10.1088/1751-8113/49/39/394003
https://doi.org/10.1088/1751-8113/49/39/394003
https://doi.org/10.1088/1751-8113/49/50/504001
https://doi.org/10.1088/1751-8113/49/50/504001
https://doi.org/10.1088/1751-8113/49/39/394002
https://doi.org/10.1088/1751-8113/49/39/394002
https://doi.org/10.1088/1751-8121/aa5191
https://doi.org/10.1088/1751-8121/aa5191
https://doi.org/10.1088/1751-8113/49/36/364002
https://doi.org/10.1088/1751-8113/49/36/364002
https://doi.org/10.1088/1751-8121/aa53ee
https://doi.org/10.1088/1751-8121/aa53ee
https://doi.org/10.1088/1751-8113/49/49/494003
https://doi.org/10.1088/1751-8113/49/49/494003
https://doi.org/10.1088/1751-8113/49/44/444004
https://doi.org/10.1088/1751-8113/49/44/444004
https://doi.org/10.1088/1751-8121/aa7226
https://doi.org/10.1088/1751-8121/aa7226
https://doi.org/10.1088/1751-8121/50/9/093002
https://doi.org/10.1088/1751-8121/50/9/093002
https://doi.org/10.1088/1751-8113/49/36/364001
https://doi.org/10.1088/1751-8113/49/36/364001
https://doi.org/10.1088/1751-8121/aa5e91
https://doi.org/10.1088/1751-8121/aa5e91
https://doi.org/10.1088/1751-8121/50/7/074001
https://doi.org/10.1088/1751-8121/50/7/074001
https://doi.org/10.1088/1751-8121/50/3/034003
https://doi.org/10.1088/1751-8121/50/3/034003
https://doi.org/10.1088/1751-8121/50/5/054004
https://doi.org/10.1088/1751-8121/50/5/054004


Preface

8

	[42]	 Lizana L et al 2017 J. Phys. A: Math. Theor. 50 034001
	[43]	 Rosas A et al 2016 J. Phys. A: Math. Theor. 49 484001
	[44]	 Giuggioli L et al 2016 J. Phys. A: Math. Theor. 49 384002
	[45]	 Magdziarz M and Teuerle M 2017 J. Phys. A: Math. Theor. 50 184005
	[46]	 Fouxon I et al 2017 J. Phys. A: Math. Theor. 50 154002
	[47]	 Fulinski A 2017 J. Phys. A: Math. Theor. 50 054002
	[48]	 Poloczanski R et al 2017 J. Phys. A: Math. Theor. 50 034002 

Ewa Gudowska-Nowak1, Katja Lindenberg2 and Ralf Metzler3,4

1  Marian Smoluchowski Institute of Physics & Mark Kac Centre for Complex Systems 
Research, Jagiellonian University, 30-348 Kraków, Poland
2  Department of Chemistry & Biochemistry, University of California, San Diego,  
La Jolla, CA 92093-0340, United States of America
3  Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany

E-mail: rmetzler@uni-potsdam.de 

4 Author to whom any correspondence should be addressed.

J. Phys. A: Math. Theor. 50 (2017) 380301

https://doi.org/10.1088/1751-8121/50/3/034001
https://doi.org/10.1088/1751-8121/50/3/034001
https://doi.org/10.1088/1751-8113/49/48/484001
https://doi.org/10.1088/1751-8113/49/48/484001
https://doi.org/10.1088/1751-8113/49/38/384002
https://doi.org/10.1088/1751-8113/49/38/384002
https://doi.org/10.1088/1751-8121/aa651e
https://doi.org/10.1088/1751-8121/aa651e
https://doi.org/10.1088/1751-8121/aa5f6d
https://doi.org/10.1088/1751-8121/aa5f6d
https://doi.org/10.1088/1751-8121/50/5/054002
https://doi.org/10.1088/1751-8121/50/5/054002
https://doi.org/10.1088/1751-8121/50/3/034002
https://doi.org/10.1088/1751-8121/50/3/034002
https://orcid.org/0000-0002-6013-7020
mailto:rmetzler@uni-potsdam.de

