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Logarithmic or Sinai-type subdiffusion is usually associated with random force disorder and nonstationary
potential fluctuations whose root-mean-squared amplitude grows with distance. We show here that extremely
persistent, macroscopic logarithmic diffusion also universally emerges at sufficiently low temperatures in
stationary Gaussian random potentials with spatially decaying correlations, known to exist in a broad range of
physical systems. Combining results from extensive simulations with a scaling approach we elucidate the physical
mechanism of this unusual subdiffusion. In particular, we explain why with growing temperature and/or time a
first crossover occurs to standard, power-law subdiffusion, with a time-dependent power-law exponent, and then a
second crossover occurs to normal diffusion with a disorder-renormalized diffusion coefficient. Interestingly, the
initial, nominally ultraslow diffusion turns out to be much faster than the universal de Gennes–Bässler–Zwanzig
limit of the renormalized normal diffusion, which realistically cannot be attained at sufficiently low temperatures
and/or for strong disorder. The ultraslow diffusion is also shown to be nonergodic and it displays a local bias
phenomenon. Our simple scaling theory not only explains our numerical findings but qualitatively also has a
predictive character.
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I. INTRODUCTION

Systems with Gaussian energy disorder characterized by
spatially decaying correlations are ubiquitous in physics thanks
to the central limit theorem [1,2]. Such systems include, for
instance, disordered organic photoconductors with long-range
electrostatic interactions [3,4], supercooled liquids [5], as
well as naturally occurring DNA macromolecules encoding
biological information in living systems [6–8]. Colloidal
systems in quenched, random laser-created potentials have
also recently become experimentally available [9–12].

A common line of thinking [13] treats diffusion and
transport phenomena in such systems as normal on experimen-
tally relevant scales, with a potential disorder-renormalized
diffusion coefficient Dren = D0 exp(−[βσ ]2), where D0 is the
free diffusion coefficient of the diffusing particle in absence of
the potential, σ = 〈δU 2(x)〉1/2 is the root-mean-squared am-
plitude of the potential fluctuations δU (x), and β = 1/(kBT )
is the Boltzmann factor proportional to inverse temperature.
This famed renormalization result by De Gennes [14], Bässler
[5], and Zwanzig [15] corresponds to a common measurable
temperature dependence of transport coefficients in disordered
glassy systems which is almost indistinguishable from the
Vogel-Fulcher-Tammann law [16], another commonly used
temperature dependence used to fit experimental data.

It came as a surprise when extensive simulations of
stochastic Langevin dynamics in Gaussian random potentials
with decaying spatial correlations by Romero and Sancho [17]
demonstrated that the emerging diffusion is anomalously slow
over the whole time range of simulations and characterized
by a power-law scaling 〈δx2(t)〉 ∝ tα (0 < α < 1) of the
mean-squared displacement. This result is very remarkable
indeed because within the mean-field approximation it is easy
to show that the quenched Gaussian energy disorder yields
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residence time distributions (RTDs) ψ(τ ) all moments of
which are finite [18]. This behavior is fundamentally different
from the situation of annealed exponential energetic disorder
yielding RTDs of the form ψ(τ ) ∝ 1/τ 1+α with α = kBT /σ

[19]: Here subdiffusion emerges for kBT < σ because of the
divergent mean residence times, which provides the standard
model of subdiffusion in the continuous-time random-walk
framework [19,20].

Hence, Gaussian energy disorder cannot yield subdiffu-
sion in the absence of spatial correlations. To neglect such
correlations is a usual procedure when they are short ranged
[13]. Whether organic photoconductors and other disordered
materials are better described by Gaussian or exponential
models of the energy disorder is a subject of continuing
controversy. On the one hand, the Gaussian model is generally
accepted for organic photoconductors [3]. On the other hand,
some recent experiments [21] seem to be more consistent with
the model of exponential disorder, leading to a similar time
dependence of transient currents as in amorphous semicon-
ductor films [22]. Models of Gaussian disorder with significant
spatial correlations can be a key to resolve this controversy.
Physically, for instance, such short-range correlations may
correspond to the size of a protein molecule diffusing over
the potential landscape of a DNA strand [23] or to the size of a
colloidal particle in an uncorrelated laser field potential [10].
Moreover, long-range electrostatic interactions give rise to
long-range spatial correlations in organic photoconductors [4],
and biological information encoded in the sequence of DNA
base pairs manifests itself in long-range base-pair correlations
[24,25].

The remarkable discovery that subdiffusion persists beyond
the mean-field approximation was reaffirmed in a number
of recent studies [11,23,26,27]. It was explained recently
in terms of a finite nonergodicity length Lerg of the spatial
random process exp[βδU (x)] [23] related to the presence
of spatial potential correlations. In this respect, the origin
of a weak ergodicity breaking—the fundamental difference
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between ensemble- and time-averaged physical observables
even in the limit of long observations times [28–30]—is very
different from the one in systems described by continuous-time
random walks with annealed, uncorrelated residence time
distributions with divergent mean residence times [28,29,31–
34]. For systems with Gaussian disorder, the nonergodic
behavior occurs on the transient spatial scale Lerg which,
however, rapidly grows with βσ for spatially correlated
potential fluctuations δU (x). Indeed, this spatial scale can
readily reach macroscopic sizes already for disorder strengths
σ ∼ 4–5 kBT , which is a typical value for disordered organic
photoconductors already at room temperatures [4].

Subdiffusion occurs on the corresponding nonergodic and
generally mesoscopic spatial scales. Somewhat surprisingly,
diffusion retains its asymptotically normal form for any
decaying correlations, no matter how slow they decay [23].
However, for mesoscopic and even macroscopic systems this
limit can be out of reach and become physically completely
irrelevant, leading us to consider this type of subdiffusion
as one of the fundamental processes in a large range of
applications. Some of these remarkable features have recently
been confirmed experimentally in colloidal systems [11] and,
more tentatively, also for diffusion of regulatory proteins
on DNA strands [35]. Namely, although in Ref. [35] the
results are interpreted in terms of normal diffusion, the single-
trajectory diffusion coefficient is scattered over three orders
of magnitude, which likely implies a lack of ergodicity. The
real physical mechanism of anomalous diffusion in spatially
correlated Gaussian energetic disorder remains elusive, and it
is the main goal of this paper to clarify its physical origin.
The whole setup is very different from the original scenario
of Sinai diffusion [1,2,36,37]. It is also different from Sinai
diffusion emerging from a power-law energy disorder [25],
or logarithmic tails of the waiting time distribution [38] in
the mean-field approximation. Notwithstanding, we will show
below that a generalized Sinai subdiffusion indeed emerges
at sufficiently low temperatures with 〈δx2(t)〉 ∝ [ln(t/t0)]a ,
with a general scaling exponent a, which is a = 4 in the
special case of Sinai diffusion [1,2,36,37]. The latter one is
usually associated with the model of random force disorder
[1,2,25,37] yielding potential fluctuations whose root-mean-
square amplitude exhibits an unlimited growth with distance,
that is, the potential presents a free Brownian motion in space
[1,2,37]. A generalized Sinai diffusion with a �= 4 emerges
also in the case of fractional Brownian motion in space [39].

In this work, we reveal that a generalized Sinai-type
diffusion universally emerges for a sufficiently low tem-
perature and/or strong disorder when βσ exceeds a typical
value of 5 to 10, even for the case of very short-range
exponential or linearly decaying correlations. Despite its broad
relevance, such logarithmic diffusion has not been revealed and
studied in the previous related research including Ref. [23].
This fundamental result is fully confirmed by extensive
simulations. Based on the arguments developed herein it
should be absolutely possible to observe macroscopic Sinai
diffusion at experimentally relevant time scales, in systems
governed by spatially correlated Gaussian energetic disorder.
Moreover, our theory elegantly describes the transition from
Sinai-type diffusion to a standard power-law diffusion with
a time-dependent α(t), which can be nearly constant for

a sufficienly long time and has a temperature dependence
that is reminiscent of annealed exponential disorder, i.e.,
α ∝ kBT /σ . Additionally, it predicts that the transition to
the normal diffusion regime occurs with a logarithmically
growing α(t) ∝ log(t). These predictions clearly beyond [23]
and other related work are confirmed with extensive numerical
simulations for four different models of spatial correlations
decay: exponential, the case of Ref. [23], and also power-
law correlations with infinite correlation length, as well as
for linearly and Gaussian decaying correlations. Finally, we
establish a general type of distribution of the escape times out
of a finite spatial domain, which turns out to be a generalized
log-normal distribution all moments of which are finite.

The remainder of this manuscript is structured as follows.
In Sec, II we develop the general concepts of our approach and
introduce a scaling theory for the resulting diffusive dynamics.
Section III presents results from extensive simulations for
various relevant cases of the spatial correlations decay of
the potential fluctuations. In Sec. IV we present a detailed
discussion of our results and draw our conclusions.

II. BASIC CONCEPTS AND SCALING THEORY

A. Growing potential fluctuations

We start from an observation, which is central to the
theory of extreme events [40] and pivotal for the present
study. Namely, even if a stationary Gaussian process U (x)
has a finite root-mean-squared fluctuation σ , the maximal
amplitude of its fluctuations δUmax(x) grows slowly with
the distance x, at odds with intuition [10,41,42]. The law
of this growth can be found from the following treatment.
We consider the potential as a random process with zero
average, 〈U (x)〉 = 0, and ask the question of how often an
energy level Umax is crossed with growing distance x →
∞ in a stationary limit. For any stationary, differentiable
Gaussian process with normalized autocorrelation function
g(x) = 〈U (x + x ′)U (x ′)〉/σ 2 and asymptotically decaying
correlations, the answer is known: The averaged number of
level-crossing events 〈n(x)〉 grows linearly with distance,
〈n(x)〉 = �x, at the rate � = √−g′′(0) exp(−U 2

max/2σ 2)/π
[43]. Thus, the level Umax is crossed on average at the distance
x found from 〈n(x)〉 = 1. Hence, on average,

Umax(x) = σ [2 ln(x/x0)]1/2, (1)

where x0 = π/
√−g′′(0). This is a very general and universal

result valid for any correlations with finite g′′(0), known in the
mathematical literature, see, e.g., in Ref. [41]. However, it is
practically unknown for physicists and our short derivation is
new. Note that this result holds only asymptotically, given
a stationary regime is established. Moreover, the longer
the correlations range, the later this asymptotic result is
established.

For example, for a Gaussian decay of the correlations we
will have g(x) = exp(−x2/λ2) with a correlation length scale
parameter λ and in this case x0 = πλ/

√
2. Note that in a

scaling sense such a correlation length parameter λ always
exists, even if the correlation length formally defined as λcorr =∫ ∞

0 |g(x)|dx may diverge. The length λ plays a fundamental
role in the presence of correlations. It can be, for instance, of
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the size of the protein–DNA contact or the size of the colloidal
particle in an uncorrelated laser field.

For power-law decaying correlations with g(x) = 1/[1 +
x2/λ2]γ /2, and g(x) ∝ 1/xγ for x � λ, and thus x0 =
πλ/

√
γ . This case is very interesting in applications to

diffusion of regulatory proteins on DNA strands, where the
real base-pair sequence arrangement can play a very profound
role [44,45]. In particular, long-range correlations in the
base-pair sequence, which encode biological information, can
indeed decay algebraically slow, as shown, for instance, in
Refs. [24,25] with γ ∼ 0.6–0.8. This should yield correspond-
ing correlations in the protein binding energy with λ being of
the size of the protein–DNA contact or larger. Namely, we
here have a case for which λcorr → ∞, which suggests that
the subdiffusive regime should hold much longer than in the
case of short-ranged correlations. This is indeed confirmed
in our detailed analysis below. Another important example is
provided by some organic photoconductors, for which γ = 1
and σ = 0.1–0.125 eV or 4–5 kBT at room temperature [4].

The next case of relevance we consider here is the Ornstein-
Uhlenbeck process with g(x) = exp(−|x|/λ). This case may
at first appear problematic as it is not differentiable, and the
corresponding force f (x) = −∂V (x)/∂x has the infinite root-
mean-squared amplitude 〈f 2(x)〉1/2 → ∞. However, in phys-
ical applications we consider in fact a regularized Ornstein–
Uhlenbeck process on a lattice with a finite grid size x. This
allows also for a numerical treatment of the corresponding
continuous dynamics (which otherwise would not be possible
due to the infinite force root-mean-squared amplitude). We
note that this point is similar to the subtleties arising when
we consider the model of white Gaussian processes f (x) in
the theory of continuous space Sinai diffusion [1]. Indeed,
we always generate realizations of Gaussian processes with
some finite resolution x, following a well established
algorithm [46]. The corresponding g(x) becomes, in fact,
thereby regularized. An appropriate formal regularization
reads g(x) = exp[−

√
x2 + (x/2)2/λ + x/(2λ)]. It yields

the same force root-mean-squared 〈f 2(0)〉1/2 = √
2σ/

√
xλ

as the Ornstein–Uhlenbeck process on a lattice with grid size
x. In this case, x0 = π (λx/2)1/2. An important further
remark is that, when x → 0, then x0 → 0, and Umax(x)
grows accordingly for any fixed x. However, this growth
is logarithmically slow, and for realistic variations of x

the effect is small. Nevertheless, the case of exponentially
decaying correlations is especially interesting in the present
context. Notice that such short-range correlations appear also
in the case of a biologically meaningless and completely
random DNA because of a finite size λ of the protein–DNA
contact, which is typically from 5 to 30 base pairs [47].

It should also be mentioned that the shortest possible
correlation range corresponds to the case when the values of
the potential are completely independent on all the lattice sites.
This does not mean, however, that U (x) is delta correlated
because U (x) is continuous, which introduces correlations
within a ±x neighborhood of any lattice site. In such a
situation, 〈U (x ′ + x)U (x ′)〉 depends actually on x ′ within
the correlation range. Hence, the corresponding continuous
energy disorder is not stationary, which implies that the de
Gennes–Bässler–Zwanzig result is not valid asymptotically.
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FIG. 1. Maximal amplitude of potential fluctuations |δUmax(x)|
(in units of the root-mean-squared amplitude of fluctuations σ )
starting from some random point regarded as the origin, plotted versus
distance x (in units of the correlation length λ) for several models
of Gaussian potentials with decaying correlations. This decay is (i)
exponential, (ii) linear, (iii) Gaussian, and (iv) of power-law form
with γ = 0.8. Broken lines represent the results from simulations and
full lines depict the corresponding theoretical results for |δUmax| =
2Umax(x) from Eq. (1), which are gradually approached for long
distances x. In all cases, x = 0.02 is chosen. The symbols show a
log x scaling fit for either initial or intermediate values of x in the case
of exponential and power-law models of the correlations, respectively.
Averaging over 103 different starting points in 102 different potential
realizations is done in each case.

Strikingly enough, in this case Eq. (1) also works with
x0 = x, as it can be deduced from the results on uncorrelated
Gaussian variables in the classical work on the extreme value
distributions by Fisher and Tippett [48]. Notice that in this
limiting case the fluctuations of Umax are actually larger than
in all the models considered in this work, which implies
that diffusion can also be transiently anomalously slow for
a strong disorder βσ � 1. This is indeed so, and, moreover,
anomalous diffusion is even slower in absolute terms than the
one considered in this paper. This a priori surprising special
case requires a separate detailed study, which is beyond the
scope of this work.

Another pertinent correlation model for the particular
application of diffusion on DNA is the model of linearly
decaying correlations g(x) = (1 − |x|/λ) for |x| � λ and zero
otherwise [49]. It emerges when the protein interacts locally
with only one corresponding base pair, in the immediate
contact. The corresponding random process U (x) is also
nondifferentiable, and with respect to the Umax(x) behavior
its regularized version behaves rather similar to that of the
Ornstein–Uhlenbeck process (considered with the same x).

Let us check the above exact analytical results against the
results from extensive simulations: Figure 1 shows how the
amplitude of the potential fluctuations |δUmax| = Umax(x) −
Umin(x) = 2Umax(x) grows with distance for several models
of Gaussian disorder. The universal result in Eq. (1) agrees
well with the numerics for all four models considered
here. A similar scaling was also found numerically for a
different model of correlations [10]. The agreement is better
for differentiable (in the limit x → 0) processes, and the
model of linearly decaying correlations behaves indeed rather
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similarly to the Ornstein–Uhlenbeck model. Notice that in the
case of power-law decaying correlations with γ = 0.8, the
convergency is slower than for the Gaussian decay, and for
much smaller γ , for instance, γ = 0.2, it is still far from being
achieved for the largest x in Fig. 1 (not shown). The results in
Fig. 1 are obtained from a well-known spectral method [46]
given the corresponding correlation functions on a lattice with
grid size x (x = 0.02 in Fig. 1) and a maximal spatial
interval Lmax (Lmax = Nx,N = 220 in Fig. 1). Notice also
that the exact behavior of the function g(x) is used to generate
the realizations of the Ornstein–Uhlenbeck process and the
process with linearly decaying correlations. The shown results
are obtained from averaging over 103 uniformly distributed
points (particles) in each potential realization, and 102 such
potential realizations for each model of correlations were
taken.

It is clear that the strongest potential fluctuations occur
in the case of exponential and linear correlations. They are
further increasing for smaller values of the resolution x due
to the singularity of these models. Another salient feature is
that another scaling can be observed transiently. Namely, we
initially find the behavior log x rather than the

√
log x scaling

for the exponential and linear correlations and intermediately
for the case of power-law decaying correlations. Moreover, we
notice an initial (log x)δ scaling with δ > 1 for the power-law
and Gaussian decay. To account for these various behaviors
we henceforth consider the following model:

|δUmax(x)| = σeff[ln(x/xin)]δ (2)

for the potential fluctuations, where σeff , δ, and xin are fitting
parameters, which are generally different from the theoretical
values σeff = 2

√
2σ ≈ 2.83 σ , δ = 1/2, and xin = x0 in Fig. 1.

Notice that δ is not a free fitting parameter but rather a function
of distance and, hence, of time in diffusion dynamics, with the
asymptotic value 1/2. It will be fixed below to either 1 or
1/2, which provides both a sufficient accuracy and important
insights. We will now use this generic empirical formula and
pursue the scaling argumentation used originally in the case
of continuous space Sinai diffusion [1].

B. Scaling theory

Let us estimate the time t a particle needs to travel the
distance x starting at x0, limited in an Arrhenius manner by
the largest barrier met on its way, t = t0 exp[β|δUmax(x)|],
where t0 is a proportionality factor of physical unit of time.
From this scaling ansatz, in combination with relation (2), we
immediately obtain our central result for the mean-squared
displacement of the diffusing particle,

〈δx2(t)〉 = x2
in{e[(kBT /σeff ) ln(t/t0)]1/δ − 1}2. (3)

This in turn yields the asymptotic form

〈δx2(t)〉 ≈ x2
in[(kBT /σeff) ln(t/t0)]2/δ (4)

for small temperatures and/or strong disorder, kBT /σeff  1.
For δ = 1/2, this is precisely the Sinai-type diffusion with
a = 2/δ = 4. Notice, however, that such a logarithmic scaling
in time is derived typically from the scaling δUmax(x) ∝ √

x

of nonstationary potential fluctuations with distance [1]. This
corresponds to a Brownian motion of the potential in space.

In our case, the physical origin of this diffusion is very
different. It corresponds to a transient regime, which can,
however, be extremely persistent, see below. Furthermore, for
δ = 1, 〈δx2(t)〉 ≈ x2

in[(kBT /σeff) ln(t/t0)]2. Generally, we can
consider a = 2/δ as a fitting parameter for generalized Sinai
diffision in Eq. (4). However, it is not considered a free fitting
parameter in Eq. (3).

Next, with increasing temperature and time, when the
unity becomes negligible in Eq. (3), we find the intermediate
behavior

〈δx2(t)〉 ≈ x2
in[t/t0]α(t) (5)

with the time-dependent scaling exponent

α(t) = 2(kBT /σeff)
1/δ ln1/δ−1(t/t0). (6)

This result predicts a power-law subdiffusion with a grad-
ually changing anomalous diffusion exponent. It should be
mentioned here that this result follows from the approxima-
tion exp[f (t)] − 1 ≈ exp[f (t)], for a logarithmically growing
f (t), which is not fully accurate in our numerics. Nevertheless,
it predicts the correct law for α(t), namely, α(t) ∝ log t , for
δ = 1/2, see below. This result is especially insightful for
δ = 1 (or log x scaling): Here α(t) = 2kBT /σeff = αmin, and
we observe subdiffusion of power-law form with a constant
anomalous diffusion exponent. Moreover, given the results
depicted in Fig. 1, where initially δ > 1, intermediately δ = 1,
and asymptotically δ = 1/2, one can predict that initially α(t)
will diminish and reach a minimum and then logarithmically
increase in time. This is what we actually see in the simula-
tions with σeff ≈ (1.24–1.52)σ within the temperature range
σ/4 < kBT < σ/2, see below. Such a behavior may indeed
mistakingly be attributed to continuous-time random-walk
subdiffusion.

C. Normal diffusion limit

Due to the decaying correlations of the Gaussian potential
fluctuations in our model, with increasing temperature for a
given root-mean-squared amplitude σ (decreasing βσ ) and
for times longer than a certain crossover time, a transition to
normal diffusion will gradually emerge. The normal diffusion
coefficient can be derived from the Lifson–Jackson expression
[13,50]

Dren = D0

C+
L C−

L

(7)

for the diffusion coefficient in periodic potentials with spatial
period Lmax, where C±

L = 1
Lmax

∫ Lmax

0 e±βU (x)dx is a spatially

averaged statistical weight function w±(x) := e±βU (x) and D0

is the free space diffusion coefficient. This averaging [15]
involves a very large Lmax → ∞ and replacing the spatial
average with the ensemble average, i.e., C±

L → 〈w±(x)〉,
which is 〈w±(x)〉 = e(βσ )2/2 for an unbiased Gaussian U (x).
Clearly, w±(x) must be ergodic for this substitution, just per
definition, and ergodicity requires, first, stationarity of the
random process U (x) under consideration [43].
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TABLE I. Nonergodicity length Lerg from Eq. (8), in units of λ and values for eβ2σ 2
.

g(x) βσ = 2 βσ = 3 βσ = 4 βσ = 5 βσ = 10

e−|x| 34.85 2070 1.2 × 106

e−x2
51.89 5027

1
(1+x2)γ /2 , γ = 0.8 166.83 9670 6.86 × 106 4.28 × 1010 7.64 × 1042

1 − |x| 24.59 1798 1.11 × 106 5.76 × 109 5.37 × 1041

eβ2σ 2
54.59 8103 8.89 × 106 7.20 × 1010 2.69 × 1043

D. Transient lack of ergodicity

However, even for a stationary and ergodic U (x) there exists
a characteristic length Lerg on which fluctuations of w±(x) do
not self-average out. This transient lack of self-averaging in
space is accompanied by anomalous diffusion of nonergodic
nature in time on the corresponding spatial scale. The point
is that the particles explore on this scale Lerg locally very
different realizations of the potential landscape, with a large
variation of the statistical weight function w±(x) containing,
in fact, the probability of thermally activated jumps over
local barriers. The corresponding diffusion process is clearly
nonstationary in increments, and this leads to a transient lack
of ergodicity and aging phenomena [30,51]. Already Eq. (7)
suggests that the local Dren should be very different in this case
and strongly scattered. Then, however, actually diffusion in this
case cannot be characterized by a normal diffusion coefficient,
as it becomes anomalous. This typical length can be found
from the condition that the variance of the random process
w±(x) equals the mean, which yields the following implicit
equation for this, so far unknown, characteristic length Lerg

[23], ∫ 1

0
(1 − y)eβ2σ 2g(Lergy)dy = 1. (8)

This equation was derived under the assumption [23] that
U (x) is a stationary process. The transition to normal diffusion
starts at 〈δx(t)2〉 � L2

erg. However, this transition may last
extremely long, and anomalous diffusion features may persist
for appreciably long times for |δx| > Lerg.

For the case of linearly decaying correlations, Eq. (8) can
be solved exactly, and we obtain (Lerg > λ)

Lerg = λ

(βσ )2
{(eβ2σ 2 − 1) − (βσ )2 + [2(βσ )4 + 4(βσ )2

−2(βσ )2e(βσ )2 + 3 − 4e(βσ )2 + e2(βσ )2
]1/2}, (9)

which for βσ � 2.5 is approximated by the simple expression

Lerg ≈ 2λ

(βσ )2
e(βσ )2

(10)

with a very good accuracy. For other models of g(x), Eq. (8)
is solved numerically, the results being listed in Table I for
several values of βσ . One can see that the shortest length Lerg

occurs for the linearly decaying correlations and the longest
one for the power-law correlations. Somewhat surprisingly, for
the Gaussian decay the nonergodicity length is larger than for
exponentially decaying correlations.

One can also use Eq. (10) with x instead of λ to roughly
estimate the nonergodicity length in the case of potential

values which are uncorrelated on the distance of a lattice
constant, with correlations decaying to zero within ±x of any
lattice site. Of course, this estimate cannot be rigorous because
Eq. (8) is, strictly speaking, not valid for a nonstationary U (x)
featuring this problem. Nevertheless, it suggests that Lerg can
also be very large in this case for βσ � 1. This case is left for
a separate study.

As mentioned above, there exist several crossover times in
the dynamics. The first one corresponds to the transition from
Sinai like diffusion to the power-law diffusion regime. The cor-
responding transition time τ ∗ can be roughly estimated from
the condition that the argument of the exponential function
in Eq. (3) reaches unity. From this, τ ∗ ∼ t0 exp[σeff/kBT ].
It grows exponentially fast with σeff/kBT . The second
transition time τerg can be estimated from the condition of
how long the power-law diffusion regime with anomalous
diffusion exponent αmin ≈ 2kBT /σeff will last. Thus we find
the conditions 〈x2(t)〉 ∼ x2

in(τerg/t0)αmin ∼ L2
erg, from which

with αmin ≈ 2kBT /σeff and Eq. (10), we obtain the estimate

τerg ∼ t0

[
4λ2

x2
in

(kBT )4

σ 4

] σeff
2kB T

exp

[
σ 2σeff

(kBT )3

]
. (11)

Notice the superexponential growth of τerg with σ/(kBT ). This
is precisely the reason why the power-law subdiffusion regime
can last so long for even moderate values σ/(kBT ) ∼ 4–5, and
no transition to the regime of normal diffusion was revealed in
the concrete cases studied in Refs. [17,26,27].

III. RESULTS OF NUMERICAL SIMULATIONS

We now proceed by checking our theoretical predictions
against results of extensive numerical simulations, finding re-
markable agreement. To this end, let us consider a continuous-
space Brownian dynamics governed by the overdamped
Langevin equation

η
dx(t)

dt
= −dU (x)

dx
+

√
2kBT η × ζ (t), (12)

where η is the frictional coefficient and ζ (t) is unbiased,
white Gaussian noise with δ correlation 〈ζ (t)ζ (t ′)〉 = δ(t − t ′).
Distance is scaled in units of λ, time in units of τ0 =
λ2η/σ , and temperature in σ/kB . Initially, 104 particles are
uniformly distributed in random potentials (10 realizations),
and the particle motion is integrated using periodic boundary
conditions with a very large period Lmax. The random potential
is generated on a lattice with spacing x = 0.02, and discrete
points are connected by parabolic splines, that is, the potential
is locally parabolic, and the corresponding force entering the
Langevin equation (12) is piecewise linear. In this respect our
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setup is similar to the one considered in Refs. [17,23,27],
but different from that in Refs. [10,11], where a discrete
hopping dynamics in both space and time was studied. In most
simulations, we employ Lmax = 219x ≈ 1.0485 × 104λ. We
use the stochastic Heun method with a time integration step
t = 2 × 10−4 in most simulations. For disorder which is
uncorrelated on the lattice sites, t = 2 × 10−5.

A. Ensemble-averaged diffusion

We start our numerical analysis with the case of ensemble-
averaged diffusion. From the simulated trajectories, we per-
form an ensemble averaging to obtain the mean-squared
displacement.

1. Exponential correlations

Let us focus first on the case of the exponentially decaying
correlations, g(x) = exp(−|x|). The results are depicted in
Figs. 2(a) and 2(b). In Fig. 2(a), the fit of the numerical
results is based on Eq. (3) using δ = 1/2, σeff ∼ 4–4.7, and
xin ∼ 0.59–5.01. Note that the fitting values σeff differ only
by a factor of less than two from the theoretical value 2.83
in Fig. 1. The difference emerges because many barriers are
present on the diffusion pathway and in the scaling theory
we approximate this complex picture by introducing just a
single effective barrier on the pathway with a height which
corresponds to the maximal amplitude of the fluctuations, i.e.,
the difference between the maximal and minimal values of
the potential energy landscape met on this pathway. Hence,
a “less than factor two” discrepancy is, in fact, reassuring.
The corresponding theoretical value x0 is x0 ≈ 0.31. Here, the
agreement is worse, however, the numerical results in Fig. 1
in this case are also somewhat different from the theoretical
asymptotics, which are still not reached. The same numerical
data are fitted by expression (3) with δ = 1 in Fig. 2(b),
with σeff ∼ 1.23–1.69. For T = 0.1 and T = 0.2, both fits
have almost the same quality, although the fit with δ = 1
appears slightly better. For T = 0.1, Sinai-like diffusion (4)
with a ≈ 3.7, near to the Sinai value a = 4, covers about 6
decades in time, Fig. 2(b). It is worth noting that for T � 0.25
the fit with δ = 1 works better, see Fig. 2(b), due to the
initial log x scaling in Fig. 1 (see symbols therein). For this
reason, α(t) shows a nearly constant behavior, at intermediate
temperatures, for an extended time period, Fig. 3(a). In fact,
in this regime the power-law exponent is nearly proportional
to temperature, α ≈ 2kBT /σeff , where the value of σeff is
obtained from fitting the minimal value αmin in Fig. 3(a) by this
dependence. It turns out that σeff ≈ 1.52, Fig. 4. However, with
increasing temperature, when diffusion covers larger distances,
the fit with δ = 1/2 becomes much better [compare the case
T = 0.5 in Figs. 2(a) and 2(b)]. An excellent fit holds over
about 6 to 7 decades in time with δ = 1/2, where the explicit
time dependence of the anomalous diffusion exponent α(t) in
Eq. (5) becomes apparent for sufficiently long times. Notice
that at the end point of the simulations in Fig. 2(a) for T = 0.5
the transition to the renormalized normal diffusion regime is
almost accomplished. Strikingly enough, Eq. (3) describes the
behavior nicely almost over the entire range of simulations. At
larger temperatures, for instance, T = 1, the crossover to the
asymptotic regime of normal diffusion is already completely

accomplished up to tmax = 106 in our simulations. Such high
temperatures, or weak disorder strengths, are not of interest
for anomalous diffusion of the kind discussed. Generally,
αeff reaches a minimum αmin, may stay nearly constant for
a certain time period, and then logarithmically increases, a
dependence which can be fitted by Eq. (6) with δ = 1/2 and
some values of σeff and t0, which are different from those
used in Fig. 2(a), see Fig. 3(a) for T = 0.5 and T = 1/3. The
reason for this discrepancy in the corresponding fitting values
is that a transition from Eq. (3) to Eqs. (5) and (6) is still
not quite justified numerically. Nevertheless, the prediction
of a logarithmically increasing α(t), as confirmed by the
simulations, is a remarkable success of our simple scaling
theory.

Interestingly, our simulations demonstrate that, generally,
the observed subdiffusion is much faster than the correspond-
ing limit of disorder-renormalized normal diffusion, which is
also shown in Fig. 2(a) for several values of the temperature.
The presence of correlations thus leads to a dramatic increase
in the particle mobility on intermediate but relevant time scales.
Note that, whereas for T = 0.5 this limit is already gradually
approached in Fig. 2(a), the corresponding asymptotics cannot
even be depicted for T = 0.2 and T = 0.1 in this figure, as they
lie outside of the plotting range and, therefore, are completely
irrelevant on the corresponding time scale.

2. Power-law correlations

We proceed with the case of power-law correlations of
the spatial potential fluctuations, with γ = 0.8. The ensemble
averages for the mean-squared displacement are depicted in
Fig. 2(c). Here the fit with δ = 1 works generally better,
which can be rationalized from Fig. 1, and for T = 0.1 a
generalized Sinai diffusion with a ≈ 3 nicely fits the numerical
data over 6 decades in time. Note in Fig. 3(b) that α(t) stays
nearly constant over 5 decades in time, up to the end of
the simulations even for T = 1/3. For the larger T = 0.5,
it also grows logarithmically in time, as in the case of
exponential correlations. Why α(t) changes slower in time
in this case and a fit with δ = 1 and σeff ≈ 1.41 works nicely
over many time decades for intermediate temperatures can
be rationalized from the fact that the nonergodicity length
Lerg in this case is much larger, see Table I. The case of
power-law correlations is especially important for the diffusion
of regulatory proteins on DNA strands, where such long-
range correlations with γ ∼ 0.6–0.8 emerge due to the way
biological information is encoded in the base-pair sequence.
Our results imply that such diffusion should be typically
anomalously slow with α ∼ 1.41 kBT /σ in the corresponding
range of temperatures for γ = 0.8. It must be stressed in this
respect that diffusion does not become immediately normal for
〈δx2(t)〉 > L2

erg, but rather a very slow crossover with growing
α(t) emerges, see Fig. 2(c) for T = 0.5. Here, the transition to
the asymptotic regime of normal diffusion is still far from being
established.

Somewhat surprisingly, for power-law correlations subd-
iffusion is essentially faster in absolute terms than in the
case of exponentially short correlations, see Fig. 5. This
may at first appear counterintuitive. However, one reason
for this feature becomes clear from the potential fluctuations
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FIG. 2. Ensemble-averaged mean-squared displacement (symbols) for different values of kBT in units of the disorder strength σ for the four
different models of spatial correlation decay: [(a) and (b)] exponential decay, (c) power-law decay with γ = 0.8, (d) linear decay, (e) Gaussian
decay, and (f) potential which is uncorrelated on lattice sites and piecewise linear in between. The fit of the numerical results (full lines) is
performed with expression (3) using δ = 1/2 in (a), (d), (e), and (f) and δ = 1 in (b) and (c). The dashed orange line in (b) to (d) shows an
alternative fit with the generalized Sinai diffusion expression (4) and a ≈ 3.70 in (b), a ≈ 2.99 in (c), a ≈ 2.3 in (d), and a ≈ 4 in (e). For
T = 0.1, Sinai diffusion covers typically at least 6 decades of time. Even for T = 0.5 the fit with Eq. (3) and δ = 1/2 turns out to be very good
over 6 decades of time, as seen in panels (a), (d), and (c). For δ = 1/2, σeff is typically in the range, σeff ∼ 4–5.1, whereas for δ = 1 it typically
ranges within σeff ∼ 1.2–1.7. Distances are measured in units of λ and time in units of τ0 = λ2η/σ , with the lattice constant x = 0.02.

depicted in Fig. 1, which for the exponential correlations
are essentially larger (thinking in units of kBT ). Clearly,
exponential correlations and other singular (in the limit x →
0) models of static disorder present a preferred case to observe
Sinai-type diffusion in such systems. The second explanation is
that in the case of power-law correlations a local bias is present
on a much longer scale. This leads to an essential acceleration

of diffusion in the ensemble sense, see Fig. 6(b), where the
ensemble mean-squared displacement is in fact superdiffusive
[see also Fig. 3(b) for the initial regime] within several scaling
lengths at T = 0.2. Remarkably, it is even faster than the
potential free diffusion. This is namely due to the presence
of a local bias, which is also the reason for the Golosov
phenomenon in Sinai diffusion, see below.
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FIG. 3. Time-dependent power-law exponent αeff (t) for an assumed subdiffusive law 〈δx2(t)〉 � tα(t) obtained as the logarithmic derivative
of the traces in Fig. 2, for different temperatures in the case of (a) exponential correlations, (b) power-law correlations with γ = 0.8, (c) linearly
decaying correlations, and (d) Gaussian correlation decay. Symbols connected by lines correspond to numerical results, while the dashed lines
are fits to the dependence α(t) = 2(kBT /σeff )2 ln(t/t0). Fitting parameters shown in the plot.

3. Linear correlations

The case of linear correlations presents another important
model of singular disorder with potential fluctuations growing
with diminishing x. Therefore, it is expected to be similar to
the case of exponential correlations, despite the fundamental
difference between these two models. The nonergodicity
length Lerg here is the shortest within the four considered
models, see Table I. The ensemble-averaged mean-squared
displacement is depicted in Fig. 2(d). Qualitatively, it appears
very similar to the previous cases, however, it turns out to be the
slowest one, as Fig. 5 reveals. In this case, σeff ∼ 4.22–4.91,
and xin ∼ 0.27–0.67, except from T = 0.1, where xin ≈ 3.65.
Now, the agreement with x0 ≈ 0.314 is much better. It might
seem paradoxical that the shortest correlations, which exactly
vanish at distances exceeding λ, yield the slowest diffusion.
However, it must be kept in mind that in the absence of
spatial correlations we should have just normal diffusion,
which is orders of magnitude slower than the considered
correlation-induced subdiffusion. We mention once more that
the case of fully uncorrelated disorder simply cannot be
realized physically in the case of continuous diffusion with a
bounded potential root-mean-square amplitude: The minimal
correlation length is 2x. The time behavior of the anomalous
diffusion exponent α(t) is indeed more similar to the one in the
case of exponential correlations than to the case of power-law

correlations, see Fig. 3(c), and compare with Figs. 3(a)
and 3(b). Notice that the scaling theory nicely describes the
transition from the anomalous to the normal diffusion regime
over 7 time decades for T = 0.5, see Fig. 2(d), where the
normal diffusion regime is almost achieved at the end point of
simulation.

4. Gaussian correlations

Furthermore, we consider the case of Gaussian spatial
correlations. Judging from Fig. 1, it should be the second
fastest of the four models considered here. This is indeed the
case, as seen in Fig. 5. The ensemble-averaged mean-squared
displacements display very similar generic features as in
the other cases, see Fig. 2(e). Here, σeff ∼ 4.50–5.10 and
xin ∼ 0.41–4.70, whereas the theoretical is x0 ≈ 2.22. Once
again, the discrepancy by a factor of less than two with
the theoretical σeff = 2.83 and at least the correct order of
magnitude for xin are quite impressive, given the simplicity of
our scaling argumentation. Sinai-type diffusion with a = 4 is
featured in the low temperature behavior at T = 0.1. In this
case, however, α(t) already starts to slightly increase at the
end of the simulations already at T = 0.1, Fig. 3(d). This type
of correlations indeed presents the worst case to observe a
Sinai-like diffusion. The reasons are quite obvious: Namely,
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FIG. 4. Dependence of αmin on temperature T for the four
different models of spatial correlations discussed in this paper, and
the corresponding best linear fits with the dependence α ≈ 2kBT /σeff .
The values of the corresponding σeff are shown in the plot.

(1) this model of disorder is not singular and (2) the correlations
are short ranged.

5. Disorder which is uncorrelated on sites

Finally, for disorder which is uncorrelated on sites, the
scaling theory works also remarkably well, as can be deduced
from Fig. 2(f). Therein we present the numerical results
obtained within the model of a piecewise linear potential
(piecewise constant quenched Gaussian force, which is an-
ticorrelated on neighboring sites). Defying intuition, in this
scenario diffusion is also transiently anomalously slow. This
is because continuous potential fluctuations are in fact strongly
correlated over nearly two lattice constants. This anomalous
diffusion regime can cover many decades of time. The detailed
study of this a priori paradoxical case is left for a separate
investigation. We only comment that in this case the resulting
subdiffusion is the slowest one, in absolute terms, as it can
be deduced from Fig. 5 for T = 0.2. This is because random
potential fluctuations are the largest in Eq. (1) with x0 = x.

B. Single-trajectory averages

As discussed above, the physical origin of the observed
subdiffusion is due to a weak breaking of ergodicity. Hence,
single trajectory time averages

δx2(t)
Tw = 1

Tw − t

∫ Tw−t

0
[δx(t |t ′)]2dt ′ (13)

of the mean-squared displacement δx(t |t ′) = x(t + t ′) − x(t ′)
over the time window Tw are expected to be very different
from the above ensemble result, and their amplitudes should
be broadly scattered [30,33]. This is indeed so, as evidenced
for all considered models of correlations in Fig. 6, where
at all times t  Tw, and hence this scatter is not a trivial
statistical effect occurring when t ∼ Tw. Remarkably, some of
the particle trajectories are quickly localized, while others are
diffusing very fast. The slow ones start near to and become
trapped in a low potential valley, while the fast particles start
from a relatively high value of U (x) and move downhill
to a much lower value of U (x), thus experiencing a local
energy bias. We note that this phenomenon is analogous to
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FIG. 5. Comparison of the ensemble-averaged mean-squared
displacement for the four different models of the correlation decay
and for two values of temperature. Seemingly counterintuitively,
the mean-squared displacement is the largest in the case of power-
law spatial correlations, where the spatial nonergodicity scale is
the longest. Moreover, diffusion is slowest in the case of linear
correlations, where the nonergodicity length is the shortest in all
four cases, see Table I. In the case of disorder which is uncorrelated
on the lattice sites, subdiffusion is even slower in absolute terms, see
the lowest orange curve for T = 0.2. This special case is, however,
not studied in detail in this work.

the Golosov localization in standard Sinai diffusion [1,52],
when particles starting at the same (thermal) initial position
are not significantly separated in the course of time. In the
case of exponentially decaying correlations, one may observe
two such very close trajectories in Fig. 6(a). Thus, particles
diffuse similarly and are correlated. This feature can be very
important for the diffusion of proteins on DNA, which may
be locally biased, even if the bias is absent on average. This
behavior is very different from the scatter of single trajectory
averages in the case of annealed continuous-time random-walk
subdiffusion with divergent mean resident time. In the latter
case, even identical particles starting at the same place will
follow very different, diverging trajectories. This feature can
therefore be used for a crucial experimental test to distin-
guish between different types of subdiffusion. Overall, both
ensemble and time-averaged mean-squared displacements are
by many orders of magnitude faster than in the limit of
renormalized normal diffusion whose diffusion coefficient
is suppressed by the factor exp(−25) ≈ 1.39 × 10−11, as
compared with free normal diffusion in Fig. 6(a) for the same
temperature T = 0.2. For a typical experimental value D0 =
3 μm2/s [53] it would become Dren ≈ 4.17 × 10−5 nm2/s,
which would mean a practical localization: The particles would
diffuse on average over a distance of merely 2 nm within 105 s
(about 1 day and 4 h).

As can be seen from single trajectory recordings (not
shown), particles typically continue their diffusive motion after
being localized for a certain time. Indirectly, this feature can
also be deduced from some trajectory averages depicted in
Fig. 6(a), where the diffusional spread displays a steplike fea-
ture. Namely, the diffusional spread continues after temporally
reaching a plateau. In data analyses this might mistakingly
be attributed to a continuous-time random-walk subdiffusion
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FIG. 6. Single-trajectory, time-averaged mean-squared displacement for T = 0.2 and (a) exponential correlations, (b) power-law
correlations with γ = 0.8, (c) linearly decaying correlations, and (d) Gaussian correlation decay. The trajectories time length was Tw = 2 × 106.
Twenty trajectory averages were made for particles starting from different locations. They are depicted with solid lines. The results of the
ensemble-averaged, as well as ensemble-averaged time-averaged (EATA), and free normal mean-squared displacements are also depicted for
comparison. The EATA mean-squared displacement is nicely fitted by a power-law dependence, which is also shown in the plot. The asymptotic
limit of the disorder-renormalized normal diffusion cannot be plotted for comparison because Dren = exp(−25)D0 ≈ 1.39 × 10−11D0, with
D0 = T = 0.2. Subdiffusion is by many orders of magnitude faster.

behavior. The ensemble average of the single trajectory time
averages is also of interest. This is how experimentalists
often proceed to smooth out single trajectory averages [30].
Such an ensemble-averaged time average (EATA) is also
shown in Fig. 6. It is nicely fitted by a power-law time
dependence. Hence, on the level of this ensemble-averaged
time-averaged mean-squared displacement the power-law
subdiffusive regime is established earlier.

Also in the case of power-law correlations, single-trajectory
averages are broadly scattered, see Fig. 6(b). In this panel, the
ensemble-averaged diffusion can be even faster initially than
free normal diffusion due to the presence of a local bias. The
single trajectory time-averaged mean-squared displacement,
however, does not show such a striking feature, see Fig. 6(b).
The reasoning for this feature is that the local bias is averaged
out in the single trajectory time averaging for a sufficiently
large measurement time Tw. Single trajectory averages spread
out slower than the ensemble-averaged result and, neverthe-
less, their broadening is many orders of magnitude faster than
the result of the renormalized normal diffusion. This is why
even for σ ∼ 4–5, relevant for some important biophysical
situations [6,7], regulatory proteins can diffuse on DNA tracks
despite the fact that the classical de Gennes–Bässler–Zwanzig

result would predict that they should be practically localized
(on biophysically relevant time scales) for such a strong
disorder. Naturally, single trajectory averages exhibit a large
scatter due to a transient lack of ergodicity. It is important
to mention that a strong single trajectory scatter was indeed
observed experimentally [35]. Note also that such a local
bias can be functionally very important, directing the protein
toward a specific binding site on DNA. The ensemble-averaged
time-averaged mean-squared displacement in this case also
shows a power-law scaling in time, see Fig. 6(b). Judging
from the power-law exponent αEATA = 0.31, it appears to be
slower than in the case of exponential correlations, where
αEATA = 0.54, compare with Fig. 6(a). However, the prefactor
in this case is, in fact, much larger, which makes it faster rather
than slower.

The scatter of the single-trajectory time-averaged mean-
squared displacements is also quite pronounced in the case
of linearly decaying correlations, see Fig. 6(c). Such scatter
presents a common pattern similarly to other anomalous
diffusion processes with nonstationary increments [30,54], in
particular, when the systems are aged [51]. Also for Gaussian
decay of correlations, the corresponding single trajectory
averages are strongly scattered, and their ensemble average

052134-10



PERSISTENT SINAI-TYPE DIFFUSION IN GAUSSIAN . . . PHYSICAL REVIEW E 96, 052134 (2017)

yields a power-law dependence for sufficiently large times,
Fig. 6(d).

C. Distribution of first-passage times in a spatial domain

Furthermore, the distribution of first-passage times can
be of great interest in applications. All moments of the
corresponding residence time distribution in any finite spatial
domain are finite. Moreover, the average residence time is
much (for a strong disorder kBT  σ , orders of magnitude)
smaller than the one expected from the normal diffusion
characterized the renormalized result Dren [23]. In the present
case, weak ergodicity breaking does not rely on infinite mean
residence times, which makes it especially interesting in
biological applications. Residence time distributions of escape
times for particles initially located in the center of a symmetric
interval ±λ in space for kBT � 0.5σ for all four types of
correlations are nicely described by a generalized log-normal
distribution reading

ψ(t) = C

t
[e−| ln(t/tm)/κ1|b1

θ (tm − t) + e−| ln(t/tm)/κ2|b2
θ (t − tm)],

(14)

where C = b1b2/[b2κ1�(1/b1) + b1κ2�(1/b2)] is a renormal-
ization constant, b1,2 > 1, and κ1,2 > 0. �(x) denotes the
complete � function. For any b1,2 > 1, this distribution (14)
has finite moments 〈tn〉 of all orders n. For b1 = b2 = 2
and κ1 = κ2, this is the well-known log-normal distribution.
However, in our case b1, b2, κ1, and κ2 are different fitting
parameters. Namely, for the exponential correlations b1 ≈
2.6–2.7, and it is weakly temperature dependent. However,
b2 does depend visibly on temperature. For T = 0.5, b2 = 2,
and it becomes smaller with decreasing temperature while
tm becomes longer. For instance, for T = 0.2, b2 ≈ 1.54, see
Fig. 7(a), where the distribution of times is plotted for the
log-transformed variable ln t , attaining a maximum at ln tm.

For power-law decaying correlations, the escape times in
Fig. 7(b) are essentially shorter than in the case of exponential
correlations, Fig. 7(a). In particular, the scaling exponent b2 is
larger and the half width κ2 is smaller. Conversely, the power
exponent b1 is pretty robust, b1 ∼ 2.6 (also for other models
of disorder, see below).

For linear correlations in Fig. 7(c) one gets b1 ∼ 2.6–2.7
nearly independent of temperature, while b2 also strongly
depends on temperature, decreasing with decreasing temper-
ature. All temporal moments of the resident times remain,
however, finite with decreasing temperature. Finally, the
distribution of the escape times obeys the same common
pattern also for Gaussian correlations, as seen in Fig. 7(d).

IV. DISCUSSION

Diffusion in systems characterized by Gaussian fluctuations
of the potential with spatially decaying correlations is typically
thought of as normally diffusive on experimentally relevant
time scales, following the renormalization idea for these
systems developed by de Gennes, Bässler, and Zwanzig.
This is indeed so for a weak energetic disorder, σ < kBT .
However, this simple physical picture breaks down in the case

of strong disorder featuring many physical systems, including
the diffusion of signaling proteins on DNA tracks or colloidal
particles in random laser-created potentials. Following recent
discoveries of extended anomalous diffusion in such systems,
we here provided a clear physical picture for the origin of
subdiffusion in stationary Gaussian random potentials with
decaying spatial correlations. While the anomalous diffusion
is, of course, transient, the scaling theory developed and
confirmed herein demonstrates that this transient may easily
reach macroscopic time scales for a physically relevant
strength of the potential fluctuations.

The primary reason for the origin of this subdiffusion
is that the maximal amplitude of the potential fluctuations
grows logarithmically with the distance, in accordance with
the asymptotic theoretical result (1) and the simulations data
depicted in Fig. 1. This behavior is universal, and it has a
predictive power. In particular, it allows one to predict for
which model of the potential correlations decay the anomalous
diffusion will be faster in absolute terms—and this prediction
completely agrees with numerics. The strongest trapping
effects leading to anomalous diffusion occur in the case of
singular models of disorder, such as exponential or linear
decays of the correlations, for which the stationary energy
autocorrelation function is not differentiable at the origin. This
leads to unbounded static force root-mean-squared fluctuations
〈f 2〉1/2 → ∞ in the strict x → 0 limit of the coarse
graining. Strictly speaking, such models are not amenable
to any Langevin simulations unless the random potential is
considered on a lattice with a spatial grid x, as incorporated
in our simulations, with discrete potential points connected
by parabolic splines (locally piecewise linear forces). A
maximal time step of the Langevin simulations must be
chosen accordingly, depending on x and the averaged local
force root-mean-square 〈f 2〉1/2. Singular disorder models are
regularized accordingly. However, they display the largest
potential fluctuations in Fig. 1.

Spatially increasing potential fluctuations may appear
strange and contradictory due to the fact that the random
potential is stationary and possesses the well-defined root-
mean-squared magnitude σ . This property of continuous
albeit logarithmic increase with distance is, however, the
very cornerstone of the theory of extreme events [40,48]: An
extreme event will always occur if only one waits sufficiently
long and even if the probability density of such events is
strongly localized such as in the case of the considered
Gaussian distribution. In our case, the extreme events occur
in space rather than time but have the same origin. The law
(1) of potential fluctuations with a (log x)δ scaling (δ = 1/2)
is valid asymptotically. This argumentation with x0 = x in
Eq. (1) also holds for disorder, which is uncorrelated on lattice
sites, with potential fluctuations even larger than in Fig. 1. Due
to the continuity of the potential, the corresponding energetic
disorder is actually correlated. However, it is nonstationary,
which presents a special case to be studied in detail elsewhere.
The longer the spatial correlations of the potential fluctuations
reach, the later this asymptotic is achieved. The convergence
to an extreme value distribution is known to be very slow also
for independent Gaussian variables [48]. Numerically, we also
observed different scaling exponents such as δ = 1 transiently
and δ > 1 initially.
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FIG. 7. Probability density function of log-transformed first escape times from the interval [−λ,λ] for two temperatures T = 0.5 (in blue)
and T = 0.2 (in black). The cases in the different panels are (a) exponential correlations, (b) power-law correlations with γ = 0.8, (c) linearly
decaying correlations, and (d) Gaussian correlation decay. The symbols represent simulations data, the lines correspond to a fit with the
probability density (14). Parameters are shown in the panels. With decreasing temperature the distributions become broader and the parameter
b2 smaller.

Based on these observations we put forward a very
simple scaling theory of anomalous diffusion in the potential
landscape U (x), which in essence is very similar to the
scaling theory of Sinai diffusion developed in Ref. [1]. It leads
to our major result given in Eq. (3) and explains why for
sufficiently low temperatures we indeed observe a generalized
Sinai diffusion with a power-law exponent, which is generally
different from a = 4 and can be even smaller as shown in
Figs. 2(b), 2(c) and 2(d): The diffusion is formally even
slower than for the case of Sinai diffusion in random force
fields. Our analytical results were shown to be valid over 5 to
7 decades in time, at least, which is a remarkable success
of the relatively simple scaling approach. The nominally
ultraslow diffusion is in fact many orders of magnitude
faster than the asymptotical limit of the disorder-renormalized
normal diffusion, which for the physically relevant parameters
considered here simply cannot be attained either physically
or numerically for such a strong disorder. Hence, it becomes
completely irrelevant in such settings. This provides a striking
example of how the formally valid mathematical result of
asymptotic, disorder-renormalized normal diffusion in the
de Gennes–Bässler–Zwanzig theory may produce physically
inappropriate descriptions on meso- and macroscales.

This result also leads to a number of further predictions,
which are confirmed in numerical simulations and agree with
previous simulations of the considered stochastic dynamics in
random potentials. Namely, this kind of anomalous diffusion
is generally characterized by a time-dependent power-law

exponent α(t), for which we obtained the theoretical result
(6). This result predicts that, after an initial decay (δ > 1),
the anomalous diffusion exponent α(t) will reach a minimum
for which αmin = 2kBT /σeff (for δ = 1) and then gradu-
ally grow in logarithmic fashion, α(t) = 2(kBT /σeff)2 ln(t/t0)
(δ = 1/2). These two nontrivial predictions are remarkably
well confirmed by extensive numerical simulations. Indeed,
αmin = 2kBT /σeff with σeff ∼ 1.24–1.52, within a broad range
of temperatures, as demonstrated in Fig. 3. Moreover, at
sufficiently large temperatures, α(t) grows logarithmically, see
Fig. 3. It is indeed remarkable how a simple scaling theory
can be predictive to such a degree. Of course, the scaling
results cannot be fully accurate on a quantitative level and
claim full consistency over the entire range of parameters
and times studied herein. In particular, the values of σeff and
t0 used to fit the numerical data, for instance, in Figs. 2
and 3 are in fact different. This is due to the fact that the
approximation of Eq. (3) by Eqs. (5) and (6) is, indeed, a bit
too coarse. Nevertheless, the coherence and validity of our
scaling theoretical predictions are compelling.

We note that in the biologically relevant and important case
of power-law decaying correlations the scaling δ = 1 applies
to a much larger range of times and temperatures, as shown
in Figs. 2(c) and 3(b). In this case, power-law subdiffusion of
the form 〈δx2(t)〉 ∝ tα with α ≈ 1.41 kBT /σ in fact presents
a good approximation over a broad range of times and
temperatures. This behavior may easily be confused with the
law α ≈ kBT /σ produced by the mean-field continuous-time
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random-walk with exponential energy disorder [19,20,25]. In
striking contrast to the latter model, however, the residence
times in a finite spatial domain are not power-law distributed
but follow the generalized log-normal distribution (14)
shown in Fig. 7 for all the studied models of the correlation
decay. All moments of this distribution are finite, which is a
very attractive physical feature. This subdiffusion is clearly
nonergodic, as demonstrated in Fig. 6, where the maximal
time is merely 1% of the time window Tw used to accumulate
the single-trajectory averages. Hence, a large scatter is a truly
nonergodic effect, even if it is a transient one and must vanish
in the mathematical limit Tw → ∞ [23]. It is, however, not
necessarily attainable experimentally.

The origin of this lack of ergodicity was already explained
in Ref. [23]: It is due to the absence of self-averaging of the
statistical weight function w(x) = exp[±βU (x)] on the spatial
scale Lerg, implicitly defined in relation (8), depending on the
disorder autocorrelation function g(x). Solving this equation
analytically in the case of linearly decaying correlations yields
the exact result (9) and a very handy and highly accurate
approximate result in Eq. (10). In this case of linear decay,
Lerg turns out to be the shortest one within all models of
g(x) considered in this paper, see Table I. This result implies
that Lerg in units of the correlation scale λ is only by a
factor (1/2)(σ/kBT )2 smaller than the factor exp[σ 2/(kBT )2]
suppressing the asymptotically normal diffusion coefficient in
the renormalization sense. This, in turn, means that such meso-
scopic subdiffusion can readily reach macroscopic scales even
for a moderate disorder strength σ ∼ 4–5 kBT featuring many
physical and biological systems already at room temperatures.

Different from the annealed continuous-time random-walk
subdiffusion, the single trajectory time averages for the
mean-squared displacement in the present case of quenched
potential fluctuations are characterized by different power-law
exponents α �= 1 [23] and not just a linear scaling with
the lag time (erroneously suggesting normal diffusion) but
with a significantly scattered diffusion coefficient [32,33].
Importantly, especially with respect to biological applications
is that the subdiffusion considered here is in fact orders of
magnitude faster than the normal diffusion predicted by the
classical renormalization result with effective diffusivity Dren.
For example, for the diffusion of regulatory proteins on DNA
tracks, σ ≈ 4.3 kBTroom, which can be deduced from the re-
sults presented in Ref. [7]. Hence, Dren = 9.33 × 10−9D0, and
for a typical experimental value D0 = 3 μm2/s [53] it would
become Dren ≈ 2.8 × 10−2nm2/s. This would mean that
within some hundreds of seconds the diffusional spread would
be merely several nanometers. However, this renormalization
result underestimates massively, on the relevant time scales
of this phenomenon, the actual protein mobility. Our results
demonstrate that the actually occurring subdiffusion is orders
of magnitude faster than one suggested by this normal diffusion
result of the renormalization approach. Hence, correlations-
induced persistent subdiffusion makes diffusional search feasi-
ble in such a situation despite a strong binding-energy disorder.

An important role in applications may also be played
by the presence of a local bias, which is especially clearly
expressed in the case of power-law correlations. This is
the analogous reason for the Golosov phenomenon in the
case of random potential exhibiting Brownian motion in
space [1]. Then the particles which were initially localized
nearby diffuse similarly, in a correlated fashion. The distance
between them does not grow dramatically in time, being
bounded. One can find similar single trajectory averages also
in our numerical results. Conversely, different particles starting
in locally different environments can move into opposite
directions, and this can give rise to an enhanced diffusivity
in the ensemble sense. In fact, for this reason an initial regime
of superdiffusion can be realized in Fig. 6(b) and 6(d) on
the ensemble level in the case of power-law correlations and
Gaussian correlations, respectively, for which it can extend
over several scaling lengths λ, see also Fig. 3(b) and 3(d) for
small times. In the case of single trajectory time averages,
the local bias averages out. Therefore, such a superdiffusive
regime is absent. Diffusion on the level of single trajectories
is typically slower than the one on the ensemble level, see, for
instance, Fig. 6. The difference between the ensemble average
and the ensemble-averaged time average of the mean-squared
displacement becomes smaller with increasing time. The latter
ensemble time averages display a power-law dependence on
time for sufficiently large times even in the Sinai-like regime
on the ensemble level, which can be an important observation
with respect to possible experimental manifestations.

V. CONCLUSION

To conclude, we elucidated the physical mechanism leading
to subdiffusion in stationary correlated potentials with spa-
tially decorrelating Gaussian disorder, and we showed that a
generalized Sinai diffusion typically emerges at sufficiently
low temperatures and/or strong disorder for various models of
decaying correlations. Our scaling theory also explains how
a standard power-law subdiffusion emerges with increasing
temperature and in the course of time. Such subdiffusion is
weakly nonergodic, displays a local bias, and proceeds much
faster than de Gennes–Bässler–Zwanzig limit of normal diffu-
sion, which for sufficiently low temperatures and/or finite size
of the system simply cannot be attained physically on typical
mesoscales. We believe that our results provide a new vista on
the old problem of potential disorder and that they will be very
useful in the context of nonergodic diffusion processes, espe-
cially in relation to various biologically relevant problems on
the cellular level. Likely they are also important for diffusion of
colloidal particles in laser created random potentials, a conjec-
ture calling for further experimental studies of such systems.
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