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Abstract
We introduce three strategies for the analysis offinancial time series based on time averaged
observables. These comprise the time averagedmean squared displacement (MSD) as well as the
ageing and delay timemethods for varying fractions of thefinancial time series.We explore these
concepts via statistical analysis of historic time series for several Dow Jones Industrial indices for the
period from the 1960s to 2015. Remarkably, we discover a simple universal law for the delay time
averagedMSD. The observed features of thefinancial time series dynamics agree well with our
analytical results for the time averagedmeasurables for geometric Brownianmotion, underlying the
famedBlack–Scholes–Mertonmodel. The concepts we promote here are shown to be useful for
financial data analysis and enable one to unveil newuniversal features of stockmarket dynamics.

1. Introduction

In 1900, Bachelier pioneered the concept that prices onfinancialmarkets are stochastic andmay follow the laws
of Brownianmotion [1, 2]. Similar ideas for themathematical description of option pricingwere proposed by
Bronzin in 1908 [3], a workwhich largely fell into oblivion until recently [4]. Later, in the 1960s,Mandelbrot
[5, 6] and Fama [7] realised that theGaussian distribution of price changes is often violated, and introduced
Paretian and Lévy stable laws into financialmathematics [5, 8]. Anothermilestone in the stochasticmodelling of
financialmarkets is the famedBlack–Scholes–Merton option pricingmodel [9–11], see also the classical
textbooks on themathematical analysis ofmarkets [12–14].

The assessment of price variations for highly non-stationary [15–19]financial time seriesX(t) (figure 1) is
nowadays typically rationalisedmathematically via solutions of stochastic differential equationswith
multiplicative noise [20–27]. This approach is based on the key concept of volatility: themagnitude ofmarket
fluctuations increases with the valueX(t). Numerousmodels for stockmarket price variationwere developed to
account for time-varying, clustered, and fluctuating volatility [12–14, 19, 26, 28–39]. In particular, the
exponentially varying geometric Brownianmotion (GBM)with its log-normal distribution, underlying the
Black–Scholes–Mertonmodel, is ubiquitously used infinancialmathematics and econophysics [12, 14, 16, 40].
TheGBMapproachwas generalised and extended for some alternative [24], specifically subdiffusive stochastic
processes [41, 42], for power-lawmultiplicative noise [24–26, 43] (the square-root process [25, 44]), two-stock
options [45], as well as fractional Brownianmotion [46–48].

Statisticalmodels of stock price variations often assume that the increments [ ( )]X tlog areGaussian-
distributed [14]. Extensive statistical analysis offinancial data revealed, however, that the distribution of returns

+[ ( ) ( )]X t t X tlog d has a sharpermaximumand fatter tails [8, 12, 19, 34]. To account for these features,
randomwalkmodels based on, inter alia, truncated Lévy stable distributions [5, 8, 12, 36, 49] and jump-
diffusionmodels [11, 13, 50]were proposed. Discrepancies between ensemble and time averagedmeasures were
also discussed recently [18, 38, 51, 52]. Differentmarket impacts onto price formationwere considered aswell
[53]—in particular, one shouldmention here alsomarketmicrostructure effects [54]. Despite decades of intense
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development and significant advances the quest for a universalmathematicalmodel of stock price dynamics is
still open.

Here we propose three concepts, complementary to thewell establishedmethods, for an advanced analysis
offinancial time series. Specifically, these are the time averagedmean squared displacement (MSD), perfectly
suited for the analysis of a single time series, as well as the ageing and delay timemethods. Aswe demonstrate
from statistical analyses of realfinancial time series, these approaches are highly useful and reveal universal
features of themarket dynamics, whichmay be relevant for the further development offinancialmarketmodels.

The central concept promoted here is based on time averaging.Most frequently, in theoretical approaches
theMSD á ñ( )X t2 , defined as the ensemble average of ( )X t2 overmany realisations of the stochastic processX(t),
is used to quantify the time evolution of the process. However, when dealingwith a single or few but long time
seriesX(t), the time averagedMSD [55]

òd D =
- D

+ D -
-D

( ) [ ( ) ( )] ( )
T

X t X t t
1

d , 1
T

2

0

2

is better suitable andmore relevant for the analysis of time series of both stationary and non-stationary stochastic
processes [55, 56]. For a given lag timeΔ this quantity defines a sliding average over the entire time series, of
lengthT. Hereafter, the overline denotes time averages and the angular brackets stand for averages over an
ensemble of realisations of a processX(t).While the concept (1) is by nowwidely used for single-trajectory
analysis in several areas of science, especiallymicroscopic single particle tracking [55, 56], it is less common in
mathematical finance [17, 18]. Our central focus here is to introduce this concept for the analysis of financial
time series.

2. Analysis offinancial time series

Wehere present the results of statistical analyses offinancial time series based on the time averagedMSD (1) as
well as the ageing and delay timemethods defined below. The observed behaviour based on these analysis tools is
demonstrated to agree well with analytical results for the famedGBMmodel, which is introduced in section 2.2.
We study the daily values ofmultiplefinancial indices of different categories. All data were taken from and
analysed via theWolframMathematica9 platform.

The data are categorised and abbreviated as follows. In thefirst categorywe study theDow Jones Industrial
Average (Mathematica ticker symbol DJI) group indicesSP500: Standard and Poor’s 500,GE: General
Electric Comp,IBM: International BusinessMachines Corp,CAT: Caterpillar Inc,CVX: ChevronCorp,MCD:
McDonald’s Corp,BA: Boeing Comp,DIS:Walt Disney Comp,MMM: 3MComp,PFE: Pfizer Inc,KO: Coca-
Cola Comp,JNJ: Johnson and Johnson,PG: Procter andGamble Comp,XOM: ExxonMobil Corp,WMT:Wal-
Mart Stores, Inc,AXP: American Express Comp,DD: E. I. du Pont deNemours andComp, andMRK:Merck and
Co Inc. In the next categorywe analyse someDAX indices at the Frankfurt Stock Exchange (Germany), with the
tickersBMW: BayerischeMotorenWerkeAG,DAI: DaimlerChrysler AG,DTE: Deutsche TelekomAG,LHA:
Deutsche Lufthansa AG,VOW3: VolkswagenAG,DPW: Deutsche Post AG,RWE: RWEAG,SAP: SAPAG. Some
high-tech tickers includeT: AT&T Inc,INTC: Intel Corp,HPQ: Hewlett-Packard Comp,MSFT:Microsoft Corp.
Finally, bank tickers compriseJPM: J. P.MorganChase andCo,BAC: Bank of America Corp,NYSE:BCS:
Barclays PLC,NYSE:SAN: Santander-Chile Bank.

Figure 1.Historic stock price series formultipleDow Jones indices. The initial values are normalised to unity. The colour scheme and
the line types are defined in the legend, compare the labelling of the stocks in themain text.
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The rawdata of the price variations of several high-capitalisationDow Jones indices starting at =t 19700 are
shown infigure 1. To improve the presentationwe divided all prices by the corresponding initial value, such that
all traces start at unit value. This is a legitimate procedure as for aGBM-like process the initial priceX0 enters
solely as amultiplicative factor (see below). Despite the common initial price, we observe large price fluctuations
for different indices at later times, especially in the last decades. Roughly, an exponential increase is observed for
all stocks.

2.1. Time averagedMSD
For sufficiently long time series the time averagedMSD (1) typically produces relatively smooth results as a
function of lag time. This feature is immediately obvious from the plots of d D( )2 for data shown infigure 2.We
emphasise that in the calculation of the time averagedMSD, for any given lag timeΔ the entire time series is used
and thus the initial valuesX0 always contribute to themagnitude of d D( )2 . The lag time increment is 10 days in
figure 2, andwe used the ‘raw’ time series in this analysis (no normalisation toX(t) values at the initial orfinal
point is performed). Shorter lag times are computationallymore expensive butwould allow for a better
resolution of the initial growth of d D( )2 . The spread of the computedmagnitudes of d D( )2 at short lag times
increases withT for growing stockmarket prices, as long as nomarket crises occur, as seen infigure 2.

We observe a roughly linear growth d D µ D( )2 at short lag times, in perfect accordancewith the analytical
result (6) forGBMderived below. This linear scaling stands in stark contrast to the exponential growth of the
ensemble averagedMSD á ñ( )X t2 ofGBM seen in equation (5) below. Such a fundamental discrepancy between
the time and ensemble averagedMSDof the processX(t) is well known in the theory of stochastic processes and
often referred to asweak ergodicity breaking [55, 56]. For financial time series the fact that d D µ D( )2 allows
the direct analysis ofX(t) instead of its logarithm.

When the lag time approaches the lengthT of the time series, it is obvious fromdefinition (1) that the statistic
is worsening. This intrinsic property of time averages is reflected by the increasing fluctuations of d D( )2 seen in
figure 2.Note that in the limitD  T the time-ensemble averagedMSD, averaged overN independent

Figure 2.Time averagedMSDs d D( )2 , equation (1), for varying trajectory lengthsT (with time step of d =T 1 year). TheDow Jones
indices analysed here are indicated by their tickers. In each panel, randomcolours are chosen for the traces. The lag timeΔ is given in
trading days, the data sets start in =t 19620 , the longest trace is =T 35max years, and the shortest trace =T 1min year. The expected
linear asymptotes in the lag time are shown in each panel.

3

New J. Phys. 19 (2017) 063045 AGCherstvy et al



trajectories of the same process, under identical starting conditions and parameters,
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is equal to á - ñ[ ( ) ]X t X0
2 [55]. Note that the averaging over different trajectories in quantity (2) is necessary for

our analytical calculations. In the analysis of the financial time series shown in the figures, single trajectory
averages d D( )2 are considered throughout.

2.2. Geometric Brownianmotion
Before continuingwith our analysis of the actual stockmarket data, we briefly digress and provide a primer on
GBM, a paradigmprocess employed in standardmodels for stock price dynamics. Aswe show thismodel
reproduces the essential features observed in themarket data.

GBM is defined in terms of the stochastic differential equationwithmultiplicative noise

m s= +( ) ( ) ( ) ( ) ( )X t X t t X t W td d d . 3

Here >( )X t 0 is the price at time t,μ denotes a drift, andσ is the volatility (μ andσ are set constant below). The
volatility is connected to the square root of the diffusivity [55]. The increments dW of theWiener process

ò x= ¢ ¢( ) ( )W t t td
t

0
are defined as whiteGaussian noise x ( )t with zeromean. The price evolution, startingwith

the initial value >X 00 at t=0, is obtained from equation (3) by use of Itôʼs lemma [12, 14] as

= m s s- +( ) ( )( ) ( )X t X e . 4t W t
0

22

This process satisfies the log-normal distribution, emerging also inmodels of task success and income
distribution [57]. TheMSD shows the exponential growth

á ñ = m s+( ) ( )( )X t X e . 5t2
0
2 2 2

Due to this (much) faster growth compared to the linear increase of theMSDwith t for Brownianmotion, GBM
is therefore a superdiffusive process [55].

To calculate the time averaged properties of interest, we resort to the average (2) overN independent
realisations ofX(t).We derive this quantity using the one and two point distribution functions of theWiener
process. For short lag times,D  T , and in the absence of drift wefind

d D ~ -
D

~ á ñ
Ds( ) ( ) ( ) ( )X

T
X T

T
e 1 . 6T2

0
2 22

Asmentioned already, the non-equivalence of the ensemble and time averagedMSD, dá D ñ ¹ á D ñ( ) ( )X2 2 in the
limitD T 1 indicates weak ergodicity breaking, known for other non-stationary diffusion processes [55].
The time averagedMSD (6) scales linearly with the lag timeΔ, in contrast to the exponential growth of á ñ( )X t 2 ,
but grows exponentially with the trace lengthT, due to the highly non-stationary character of GBM.

2.3. Time averagedMSDanalysis offinancial data, continued
Wenow return to the discussion of the time averagedMSDof the different stocks. The time averagedMSDof the
analysedfinancial time series, similar to equation (6) for theGBMprocess, is expected to be a growing function
of the trajectory lengthT. Indeed, this behaviour is demonstrated infigure 2, inwhichwe plot the time averaged
MSD d D( )2 for varying trace lengthT for four different stock prices. This factmirrors the accelerating nature of
the stochastic process underlying the price variations.

What happenswhen the index value stagnates or drops substantially within a prolonged period of time, as
can be seen infigure 1 following the 2008–2009 crisis? In this case the time averagedMSD d D( )2 evaluated for
partial time series (differentT values) encompassing this timewindow tend to cluster together. Consequently,
the value of d D( )2 may saturate in this region, compare the original tick data infigure 1, the behaviour of d D( )2

versus lag timeΔ infigure 2, and the explicit dependence onT shown infigure 3.
Equation (6) predicts, to leading order, an exponential growth of the time-ensemble averagedMSDwith the

trace lengthT. As shown infigure 3, computed forD = 1day, the data indeed roughly follow an exponential
increase withT. However, no universal dependence of the time averagedMSDas function ofT could be found.
Especially for those timewindows encompassing prolonged drops or stalling of the index price, the ratio of the
time averagedMSD for a trace lengthT to its value atTmin does not grow rapidly but rather saturates, as can also
be seen infigure 3. Thus, checking the dependence of d D( )2 on the trace lengthTmay be used to unveil
individual features of index price dynamics. In contrast to the strongly disparate and company-specific
behaviour revealed infigure 3, universal features are found in the analysed index prices when employing the new
concept of the delay time averagedMSD introduced below.

Figure 4 shows the data normalised to their end point.More specifically, this normalisation
d D ~ D( ) ( )( )X T Tn n

2 2 enhances the contribution of later parts of the time series, with typically larger prices.
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Wefind a considerable spread of individual di n,
2 traces for different companies, because each index can have

different parameters such as the volatility value or the attitude of a given company leadership tomaximise the
short-termprofit versus ensuring a long-time sustainability. Finite lifetimes of companies and their varying age
at the start of the time series are likewise important. These factors individualise stock price variations for each
company and complicate the evaluation of ensemble averaged quantities. In view of this the universality of stock
prices observed in section 2.5 is evenmore remarkable.

2.4. Ageing analysis
Physically, the above dependence (6) of the time averagedMSDon the trace lengthT reflects the phenomenon of
ageing, a characteristic property of non-stationary stochastic processes [55, 58]. For superdiffusive processes
with anMSD growing faster than the linear growth in time of Brownianmotion, the time averagedMSD exhibits
an increase withT. This reflects the self-reinforcing volatility of the process, as seen for the exponentially fast
growth in equation (6). In contrast, in subdiffusion the effective diffusivity of the process is a decaying function
of time [55]. For instance, in processes with scale free waiting times the typical sojourn periods of themotion
become increasingly long, on average, effecting the decay of the time averagedMSDwithT [58].

Another way to analyse ageing processes is the following. If the time seriesX(t), starting at time t=0, is
evaluated only beginningwith the so-called ageing time >t 0a , the ageing time averagedMSD is defined as [58]

òd D =
- D

+ D -
+ -D

( ) [ ( ) ( )] ( )
T

X t X t t
1

d . 7
t

t T

a
2 2

a

a

In this formal definitionwe shift the starting point for the analysis of the time series yet the lengthT of the
analysed time interval remainsfixed. Of course, larger values of ta limit the remaining number of data points

Figure 3. Initial values of the time averagedMSDversus trace lengthT, computed at the lag time ofD = 1day for the indices from
figure 1, plotted in log-linear scale. The data are normalised to the value of the shortest trace of =T 1min year. The dashed exponential
asymptote is a guide to the eye. The analysis starts at =t 19800 , andT is given in trading days (about 252 days per calendar year).

Figure 4.Time averagedMSDs for some stockmarket indices, for which the prices are normalised to unity at the last point. The start
of the data is at =t 19620 and =T 35max years. Relation (6) is the dashed line.
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available for this analysis, however, the ageing time averagedMSDprovides important insights into the
underlying stochastic process [55].We note that the term ageing does not imply any relaxation to an ergodic
state in the limit of long ageing times, as it does for subdiffusive processes (the limit of strong ageing). In
superdiffusive processes such asGBMand, as shown here, for highly non-stationary financial data the term
ageing delineates the process time dependent increase of the spread of the random variableX(t).

ForGBMwefind in the limit of short lag times,D  T , and in absence of a drift, m = 0, that on average

d dD ~ D s( ) ( ) ( )e . 8t
a
2 2 2

a

The exponential growthwith ta emerges as the processX(t) already experienced an acceleration of the price
dynamics up to the ageing time ta, and thus the analysis starts with a higher volume.Note that in result (8) the
argument of the exponential includes the volatility term s2 of theGBMprocess.

To seewhether such ageing effects can indeed be observed in realfinancial data we study the behaviour of the
ageing time averagedMSD d D( )a

2 as function of the ageing time ta. The rawdata variation of d D( )a
2 as function of

the ageing time ta for a number of indices is shown infigure 5. Indices growing rapidly and continuously in value
reveal pronounced ageing effects, and d D( )a

2 increases fast with ta. Similar to the observations above, whenwe
varied the trace lengthT, partial clustering of the traces for varying ta is visible.

Figure 6 quantifies the behaviour of the logarithmof the ratio d dD D( ) ( )a
2 2 of the ageing time averaged

MSD to the corresponding non-ageing value, plotted versus the ageing time ta. Although, again, a roughly
exponential increase is evident and consistent with the prediction (8) forGBM, no data collapse onto a universal
curve is observed. Even at short ageing timeswefind a substantial spread of the d dD D[ ( ) ( )]log 2 2 curves versus
ta for different stock indices, as can be seen infigure 6. The non-universal behaviour is expected to be due to the
fact that the volatility parameter varies between companies, as equation (8) predicts, and thus no data collapse in
the growth of d dD D[ ( ) ( )]log a

2 2 with the ageing time ta occurs. No averaging over different companies is

performed for the ageing time averagedMSD to compute themean value dá D ñ( )a
2 infigure 6 because the

Figure 5.Ageing time averagedMSDs (7) for the trajectory length ofT=20 years, plotted for someDow Jones indices, as indicated.
The lag time step is dD = 10 days, the time series start at =t 19620 , and the longest ageing time is =t 33a,max years.
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corresponding ensemble is not formed from trajectories with identical parameters. For instance, the volatility
values and the effect of the ageing time ta for each stockmarket index can bemarkedly different.

2.5.Delay time analysis: revealing universal features
What if we allow the length of the time series to vary in the above ageing analysis? Namely, whatwould the
expected behaviour be for the quantity

òd D =
- - D

+ D -
-D

( ) [ ( ) ( )] ( )
T t

X t X t t
1

d , 9
t

T

d
2

d

2

d

inwhichwe call td the delay time, and the traceX(t) is evaluated in the interval from =t td until t=T. As long as
the lag timesΔ are short compared to the time span -T td of the data, it can be shown that themean delay time
averagedMSD follows

d D ~
D
-

-s s( ) ( ) ( )
T t

X e e . 10T t
d
2

d
0
2 2 2

d

For the ratio of the delay time averagedMSD (10) to the time averagedMSD (2) in the limit of short delay times
t T 1d and long traces we get the simple, parameter-free result,

d dD D ~⎡⎣
⎤
⎦⎥( ) ( ) ( )t t Tlog , . 11d

2
d

2
d

The logarithmhere cancels the leading exponential dependence of the delayed time averagedMSDon td in
equation (10) and thefinal result (11) is independent on the index-specific volatility parameterσ.We emphasise
that in this result it is crucial that the processX(t)has non-stationary increments. The behaviour of, say, a
standard Brownian process would follow a different scaling lawwith the delay time. Can this universal behaviour
predicted in equation (11) indeed be seen in realfinancial time series, on the single trajectory level?

Pronouncedupanddown trends in theprice evolutionof an index give rise to strong variations of the d D( )d
2

magnitudes, seefigure7. For longer td, the delay time averagedMSD includes a progressively shorter interval, causing

aworsening statistic. Also, themagnitudeof d D( )d
2 increases becausewindowswithhigherprices and larger price

variations are beingprocessed in the averaging (9). For longer delay times td—when later parts of the time series

contribute stronger to the time averagedMSD—themagnitudeof d D( )d
2 increases nearly linearly at short and

moderateΔ, seefigure7.After a significant dropof stock indexprices as a consequenceof the 2008–2009financial

crisis, the variationof d D( )d
2 with thedelay time td exhibits largefluctuations for the lag times values encompassing

this periodof the time series.Due to this, the growing trendof d D( )d
2 with thedelay timemaybe reversed, seefigure 7.

Figure 8 shows the logarithmof the ratio of the delay time averagedMSD to the standard time averaged
MSD, evaluated at unit lag timeD = 1, as function of the delay time td. The universal behaviour (11) expected
on average is followed very closely for each stockmarket time series. This universal behaviour—fulfilled for
delay times td up to some 5–10 years—is the central result of this study. To our best knowledge, in terms of single
time series this universal trend has not been reported before.

Figure 6. Logarithm of the ratio of the ageing over the non-ageing time averagedMSDs computed at lag time of D = 1day, presented
in log-log scale versus the ageing time ta. The longest ageing time is 33 years (ta is given in calendar years), the trace length isT=20
years, and the analysis starts in =t 19620 , as infigure 5. The exponential dashed asymptote is equation (8) for theGBMmodel.
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At longer delay times, we observe a distinct crossover to a somewhat steeper td-dependence infigure 8,
consistent with a law of the form

d dD D n[ ( ) ( )] ( ) ( )t t Tlog , 12d
2

d
2

d

with the scaling exponent n > 1. The observed behaviour features two relatively similar exponents: at short and
intermediate delay times n » 1while for long delay times n » 1.3. The initial linear scaling is universal,
compare top and bottompanels offigure 8with starting dates 1980 and 1962, respectively. As shownby the thin
dashed line in the upper panel offigure 8, the second regimewith n > 1 ismore pronounced for the data starting
=t 19800 , while it is less obvious for the =t 19620 data. For long delay timeswe however consistently observe a

faster than exponential growth of the ratio d dD D( ) ( )t,d
2

d
2 . In particular, this disqualifies the predictions of

GBM in this long delay time regime.Note that since the time averagedMSD initially grows approximately
linearly withΔ, as one can see figures 2 and 7, the trends offigure 8will also hold for other sufficiently short lag
times.

Note that for somehigh tech companies andbankswedidnotobserve a growthof d dD = D =( ) ( )t1, 1d
2

d
2

with thedelay time td (not shown).Webelieve that this is due to the very limited lengths of the time series available,
starting in about 1987–1988. Therefore, effects of severe price drops during the 2008–2009 crisis dominate the

magnitude of dd
2 over the entire time rangeweexamined, rendering the result (11) for the standardGBM

inapplicable. For a number ofGermanDAX companies, with time series available from2001, the prediction (12)
does not hold either (not shown).

3. Conclusions

Time averaging of observables of a stochastic processX(t) is a successful concept designed for the analysis of
single or few, sufficiently long time series. It has been applied in various fields, in particular, in single particle
tracking studies ofmicroscopic objects [55, 56].While for suchmicroscopic particles, at least in principle, it is

Figure 7.Delay time averagedMSDs (9) for varying td versus lag timeΔ for the stock indices of figure 2. Shorter trajectories
correspond to longer td, the longest delay time is 35 years, and the time series start in =t 19620 (in that case td = 0). The shortest
traces are one year long. The linear asymptotic behaviour is shown by the dashed lines. Random colours for d D( )d

2 curves at different
td values are used.
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possible to recordmore than one trace under (almost) identical conditions, the situation ismuchmore restricted
forfinancial contexts. Themarket price evolution of a given company cannot be repeated several times under
identical conditions. Thus, a statistical ensemble for averaging over a set of trajectories is inaccessible [17, 38].
Splitting up the time series into subparts is not an option due to the highly non-stationary character of the
dynamics. The analysis in terms of time averaged observables is therefore the prime option.

Here we demonstrated that time averages indeed provide a useful toolbox for the analysis offinancial data.
Using the time averagedMSD, aswell as the ageing and delay timemethods, we showed that relevant features can
be extracted from the analysis offinancial time series. Good agreement of our data-driven observations with
analytical predictions from theGBMmodel was observed, such as the linear lag time dependence of the time
averagedMSD, contrasting the exponential growth for the ensemble averagedMSD. The ageing analysis
combining the dependencies on the trace lengthT and the ageing time ta unveil peculiar features in a given time
series such as prolonged stalling or even a decrease of the stock value.

Remarkably, the delay time analysis introduced here uncovered a universal behaviour for the analysed stock
prices. For short and intermediate delay times td, the logarithmof the ratio of the delay time versus the regular
time averagedMSD is a linear function of t Td . At longer times, in our analysis beyond some 5–10 years, this
logarithm approximately scales as a power-law n( )t Td with another scaling exponent, n > 1. This latter scaling
behaviour is not capturedwith the standardGBMmodel, pointing at a need for improved theoretical
approaches.

This study is to be viewed as afirst step in applying time averaging, ageing, and delay timemethods to the
analysis offinancial time series. Theoretically,modifications of theGBMmodel used here, to account for
features such as the transition from the universal linear scaling to the scaling law n( )t Td for the delay time
averagedMSD aswell as the introduction offluctuating or time-varying volatilities, are possible. The concept of
‘diffusing diffusivities’, which in some sense is similar tofluctuating volatilities, has been recently established in
the physics literature [59–61]. How such concepts impact stochastic processes withmultiplicative noise remains
to be clarified, however, we expect a similarly rich behaviourwith crossovers as observed for simple Brownian
systems [59–61].

Deterministic time dependent volatilitiesmay be adopted for the time averaging based description of
unstablemarkets (at times of afinancial crash), when the trading conditions change very rapidly [38]. Here, a

Figure 8. Logarithm of the ratio of the delay time averagedMSD to the time averagedMSD computed at D = 1day on double-
logarithmic scale, plotted versus the delay time. The thick dashed line represents the universal law (11) for short td (given in calendar
days). The asymptote (12)with n = 1.3 is shown by the dashed line in the upper panel. The starting date for the analysis is =t 19800

(top) and =t 19620 (bottompanel). The number of available financial time series with earlier starting times is naturally smaller.
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stochastic process with a power-law volatilitymay be proposed: GBMwith a volatility increasing with time can
account for a faster than exponential price growthX(t) and explain a faster than linear trend (12) detected in the
analysis offinancial time series. Recently, ensemble averages of a similarmodifiedGBMprocess with power-law
and logarithmic volatilities were presented [53]. Also,models with value- and time-dependent diffusivity were
empirically found to underlie the Euro–Dollar exchange rate dynamics [19, 62], compared to anomalous
diffusionwith space- and time-dependent diffusivity [55]. Combining such new theoretical approaches with
time averagingmay provide vital new impetus in the analysis offinancial time series.

Fromadata analysis pointof view,wewere interested in the long-termtrends for the timeaveragedMSD.Clearly,
time serieswithonepoint adayhidepossible intraday effects, suchas intradayvolatilitypatterns extracted fromhigh-
frequencydata [18, 38, 63].Moreobservables fromthe time series shouldbe taken into account, and the correlations
between themremain tobe rationalised.These include the auto-correlation functionofprice increments, the evaluation
of volatility values [33]overdifferentperiodsof time, the trading activity andvolumeson themarkets, a correctionof the
indexprice valuedue to inflation [34], crises, etc.Thesepoints, aswell as thequestionhowthedynamicsobservedherein
is connectedwithheavy tailed spreadsoffinancial volume [5, 8, 12, 36, 49]will be the focusof futurework.

The area ofmathematicalfinance is not the onlydomainwhere our time averagedMSDand ageing approaches
maybeuseful. For instance, fromabiological perspective themathematical descriptionof inherently highly
stochastic disease outbreaks involves exponential processes similar toGBM. In epidemic spreading, an exponential
increase in thenumber of diseasedhosts is oftenpostulated (up to the system size). The reader is referred to the
optimal controlmodels in epidemics spreading [64, 65], includingdensity dependent growth and ageing. Finally,
mathematicalmodels of tumour spreading and the growthof bacterial colonies and cells [66] also employ
exponential processes, providing additional ground for the applicationof the concepts outlinedhere.
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