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Abstract
Weexamine by extensive computer simulations the self-diffusion of anisotropic star-like particles in
crowded two-dimensional solutions.We investigate the implications of the area coverage fractionf of
the crowders and the crowder–crowder adhesion properties on the regime of transient anomalous
diffusion.We systematically compute themean squared displacement (MSD) of the particles, their
time averagedMSD, and the effective diffusion coefficient. The diffusion is ergodic in the limit of long
traces, such that themean time averagedMSD converges towards the ensemble averagedMSD, and
features a small residual amplitude spread of the time averagedMSD from individual trajectories. At
intermediate time scales, we quantify the anomalous diffusion in the system. Also, we show that the
translational—but not rotational—diffusivity of the particlesD is a nonmonotonic function of the
attraction strength between them. Both diffusion coefficients decrease as the power law
D 1 2 ... 2.4f f f~ -( ) ( ) with the area fractionf occupied by the crowders and the critical value .f
Our resultsmight be applicable to rationalising the experimental observations of non-Brownian
diffusion for a number of standardmacromolecular crowders used in vitro tomimic the cytoplasmic
conditions of living cells.

1. Introduction

Over recent years, deviations from the standard Brownian diffusion law [1] have been observed in a broad range
of systems, see the review articles [2–8]. Depending on the physical systemunder consideration, various
theoreticalmodels are used to describe these deviations [2–8]. Such anomalous diffusion is typically characterised
by the power-law growth of themean squared displacement (MSD) of particles with time

t K tr . 12
b

b( ) ( )

Wedistinguish subdiffusion for 0 1b< < and superdiffusion for 1 .b< Subdiffusion is an abundant
phenomenon for passivemotion in theworld of live biological cells [4–8]. In the biological context, subdiffusion
was observed for particles ranging from small proteins [9, 10] viamessenger RNAmolecules [11] in the cell
cytoplasm, to large chromosomal loci and telomeres in the nucleus [12], to submicron virus particles [13] and
lipid granules [14]. The features of anomalous diffusion depend on the energy landscape and the
physicochemical interactions in the systemof particles [15, 16]. The advances ofmodern single particle tracking
experiments [11, 17–21] provide awealth of high resolution experimental data to quantitatively compare the
microscopicmechanisms of non-Brownian diffusionwith known theoreticalmodels. The latter include, inter
alia, the continuous time randomwalk [22–26] or the equivalent formulation in terms of fractional diffusion
equations [3, 27], fractional Brownianmotion [28], heterogeneous diffusion processes [29], scaled Brownian
motion [30–33], as well as the fractional Langevin equation related to a viscoelastic environment [34, 35]. One
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additional important type of anomalous diffusionmodels is the obstruction-mediated subdiffusion close to the
percolation transition, see, e.g., [36–41].

The cytoplasm of biological cells is a superdense [11]fluid consisting of proteins, nucleic acids,membranous
structures, cellularmachinery components, semiflexiblefilaments, etc [42–45]. Thismacromolecular crowding
reaches volume occupancies of 30%f [46], not only affecting the rates of biochemical reactions and the
kinetics of assembly processes in cells, but also believed to be contributing to the emergence of life [47]. In
addition, the cytoskeletalmeshwork [48] of eukaryotic cells impedes the diffusion of larger entities in cells, in
particular, near the plasmamembrane. The cytoplasm, in addition, is highly heterogeneous both in prokaryotic
and eukaryotic cells [49–51]. The anomalous diffusion of cell-related phenomenamay represent a blend ofmore
than one theoreticalmodel addressing the diffusion on different length and timescales [4, 5, 7, 52–57].

A number of experimental [58, 49], theoretical [59, 60], and simulation [46, 61–71] studies in recent years
were devoted to tackling various aspects of particle diffusion in crowded environments. From the simulation
perspective, for instance, studies of tracer diffusion in non-inert [72], heterogeneously distributed and
polydisperse [73], restrictivelymobile [61] squishy [59], and anisotropic [74, 75] obstacles were performed. The
list of crowded three- and two-dimensional systems includes dense glassy systems of colloidal particles and hard
spheres [76–78]. For instance, for hard disks diffusing in two dimensions, a series of substantial results are
available from theoretical [82, 83], simulation [84, 85], and experimental [83, 86] studies. The dynamical glass
transition [76–78]was investigated for amorphous and granularmaterials [79, 86] as well as for supercooled
liquids [80], including some two-dimensional systems of soft discs [81]. The results for star-like crowders we
present below can also be applied to dendronised polymers [87, 88], including charged dendrimers [89–91]. The
dynamical and conformational properties ofmulti-armpolymers in free solutions [92, 93] and under confined
conditions [94], is another possible application.Moreover, a number of single particle tracking, fluorescence
correlation spectroscopy, and computer simulation studies of protein and lipid diffusion on crowded cell
membranes indicated [95–100] the non-trivial effects of the particle shape. Indeed, our systemof star-like
crowders is expected to undergo a sort of glass transition at higher densities and stronger attractions, see below.

Despite the progress of analytical theories of crowded solutions, some important diffusive characteristics can
only be studied quantitatively by computer simulations. This is particularly true for crowders of a non-trivial
shape, such as star-like particles considered in the current paper (figure 1).We here use computer simulations to
unravel the implications of the particle shape and ‘squishiness’ aswell as the crowding fraction on the
translational (D) and rotational (Dr) particle diffusivities in highly crowded solutions.

Ourmain target is to gain insight into the physical behaviour of nonspherical crowders in vitro. For the latter,
soft non-spherical and often non-inert crowders such as globular PEG and branched dextran polymers are
routinely used tomimic the effects ofMMC in living cells. Another important experimental example is the
diffusivity of anisotropic lysozyme-like proteins studied by Brownian dynamics simulations in crowdedmedia
[101]. It was demonstrated that—particularly in heavily crowded solutions—not only does a transient
subdiffusion of the protein centre ofmass exist, but also diffusion becomes progressively anisotropic. This
anisotropy of the translational diffusion, pronounced on short-to-intermediate time scales, disappears on long
time scales. The long time diffusivity valueswere shown to drop drastically with the protein concentration [101].
Moreover, the reduction ofDr for Y-shaped proteins such as IgG γ-Globulin (molecular weight ofMW≈ 155
kDa)was shown to be stronger than formore spherical proteins such as bovine serum albumin (MW 66»
kDa). These experimental observations, based onfluorescence correlation spectroscopymeasurements, are
supported by all-atomBrownian dynamics simulations [101]. The inclusion of hydrodynamic interactions

Figure 1. (A) Star-shaped crowder, with the centremonomer in red and flexible arms in blue. Typical conformations of crowders for
(B) purely repulsive and (C) attractive interactions of strength k T1.75A B = at crowder fraction 0.12.f = Videofiles illustrating the
dynamics of the stars at k T0, 1, 2A B = are provided in the supplementarymaterial.
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revealed an additional reduction ofDr of proteins [102]. The reader is also referred to the simulation study [103]
inwhich the self-diffusion of star-like polymers in the presence of hydrodynamic interactions [104]was
examined in detail.

The paper is organised as follows. In section 2, we introduce our simulationmodel, the physical observables
we are interested in, and some details on the data analysis algorithms.We present themain findings of our
simulations in section 3. In section 4 the implications of our results for some cellular crowded systems are
discussed.

2. Simulationmodel and observables

We implement our computer code, developed to simulate the particle diffusion of crowded solutions inwhich
all particles are explicitly treated [66–68]. Here, we consider a two-dimensional systemof star-shaped crowders,
each consisting of four discs of diameterσ connected by elastic springs, see figure 1(A). The elastic potential
between themidpoint of themolecule and the centres of the outermonomers is

U r k r r
1

2
, 2c s c

2
= -( )( ) ( )

where rc is the equilibriumdistance and ks the spring constant.We also connect the outermonomers with
springs of the same force constant ks, namely

U r k r r
1

2
, 3o s o

2
= -( )( ) ( )

tomimic the softness of our triangular star-like crowders. The equilibriumdistances and constants are set to
r 1.5 ,c s= r 1.5 3 ,o s= and k k T100 .s B

2s= Hereafter we use the symbolT as temperature in combination
with the Boltzmann constant, otherwise it denotes the length of the recorded particle trajectory, see below.

The interaction between all beads is described by the 6–12 Lennard-Jones potential
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Here xQ( ) isHeaviside step function and C rcut( ) is a constant that setsU r r 0.LJ cut> =( ) For a purely repulsive
potential, the standard cutoff distance r 2cut

1 6s= is usedwith the potential strength of k T .B = For attractive
interactionswe set r 2cut s= with varying adhesion strength A = between themonomers. This attraction acts
between all themonomers of the stars.

We use periodic boundary conditionswithin a square box of area L2, to avoid finite-size artifacts. The
packing fraction ofM crowders in the system is defined as

MA L ,2f =

where A 4 2 2p s= ( ) is the total area of the fourmonomers andM∼ 102 is a typical number of stars used in our
simulations. Inmost scenarios below, the system size is L 40s= and the total simulated trace length is
T 4 10 ,8~ ´ in units of the elementary time step t.D The size of the periodic box Lwas considerably larger than
the correlation length of two crowders in the systemwhich is about 10σ, as estimated from the decay length of
the pair interaction potential presented infigure 5 below.

The dynamics of the two-dimensional position tri( ) of the ithmonomer disk interactingwith the other
monomer discs is described by the Langevin equation

m
t
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Here tx ( ) representsGaussianwhite noisewith zeromean t 0xá ñ =( ) and correlator
t t k T t t4 ,Bx x g d´ ¢ = - ¢( ) ( ) ( ) with independent noise components along eachCartesian coordinate.Here kB

is the Boltzmann constant,γ is the friction coefficient (set to unity in all simulations below), andT the absolute
temperature. In the following,weuseσ and k TB as the basic units of length and energy, respectively.We simulate
the system in theNVT ensemblewith theVerlet velocity algorithmwith elementary integration time step

t 0.005D = for the total timeT. Thephysical time scale in these simulations is the standard combination [105]

m k T 1 ns,Bdt s= »( )
if we set themonomer diameter to 6 nms = and itsmass to the averagemass of cytoplasmic crowders, namely
MW 68» kDa [64, 106]. The time and the lag time are presented in the plots below in units of the elementary
time scale .dt

Initially, wefix the position of all star-shaped particles and run the simulation for a timeTeq much longer
than the relaxation time of the crowders. After this equilibration time, assessed in the absence of inter-crowder
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attraction, we startmeasuring the positions and degrees of rotation of stars. Typically, we haveT 1.5 10eq
4= ´

(in terms of the elementary time δτ); this time gets longer for higherf fractions or larger attraction strengths .A
It is at least two orders ofmagnitude longer than the typical relaxation time of a crowder,T 20 ... 200cr = . The
latter was estimated from the relation

T R D,cr cr
2

s= ( )
where Rcr is the radius of the four-monomer star andD is its average diffusivity.

We track the positions of the centremonomers of all the crowder stars and their orientationwith respect to
the x-axis, denoted by the angle .iq From the trajectory of the ith crowderwe calculate the time averaged
translational ( i

2d ) and rotational ( r i,
2d ) individualMSD traces as [7]

T
T

x t x t y t y t t,
1

d

6

i

T

i i i i

i x i y

2

0

2 2

,
2

,
2

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦òd

d d

D =
- D

+ D - + + D -

= +

-D { }( ) ( ) ( ) ( ) ( )

( )

and

T
T

t t t,
1

d . 7r i

T

i i,
2

0

2⎡⎣ ⎤⎦òd q qD =
- D

+ D -
-D

( ) ( ) ( ) ( )

HereΔ is the lag time along the trace. In addition to the individual time averagedMSDs 2d D( )we compute the
corresponding averages over the set ofN trajectories,

N
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aswell as their amplitude spread around thismean value.
The diffusion is called ergodic if the ensemble and time averagedMSDs coincide in the limit T 0D  and if

the spread of 2d around themean approaches the delta function in this limit [7, 107–110]. Amore accurate
description of ergodicity can be achieved based on the so called ergodicity breaking parameter EB [7]. The latter
is defined as the variance of the distribution of the dimensionless variable

,2 2x d d=

namely [7]

EB 1. 92 2 2x x xD = D - á D ñ = D -( ) ( ) ( ) ( ) ( )

For the standard Brownianmotionwe have [110]

T
EB

4

3
. 10BM D =

D( ) ( )

3. Results

3.1. Time averagedMSDand ergodicity breaking parameter
Infigure 2, we present the behaviour of the translational and rotationalMSDs for varying interparticle attraction
strength A at crowder packing fraction 0.12.f = The initial crowder diffusion is ballistic, stemming from the
simulation of inertial particles, see also [18, 72, 79, 82, 86] for other simulations and experimental results. At
intermediate time scales of 0.1 10D ~ ¼ we observe a nonmonotonic behaviour of the time averagedMSD that
we ascribe to the events of the first collision of a given crowdermolecule with another crowder and the
oscillations of the centremonomers connected by its springs. In the long lag time limit the translational and
rotationalMSDs grow linearly withΔ reflecting the Brownian behaviour of the crowder particles.

The region of non-Brownian diffusion is centred at 1D ~ or at about 1 ns in the physical time.Note that for
larger tracers, as often used in single particle tracking experiments, the elementary time scale will increase
correspondingly and the region of transient anomalous diffusionwill shift to longer times. The time span of
anomalous diffusion can be extended—as compared to the current self-diffusion in the sea ofmobile crowders
—if the obstacles/crowders are partly or fully immobilised, see the results of [61, 72].

In this limit the diffusion is ergodic, as we demonstrate infigure 3(A),B. This statement is not necessarily
trivial: inmanyweakly non-ergodic systems the time averagedMSD turns out to be a linear function of the lag
timeΔwhile the ensemble averagedMSD scales as a power-law or logarithmically in time t. This phenomenon
was observed in a number of experiments [14, 54–56] and explained in terms of various stochastic processes
[7, 29, 30, 111–119]. Figure 3(A)demonstrates both that to very good approximation ergodicity in the sense of
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the equality

x2 2dá D ñ = D( ) ( )

is fulfilled and that a very small amplitude scatter around themean 2d D( ) exists and thus the individual time
averages are reproducible quantities.We furthermore detail the dependence of the particle diffusivity in this
Brownian limit versus the attraction strength and thefilling fraction infigures 4 and 7, respectively.

Let us bemore specific. Figure 3(A) illustrates the time averagedMSD for different lengths of the time series
as well as the superimposed ensemble averagedMSD shown as the bold black line. As can be seen from thefigure,
the amplitude scatter of single traces 2d around theirmean remains small along the entire trajectory, except
when T ,D ~ as expected. This growing spread as TD ~ is a standard feature of even canonical Brownian
motion appearing due to progressively poorer statistics when taking the time average [7].

More importantly we observe that the amplitude spread of the time averagedMSDat afixed lag timeΔ
decreases as the lengthT of the time traces increases. This property is ubiquitous for ergodic diffusion processes
[7].We note that themagnitude of the amplitude scatter that we observe for 2d formoderately adhering star-
shaped crowders are similar to that of a tracer in a network of sticky spherical obstacles, comparefigure 3(A)
above andfigure 7 in [72]. Computing themagnitude of themean time averagedMSD for varying trace lengthT

Figure 2.Translational and rotationalmean time averagedMSDof star-like crowders for varying strength of the interparticle

attraction strength .A For the time averagedMSDonly the x components x
2d D( ) are shown; the y components exhibit identical

features (not shown). Themean time averagedMSD for a single crowder are the solid lines in both panels. The insets show the
corresponding instantaneous translational and rotational particle diffusivities. Parameters: the crowding fraction is 0.12,f = the

trace length is T 2 106= ´ elementary steps or about 2ms in physical time. Eachmean time averagedMSD curve x
2d D( ) presented

in the plot is computed overN= 40 traces. The lag timeΔ in these plots and below is given in terms of the elementary time .dt

Figure 3. (A) Individual time averagedMSD traces and their dependence on the trajectory lengthT, plotted for the parameters of
figure 2 and k T2 .A B = The ensemble averagedMSD is the bold black line in panel A. The individual time averagedMSD trajectories
shown as the dashed curves becomemore reproducible for longer trace lengthT. (B)Ergodicity breaking parameter EB computed
according to equation (9), in its variationwith the trace lengthT. The Brownianmotion asymptotes for the EB, equation (10), are the
dotted lines of the corresponding colour. The scheme of colour coding is the same in both panels.

5

New J. Phys. 17 (2015) 113028 J Shin et al



we observe that itsmagnitude stays nearly unchangedwithT (figure 3(A)). In the short lag time regime the
ballistic scaling is visible.

These observations as well as the explicit evaluation of the ergodicity breaking parameter EB in equation (10)
indicate that even atmoderate strengths of attraction the diffusion of our crowders stays ergodic. Namely, in
figure 3(B)wedemonstrate that—using the individual time averagedMSD traces from simulations—the
ergodicity breaking parameter (9) follows at intermediate-to-long times the theoretical asymptote for the
Brownianmotion, equation (10). The EB grows linearly with the lag timeΔ and decreases with the length of the
trajectory as EB T T1 ,~( ) see figure 3(B). Some discrepancies from the theoretical prediction (10)we observe
at short times stem likely from the ballistic and anomalous diffusion regimes of the time averagedMSD traces at
smallΔ values. Our process is thus fundamentally different fromother anomalously diffusive systems such as
those described by continuous time randomwalks [7] or heterogeneous diffusion processes [29]. For the latter a
pronounced scatter of the time averagedMSD trajectories around theirmean and a clear dependence of the
amplitude of 2d D( ) onT atfixedΔ exist, that is, the system ages [7, 120, 121].

3.2. Crowder diffusivity and anomalous scaling exponent
The particle diffusivities are defined in our simulations as

D
2

11x

x
2d

=
D

D

( )
( )

and

D
2

12r

r
2d

=
D

D

( )
( )

obtained from the linear behaviour of themean time averagedMSD in the long time limit 1.D  Figure 4
shows the values ofD andDr extracted from a linearfit of the translational and rotational time averagedMSDs in

Figure 4. (A)–(C)Average Brownian diffusivity of crowdersmeasured along the x-direction (D Dxº here) versus theirmutual
attraction strength k T ,A B ( ) plotted for the parameters offigure 2 and varying crowding fractionf for the panels A, B, andC. The
error bars are included and are often smaller than the symbol size. (D)Average particle diffusivity for the bond length recalculated to
include the explicit A dependence obtained from simulations, so that the effective crowding fraction stays constant, see text for
details. The case 0.06f = is not included in this panel as the results are nearly identical to those for the constant bond length
illustrated in panels A, B, andC.
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the range 10 10 .3 4D = ¼ Wefind that while the rotational diffusivityDr decreasesmonotonically, the
translational diffusivity exhibits a shallow yet significantmaximumat k T1 .A B* » This systematic trend persists
for the variation of the crowder fraction in a quite broad range (figure 4). This implies that the self-diffusion of
our star-like crowders can be facilitated by aweak interparticle attraction. This is one of themain conclusions of
this study. One can rationalise this trend in the self-diffusion in terms of the concept of the effective crowder size
that decreases formoderate attraction strengths k T1 .A B »

Note that, as wework in theNVT-ensemble, the number of particles in the simulation box stays constant,
whereas their effective size decreases with the strength of attraction A between themonomers. Upon increase of

A the bond length of the stars decreases, namely about 0.8% for k T1A B = and 1.78% for k T2 .A B = With
this change of the bond length the effective crowding fraction gets smaller too for higher attraction strengths. If
we account for this effect and keep the crowding fraction constant via adjusting the number of particles in the
simulation box upon variations of A , the nonmonotonic behaviour of D A( ) indeed becomes slightly weaker,
as demonstrated infigure 4(D). The optimal attraction strength, however, remains of the order of the thermal
energy.

Figure 4 illustrates that for progressively stronger star–star attraction theirmutual diffusivity decreases
eventually to zero due to aggregate formation, see alsofigure 5 and its discussion below. Also note that the
reduction of the rotational diffusion coefficient starts at smaller crowding fractions, see the blue squares in
figure 4, as compared to the translationalmotion thatmight also feature a nonmonotonic behaviour. The
relative reduction of the rotational diffusivity by crowding is also comparatively stronger, as physically expected,
because of geometric frustration and overlappingwith radially quite inflexible/non-responsive crowders.

We also detect a progressive aggregation of crowders at relatively large crowder–crowder attraction strengths
,A as demonstrated infigure 1(C) and in the video files in the supplementarymaterial. This is a well-known

phenomenon, for instance, in the glass transitions of dense suspensions of sticky hard spheres [122].
Accordingly, the average diffusivityD of crowders as plotted infigure 4 decreases due to the averaging over an
ensemble of particles that perform individual randommotions. This average takes into account both particles
forming transient aggregates as well as free particles. Roughly speaking the average diffusivity drops inversely
proportionally to the number of particles in the cluster. The fraction of particles clustering in these aggregates
increases with themutual attraction strength. The average diffusivity therefore progressively decreases with A
due to a larger fraction of particles in transient aggregates.

At large attraction strength themajority of particles belong to big clusters (results not shown)which diffuse
in a Brownian fashion as awhole, with the diffusivity correspondingly reduced by the cluster size.We observe
that larger attraction strengths effectively reduce the temperature in the systemof crowders, thus favouring
aggregation. This temperature argument, however, gets reverted for the self-diffusion of weakly attractive stars,
when at afixed number of particles the crowders becomes slightly smaller and thus diffuse faster for stronger
inter-particle attraction.

At afixed cohesiveness A of our stars, vicinal crowders create a rough energy landscape for the self-diffusion
and the hopping of a given crowder particle. As theMMC fractionf increases, the binding events give rise to a
prolonged particle aggregation and reduced self-diffusivity. Above a criticalMMC fraction, the barrier height
exceeds the thermal energy, thus increasing the lifetime of crowder aggregates significantly. For stronger star–
star attraction, the formation of essentially permanent aggregates sets in for less crowded systems, leading to an
inhomogeneous, phase-separated spatial distribution, seefigure 1(C).

A nonmonotonicity of the translational diffusivityD at similar strengths of the particle–crowder attraction
was found in [64] for the tracer diffusion in dense suspensions of spherical Brownian particles.While we here
detect that the attraction strength yielding the highest value ofD is a function of the crowding fractionf of the
stars for the spherical particles, the stickiness facilitating the particle diffusivity was almostf-independent in
[64]. The nonmonotonic D A( ) dependencewas interpreted in [64] in terms of the roughness of the free-energy
landscape for the tracer diffusion using the concept of the chemical potential. Interestingly, the tracer diffusivity
was also nonmonotonic inf in a static regular array of sticky obstacles, as quantified in [72].

We checked the universality of the observed dependencies for D A( ) and D f( ) also for disk-like particles.
Namely, we simulated just a singlemonomer of our star-shaped crowders with the given adhesive properties.
The diffusivity was indeed found to reveal amaximumat k T0.5 1A B

opt ~ ¼ (not shown), indicating some
universality of this a priori, counterintuitive, faster diffusion for aweak interparticle attraction [64]. Note also
that for a polymer chain diffusing in an array of sticky obstacles, a weak chain-obstacle attraction can also
substantially enhance the polymer diffusivity [64, 123].

To rationalise the observed behaviour of D A( ), we calculate infigure 5 the potential of themean force
between two crowders as

F r k T rlog . 13B r= -( ) [ ( )] ( )

7

New J. Phys. 17 (2015) 113028 J Shin et al



In this reconstructed, approximate free energy (valid for dilute systems only) the quantity rr ( ) is the average
radial distribution function of the centre crowdersmonomer in the steady-state long time limit. As themutual
attraction strength A increases, we observe that the potential well at the separation r 2s» becomes deeper, see
thefirst well infigure 5. Concurrently, the distance at which F(r) sharply increases becomes shorter for larger .A
For a stronger star–star attraction the crowders feature amore organised appearance, resulting inmeasurable
oscillations of rr ( ) and F r ,( ) as evidenced infigure 5.

These trends indicate that the effective crowder radius gets smaller with increasing ,A and, at an optimal
value A

opt , the crowders approach one anothermore closely, yet without sticking. This in turnmight result in a
faster average diffusivityD at ,A A

opt » as we indeed observe. An effective reduction of the crowder size at
optimal attraction strength is one important cause—albeit possibly not the only one—for this facilitated
diffusion. In the current system, the equilibriumdistance of the outermonomers from the centralmonomer is
reduced by about 2% for the inter-monomer attraction strength of k T2 .B Even higher values of A give rise to the
formation of large clusters of crowders, see the supplementarymaterial. As shown infigure 4, the corresponding
diffusivity of an average particle drops dramatically with .A

Infigure 6(A), we show the translational and rotationalMSD for varying packing fraction of crowdersf. As
expected—from a linearfit to the long time time averagedMSD—the diffusivity is amonotonically decreasing
function off, as evidenced by figure 7. Formore severely crowded systems, the tracer diffusion getsmore
obstructed and themagnitude of the correspondingmean time averagedMSD 2d decreases. To elucidate these
effects further, we evaluate from the time averagedMSD traces offigure 6(A) for the translationalmotion the
local diffusion exponent [7, 124]

d

d

log

log
. 14

2

b
d

D =
D

D

( )
( )

( )

( )
( )

For the rotationalmotion the exponent trb ( ) is defined analogously.
We observe a ballistic regimewith 2b » in the particle diffusion at short times,figure 6(B). This ballistic

regime is followed by a decrease and further increase of the scaling exponent at 1.D ~ These nonmonotonic
trends are also clearly visible from the behaviour of the time averagedMSD traces themselves as a function of the
lag timeΔ, see figure 6(A).Wefind that the variations of the scaling exponent for translational and rotational
motions of the star-like crowders appear correlated, indicating a coupling of these diffusionmodes [20]. In the
plots for the scaling exponent tb ( ) infigure 6(B) the significant spike-like signal at 1D ~ is interpreted as an
effect of the first collision of particles and the resulting onset of an effective confinement.We note that even in
effective one-particle theories pronounced oscillations occur at the crossover point between the initial ballistic
and the overdamped regime [125, 126].

With increasing crowder fractionfwe also observe amore pronounced range of anomalous diffusion for lag
times of the order of 1 100.D ~ ¼ This range appears strongly correlated for rotational and translational
particlemotion, as shown infigure 6(B). For rotational diffusion, the scaling exponent drops practically to zero
for times longer than those of the initial ballistic growth, and the correspondingmean time averagedMSD trace

r
2d exhibits a short plateau (figure 6(B)). Such a transient subdiffusionwas observed for a number of systems

[5–7], see also the Introduction. Especially in dense colloidal systems close to the glass transition at f f= this
subdiffusion is accompanied by an exponential growth of the solution viscosity h h f= ( ), which is divergent at

f f [76]. The colloidal glasses also exhibit progressive particle localisation effects as discussed in [76, 77]. In

Figure 5.Effective potential (13) between the crowders for different attraction strengths, k T ,A B ( ) plotted for the parameters of
figure 2 at 0.12f = . The radial distance in this plot is evaluted between the centremonomers of the crowders, so that the effective
diameter of our star-shaped crowders is about 2σ.
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the long lag time limit the exponent becomes Brownian 1b » for the crowded systems far from the critical
occupation .f

Remarkably, the relative variation of the translational and rotational diffusivities with the crowding fraction
of stars is quite similar. For comparison, we plot infigure 7 the theoretical prediction for dense suspensions of
hard spheres [127, 128]

D

D 0
1 , 15

2⎡
⎣⎢

⎤
⎦⎥

f f
f

= -
( )
( )

( )

with the critical packing fraction for our systemof k T1 0.52A Bf = ~( ) that provides the best fit to the data.
Above this value *f both translational and rotational diffusivities of the crowders essentially vanish. If the
explicit dependence of the particle size on the attraction strength is taken into account, as in PanelD offigure 4,
the critical fraction f also becomes a function of .A At this critical crowding fraction the interparticle attraction
becomes so strong that the self-diffusion is almost completely localised and themotion of particles corresponds
more to a very restrictedwiggling and jiggling. The translationalMSDof individual crowders—after subtracting
the diffusivemotion of the entire cluster as awhole—saturates to a plateauwith the scaling exponent 0b 
(results not shown). As expected, when the star–star interactions become stronger, some aggregate formation
sets in for less crowded systems, and thus the critical value f is diminished (not shown). Albeit the theory in
[127, 128] is developed for three-dimensional suspensions in the presence of hydrodynamic interactions, it
agrees remarkably well with our results, as shown infigure 7. The reader is also referred to [129] for experimental
data of the crowding dependent diffusivity of colloidal particles and alternative theoretical predictions for the
diffusivity D .f( )

Figure 6.A: Translationalmean time averagedMSDof the central starmonomer and rotationalmean time averagedMSDof the star-
shaped crowder. B: local scaling exponent tb ( ) of equation (14) computed for varying packing fractionsf. In B, in the limit of short
times a linear sampling of data points was chosen for the left panel and a logarithmic sampling for the right panel. Parameters:

k T1 ,A B = T 2 10 ,6= ´ andN= 10.

Figure 7.Normalised translational (measured along the x-direction) and rotational diffusivity as function of the crowding fractionf
computed for k T1 ,A B = together with the asymptotes of equations (15) and (16), normalisedwith D D0 .0f = =( ) At the highest
crowding fraction shown in the plot, 0.54,f = the translational diffusivity is nearly zero.
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Wenote that [130] suggest exponential rather than power-law forms for the particle diffusivity in crowded
solutions. Also, different scalingswith the crowding fractionwere predicted for semi-dilute solutions ofmulti-
armpolymers and hyper-stars [92], where D .1 2f f~ -( ) The polymeric nature of star arms plays, however, a
dominant role in this scaling relation. Also, the decrease of the particle diffusivity in a systemof polydisperse
hard disks exhibiting a glass transitionwas shown to follow the relation [82, 85]

D , 16
2.4f f f~ -( )( ) ( )

in agreementwith the results of themode coupling theory, see, e.g., [83, 131]. Infigure 7, we present both
theoretical asymptotes with the scaling exponents of 2 and 2.4, equations (15) and (16). The latter indeed fits
better the decrease of the translational diffusivity D f( ) of star-like crowders, but not the rotational diffusivity
D .r f( ) From the limited simulation data available we cannot determine the value of the scaling exponentmore
precisely.

4. Conclusions

Weperformed extensive computer simulations and theoretical data analysis of the diffusion of crowders with a
branched structure. A simple example of such spiky but responsive crowders in two dimensions are deformable
star-shaped crowders employed here. Their outermonomers are interconnected by an elastic potential,
bestowing upon it a certain degree of responsiveness—an important characteristics formany polymeric
crowders [59].We also incorporated in the simulations an interparticle attraction strengthwhich represents
another realistic feature of solutions of non-ideal crowders in vitro.

We found that the diffusion of our star-like crowders is ergodic and, within accuracy, Brownian in the long
time limit.We examined the behaviour of the ensemble averagedMSDand the time averagedMSDs of the
crowders in awide range ofMMC fractionf and the inter-crowder attraction strength .A As a function of the
crowding fraction, we demonstrated that both translationalD and rotationalDr diffusivities approximately
follow the analytical decrease (15) of D f( ) predicted for suspensions of hard spheres. The dependence of the
star–star attraction strength ismore remarkable. Namely, the translational diffusivity shows aweak yet
systematic nonmonotonic dependence on A for the solutions at all crowding fractions studied herein. The
rotational diffusivity, in contrast, is amonotonically decreasing function of the interparticle attraction strength

.A Thus, a relatively weak intermonomer attraction can facilitate the lateral diffusion and also induce a certain
degree of clustering and spatial heterogeneities in crowded solutions of non-inert particles.

These effects will impact the diffusion of a tracer particle in crowded solutions—such as those of PEG,
dextran, or Ficoll—used in vitro tomimic the crowded conditions in living cells [59, 62]. In addition to the proof
of the ergodic long lag time diffusion shown infigure 3, and the transient subdiffusion regime of our star-like
crowders infigure 6, the dependencies of the diffusivities are the principal results of the current study.Of course,
our planar triangle-like stars still represent quite a primitive system tomimic the non-ideal shape of real
crowders in experimentally relevant setups. Future investigations, including a three-dimensional pyramid-like
shape of crowders with longer polymeric arms, will further elucidate the physical consequences of non-spherical
and squishy crowders, and potentially exhibit additional unexpected behaviour.Moreover, not only is the self-
diffusion to be studied but also the diffusion of tracer particles of various sizes and shapes in such crowded
suspensions [70], as well as poly-dispersemixtures of crowders [70, 132], should be investigated. Some
asymmetrymay also be incorporated into the crowder shape. Recently, single-particle trackingmeasurements
allowed one to rationalise the translational and rotational diffusivities ofmicron-size symmetric and asymmetric
boomerang-shaped particles in two dimensions [133]. It was observed that the regimes of Brownian diffusion
exist at short and long timeswhile a coupling ofD andDr gave rise to subdiffusion at intermediate times.
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