
Polymer Looping Is Controlled by Macromolecular Crowding, Spatial
Confinement, and Chain Stiffness
Jaeoh Shin,†,‡ Andrey G. Cherstvy,† and Ralf Metzler*,†,§

†Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
‡Max-Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
§Department of Physics, Tampere University of Technology, 33101 Tampere, Finland

*S Supporting Information

ABSTRACT: We study by extensive computer simulations the looping character-
istics of linear polymers with varying persistence length inside a spherical cavity in the
presence of macromolecular crowding. For stiff chains, the looping probability and
looping time reveal wildly oscillating patterns as functions of the chain length. The
effects of crowding differ dramatically for flexible versus stiff polymers. While for
flexible chains the looping kinetics is slowed down by the crowders, for stiffer chains
the kinetics turns out to be either decreased or facilitated, depending on the polymer
length. For severe confinement, the looping kinetics may become strongly facilitated by crowding. Our findings are of broad
impact for DNA looping in the crowded and compartmentalized interior of living biological cells.

The cytoplasm of living biological cells is heavily crowded
with various macromolecules1−3 such as proteins, nucleic

acids, cytoskeletal elements, cellular organelles, and internalized
membrane structures. The volume fraction occupied by
crowding agents can reach ϕ ∼ 30−35%. Even in bacteria
cells,1 a polydisperse “zoo of proteins” at different abundances4

nontrivially impact the kinetics of chemical reactions5 and
various other dynamic processes inside the cell6 such as the
aggregation of proteins and the folding of polypeptide chains
into native protein structures.7−9 Apart from this macro-
molecular crowding (MMC), living cells feature a highly
compartmentalized interior, in which membrane-bound cellular
organelles tune local concentrations of reactants and actively
separate the reaction volume. Especially the DNA is often
highly confined in biological systems, such as the spooled state
of DNA inside capsid shells of bacteriophages10 or the
territorial reorganization of chromosomal DNA inside
eukaryotic nuclei.11

DNA looping plays an important role in the compaction of
the genome in prokaryotic nucleoids and the eukaryotic
chromatin12 as well as in gene regulation.13 For protein-
mediated DNA bending on the nanoscale, the persistence of
DNA is often relevant, while in contact formation between
distal chromosomal domains the effective polymer is very long
and can be considered as flexible. In particular, the delicate way
how MMC and confinement compete to tune DNA looping is
vital for the speed and robustness of genetic networks.14,15

MMC and confinement also concur in studies of protein
folding16,17 and DNA conformational dynamics, which can be
probed inside nanocavities and nanochannels.18 Apart from its
fundamental importance in polymer physics and biochemistry,
the looping of polymer chains in the presence of MMC and
confinement is thus relevant for molecular biology and
biotechnology. It is the main focus of this letter.

The static and dynamic properties of confined polymers19,20

were recently studied intensely by experimental,21,22 theoreti-
cal,10,23−31 and simulation7,17,32−36 approaches. Polymer loop-
ing itself was studied in the presence of MMC in refs 17 and
37−43. Typically, MMC slows down the effective diffusivity of
the reactants and enhances the solution viscosity and thus
impedes looping. This is particular true for small crowders.
However, it was found that larger crowders effect internal
“cages” and thereby facilitate the looping dynamics.35

Here we examine the concurrent effect of MMC and
confinement in a spherical cavity on the looping dynamics of
linear polymers of varying flexibility within a model of explicitly
simulated crowders. Snapshots of the chain-crowder system are
shown in Figures 1 and S.1 for different chain stiffnesses. As we
show in the following, the interplay of crowding and
confinement together with the chain stiffness gives rise to
remarkable effects for the polymer looping that delicately
depend on the system parameters. In particular, for stiff chains
the looping probability and kinetics are wildly varying functions
of the chain length.
We use Langevin dynamics simulations of coarse-grained

bead−spring polymer chains34 and our recently developed in-
house package to explicitly model crowding molecules in the
NVT-ensemble.35,44 Chain beads of diameter σ are connected
by a finitely extensible nonlinear elastic (FENE) potential,
UFENE. The self-avoidance of the polymer segments is modeled
by the purely repulsive Lennard-Jones (LJ) potential ULJ
(Weeks−Chandler−Andersen potential). To model polymer
semiflexibility, we include the bending potential Ub with
stiffness κ connected to the chain persistence length as lp = σκ/
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(kBT), where kBT is the thermal energy. The bending stiffness is
uniform along the polymer and no twist stiffness is considered.
The reader is referred to the Supporting Information (SI) for
details on the potentials, simulation procedure, and data
analysis. We tested the simulations code for free-space
semiflexible polymers and found good agreement (Figure S.2).
The two terminal monomers of the chain attract each other

with an attractive LJ potential of energy ϵs (see SI) that mimics,
for instance, the energetic gain for the formation of closed
DNA hairpin structures via hydrogen-bond-interactions of
complementary bases on ssDNA partners.38 The energy gain
counterbalances the loss of translational entropy upon loop
formation by the end monomers. The effects of varying energy
ϵs on the polymer looping kinetics in crowded unconfined
solutions were recently studied.35

The crowders are modeled as purely repulsive LJ particles of
diameter dcr, set identical to the polymer bead diameter σ. The
external spherical confinement acting on the polymer and
crowders is implemented via a confining potential Uconf

pointing inward from the sphere’s boundary, see Figure S.3
for the crowder mean squared displacement inside the cavities.
The volume fraction of crowders ϕ is computed with respect to
the free space remaining after introducing the polymer into the
cavity, ϕ = υNcr/(4πR

3/3 − nv). Here Ncr is the number of
crowding molecules in the system and v = 4π(σ/2)3/3 is the
monomer volume. We use the standard procedure from ref 35
to compute the looping probabilities and times of the terminal
chain monomers, see also Figure S.4.
We first analyze the polymer distribution inside the confining

cavity. As shown in Figure S.5, flexible chains without crowders
(ϕ = 0) explore the entire cavity, with a preference for the
central part. In contrast, for stiff polymers the radial density
distribution ρ(r) shows a maximum close to the sphere surface,

compare also ref 28. As crowders are added, flexible polymers
become slightly depleted from the center of the cavity, while
semiflexible chains with increasing ϕ acquire a pronounced
peak close to R − σ/2: Semiflexible polymers are effectively
pushed against the inner cavity surface by the depletion forces
stemming from the crowders. MMC thus redistributes the
polymer as if the cavity featured an attraction to the chain
monomers, see also ref 45.
In contrast to the chain monomers, crowders are almost

uniformly distributed in the cavity even at high concentrations
(ϕ ∼ 0.2−0.3), Figure S.6A. For more severe confinement
(small R), the distributions of both chain monomers and
crowders feature clear oscillations due to progressive ordering;
this effect is most pronounced in proximity of the cavity
surface, Figure S.6B. Note that the polymer volume fraction is
mostly chosen small compared to that of crowders, ϕp ≪ ϕ.
The polymer end-to-end distribution p(r) connected to the

free energy as35 F(r) = −kBT log[p(r)] is shown in Figure S.7
for different radii R of the confining sphere in absence of
crowders. The bimodal curves show a distribution of end-to-
end distances, which consistently becomes narrower with
decreasing R. Here, rc = 1.75σ is the cutoff distance, below
which the chain is considered a closed loop, see SI and ref 35.
The looping time Tl is defined as the time required for the
chain ends to diffuse from the equilibrium extension r = req
computed in the presence of confinement and MMC (from the
free energy profiles of Figure S.7), to the final joint-ends
extension with r = rf ∼ rc. This makes the looping time
definition strongly dependent on the extent of confinement, as
expected on physical grounds. As the free energy profiles
feature the same double-well shape also for semiflexible chains
and for crowded solutions, see Figures S.8 and S.9, the current
Tl definition is universal.

Figure 1. Snapshots of a polymer chain and crowders in a spherical cavity. The bending stiffness of the chain is (A) κ/(kBT) = 0, (B) 4, (C) 16, and
(D) 32. Parameters: chain length n = 48, crowder fraction ϕ = 0.1, cavity radius R = 7.5σ, end-to-end cohesiveness ϵs = 5kBT, crowder diameter dcr =
1σ. Video files illustrating the looping kinetics for these parameters are included in the SI. Crowder spheres are shown at 2/3 their actual radius for
better visibility.

Figure 2. Looping probability Pl (A) and time Tl (B) as functions of MMC fraction ϕ for different confinement strengths computed for flexible
chains with chain stiffness κ = 0. The error bars are as indicated; see SI for more details regarding their computation. Parameters: n = 32, ϵs = 5kBT.
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Figure S.10 shows results for the looping probability Pl =
∫ σ
rcp(r′)dr′ and the looping time Tl. In free, uncrowded space,

Tl(n) ∼ n2ν+1,46 where ν ≈ 3/5 is the Flory exponent for self-
avoiding polymers. In ref 35 we confirmed this scaling for
flexible polymers in crowded but unconfined conditions. Here,
we focus on the effect of the compartment size R and the chain
persistence length lp. As demonstrated by Figure S.10, both in
the absence and presence of crowders, the looping probability
Pl approaches unity for small R and decreases with the cavity
size roughly as Pl(R) ∼ R−3. Pl(R) is thus inversely proportional
to the available volume, reflecting the equilibrium character of
Pl(R). When the cavity is larger than the equilibrium end-to-
end distance in free space, R ≳ req, the looping probability
saturates, the Pl of semiflexible chains being smaller than for
flexible polymers due to the energetic penalty for chain
bending. For R ≪ lp, the chain conformations are mainly
determined by the external confinement and polymer flexibility
effects become less important.
We find that the distribution of polymer looping times p(Tl)

in free and weakly confined crowded space is nearly
exponential, see Figure S.11 and ref 35. Under severe
confinement, p(Tl) develops long tails, see Figure S.12. The
average looping time Tl(R) in absence of crowders increases as
Tl(R) ∼ R4 and finally saturates for R ≳ req (Figure S.10B). In
the presence of MMC the R-dependence of the looping time is
roughly Tl(R) ∼ R2.5 (Figure S.10D) and thus significantly
weaker than in its absence, consistent with the behavior shown
in Figure 2B. The looping kinetics is thus facilitated under
confinement. This is our first main conclusion of this study.
Note that the scaling with R for Pl and Tl are in agreement with
previous results for ideal and excluded-volume chains in
spherical cavities without MMC.26

To unravel the interplay of confinement and MMC, we
consider the looping probability and time versus ϕ at different
R in Figure 2. We find i.a. that in strong confinement the effect
of MMC onto the looping time is much stronger than onto the
looping probability (shown in Figure 2A). For flexible chains,
the MMC at ϕ = 0.2 enhances the looping probability of n = 32
chains about 1.5 times, and the looping time grows about two
times, almost independently of the chain length n, as detailed in
Figure S.16A. The reader is referred to our recent study35 for
quantitative details on the viscosity of crowded solutions and
looping of flexible chains: The looping kinetics is facilitated by
external confinement, while antagonistically the crowding slows
it down via enhancing the solution viscosity.
Our central result is presented in Figure 3, showing the

looping probability Pl and time Tl as a function of the length n
and the persistence length lp of the polymer, without and with
MMC. While for soft chains the n-dependence for both Pl and
Tl appears fairly smooth, for growing chain stiffness wild
variations become distinct. This is the second important
conclusion of the current study. For larger lp no looping occurs
for chains shorter than some characteristic length, n* ≈ 30.
This threshold naturally grows for stiffer chains, n*σ ∼ lp, due
to the growing bending energy for looping. Figure S.9 shows
that the maxima of Tl in Figure 3 correspond to higher free
energy barriers to accomplish the looping process, whereas fast
looping events take place for smaller barriers, see Figure S.9.
How can this puzzling, wild behavior of the looping

characteristics come about? To answer this question, we recall
the steady-state results for the conformational statistics of
semiflexible worm-like chains confined onto the surface of a
sphere of radius R.47 As a function of R, the mean end-to-end
chain distance exhibits exponentially damped oscillations
around the value ⟨r0

2 (R)⟩ = 2R2 with period dWLC(lp, R) =

Figure 3. Variation of the looping probability Pl(n, lp) and looping time Tl(n, lp) as a function of the polymer length and the bending stiffness.
Parameters: R = 7.5σ, ϵs = 5kBT, in absence of MMC (top panel) and at ϕ = 0.2 (bottom panel). The looping time Tl is plotted in log scale. These
three-dimensional plots include data points for lp/σ = 0, 4, 8, 16, and 32 and the step size variation of the polymer length δn = 2−5. At n ≤ n* = 30,
we observe almost no looping events within our simulation time, meaning that effectively Tl(n) →∞ and Pl(n) → 0 (points not shown). The “hills”
and “valleys” observed for the looping characteristics become more pronounced for stiffer chains. The total CPU time of a standard work-station to
produce these graphs at a satisfactory resolution in the shown parameter space is about two months.
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8πlpR/(16lp
2 − R2)1/2.47 For very stiff polymers, this period

approaches 2πR, corresponding to the lowest-energy chain
ordering effected by wrapping in the equatorial plane of the
sphere. For less stiff polymers, the correlations in the tangential
orientations of the confined chain are progressively reduced
and thus the period of the end-to-end oscillations dWLC grows
due to enhanced chain fluctuations. In large cavities and for
relatively flexible chains satisfying the condition R > 4lp the
correlations in the chain orientations disappear and the end-to-
end distance monotonically increases to the saturation value
⟨r0

2 (R)⟩ as a function of the chain length.47 We stress that these
oscillations of the end-to-end distance of a confined semi-
flexible chain dWLC effect regular variations in the looping
characteristics.
Deviations of equilibrium chain conformations from the

geodesic wrapping were rationalized with the Euler−Lagrange
formalism in terms of the surface curvature of a closed
semiflexible loop inside a sphere.48 It was found that that for a
chain completely attached to the sphere’s surface, there exists
an infinite number of distinct periodic states of the polymer
that minimize the elastic energy. The incommensurability of the
closed-chain length with the optimal wrapping strategy along
the geodesic circle gives rise to the formation of various shapes,
for example, tennis-ball-groove or rosette shapes, optimizing
the energy,49 see Figure S.13 and our results in Figure S.1, as
well as the video files for stiffer chains, in the SI.
In the absence of MMC, Figure S.14 shows the average

curvature κ ̅ along the compacted unlooped chain studied in our
simulations as a function of polymer stiffness κ for the cavity
radius R = 7.5σ. Up to the minimal possible curvature 1/R
shown in the plot, the simulated data agree quite well with the
scaling κ(̅κ) ∼ κ−0.4 for two different chain lengths. Given this
result, for very stiff polymers, whose length is a multiple of the
equator length (nσ ≈ 2πRN), the looping probability is thus
expected to have local maxima, see also Figure S.1.47 The
structure of confined semiflexible chains will however deviate
from the perfect spool-like arrangement. We thus observe from
our simulations that both in uncrowded and crowded cavities
the values of Pl and Tl are indeed strongly varying functions of
the chain length, as seen in Figure 3. The effect is more
pronounced for stiffer polymers.
More specifically, in absence of crowding the height of the

wild variations of Pl and Tl in Figure 3 exceeds the mean value
of these quantities for stiff chains. For more flexible chains the
polymer ordering inside the cavity becomes less defined in the
sense that these variations with the chain length become
smaller and several chain conformations exist that optimize the
free energy. This gives rise to the nonperiodic oscillations in the
top panel of Figure 3. We point out that substantial variations
of the looping properties with the chain length occur on length
scales, which are significantly smaller than the period from the
above ideal chain arguments, d≪ dWLC. The extrema are due to
the interplay of different optimal polymer conformations inside
the cavity. As the chain persistence grows, the energy
differences between these states become larger than the
thermal energy and thus get reflected in variations of the
looping characteristics with n, see Figure 3 and the video files in
the SI. For very stiff chains some small polymer length
variations δn make the polymers incommensurate to the
geodesic circle and thus alter dramatically the looping
properties, see Figure S.1. Figure S.15 shows additional detail
for the dependence of Pl and Tl on the chain stiffness for
different R. Note that the chain length of the extrema of Pl and

Tl varies rather weakly with lp, corresponding to different
energy-optimizing configurations of the chain inside the cavity
for varying κ.
The variations of Pl and Tl with the chain length are strongly

anti-correlated for stiffer chains. This is particularly pronounced
for short polymers, see Figure S.16 quantifying the looping
characteristics along a cross-section of Figure 3 for soft and stiff
polymers. This is the third conslusion of this letter. The effect is
somewhat smeared out for longer chains, for which the height
of the Pl and Tl variations decreases, see Figure S.16B. For a
fixed cavity radius R, for even longer chains the looping rates
get severely reduced. In this case, the motion of the chains is
progressively restricted at higher polymer volume fractions ϕp.
In Figure 3, however, ϕp < 3−5%, and these effects are not yet
observable.
In the presence of MMC, we observe a similarly wild

variation of the looping probability and time with the chain
length (Figure 3). The positions of minima and maxima in Pl
and Tl, however, are shifted as functions of the polymer length,
compared to the results in absence of MMC. This is due to the
tendency of crowding particles to push the polymer toward the
cavity surface, effectively straightening out the fluctuations
stored in the chain and effectively “rigidifying” the polymer and,
thereby, shifting the position of the peaks in Pl and Tl. One can
also think of this effect as of an effective increase of the cavity
radius R. Figure 3 details the system behavior in a broad range
of model parameters.
We presented Langevin dynamics simulations characterizing

the looping behavior of semiflexible polymers inside a spherical
cavity in the presence of MMC. Our first main result is that, as
a function of the cavity size, the looping kinetics strongly
depends on the presence of MMC, while equilibrium quantities
such as the looping probability are only marginally affected
(Figure 2A). Our second main result is the wild, anti-correlated
variations of the looping probability and looping rates as a
function of the chain length (Figures 3 and S.16): stiffer chains
prefer to adopt different energy-optimized conformations inside
the sphere and the transitions between them yield erratic
looping characteristics as a function of the chain length. Under
strong confinement the looping kinetics is dramatically
facilitated by MMC, as compared to the free-space case
(Figures 2B and S.15B). We expect that our results will impact
the understanding of polymer looping, one of the most
important molecular biochemical reactions, in the confined and
crowded conditions typical for living biological cells.
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