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Distributed-order diffusion equations and multifractality: Models and solutions
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We study distributed-order time fractional diffusion equations characterized by multifractal memory kernels,
in contrast to the simple power-law kernel of common time fractional diffusion equations. Based on the physical
approach to anomalous diffusion provided by the seminal Scher-Montroll-Weiss continuous time random walk,
we analyze both natural and modified-form distributed-order time fractional diffusion equations and compare
the two approaches. The mean squared displacement is obtained and its limiting behavior analyzed. We derive
the connection between the Wiener process, described by the conventional Langevin equation and the dynamics
encoded by the distributed-order time fractional diffusion equation in terms of a generalized subordination of
time. A detailed analysis of the multifractal properties of distributed-order diffusion equations is provided.

DOI: 10.1103/PhysRevE.92.042117 PACS number(s): 05.40.Fb, 05.10.Gg

I. INTRODUCTION

The physical principles behind the Brownian motion of
a test particle in a dilute solvent were popularized in a
string of seminal papers by Albert Einstein [1], Marian von
Smoluchowski [2], and Pierre Langevin [3]. They were guided
by the early experiments by Robert Brown [4] and Louis
Georges Gouy [5]. Brownian motion is typically characterized
by the linear growth in time of the mean squared displacement
(MSD) 〈x2(t)〉 = 2Kt , where K is the diffusion constant.
One of the central theoretical results of this burst of activity
at the beginning of the 20th century was the connection
K = kBT /(mη) between the diffusion constant K , the mass m

of the diffusing particle, the friction coefficient η of the liquid,
and the thermal energy kBT . As this Einstein-Smoluchowski-
Sutherland relation [1,2,6] offered a way to experimentally
determine Avogadro’s constant it paved the way for the
systematic single particle tracking experiments published by
Jean Perrin [7].

Beginning with the work of Lewis Fry Richardson on the
spreading of particles in turbulent flows [8], scientists soon
realized that in many systems the MSD of diffusive processes
deviates from the linear Brownian law. Instead, in a large
variety of systems anomalous diffusion of the power-law form
[9–12]

〈x2(t)〉 = 2Kα

�(1 + α)
tα (1)

of the MSD is observed. Here, Kα of dimension cm2/secα is the
anomalous diffusion constant and α is the anomalous diffusion
exponent. Depending on its size we distinguish subdiffusion
for 0 < α < 1 and superdiffusion for α > 1 [9–11]. Today,
anomalous diffusion of the form (1) of submicron tracer
particles or even individual molecules can be directly measured
in single particle tracking assays, providing a wealth of infor-
mation beyond the MSD (1). In such experiments, anomalous
diffusion was observed in a variety of complex liquids [13–15]

and in living biological cells [16–20], and it is found in large
scale computer simulations of, for instance, biomembranes
[21] or tracer diffusion in structured environments [22,23].
References [9–12] provide an overview of anomalous diffusion
in both physical classical and biological systems.

Due to its nonuniversal character, the anomalous law (1)
may have numerous physical origins corresponding to different
stochastic models of anomalous diffusion [11]. To mention
some of the most popular models, we refer to the closely related
fractional Brownian motion [24] and fractional Langevin
equation motion [25], which are driven by Gaussian power-law
correlated noise. Anomalous diffusion of the form (1) is
effected when a test particle moves in a fractal environment
[12,26], being slowed down by bottlenecks and dead ends
occurring at all scales. Markovian diffusion equations with
time- or position-dependent diffusion coefficients equally give
rise to the anomalous diffusion law (1). Finally, we mention
the continuous time random walk (CTRW) [27], a direct
generalization of the Pearson random walk. In a CTRW
process, the test particle waits for a random time τ in between
successive jumps, and/or the length x of individual jumps is
equally random. Depending on the choice of the distributions
of waiting times and jump lengths, different regimes of
anomalous diffusion can be described, including Lévy flights
[28] and Lévy walks [29]. Here we consider CTRW processes
with a narrow distribution of jump lengths with finite variance,
and different forms of the waiting time distribution. We note
in passing that more general forms of CTRW processes exist,
in which external noise [30] is superimposed onto the process
or the renewal character of CTRW steps is broken in the form
of correlated jump lengths or waiting times [31,32].

Consider a CTRW process with a finite variance 〈δx2〉
of the jump lengths and a waiting time distribution of the
power-law form ψ(t) � τα/t1+α with 0 < α < 1, for which
the associated mean waiting time 〈t〉 = ∫∞

0 tψ(t)dt diverges.
The resulting motion is subdiffusive with MSD (1) [27]. The
probability density function (PDF) P (x,t), to find the diffusing
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particle at position x at time t , of this process is governed by
the time fractional diffusion equation [10,33,34]

∂

∂t
P (x,t) = Kα RLD1−α

t

∂2

∂x2
P (x,t), (2)

where the fractional operator of the Riemann-Liouville form
is defined as [35]

RLD1−α
t P (x,t) = 1

�(α)

∂

∂t

∫ t

0

P (x,t ′)
(t − t ′)1−α

dt ′. (3)

The formulation of anomalous diffusion processes in terms
of fractional dynamic equations is particularly convenient to
incorporate boundary value problems [36] and external force
fields. In the presence of the latter the fractional diffusion
equation turns to the fractional Fokker-Planck equation with a
drift term containing the external force [10,37].

How can anomalous diffusion processes deviating from the
power law (1) with the single scaling exponent α be described
in terms of a dynamic equation? This question was answered
in Refs. [38,39], in which so-called time and space fractional
diffusion equations of distributed order were proposed. In
these equations the order of the fractional operator is not fixed
but may, in the most general case, be a continuous function.
Distributed-order diffusion equations were shown to be useful
tools to describe anomalous diffusion characterized by two or
more scaling exponents in the MSD or even by logarithmic
time dependencies of the MSD. Distributed-order diffusion
equations can be represented in two different forms, referred to
as natural and modified forms, which are not equivalent. Such
equations and different techniques for finding corresponding
solutions have been discussed in a range of works [38–45].

Here we provide an integral approach to distributed-order
equations. By generalizing previous approaches we provide
new solutions for various multifractal behaviors of the scal-
ing exponents of the MSD. Throughout we emphasize the
connection to the CTRW process and therefore the physical
basis for the different forms of distributed-order diffusion
equations. The paper is organized as follows. In Sec. II we
review some results for the single exponent time fractional
diffusion equation. Distributed-order diffusion equations in
the natural form are considered in Sec. III and the connection
to the CTRW model established. In Sec. IV, the modified-form
distributed-order diffusion equation is studied. We draw our
conclusions in Sec. V. In the Appendices we provide results
for both forms of the distributed-order diffusion equations with
three and N fractional exponents.

II. FRACTIONAL DIFFUSION EQUATION
WITH SINGLE ORDER

We first note that there exists another popular way to write
down the time fractional diffusion equation (2), namely, in the
following form [46]:

CDα
t P (x,t) = Kα

∂2

∂x2
P (x,t), (4)

using the Caputo fractional operator [35]

CDα
t P (x,t) = 1

�(1 − α)

∫ t

0

1

(t − t ′)α
∂

∂t ′
P (x,t ′)dt ′. (5)

The Caputo fractional operator is formally related to the
Riemann-Liouville operator through

CDα
t P (x,t) = RLDα

t P (x,t) − P (x,0)
t−α

�(1 − α)
(6)

for 0 < α < 1, where P (x,0) = limt→0 P (x,t) is the initial
condition of the problem. Here and in the following we
consider solutions of the fractional diffusion equations in
the infinite domain −∞ < x < ∞ with natural boundary
conditions P (±∞,t) = 0 and with the Dirac delta initial
condition P (x,0) = δ(x). In Eq. (4) the time fractional Caputo
derivative stands on the left side of the diffusion equation—we
call this the natural form, in comparison to the modified form
of Eq. (2).

Equations (2) and (4) can be conveniently solved by
Laplace,

P (x,s) =
∫ ∞

0
P (x,t)e−st dt, (7)

and Fourier,

P (k,t) =
∫ ∞

−∞
P (x,t)eikxdx, (8)

transforms. In what follows the transformed quantities are
denoted by explicit dependence on the respective variables.
The unique solution of the fractional diffusion equations (2)
and (4) in Fourier-Laplace space is [10]

P (k,s) = sα−1

sα + Kαk2
. (9)

The inverse Laplace transform of expression (9) yields the
characteristic function

P (k,t) = Eα(−Kαtαk2), (10)

where

Eα(z) =
∞∑

n=0

zn

�(αn + 1)
(11)

is the one-parameter Mittag-Leffler function [47,48]. Inverse
Fourier transform leads to the PDF in space-time,

P (x,t)= 1

2|x|H
1,0
1,1

[ |x|√
Kαtα

∣∣∣∣ (1,α/2)
(1,1)

]

= 1√
4πKαtα

H
2,0
1,2

[
x2

4Kαtα

∣∣∣∣ (1 − α/2,α)
(0,1),(1/2,1)

]
, (12)

expressed in terms of the Fox H function [34] [see also
Eq. (A1)]. The asymptotic expansion of the H function for
|x|/[

√
Kαtα] 	 1 yields the stretched Gaussian behavior of

the PDF [10],

P (x,t) � 1

2
√

(2 − α)π

(α

2

)(α−1)/(2−α)

× |x|(α−1)/(2−α)(Kαtα)−[1/2(2−α)] exp

[
−2 − α

2

×
(α

2

)α/(2−α)
|x|2/(2−α)(Kαtα)−[1/(2−α)]

]
. (13)
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FIG. 1. (Color online) PDF (14) of the fractional diffusion equa-
tion (2) for α = 1/2, Kα = 1, and t = 0.1 (blue solid line), t = 1 (red
dashed line), and t = 10 (green dot-dashed line).

The case α = 1 reduces to the classical Brownian diffusion
with Gaussian PDF. We note that the PDF (12) can be
alternatively presented in terms of the Mainardi function
Mα(y) [35,49],

P (x,t) = 1√
4Kαtα

Mα/2

( |x|√
Kαtα

)
(14)

[see also Eq. (A21)].
The full solution (12) of the fractional diffusion equation

(2) is plotted in Fig. 1. The cusp at the origin corresponding to
the slowly decaying initial condition P0(x) = δ(x) is distinct
for this process. It arises due to the scale-free waiting time
distribution ψ(τ ) with its diverging characteristic time scale:
an appreciable probability exists that the test particle has not
moved away from its initial position even at later stages of the
process (see also the discussion in terms of the CTRW process
in Ref. [10]).

A. Scaling properties

The qth-order (fractional) moments of any self-affine, or
monofractal, random processes x(t) satisfy the scaling relation
[50]

〈|x(t)|q〉 = C(q)tHq, (15)

where the scaling exponent H is called the Hurst exponent.
As an essential feature we see that the exponent qH depends
linearly on the fraction q. For instance, for ordinary Brownian
motion H = 1/2, for fractional Brownian motion 0 < H =
α/2 < 1, and for Lévy flights H = 1/α as long as q < α.
Multifractal or multiaffine processes x(t) fulfill the generalized
scaling relation [50]

〈|x(t)|q〉 = C(q)tμ(q), (16)

where μ(q) is a given nonlinear function in q.
The time fractional diffusion equation (2) and its alternative

form (4) constitute a monofractal process with the scaling
[10,51]

〈|x(t)|q〉 = �(q + 1)
(Kαtα)q/2

�(1 + αq/2)
= C(q)tαq/2,

~t 1 2

~t 3 2
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FIG. 2. (Color online) Double-logarithmic plot of the waiting-
time PDF (21) for τ = 1 and Dα = 1, with α = 1/2 (blue solid line),
α = 5/8 (red dashed line), and α = 3/4 (green dot-dashed line).
Inset: qth-order moments (7) for the same parameter values and color
codes.

of the qth-order moments, where C(q) = �(q +
1)Kq/2

α /�(1 + αq/2). In the inset of Fig. 2 we show the qth-
order moments (7) versus time on a double-logarithmic scale.
Indeed the slope increases proportionally with the scaling
exponent α. We note that there exists a summation rule for the
even and absolute moments of the fractional diffusion equation
in terms of the one-parameter Mittag-Leffler function [51]

∞∑
n=0

〈x2n(t)〉
(2n)!

= Eα(Kαtα), (17)

∞∑
n=0

〈|x(t)|n〉
n!

= Eα/2(
√

Kαtα), (18)

generalizing the corresponding relations for the regular
diffusion equation with α = 1.

B. Relation to CTRW

To establish generalization of physical laws it is favorable
to have available a consistent way of introducing additional
complexity. The fractional diffusion equation (2) or (4) can
indeed be based on the CTRW process [10,37,52]. In the
classical formulation of the CTRW the Scher-Montroll-Weiss
result for the PDF in Fourier-Laplace space is given by [27]

P (k,s) = 1 − ψ(s)

s

1

1 − λ(k)ψ(s)
, (19)

where λ(κ) is the Fourier transform of the jump length PDF
λ(x) and ψ(s) denotes the Laplace transform of the waiting
time PDF ψ(t).

Consider first the Poissonian waiting time PDF
ψ(t) = τ−1 exp(−t/τ ) with the mean waiting time 〈t〉 =∫∞

0 tψ(t)dt = τ and the Gaussian jump length PDF λ(x) =
(4πσ 2)−1/2 exp(−x2/[4σ 2]), for which the variance is 〈δx2〉 =∫∞
−∞ x2λ(x)dx = 2σ 2. In the diffusion limit corresponding to

s → 0 and κ → 0 we find that ψ(s) ∼ 1 − sτ and λ(k) ∼
1 − σ 2k2. This scaling in fact holds for any pair of waiting
time and jump length PDFs with finite mean waiting time and
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jump length variance [53]. Thus, for the sharp initial condition
P (x,t = 0) = δ(x) we obtain from relation (19) the classical
result [10]

P (k,s) = 1

s + K1k2
, (20)

from where one may directly obtain the Gaussian PDF
P (x,t) = (4πK1t)−1/2 exp(−x2/[4K1t]) with the diffusion
coefficient K1 = σ 2/[2τ ]. Furthermore, if we consider the
normalized power-law form ψ(s) = (1 + [sτ ]α)−1 with 0 <

α < 1, the mean waiting time diverges. After inverse Laplace
transform the waiting time PDF becomes [54–57]

ψ(t) = tα−1

τα
Eα,α

(
−
(

t

τ

)α)
, (21)

where

Eα,β(z) =
∞∑

n=0

zn

�(αn + β)
(22)

is the two-parameter Mittag-Leffler function [35,47]. The
associated PDF in Fourier-Laplace space is then given by
Eq. (9) [10,55], where Kα = σ 2/[2τα]. The waiting time PDF
(21) is shown on a double-logarithmic scale in Fig. 2. The
asymptotic behavior of the waiting-time PDF follows from
Eq. (21) in the form

ψ(t) ∼
{

1
τ

(t/τ )α−1

�(α) , t � τ

α
τ

(t/τ )−α−1

�(1−α) , t 	 τ.
(23)

Thus, in the long-time limit the well known power-law
behavior ψ(t) ∼ τα/t1+α emerges. Note that for α = 1 the
waiting-time PDF (21) reduces to the above Poissonian form
typical for normal diffusion.

C. Langevin approach and subordination

The CTRW process x(t) underlying the time fractional
diffusion equation can alternatively be described by the
coupled pair of Langevin equations [58],

dx(u)

du
= η(u),

(24)
dt(u)

du
= γ (u),

which means that the random walk x(t) is parametrized in
terms of the number of steps u. The connection to the real time
t is given by the total t(u) = ∫ u

0 τ (u′)du′ of the individual
waiting times τ for each step [58]. Here η(u) represents white
Gaussian noise with zero mean 〈η(u)〉 = 0 and correlation
〈η(u)η(u′)〉 = 2δ(u − u′). The term γ (u) represents a one-
sided α-stable Lévy noise with the stable index 0 < α < 1.
In such a scheme the PDF P (x,t) of the process x(t) can be
represented as [10,37,59,60]

P (x,t) =
∫ ∞

0
P1(x,u)h(u,t)du, (25)

where

P1(x,u) = 1√
4πuK1τ

exp

(
− x2

4uK1τ

)
(26)

is the PDF of the Wiener process and h(u,t) is a PDF
subordinating the random process described by the fractional
diffusion equation to the Wiener process (see also Sec. V
for details). The Laplace transform of this kernel reads
[10,31,37,61]

h(u,s) = − ∂

∂u

1

s
L̂α(s,u) = sα−1e−usα

, (27)

where Lα(s,u) = e−usα

is a one-sided Lévy-stable PDF. The
inverse Laplace transform of Eq. (27) is given by [10,31,59,61]

h(u,t) = t

αu1+1/α
Lα

(
t

u1/α

)
. (28)

III. NATURAL FORM DISTRIBUTED-ORDER
DIFFUSION EQUATION

We now turn to extended forms of the fractional diffusion
equation (2), which we formulate in terms of distributed-order
fractional operators. The natural form of the distributed-order
diffusion equation is hereby given by [41,62,63]∫ 1

0
τλ−1p(λ)CDλ

t P (x,t)dλ = K
∂2

∂x2
P (x,t), (29)

where p(λ) is a non-negative normalized function,∫ 1
0 p(λ)dλ = 1, τ is a parameter of dimension sec, and K

is the diffusion coefficient of physical dimension cm2/sec. For
p(λ) = δ(λ − α) relation (29) reduces to the (mono-)fractional
diffusion equation in the natural form, Eq. (4) [or Eq. (2) when
the Caputo operator is substituted with the Riemann-Liouville
operator], and with the identification Kα = K τ 1−α . Using
the subordination approach one can prove that the solution of
Eq. (29) is a PDF, that is, a non-negative and normalizable
function [38]. An alternative way to prove the non-negativity
is to use the Titchmarsh theorem for the Laplace inversion, as
used in Ref. [42].

The solution of Eq. (29) in the form of series and integral
representations was studied in Ref. [43] for a general weight
function p(λ). Following Refs. [38,40] we here consider the
generic bifractional case

p(λ) = B1δ(λ − λ1) + B2δ(λ − λ2), (30)

where 0 < λ1 < λ2 < 1, B1,B2 > 0, and B1 + B2 = 1, in
more detail.

A. Solution of the generic bifractional case

By Fourier-Laplace transform of Eq. (29) we obtain the
formal solution

P (k,s) = 1

s

IC(sτ )

IC(sτ ) + K τk2
(31)

in Fourier-Laplace space, where

IC(sτ ) =
∫ 1

0
(sτ )λp(λ)dλ. (32)

Using Eq. (30) we then find

P (k,s) = 1

s

B2(sτ )λ2 + B1(sτ )λ1

B2(sτ )λ2 + B1(sτ )λ1 + K τk2
. (33)
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Here we use the properties of the three-parameter Mittag-Leffler function to find the solution for the two fractional exponents.
At first we perform an inverse Laplace transform of Eq. (33) by using the series representation approach [35,64] and Eq. (A17).
We then arrive at the solution in Fourier space,

P (k,t) =
∞∑

n=0

(−1)n
(

B1

B2

)n(
t

τ

)(λ2−λ1)n

×
{

En+1
λ2,(λ2−λ1)n+1

(
−K τk2

B2

(
t

τ

)λ2
)

+ B1

B2

(
t

τ

)λ2−λ1

En+1
λ2,(λ2−λ1)(n+1)+1

(
−K τk2

B2

(
t

τ

)λ2
)}

, (34)

where Eδ
α,β (z) is the three-parameter Mittag-Leffler function [65]. In addition to the one-parameter and two-parameter Mittag-

Leffler functions, which have been widely used in different fields of science and engineering, the three-parameter Mittag-Leffler
function has started to attract attention in recent years [66–71]. A summary of the properties of the three-parameter Mittag-Leffler
function are provided in Appendix A.

For the inverse Fourier transform of Eq. (34) we use the relation (A20) between the three-parameter Mittag-Leffler function
and the Fox H function and the Mellin cosine transform (A7). With the integral representation (A1) of the Fox H function and
the duplication formula �(z)�(z + 1/2) = �(2z)

√
π21−2z [47], we find the PDF

P (x,t) = 1√
4π [K τ/B2](t/τ )λ2

∞∑
n=0

(−1)n

n!

(
B1

B2

)n(
t

τ

)(λ2−λ1)n
{

H
2,0
1,2

[
x2

4K τ
B2

(
t
τ

)λ2

∣∣∣∣∣([λ2 − λ1]n + 1 − λ2/2,λ2)
(0,1),(n + 1/2,1)

]

+ B1

B2

(
t

τ

)λ2−λ1

H
2,0
1,2

[
x2

4K τ
B2

(
t
τ

)λ2

∣∣∣∣∣([λ2 − λ1](n + 1) + 1 − λ2/2,λ2)
(0,1),(n + 1/2,1)

]}
(35)

in terms of an infinite series in Fox H functions. Despite their quite formal look, we now demonstrate two instructive cases
showing how to deal with the Fox H functions.

At first, the normalization of expression (35) can be shown as follows. Using relation (A3) we rewrite P (x,t) in the form

P (x,t) = 1√
4π K τ

B2

(
t
τ

)λ2

∞∑
n=0

(−1)n

n!

(
B1

B2

)n(
t

τ

)(λ2−λ1)n

×
⎧⎨
⎩1

2
H

2,0
1,2

⎡
⎣ |x|√

4K τ
B2

(
t
τ

)λ2

∣∣∣∣∣∣
([λ2 − λ1]n + 1 − λ2/2,λ2/2)
(0,1/2),(n + 1/2,1/2)

⎤
⎦

+ B1

B2

(
t

τ

)λ2−λ1 1

2
H

2,0
1,2

⎡
⎣ |x|√

4K τ
B2

(
t
τ

)λ2

∣∣∣∣∣∣
([λ2 − λ1](n + 1) + 1 − λ2/2,λ2/2)
(0,1/2),(n + 1/2,1/2)

⎤
⎦
⎫⎬
⎭. (36)

By applying Eq. (A5) to (36) we obtain

∫ ∞

−∞
P (x,t)dx = 2

∫ ∞

0
P (x,t)dx = 1√

4π K τ
B2

(
t
τ

)λ2

∞∑
n=0

(−1)n

n!

(
B1

B2

)n(
t

τ

)(λ2−λ1)n

×
⎧⎨
⎩
√

4
K τ

B2

(
t

τ

)λ2 �(1/2)�(n + 1)

�([λ2 − λ1]n + 1)
+ B1

B2

(
t

τ

)λ2−λ1

√
4
K τ

B2

(
t

τ

)λ2 �(1/2)�(n + 1)

�([λ2 − λ1](n + 1) + 1)

⎫⎬
⎭ = 1.

(37)

As the second case we consider the transition from Eq. (35) to the monofractional solution. Equating the fractional exponents
λ1 = λ2 = α and using B2 = B and B1 = 1 − B, Eq. (35) yields

P (x,t) = 1√
4πK τ

(
t
τ

)α B−1/2
∞∑

n=0

1

n!

(
1 − 1

B

)n

H
2,0
1,2

[
B

x2

4K τ
(

t
τ

)α
∣∣∣∣(1 − α/2,α)
(0,1),(n + 1/2,1)

]
. (38)

With the help of Eq. (A11) and the symmetry property of the H function mentioned in Appendix A 1, Eq. (38) reduces to the
solution (12) of the monofractional diffusion equation.
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B. MSD and fourth-order moment

The MSD is given in Fourier space in terms of

〈x2(t)〉 =
{
− ∂2

∂k2
L −1[P (k,s)]

}∣∣∣∣
k=0

= 2K τL −1

[
1

sIC(sτ )

]
. (39)

From Laplace transform (A17) we get [38]

〈x2(t)〉 = 2
K τ

B2

(
t

τ

)λ2

Eλ2−λ1,λ2+1

(
−B1

B2

(
t

τ

)λ2−λ1
)

. (40)

This result can also be obtained by using the PDF (35) and the
Mellin transform (A6) of the Fox H function.

From the series expansion (A13) of the three-parameter
Mittag-Leffler function for B1

B2
( t
τ

)λ2−λ1 � 1 and the asymptotic

expansion formula (A14) for B1
B2

( t
τ

)λ2−λ1 	 1, we conclude
that the MSD becomes

〈x2(t)〉 � 2
K τ

B2

(
t
τ

)λ2

�(1 + λ2)
(41)

for B1
B2

( t
τ

)λ2−λ1 � 1, and

〈x2(t)〉 � 2
K τ

B1

(
t
τ

)λ1

�(1 + λ1)
(42)

for B1
B2

( t
τ

)λ2−λ1 	 1, so that the particle shows decelerating
subdiffusion [38] since λ1 < λ2.

We now proceed to determine the fourth-order moment

〈x4(t)〉 =
{

∂4

∂k4
L −1[P (k,s)]

}∣∣∣∣
k=0

= 24(K τ )2L −1

[
1

sI 2
C(sτ )

]
, (43)

which is a measure for the convergence of the tails of the
PDF P (x,t) as well as a useful diagnosis tool in the analysis
of stochastic data [72]. Analogously to the derivation of the
MSD for the fourth moment we find

〈x4(t)〉 = 24

(
K τ

B2

)2(
t

τ

)2λ2

×E2
λ2−λ1,2λ2+1

(
−B1

B2

(
t

τ

)λ2−λ1
)

. (44)

In the short-time limit B1
B2

( t
τ

)λ2−λ1 � 1 according to Eq. (A4)
behaves as

〈x4(t)〉 � 24

(
K τ

B2

)2
(

t
τ

)2λ2

�(2λ2 + 1)
. (45)

In the long-time limit B1
B2

( t
τ

)λ2−λ1 	 1 with Eqs. (A5) and (A7)
we obtain

〈x4(t)〉 � 24

(
K τ

B1

)2
(

t
τ

)2λ1

�(2λ1 + 1)
. (46)

The MSD (40) is shown in Fig. 3, in which the asymptotic
behavior of the MSD can be clearly distinguished. In the same

FIG. 3. (Color online) Double-logarithmic plot of the MSD (40)
for 2K τ = 1, B1 = B2 = 1/2, λ1 = 1/4, and λ2 = 1 (blue solid
line); λ2 = 3/4 (red dashed line); λ2 = 1/2 (green dot-dashed line).
Inset: Fourth moments (44) for the same parameters.

figure we also show the fourth moment (44) in the inset. The
case of three and N different fractional exponents is considered
in Appendix B.

We note that the result (40) can also be obtained from the
overdamped generalized Langevin equation with distributed-
order friction memory kernel in natural form with two
fractional exponents [71]. The parameters B1 and B2 in the
distributed-order diffusion equation correspond to the weights
of the power-law memory kernels decaying with the exponents
λ1 and λ2 in the generalized Langevin equation. The PDF of
the process governed by such a generalized Langevin equation
is Gaussian. Thus, this is an example of two very different
processes with different PDFs, which however share exactly
the same MSDs.

C. Underlying CTRW model

We now establish the relation between the CTRW theory
and the distributed-order diffusion equation (31) in the natural
form. To this end, we use the Montroll-Weiss equation (19)
for a jump length PDF with finite variance,

λ(k) = 1 − K τk2 (47)

and the waiting-time PDF in Laplace space

ψC(s) = 1

1 + IC(sτ )
, (48)

where IC(sτ ) is given by Eq. (32). With the help of Eqs. (47),
(48), and (19) we obtain exactly the same form of the PDF in
Fourier-Laplace space as the one obtained from the distributed-
order diffusion equation (31). We emphasize that the form
(48) of the PDF is valid at all times and therefore the CTRW
model corresponds exactly to the process described by the
distributed-order diffusion equation in the natural form.

From relations (32) and (48) we obtain the expression

ψC(s) = 1

1 + ∫ 1
0 λ(sτ )λp(λ)dλ

(49)

for the Laplace transform of the waiting-time PDF. Using
Eq. (30) for the case of two fractional exponents we then

042117-6



DISTRIBUTED-ORDER DIFFUSION EQUATIONS AND . . . PHYSICAL REVIEW E 92, 042117 (2015)

obtain

ψC(t) = L −1

[
1

1 + B1(sτ )λ1 + B2(sτ )λ2

]

= 1

τB2

(
t

τ

)λ2−1 ∞∑
n=0

(−1)n

Bn
2

(
t

τ

)λ2n

×En+1
λ2−λ1,λ2n+λ2

(
−B1

B2

(
t

τ

)λ2−λ1
)

. (50)

To arrive at this result, we use the series expansion approach
[35] and the Laplace transform formula (A17) for the three-
parameter Mittag-Leffler function. Note that if, for instance,
we set B1 = 0, B2 = 1, and λ2 → α in relation (50) we arrive
at Eq. (21) for the waiting-time PDF in the monofractional
case. The case with λ1 = λ2 = α and B1 + B2 = 1 gives the
same result for the monofractional case. The limiting behavior
encoded in expression (50) yield in the form

ψC(t) ∼ 1

τB2

(
t
τ

)λ2−1

�(λ2)
(51)

for B1
B2

( t
τ

)λ2−λ1 � 1 and

ψC(t) ∼ λ1
B1

τ

(
t
τ

)−λ1−1

�(1 − λ1)
(52)

for B1
B2

( t
τ

)λ2−λ1 	 1. Thus the smaller exponent dominates the
short-time limit and the larger one the long-time behavior.
This observation is in accordance with the above conclusion
from the analysis of the MSD (41) and (42) in the short- and
long-time limits.

We note that qualitatively the waiting-time PDF (50) is
similar to a process with two different waiting-time PDFs ψ1(t)
and ψ2(t) governing the CTRW process. This may correspond
to a combination of two kinds of trapping landscapes, between
which the particle switches, effecting the two different waiting-
time PDFs (see also [73–75]). The dominant contribution of
the greater exponent in the short-time limit and of the smaller
exponent in the long-time limit is observed by the numerical
simulation of the MSD as shown in Fig. 4. We also note that the
crossover from the short- to the long-time behavior depends
on the weights B1 and B2, that is, on the concentration of the
certain kind of traps.

D. Subordination approach

The subordination approach transforms the diffusion pro-
cess from time scale t—the physical time—to the time scale
u—the operational time. Rewriting the PDF in Fourier-Laplace
space for the case of the natural form distributed-order
diffusion equation (31) results in the form [31,38]

P (k,s) = IC(sτ )

s

∫ ∞

0
e−u(IC(sτ )+k2K τ)du

=
∫ ∞

0
e−uk2K τ h(u,s)du, (53)

where the kernel h is given by

h(u,s) = IC(sτ )

s
e−uIC(sτ ) = − ∂

∂u

1

s
L(s,u) (54)

FIG. 4. (Color online) MSD of a CTRW process with mixed
waiting-time PDFs (blue line). The MSD for the corresponding
CTRW process with a single-power waiting-time PDF with the larger
exponent and its asymptotic for the short-time limit is given by the
green lines, and correspondingly with the smaller exponent and its
asymptotic in the long-time limit is shown by the red lines. The
fractional exponents are λ1 = 0.35 and λ2 = 0.75, 2K τ = 1, and
the weights are set to B1 = 0.01 and B2 = 0.99.

and where

L(s,u) = e−uIC(sτ ). (55)

Finally IC(sτ ) is given by Eq. (32). By inverse Fourier-Laplace
transform of expression (53), we find

P (x,t) =
∫ ∞

0

1√
4πuK τ

e−(x2/4uK τ)h(u,t)du, (56)

which means that the function h(u,t) is the PDF provid-
ing the subordination of the random process governed by
the natural form to the Wiener process [38,59] by using
the operational time u. With this approach we can show the
non-negativity of P (x,t) by proving that the function h(u,s)
is a completely monotonic function [38]. Note that the case
of a single fractional exponent α is represented by Eqs. (27)
and (28) where the function h(u,t) is a one-sided Lévy stable
PDF.

Plugging Eq. (32) for the bifractional case into Eq. (54) we
arrive at

h(u,s) = − ∂

∂u

1

s
e−u(B1τ

λ1 sλ1 +B2τ
λ2 sλ2 )

= − ∂

∂u

1

s
Lλ1 (s,u)Lλ2 (s,u) (57)

=
(

− ∂

∂u

1

s
Lλ1 (s,u)

)
Lλ2 (s,u)

+Lλ1 (s,u)

(
− ∂

∂u

1

s
Lλ2 (s,u)

)
, (58)

where

Lλi
(s,u) = e−uBiτ

λi sλi (59)

042117-7



TRIFCE SANDEV et al. PHYSICAL REVIEW E 92, 042117 (2015)

for i = 1,2. Thus the function h(u,t) is given by

h(u,t) = L −1

[(
− ∂

∂u

1

s
Lλ1 (s,u)

)
Lλ2 (s,u)

+Lλ1 (s,u)

(
− ∂

∂u

1

s
Lλ2 (s,u)

)]
. (60)

Via inverse Laplace transform of (60) it follows that h(u,t) can
be represented as a convolution of two one-sided Lévy stable
PDFs since

L −1[Lλi
(s,u)] = 1

τ (uBi)1/λi
Lλi

(
t/τ

(uBi)1/λi

)
(61)

and

L −1

[
− ∂

∂u

1

s
Lλi

(s,u)

]

= Bi(t/τ )

λiτ λi−1(uBi)1+1/λi
Lλi

(
t/τ

(uBi)1/λi

)
, (62)

where i = 1,2 and Lα(z) is the one-sided Lévy stable PDF
(A23).

Now we turn to the Langevin description of a process
with two fractional exponents. Consider the coupled Langevin
equations (24) in which the noise γ (u) is a sum of two
independent one-sided stable Lévy noise sources γi(u) with
Lévy indices 0 < λi < 1, for i = 1,2, i.e.,

d

du
x(u) = η(u),

d

du
t(u) = d

du
[t1(u) + t2(u)] = γ1(u) + γ2(u). (63)

Here η(u) represents white Gaussian noise. The PDF h(u,t) is
found from relation [31,61]

h(u,t) = − ∂

∂u
〈�(t − t(u))〉, (64)

where �(x) is the Heaviside step function. From the Laplace
transform and by using that the process t(u) is a sum of two
independent λi-stable Lévy processes, for the PDF h(u,s) we
find

h(u,s) = − ∂

∂u

1

s

〈∫ ∞

0
δ(t − t(u))e−st dt

〉

= − ∂

∂u

1

s

〈∫ ∞

0
δ(t − [t1(u) + t2(u)])e−st dt

〉

= − ∂

∂u

1

s
〈e−s[t1(u)+t2(u)]〉

= − ∂

∂u

1

s
〈e−st1(u)〉〈e−st2(u)〉

= − ∂

∂u

1

s
Lλ1 (s,u)Lλ2 (s,u). (65)

From this result we see that it coincides with Eq. (58) obtained
in the subordination approach. Generalization to a sum of N

independent λi-stable Lévy processes γi(u) with Lévy indices
0 < λi < 1 (i = 1,2, . . . ,N ) is straightforward.

E. Scaling properties

As mentioned in Sec. II random processes governed by
a monofractional diffusion equation belong to the class of
fractal or self-affine processes. Here we consider the scaling
properties of the process following the distributed-order
diffusion equation in natural form.

From the PDF (31) in Fourier-Laplace space we find by
inverse Fourier transform that

P (x,s) = 1

2s

√
IC(sτ )

K τ
exp

(
−
√

IC(sτ )

K τ
|x|
)

. (66)

The Laplace transform of the qth-order moment reads

〈|x|q(s)〉 =
∫ ∞

−∞
|x|qP (x,s)dx. (67)

From Eqs. (66) and (67) we arrive at

〈|x|q(s)〉 = �(q + 1)(K τ )q/2 1

sI
q/2
C (sτ )

. (68)

For the generic case of two fractional exponents, we plug
Eq. (32) into Eq. (68) and apply the Laplace transform formula
(A17). Then the qth-order moment is expressed by the three-
parameter Mittag-Leffler function as

〈|x|q(t)〉 = �(q + 1)

(
K τ

B2

)q/2

τ−λ2q/2

×L −1

⎡
⎣ s−λ1q/2−1(

sλ2−λ1 + B1
B2

τ−(λ2−λ1)
)q/2

⎤
⎦

= �(q + 1)

(
K τ

B2

)q/2(
t

τ

)λ2q/2

×E
q/2
λ2−λ1,λ2q/2+1

(
−B1

B2

(
t

τ

)λ2−λ1
)

. (69)

We see that the fractional moments are represented in terms
of the three-parameter Mittag-Leffler function and has a
more complicated form than given by Eqs. (15) and (16) for
monofractal and multifractal processes, respectively. In order
to analyze its behavior we find the asymptotic expansions of
the three-parameter Mittag-Leffler function in the short- and
long-time limits. For the short-time limit we use the first two
terms of the series expansion (A13), while for the long-time
limit we employ the first two terms from the asymptotic
expansion (A14). Thus, the short-time limit yields

〈|x|q(t)〉 ∼ �(q + 1)

(
K τ

B2

)q/2
(

t
τ

)λ2q/2

�(1 + λ2q/2)

×
[

1 − q

2

B1

B2

�(λ2q/2 + 1)(t/τ )λ2−λ1

�(λ2q/2 + 1 + λ2 − λ1)

]
(70)

for B1
B2

( t
τ

)λ2−λ1 � 1. The long-time limit reads

〈|x|q(t)〉 ∼ �(q + 1)

(
K τ

B1

)q/2
(

t
τ

)λ1q/2

�(1 + λ1q/2)

×
[

1 − q

2

B2

B1

�(λ1q/2 + 1)(t/τ )λ1−λ2

�(λ1q/2 + 1 + λ1 − λ2)

]
(71)
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FIG. 5. (Color online) Second derivative with respect to q of
c1(q) (blue line) and c2(q) (red line) for λ1 = 1/2 and λ2 = 7/8.

for B1
B2

( t
τ

)λ2−λ1 	 1. According to the last two expressions the
qth-order moments in the short- and long-time limits become

〈|x|q(t)〉 = 〈|x|q(t)〉 = C(q)

(
t

τ

)μC(q,t)

, (72)

where C(q) are the corresponding monofractal prefactors, see
expression (16) which are, of course, different at short and long
times, and μC is time dependent. In order to obtain μC(q,t) we
find the logarithm of Eqs. (70) and (71). In the corresponding
limits of both relations we can use log(1 − x) � 1 − x (x �
1). Thus, for μC(q,t) we obtain the behaviors

μC(q,t) ∼
⎧⎨
⎩

λ2q/2 + c1(q) (t/τ )λ2−λ1

log(τ/t)

λ1q/2 + c2(q) (t/τ )λ1−λ2

log(t/τ )

, (73)

for B1
B2

( t
τ

)λ2−λ1 � 1 and B1
B2

( t
τ

)λ2−λ1 	 1, respectively. where

c1(q) = q

2

B1

B2

�(λ2q/2 + 1)

�(λ2q/2 + 1 + λ2 − λ1)
(74)

and

c2(q) = −q

2

B2

B1

�(λ1q/2 + 1)

�(λ1q/2 + 1 + λ1 − λ2)
. (75)

Thus, we conclude that the random processes governed by
the distributed-order diffusion equation in the natural form do
not belong to the class of multifractal processes whose q-th
moments obey Eq. (16). Instead, it has a more general form,
and in the short- and long-time limits a time dependent form;
additional terms appears in the expression of the exponent
μC. At intermediate times the qth-order moment is given by
a more complicated expression involving the three-parameter
Mittag-Leffler function (A13).

From relations (73), (74), and (75) we see that the sign of
the second derivative of μC(q,t) with respect to q depends
on the signs of the second derivatives of c1(q) and c2(q) with
respect to q. Thus, from these signs one may conclude about
the concavity or convexity of μC(q,t) with respect to q in the
short- and long-time limits.

A graphical representation of the second derivatives of c1(q)
and c2(q) is provided in Fig. 5. We see that μC(q,t) is a concave
function with respect to q in the short- and long-time limits,

since its second derivative is smaller than zero. However, it
tends to zero for large values of q, as can be seen from Fig. 5
and also follows from the large argument expansion of the �

functions entering Eqs. (74) and (75). That means that at large
values of the moments the underlying process exhibits almost
pure monofractality.

IV. MODIFIED-FORM DISTRIBUTED-ORDER
DIFFUSION EQUATION

The distributed-order diffusion equation can be represented
in the alternative, so-called modified form [40,62,63]

∂

∂t
P (x,t) = K

∫ 1

0
τ 1−λp(λ)RLD1−λ

t

∂2

∂x2
P (x,t)dλ. (76)

Here we note that the case p(λ) = δ(λ − α) leads us back
to the (mono-)fractional diffusion equation (4). The PDF of
the modified-form distributed-order diffusion equation is non-
negative [42]. In Ref. [43] the solution of the modified-form
distributed-order diffusion equation can be given in terms of
series and integral representation for a general weight function
p(λ).

A. Solution of the generic bifractional case

Analogously to the above by applying the Fourier-Laplace
transform to Eq. (76) one finds that

P (k,s) = 1

s

IRL(sτ )

IRL(sτ ) + K τκ2
, (77)

where

IRL(sτ ) =
[∫ 1

0
dλ(sτ )−λp(λ)

]−1

. (78)

Comparing with expressions (31) and (32) we see that both
forms of distributed-order diffusion equations have the same
general representations of the PDF in Fourier-Laplace space
with the replacement IC(sτ ) → IRL(sτ ).

We again consider the case of two different fractional
exponents (30). Substituting relation (30) into the general
formula (77) the PDF in Fourier-Laplace space yields in the
form

P (k,s) = s−1

1 + (B2(sτ )−λ2 + B1(sτ )−λ1 )K τk2
. (79)

With the series expansion approach [35] and the Laplace trans-
form formula (A17) one obtains the characteristic function

P (k,t) =
∞∑

n=0

(−1)n(B2K τ )nk2n

(
t

τ

)λ2n

×En+1
λ1,λ2n+1

(
−B1K τk2

(
t

τ

)λ1
)

. (80)

Additional analysis shows that in the short-time limit the
smaller exponent has the dominant contribution and in the
long-time limit the greater exponent is dominant. The Mellin-
cosine transform formula (A7) yields the PDF in real space
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in terms of an infinite series of Fox H functions [44]

P (x,t) =
∞∑

n=0

(−1)n

n!
(B2K τ )n

(
t

τ

)λ2n 1

|x|2n+1
H

2,1
3,3

[
|x|2

B1K τ
(

t
τ

)λ1

∣∣∣∣ (1,1),(λ2n+ 1,λ1),(n+ 1,1)
(2n+ 1,2),(n+ 1,1),(n+ 1,1)

]
.

(81)

With the definition (A1) of the Fox H function one can show [44] that this result is equivalent to that of Ref. [64]:

P (x,t) = 1√
4πB1K τ (t/τ )λ1

∞∑
n=0

(−1)n

n!

(
B2

B1

)n(
t

τ

)(λ2−λ1)n

×H
2,1
2,3

[
|x|2

4B1K τ
(

t
τ

)λ1

∣∣∣∣ (1/2 − n,1),([λ2 − λ1]n − λ1/2 + 1,λ1)
(0,1),(1/2,1),(1/2,1)

]
. (82)

When the fractional exponents are equal, λ1 = λ2 = α and
B1 + B2 = 1, we recover the solution (12) for the monofrac-
tional diffusion equation [44] [compare relation (A12)]. By
using relation (A4) we can show that the PDF (82) is
normalized to 1.

B. MSD and fourth-order moment

Since the PDFs for the natural and modified-form
distributed-order diffusion equations have the same general
representation, the MSD in the present case according to
Eq. (39) becomes

〈x2(t)〉 = 2K τL −1

[
1

sIRL(sτ )

]
. (83)

By inverse Laplace transform for two exponents we find the
MSD [40]

〈x2(t)〉 = 2B1K τ

(
t

τ

)λ1

×E−1
λ2−λ1,λ1+1

(
−B2

B1

(
t

τ

)λ2−λ1
)

= 2B1K τ

(
t
τ

)λ1

�(1 + λ1)
+ 2B2K τ

(
t
τ

)λ2

�(1 + λ2)
. (84)

In comparison to the MSD (40) for the natural form distributed-
order diffusion equation we see that there is a very similar
representation in expression (84) for the modified form in
terms of the Mittag-Leffler function. Note that the third
parameter of the Mittag-Leffler function in Eq. (84) is equal
to −1, so if one uses the series representation (A13) of the
three-parameter Mittag-Leffler function only the first two
terms from the series are different from zero. This is the
case of accelerating subdiffusion [40], which means that at
short times the process shows anomalous subdiffusion with
a diffusion exponent λ1 and at long times subdiffusion with
an exponent λ2 that fulfills 1 > λ2 > λ1 > 0. The same result
for the MSD can be obtained if we use the PDF (82) and the
Mellin transform (A6) of the Fox H function. For a weight
function of the form p(λ) = B1δ(λ − α) + B2δ(λ − 1) one
obtains accelerating diffusion—from subdiffusive behavior
in the short-time limit to normal diffusive behavior in the
long-time limit.

The fourth-order moment

〈x4(t)〉 = 24(K τ )2L−1

[
1

sI 2
RL(sτ )

]
(85)

for the modified-form distributed-order diffusion equation is
given by

〈x4(t)〉 = 24(B1K τ )2
(

t

τ

)2λ1

×E−2
λ2−λ1,2λ1+1

(
−B2

B1

(
t

τ

)λ2−λ1
)

= 24(K τ )2

[
B2

1

(
t
τ

)2λ1

�(2λ1 + 1)

+ 2B1B2

(
t
τ

)λ1+λ2

�(λ1 + λ2 + 1)
+B2

2

(
t
τ

)2λ2

�(2λ2 + 1)

]
, (86)

from which the short-time limit B2
B1

( t
τ

)λ2−λ1 � 1 follows as

〈x4(t)〉 ∼ 24(B1K τ )2

(
t
τ

)2λ1

�(2λ1 + 1)
. (87)

The long-time limit B2
B1

( t
τ

)λ2−λ1 	 1 is

〈x4(t)〉 ∼ 24(B2K τ )2

(
t
τ

)2λ2

�(2λ2 + 1)
. (88)

The case of the modified-form distributed-order diffusion
equation with three and N fractional exponents is given in
Appendix B.

A graphical representation of the MSD (84) is shown in
Fig. 6 in which one can see the asymptotic behaviors of the
MSD. The fourth-order moment (86) is presented as well.

C. CTRW model

We now consider the CTRW model (19) related to the
modified-form distributed-order diffusion equation (77) cor-
responding to a finite variance of the jump length distribution.
According to the above, the underlying waiting-time PDF in
Laplace space form becomes

ψRL(s) = 1

1 + IRL(sτ )
. (89)
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FIG. 6. (Color online) Double-logarithmic representation of the
MSD (84) for K τ = 1/2, B1 = B2 = 1/2, λ1 = 1/4, and λ2 = 1
(blue solid line); λ2 = 3/4 (red dashed line); and λ2 = 1/2 (green
dot-dashed line). Inset: Fourth-order moment (86) for the same values
of parameters.

Here IRL(sτ ) is given by Eq. (78). In Fourier-Laplace space the
PDF is then the solution of the modified-form distributed-order
diffusion equation. Using relations (78) and (89) we obtain the
explicit form of the waiting-time PDF in Laplace space,

ψRL(s) = 1

1 + [ ∫ 1
0 (sτ )−λp(λ)

]−1
dλ

. (90)

For the case of two fractional exponents, from Eq. (A17) of
the three-parameter Mittag-Leffler function we find that

ψRL(t) = L −1

[
1

1 + 1
B1(sτ )−λ1 +B2(sτ )−λ2

]

= B1

τ

(
t

τ

)λ1−1 ∞∑
n=0

(−1)nBn
1

(
t

τ

)λ1n

×E
−(n+1)
λ2−λ1,λ1n+λ1

(
−B2

B1

(
t

τ

)λ2−λ1
)

. (91)

The waiting-time PDF (91) has a very similar representation
as that for the natural form, Eq. (50). The third parameter
of the Mittag-Leffler function in expression (91) is equal to
−(n + 1) allowing us to represent ψRL(t) in terms of a binomial
expansion and using the binomial coefficients. Again, for B1 =
0, B2 = 1, and λ2 → α by help of relation (91) we obtain the
result (21) for the waiting-time PDF for a single fractional
exponent. The same result follows if we use λ1 = λ2 = α and
B1 + B2 = 1 in Eq. (91).

The limiting cases encoded in Eq. (91) are given in terms
of

ψRL(t) ∼ B1

τ

(
t
τ

)λ1−1

�(λ1)
(92)

for B2
B1

( t
τ

)λ2−λ1 � 1 and

ψRL(t) ∼ λ2
1

B2τ

(
t
τ

)−λ2−1

�(1 − λ2)
(93)

for B2
B1

( t
τ

)λ2−λ1 	 1. Accordingly the smaller exponent dom-
inates the short-time behavior and the larger exponent the
long-time asymptote.

What is the physical meaning of the modified-form
distributed-order diffusion equation? The characteristic
function of the random process governed by the
monofractional diffusion equation is represented in terms
of the Mittag-Leffler function (10). Thus, if we consider
a process x(t) which is the sum of two independent
CTRW processes x1(t) and x2(t) characterized by fractional
exponents λ1 and λ2, respectively, for the characteristic
function P (k,t) = 〈exp[ikx(t)]〉 it follows that

P (k,t) = 〈exp{ik[x1(t) + x2(t)]}〉
= 〈exp[ikx1(t)]〉〈exp[ikx2(t)]〉

= Eλ1

(
−K1τk2

(
t

τ

)λ1
)

Eλ2

(
−K2τk2

(
t

τ

)λ2
)

. (94)

To lowest order in the wave mode k we have

P (k,t) ∼ 1 − k2

[
K1τ

(
t
τ

)λ1

�(λ1 + 1)
+ K2τ

(
t
τ

)λ2

�(λ2 + 1)

]
(95)

from which we find that after Laplace transform

P (k,s) ∼ 1

s
− k2[K1τ (sτ )−λ1−1 + K2τ (sτ )−λ2−1]. (96)

If we now go back to the solution (79) of the bifractional case
and consider a similar expansion there, we again arrive at
(96) with Ki = K Bi for i = 1,2. Thus we see that at large
distances—corresponding to small k—the process governed
by the bifractional diffusion equation in the modified form
can be viewed as a composition of two independent CTRW
processes.

Analogously it can be shown that the process governed
by the modified-form distributed-order diffusion equation
with N delta functions can be viewed as the limiting form
following a sum of N independent CTRW processes xi

with i = 1,2, . . . ,N with scaling exponents λi . Following the
terminology of Cox and Smith [74] this would correspond to
the pooling of CTRWs.

A graphical representation of the sum of two CTRWs for
different values of the parameters and at different times is
given in Figs. 7 and 8. The CTRW processes are independent
and start at the origin x = 0 at t = 0. As can be seen from
Fig. 7 for short times the smaller exponent is dominant while
in the long-time limit the CTRW with the larger exponent takes
over. The same domination is seen from the MSD interpolating
between a power-law asymptotic with slope λ1 at short times
and a power law with exponent λ2 in the long-time limit.
Figure 8(a) shows the PDFs of the composite process on a
semilogarithmic scale and Fig. 8(b) on a double-logarithmic
scale calculated at different times. At short times the composite
PDF is close to the PDF of the CTRW with λ1, while in the
long-time limit the transition occurs to the PDF with λ2.

D. Subordination approach

The same relations as for the natural form distributed-
order diffusion equation [Eqs. (53)–(55)] are valid for the
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FIG. 7. (Color online) Sample trajectories of two CTRWs x1

(red), x2 (blue), and the composite process (black) which is the sum of
x1 and x2. Parameters are λ1 = 0.3, Kλ1 = 3.06, λ2 = 0.75, Kλ2 =
0.138 [B1 = Kλ1/(Kλ1 + Kλ2 ) and B2 = Kλ2/(Kλ1 + Kλ2 )]. Inset:
MSD of the composite process x1 + x2 (solid line) with λ1 = 0.3,
Kλ1 = 3.06 and λ2 = 0.75, Kλ2 = 0.08. Dashed lines represent the
two limits tλ1 and tλ2 .

modified-form distributed-order diffusion equation, if instead
of IC(sτ ) we use IRL(sτ ) from Eq. (78). Thus, for the PDF
h(u,s) in double-Laplace space for the case of two fractional
exponents one finds

h(u,s) = − ∂

∂u

1

s
e−u(B1τ

−λ1 s−λ1 +B2τ
−λ2 s−λ2 )−1

. (97)

The subordination representation for this process governed
by the modified-form distributed-order diffusion equation with
N fractional exponents (B7) was given in Ref. [75], where
the parent process is Brownian motion, that is, the same as
in the monofractal case, while the subordinator is a more
general Lévy process. Thus, the PDF P (x,t) has the form
given by Eqs. (25) and (26), where instead of Eq. (27)
we get h(u,s) = −(∂/∂u)[exp{−uIRL(sτ )}/s] with IRL(sτ ) =
(
∑N

i=1 Biτ
−λi s−λi )−1, proven to be a Bernstein function [75].

E. Scaling properties

For the modified-form distributed-order diffusion equation
we use the same relations (68) and (72) for the qth-order
moment as for the natural form, simply changing IC(sτ ) for
IRL(sτ ). From substitution of relation (78) for the bifractional
case in Eq. (72) we find

〈|x|q(t)〉 = �(q + 1)(B1K τ )q/2τ−λ1q/2

×L −1

⎡
⎣ s−λ2q/2−1(

sλ2−λ1 + B2
B1

τ−(λ2−λ1)
)−q/2

⎤
⎦

= �(q + 1)(B1K τ )q/2
(

t

τ

)λ1q/2

×E
−q/2
λ2−λ1,λ1q/2+1

(
−B2

B1

(
t

τ

)λ2−λ1
)

, (98)

FIG. 8. (Color online) PDF of the sum of two CTRWs with
λ1 = 0.3, Kλ1 = 3.06 and λ2 = 0.75, Kλ2 = 0.138 calculated for t =
10, t = 102, t = 103, t = 104, and t = 105. Dashed lines represent
the PDF of the single CTRW process with λ1 = 0.3, Kλ1 = 3.06
calculated for t = 10, t = 102; dashed-dotted lines represent the PDF
of the single CTRW with λ2 = 0.75, Kλ2 = 0.138 calculated for t =
104 and t = 105 [B1 = Kλ1/(Kλ1 + Kλ2 ), B2 = Kλ2/(Kλ1 + Kλ2 )].
(b) Same as in (a) in double-logarithmic scale.

by virtue of the Laplace transform formula (A17) for the
three-parameter Mittag-Leffler function. This relation is very
similar to expression (45) for the natural form distributed-order
diffusion equation. The limiting behaviors become

〈|x|q(t)〉 ∼ �(q + 1)(B1K τ )q/2

(
t
τ

)λ1q/2

�(1 + λ1q/2)

×
[

1 + q

2

B2

B1

�(λ1q/2 + 1)(t/τ )λ2−λ1

�(λ1q/2 + 1 + λ2 − λ1)

]
(99)

for B2
B1

( t
τ

)λ2−λ1 � 1 and

〈|x|q(t)〉 ∼ �(q + 1)(B1K τ )q/2

(
t
τ

)λ2q/2

�(1 + λ2q/2)

×
[

1 + q

2

B1

B2

�(λ2q/2 + 1)(t/τ )λ1−λ2

�(λ2q/2 + 1 + λ1 − λ2)

]
(100)

for B2
B1

( t
τ

)λ2−λ1 	 1. Thus, we see that similar to the natural
form, in the limit cases the qth-order moments can be
represented in the form of Eq. (72). Following the same
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FIG. 9. (Color online) Second derivative with respect to q of
c3(q) (blue line) and c4(q) (red line), for λ1 = 1/2 and λ2 = 7/8.

procedure as in Sec. III E for μRL(q,t) we find that

μRL(q,t) ∼
⎧⎨
⎩

λ1q/2 + c3(q) (t/τ )λ2−λ1

log(τ/t)

λ2q/2 + c4(q) (t/τ )λ1−λ2

log(t/τ )

(101)

for B2
B1

( t
τ

)λ2−λ1 � 1 and 	1, respectively. Here

c3(q) = −q

2

B2

B1

�(λ1q/2 + 1)

�(λ1q/2 + 1 + λ2 − λ1)
, (102)

as well as

c4(q) = q

2

B1

B2

�(λ2q/2 + 1)

�(λ2q/2 + 1 + λ1 − λ2)
, (103)

whose form is quite similar to those of the natural form
[compare with Eqs. (73)–(75)].

The difference with the natural form is seen from a
comparison of Fig. 5 with the graphical representation of the
second derivatives of c3(q) and c4(q) with respect to q in
Fig. 9. The signs of c′′

3(q) and c′′
4(q) are the same as the sign of

the second derivative of μRL(q,t) with respect to q for fixed
time t . From the figure we find that μRL(q,t) is concave, in
contrast to the natural form for which it is a convex function.
However, similarly to the natural form, the second derivative
of μRL(q,t) with respect to q tends to zero for large values
of q, which implies that as in the natural case, the underlying
process becomes more monofractional with increasing order
of the moment.

V. DISCUSSION

Conventional CTRW processes with scale-free waiting-
time distributions characterized by a single scaling exponent
are equivalent to the fractional diffusion equation and can
alternatively be expressed through the subordination approach
in the limit of long times or small Laplace variables. For
more general processes leading to distributed-order diffusion
equations, two different physical scenarios arise, leading to the
natural and modified forms of the resulting dynamic equations.
For the bifractional case considered here the natural form
distributed-order diffusion equation is equivalent to a waiting-
time distribution, which features different scaling exponents
λ1 and λ2 for short and long waiting times. Conversely, a

process x(t) representing the sum of two independent CTRW
processes x1(t) and x2(t) with fractional exponents λ1 and λ2

leads to the modified form.
We here presented a comparative study of natural and

modified forms of the distributed-order diffusion equation
underlining the relevance of the three-parameter Mittag-Leffler
function in the analysis of the PDFs, MSDs, waiting-time
PDFs, and qth moments for natural and modified distributed-
order diffusion equations. We provided analytical results
for the PDF and MSD in terms of this three-parameter
Mittag-Leffler function and the Fox H function for the
case of distributed-order diffusion equations with two and
three fractional exponents. We also discussed that by using
the same approach and the properties of three parameter
and multinomial Mittag-Leffler functions one may analyze
distributed-order diffusion equations with N fractional expo-
nents. We analyzed the short- and long-time limits and showed
that the considered models are useful to describe subdiffusion
processes which as function of time are accelerating and
decelerating in terms of the anomalous diffusion exponent.
New results were provided for the CTRW model corresponding
to the distributed-order diffusion equations in both natural and
modified forms, and the corresponding waiting-time PDFs in
terms of an infinite series in three-parameter Mittag-Leffler
functions were obtained. Connections to previously considered
CTRW models were drawn.

The subordination scheme for processes described by
distributed-order diffusion equations was analyzed in detail.
This technique is important in the construction of solutions
from the Brownian case, in particular, for numerical ap-
proaches. Analytical results for the subordinators for natural
and modified-form distributed-order diffusion equations with
respect to the Wiener process were presented. The Langevin
picture of the natural form distributed-order diffusion equation
with two fractional exponents and the stochastic representation
of the processes governed by the modified-form distributed-
order diffusion equation are discussed. Details of the multiscal-
ing properties of the distributed-order diffusion equations were
presented. In particular, we found the functional dependence
of the exponent μ on the moment’s order q and time t .

Distributed-order diffusion equations have appeared in an
increasing number of studies involving more elaborate stochas-
tic phenomena. We hope that this unifying and systematic
study of distributed-order diffusion equations will find wide
applications.
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APPENDIX A: SOME DETAILS ON SPECIAL FUNCTIONS

In this Appendix we provide the definitions and some useful
relations for the special functions used in the main text.
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1. Fox H function

The Fox H function is defined in terms of the Mellin-Barnes
integral [76]

Hm,n
p,q

[
z

∣∣∣∣(a1,A1), . . . ,(ap,Ap)
(b1,B1), . . . ,bq,Bq)

]
= 1

2πı

∫
�

θ (s)zsds,

(A1)

where

θ (s) =
∏m

j=1 �(bj − Bjs)
∏n

j=1 �(1 − aj + Ajs)∏q

j=m+1 �(1 − bj + Bjs)
∏p

j=n+1 �(aj − Ajs)
,

(A2)

with 0 � n � p, 1 � m � q, ai,bj ∈ C, Ai,Bj ∈ R+, i =
1, . . . ,p, and j = 1, . . . ,q. The contour �, starting at c − i∞
and ending at c + i∞, separates the poles of the function
�(bj + Bjs), j = 1, . . . ,m from those of the function �(1 −
ai − Ais), i = 1, . . . ,n.

The H function is symmetric in the pairs
(a1,A1), . . . ,(an,An), likewise (an+1,An+1), . . . ,(ap,Ap);
in (b1,B1), . . . ,(bm,Bm) and (bm+1,Bm+1), . . . ,(Bq,Bq) [76].
This property is used to reduce Eq. (38) to the solution (12) of
the monofractional diffusion equation.

The Fox H function has the scaling property [76]

Hm,n
p,q

[
zδ

∣∣∣∣(ap,Ap)

(bq,Bq)

]
= 1

δ
Hm,n

p,q

[
z

∣∣∣∣(ap,Ap/δ)

(bq,Bq/δ)

]
, (A3)

where δ > 0.
The Mellin transform of the H - function is given by [76]

∫ ∞

0
xξ−1Hm,n

p,q

[
ax

∣∣∣∣(ap,Ap)
(bq,Bq)

]
dx = a−ξ θ (−ξ ), (A4)

where θ (−ξ ) is defined in relation (A1). This property is used
to show the normalization of the PDFs and for the calculation
of the MSDs (40), (84), (B4), and (B12). For instance, we
have

∫ ∞

0
H

2,0
1,2

[
ax

∣∣∣∣(a1,A1)
(b1,B1),(b2,B2)

]
dx

= a−1θ (−1) = a−1 �(b1 + B1)�(b2 + B2)

�(a1 + A1)
(A5)

and

∫ ∞

0
x2H

2,0
1,2

[
ax

∣∣∣∣(a1,A1)
(b1,B1),(b2,B2)

]
dx = a−3θ (−3) = a−3 �(b1 + 3B1)�(b2 + 3B2)

�(a1 + 3A1)
. (A6)

The Mellin-cosine transform of the Fox H function is given by [76]∫ ∞

0
kρ−1 cos(kx)Hm,n

p,q

[
akδ

∣∣∣∣(ap,Ap)

(bq,Bq)

]
dk = π

xρ
H

n+1,m
q+1,p+2

⎡
⎣xδ

a

∣∣∣∣∣∣
(1 − bq,Bq),

(
1 + ρ

2 , δ
2

)
(ρ,δ),(1 − ap,Ap),

(
1 + ρ

2 , δ
2

)
⎤
⎦, (A7)

where

Re

(
ρ + δ min

1�j�m

(
bj

Bj

))
> 1, xδ > 0, (A8)

Re

(
ρ + δ max

1�j�n

(
aj − 1

Aj

))
<

3

2
, | arg(a)| < πθ/2, (A9)

θ =
n∑

j=1

Aj −
p∑

j=n+1

Aj +
m∑

j=1

Bj −
q∑

j=m+1

Bj > 0. (A10)

The following formulas hold true [76]:

Hm,n
p,q

[
ηω

∣∣∣∣(a1,A1), . . . ,(ap,Ap)

(b1,B1), . . . ,(bq,Bq)

]
= ηb1/B1

∞∑
r=0

(1 − η1/B1 )r

r!
Hm,n

p,q

[
ω

∣∣∣∣ (a1,A1), . . . ,(ap,Ap)

(b1 + r,B1), . . . ,(bq,Bq)

]
(A11)

and

Hm,n
p,q

[
ηω

∣∣∣∣(a1,A1), . . . ,(ap,Ap)

(b1,B1), . . . ,(bq,Bq)

]
= η(a1−1)/A1

∞∑
r=0

(1 − η−(1/A1))r

r!
Hm,n

p,q

[
ω

∣∣∣∣ (a1 − r,A1), . . . ,(ap,Ap)

(b1,B1), . . . ,(bq,Bq)

]
. (A12)

2. Three-parameter and multinomial Mittag-Leffler functions

The three-parameter Mittag-Leffler function is defined by
[65]

Eδ
α,β(z) =

∞∑
k=0

(δ)k
�(αk + β)

zk

k!
, (A13)

where (δ)k = �(δ + k)/�(δ) is the Pochhammer symbol.
The one-parameter Mittag-Leffler function Eα(z) and the
two-parameter Mittag-Leffler function Eα,β (z) are special
cases of the three-parameter Mittag-Leffler function if we use
β = δ = 1 and δ = 1, respectively. For the three-parameter
Mittag-Leffler function one can use the following formula
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FIG. 10. (Color online) Double-logarithmic representation of the
three-parameter Mittag-Leffler function (A13) for α = 3/4, β = 1,
and δ = 1/2 (blue solid line). The red dashed line is the stretched
exponential function (A15) and the green dot-dashed line is the power-
law function (A16) for the same values of parameters.

[66,71,77] (see also [78–80] for the two-parameter Mittag-
Leffler function):

Eδ
α,β(−z) = z−δ

�(δ)

∞∑
n=0

�(δ + n)

�(β − α(δ + n)

(−z)−n

n!
(A14)

for |z| > 1. For the three-parameter Mittag-Leffler function
appearing in the solutions of fractional relaxation and diffu-
sion equations [67–69] as well as the generalized Langevin
equation (GLE) with different memory kernels [66,70,71,81],
the short-time behavior is of stretched exponential form

[see Eq. (A13)]

Eδ
α,β (−tα) ∼ 1

�(β)
− δ

tα

�(α + β)

∼ 1

�(β)
exp

(
−δ

�(β)

�(α + β)
tα
)

. (A15)

Conversely, at long times from relation (A14) we obtain the
power-law decay

Eδ
α,β (−tα) ∼ t−αδ

�(β − αδ)
. (A16)

Figure 10 shows the behavior of the three-parameter Mittag-
Leffler function and its transition from stretched exponential
to power-law behavior. Here we note that the convergence of
the series representation of the three-parameter Mittag-Leffler
function is shown in [70] and further elaborated in [82].

The Laplace transform of the three-parameter Mittag-
Leffler function (A13) is given by [65]

L
[
tβ−1Eδ

α,β(±atα)
]
(s) = sαδ−β

(sα ∓ a)δ
(A17)

for Re(s) > |a|1/α . In Ref. [68] a numerical approximation of
the three-parameter Mittag-Leffler function, which is useful
for the description of nonexponential relaxation laws [67,69],
is presented. Reference [83] introduces the two-parameter
Mittag-Leffler function with negative α.

There are further generalizations of the Mittag-Leffler
functions. One of those is the multinomial or multivariate
Mittag-Leffler function [84,85] defined by

E(a1,a2,...,aN ),b(z1,z2, . . . ,zN ) =
∞∑

j=1

k1+k2+···+kN=j∑
k1�0,k2�0,...,kN �0

(
j

k1 k2 · · · kN

) ∏N
i=1 (zi)ki

�
(
b +∑N

i=1 aiki

) , (A18)

where

(
j

k1 k2 · · · kN

)
= j !

k1!k2!...kN !
(A19)

are the so-called multinomial coefficients. It was recently
shown [71] that the multinomial Mittag-Leffler function
plays an important role in the representation of the MSD,
the time-dependent diffusion coefficient, and the velocity
autocorrelation function of a GLE of a free particle driven
by a mixture of internal independent Dirac delta, power-law,
and Mittag-Leffler noises.

The three-parameter Mittag-Leffler function (A13) is a
special case of the Fox H function [76]

Eδ
α,β (−z) = 1

�(δ)
H

1,1
1,2

[
z

∣∣∣∣ (1 − δ,1)
(0,1),(1 − β,α)

]
. (A20)

3. Wright-type functions

The auxiliary functions of the Wright-type or Mainardi
function is defined by

Mα(y) =
∞∑

n=0

1

�(−αn + 1 − α)

(−y)n

n!
. (A21)

It is related to the Fox H function in the following way [49]:

Mα(y) = H
1,0
1,1

[
y

∣∣∣∣(1 − α,α)
(0,1)

]
. (A22)

The one-sided Lévy stable probability density Lα(y) can be
represented through the Mainardi function as [86]

Lα(t) = α

tα+1
Mα

(
1

tα

)
, (A23)

which has the Laplace transform

Lα(t) = L −1[e−sα

]. (A24)
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APPENDIX B: FURTHER GENERALIZATIONS OF
DISTRIBUTED-ORDER DIFFUSION EQUATIONS

In what follows we provide additional results for the natural
and modified-form distributed-order diffusion equations with
three and N fractional exponents.

1. Natural form

Consider the case of three different fractional exponents,

p(λ) = B1δ(λ − λ1) + B2δ(λ − λ2) + B3δ(λ − λ3), (B1)

where 0 < λ1 < λ2 < λ3 < 1, B1,B2,B3 > 0, and B1 + B2 +
B3 = 1. For the PDF in the Fourier-Laplace space one finds

P (k,s) = 1

s

B3(sτ )λ3 + B2(sτ )λ2 + B1(sτ )λ1

B3(sτ )λ3 + B2(sτ )λ2 + B1(sτ )λ1 + K τk2
.

(B2)
Application of the inverse Laplace transform to expression
(B2), where we use the series expansion method given in
Ref. [35] and the Laplace transform formula (A17) for the
three-parameter Mittag-Leffler function, and then employing
inverse Fourier transform [see Eq. (A7)] one finds

P (x,t) = 1√
4π K τ

B3

(
t
τ

)λ3

∞∑
n=0

(−1)n

n!

(
B2

B3

)n(
t

τ

)(λ3−λ2)n+λ3 n∑
j=0

(
n

j

)(
B1

B2

)j(
t

τ

)(λ2−λ1)j

×
⎧⎨
⎩B3

B3

(
t

τ

)−λ3

H
2,0
1,2

⎡
⎣ x2

4K τ
B3

(
t
τ

)λ3

∣∣∣∣∣∣
([λ3 − λ2]n + [λ2 − λ1]j + 1 − λ3/2,λ3)
(0,1),(n + 1/2,1)

⎤
⎦

+ B2

B3

(
t

τ

)−λ2

H
2,0
1,2

⎡
⎣ x2

4K τ
B3

(
t
τ

)λ3

∣∣∣∣∣∣
([λ3 − λ2]n + [λ2 − λ1]j + λ3/2 − λ2 + 1,λ3)
(0,1),(n + 1/2,1)

⎤
⎦

+ B1

B3

(
t

τ

)−λ1

H
2,0
1,2

⎡
⎣ x2

4K τ
B3

(
t
τ

)λ3

∣∣∣∣∣∣
([λ3 − λ2]n + [λ2 − λ1]j + λ3/2 − λ1 + 1,λ3)
(0,1),(n + 1/2,1)

⎤
⎦
⎫⎬
⎭. (B3)

Using the PDF (B3) or relation (39) by employing a Mellin transform of the H function (A4) we represent the MSD in terms of
the convergent [70] infinite series in three-parameter Mittag-Leffler functions

〈x2(t)〉 = 2
K τ

B3

∞∑
n=0

(−1)n
(

B1

B3

)n(
t

τ

)(λ3−λ1)n+λ3

En+1
λ3−λ2,(λ3−λ1)n+λ3+1

(
−B2

B3

(
t

τ

)λ3−λ2
)

. (B4)

Note that in the limit B3 → 0, using the asymptotic expansion formula for the three-parameter Mittag-Leffler function (A14),
we obtain the MSD (40) in the case of two fractional exponents.

The short-time limit of Eq. (B4) yields

〈x2(t)〉 ∼ 2
K τ

B3

(
t

τ

)λ3

× Eλ3−λ2,λ3+1

(
−B2

B3

(
t

τ

)λ3−λ2
)

� 2
K τ

B3

(
t
τ

)λ3

�(1 + λ3)
, (B5)

and the long-time limit is

〈x2(t)〉 ∼ 2
K τ

B2

(
t

τ

)λ2

Eλ2−λ1,λ2+1

(
−B1

B2

(
t

τ

)λ2−λ1
)

∼ 2
K τ

B1

(
t
τ

)λ1

�(1 + λ1)
. (B6)

In the same way one can derive the PDF and the MSD for distributed-order diffusion equations with N different fractional
exponents,

p(λ) =
N∑

i=1

Biδ(λ − λi), (B7)

where 0 < λ1 < λ2 < · · · < λN < 1, Bi > 0, i = 1,2, . . . ,N , and
∑N

i=1 Bi = 1. For this case, one uses multinomial and three-
parameter Mittag-Leffler functions [35,71]. For the MSD we obtain

〈x2(t)〉 = 2
K τ

BN

(
t

τ

)λN

E(λN−λ1,λN −λ2,...,λN −λN−1),λN+1

(
− B1

BN

(
t

τ

)λN−λ1

, − B2

BN

(
t

τ

)λN−λ2

, . . . , − BN−1

BN

(
t

τ

)λN−λN−1
)

, (B8)
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where E(a1,a2,...,aN ),b(z1,z2, . . . ,zN ) is the multinomial Mittag-
Leffler function (A18).

The waiting-time PDF in the case of the three fractional
exponents can be obtained in the same way as above for
two fractional exponents from the series expansion method
[35]. One may apply the method of multinomial Mittag-Leffler
functions [71,84,85] as well.

For three fractional exponents the qth-order moments can
be represented through infinite series in the three-parameter
Mittag-Leffler functions,

〈|x|q(t)〉 = �(q + 1)

(
K τ

B3

)q/2 ∞∑
n=0

(−1)n

×
(

n + q/2 − 1
n

)(
B1

B3

)n(
t

τ

)(λ3−λ1)n+λ3q/2

×E
n+q/2
λ3−λ2,(λ3−λ1)n+λ3q/2+1

(
−B2

B3

(
t

τ

)λ3−λ2
)

, (B9)

where the series expansion approach [35] and the Laplace
transform formula (A17) were applied. The qth-order moment
in case of two fractional exponents (45) can be obtained
from relation (B9) in the limit B3 → 0. Then we apply the
asymptotic expansion formula (A14) to relation (B9) and use
the known relation(

n + q/2 − 1
n

)
= (q/2)n

n!
(B10)

for the Pochhammer symbol. The same type of analysis can be
pursued here in order to show that the qth-order moments
of natural form distributed-order diffusion equations with
three fractional exponents satisfy the relation (72), which is a
generalization of the qth-order moment for the monofractional
diffusion equation.

2. Modified form

The case of three different fractional exponents (B1) yields
the following result obtained by Saxena and Pagnini [44]:

P (x,t) =
∞∑

n=0

(−1)n

n!
(B2K τ )n

(
t

τ

)λ2n n∑
j=0

(
n

j

)(
B3

B2

)j(
t

τ

)(λ3−λ2)j

× 1

|x|2n+1
H

2,1
3,3

[
|x|2

B1K τ
(

t
τ

)λ1

∣∣∣∣∣(1,1),(λ2n + [λ3 − λ2]j + 1,λ1),(n + 1,1)
(2n + 1,2),(n + 1,1),(n + 1,1)

]

= 1√
4πB1K τ

(
t
τ

)λ1

∞∑
n=0

(−1)n

n!

(
B2

B1

)n(
t

τ

)(λ2−λ1)n n∑
j=0

(
n

j

)(
B3

B2

)j(
t

τ

)(λ3−λ2)j

×H
2,1
2,3

[
x2

4B1K τ
(

t
τ

)λ1

∣∣∣∣∣(1/2 − n,1),([λ2 − λ1]n + [λ3 − λ2]j + 1 − λ1/2,λ1)
(0,1),(1/2,1),(1/2,1)

]
. (B11)

From here we find the MSD, which is given by

〈x2(t)〉 = 2K τ

3∑
i=1

Bi

(
t
τ

)λi

�(1 + λi)
. (B12)

These results can be generalized to the case of N different
fractional exponents (B7) using the method given in [35,71].
For this case, from relation (83) for the MSD we obtain

〈x2(t)〉 = 2K τ

N∑
i=1

Bi

(
t
τ

)λi

�(1 + λi)
, (B13)

from where we conclude that accelerating subdiffusion ap-
pears, as was expected. Here we mentioned that in [75] the
corresponding Fokker-Planck equation in the presence of a
constant external force is studied.

The waiting-time PDF can be obtained by using either the
series expansion method given in Ref. [35] or the method of
multinomial Mittag-Leffler functions [84,85].

As previously we derive the qth-order moment in the case
of the three fractional exponents, given in terms of an infinite

series in three-parameter Mittag-Leffler functions,

〈|x|q(t)〉 = �(q + 1)(B1K τ )q/2
∞∑

n=0

(−1)n

×
(

n − q/2 − 1
n

)(
B3

B1

)n(
t

τ

)(λ3−λ1)n+λ1q/2

×E
n−q/2
λ2−λ1,(λ3−λ1)n+λ1q/2+1

(
−B2

B1

(
t

τ

)λ2−λ1
)

.

(B14)

We see that if B3 = 0 only the first term in the series is
different from zero and equals relation (87) for the case of
two fractional exponents. Using n = 0 in result (B14) obtains
the result for two fractional exponents. One can show in the
same way as above that the modified-form distributed-order
diffusion equation with three fractional exponents satisfies
relation (72) as well. We conclude that the qth-order moment
of the modified-form distributed-order diffusion with three
fractional exponents has a more complicated behavior than
that given by (15) and (16).
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