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Scaled Brownian motion (SBM) is widely used to model anomalous diffusion of passive tracers in complex and
biological systems. It is a highly nonstationary process governed by the Langevin equation for Brownian motion,
however, with a power-law time dependence of the noise strength. Here we study the aging properties of SBM for
both unconfined and confined motion. Specifically, we derive the ensemble and time averaged mean squared dis-
placements and analyze their behavior in the regimes of weak, intermediate, and strong aging. A very rich behavior
is revealed for confined aging SBM depending on different aging times and whether the process is sub- or superdif-
fusive. We demonstrate that the information on the aging factorizes with respect to the lag time and exhibits a func-
tional form that is identical to the aging behavior of scale-free continuous time random walk processes. While SBM
exhibits a disparity between ensemble and time averaged observables and is thus weakly nonergodic, strong aging
is shown to effect a convergence of the ensemble and time averaged mean squared displacement. Finally, we derive
the density of first passage times in the semi-infinite domain that features a crossover defined by the aging time.
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I. INTRODUCTION

Deviations from normal Brownian motion were reported
already in the work of Richardson on the spreading of tracers
in turbulent flows [1], and quantitative deviations from the
Brownian law are discussed by Freundlich and Krüger [2].
Today anomalous diffusion is typically defined in terms of the
power-law form

〈x2(t)〉 ∼ 2K∗
αtα (1)

of the mean squared displacement (MSD) [3,4]. Depending on
the value of the anomalous diffusion exponent we distinguish
the regimes of subdiffusion (0 < α < 1) and superdiffusion
(α > 1), including the special cases of Brownian motion (α =
1) and ballistic transport (α = 2). The generalized diffusion
coefficient K∗

α in Eq. (1) has the physical dimension cm2/sα .
Anomalous diffusion is observed in a wide range of

systems, including fields as diverse as charge carrier motion
in amorphous and polymeric semiconductors [5,6], dispersion
of chemicals in groundwater aquifers [7], particle dispersion
in colloidal glasses [8], or the motion of tracers in weakly
chaotic systems [9]. With the rise of experimental techniques
such as fluorescence correlation spectroscopy or advanced
single particle tracking methods, the discovery of anomalous
diffusion has gone through a sharp rise for the motion of
endogenous and artificial tracers in living biological cells
[10–15]. Concurrent to this development an increasing amount
of anomalous diffusion studies is reported in artificially
crowded environments mimicking aspects of the superdense
state of the cellular fluid [16,17]. Within and along lipid
membranes anomalous diffusion was found from experiment
and simulations [18].

*rmetzler@uni-potsdam.de

Brownian motion is intimately connected with the Gaussian
probability density function describing the spatial spreading
of a test particle as function of time. This Gaussian is
effected a forteriori by the central limit theorem, as Brownian
motion is well described on a stochastic level by the Wiener
process. Anomalous diffusion loses this universal character,
and instead different scenarios corresponding to the physical
setting need to be considered. Among the most popular models
we mention the Scher-Montroll continuous time random
walk (CTRW), in which individual jumps are separated by
independent, random waiting times [5,19]. If the distribution
of these waiting times is scale-free, subdiffusion emerges
[20]. Fractional Brownian motion and the closely related
fractional Langevin equation motion are stochastic processes
fueled by Gaussian yet power-law correlated noise [21,22].
Anomalous diffusion emerges when a conventional random
walker is confined to move on a matrix with a fractal dimension
[11,23,24]. Stochastic processes with multiplicative noise,
corresponding to a space-dependent diffusion coefficient, also
effect anomalous diffusion [25,26]. A contemporary summary
of different anomalous diffusion processes exceeding the scope
of this introduction is provided in Ref. [27].

Here we deal with the remaining of these popular
anomalous diffusion models, namely scaled Brownian motion
(SBM). SBM is defined in terms of the stochastic equation

dx(t)

dt
=

√
2K (t)ξ (t), (2)

with nonstationary increments. The process is driven by
white Gaussian noise of zero mean 〈ξ (t)〉 = 0 and with
autocorrelation 〈ξ (t1)ξ (t2)〉 = δ(t1 − t2). The explicitly time
dependent diffusion coefficient is taken as

K (t) = αK∗
αtα−1. (3)

We allow α to range in the interval (0,2), such that the process
describes both subdiffusion and subballistic superdiffusion.

1539-3755/2015/91(4)/042107(9) 042107-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.042107


SAFDARI, CHECHKIN, JAFARI, AND METZLER PHYSICAL REVIEW E 91, 042107 (2015)

The idea of a power-law time dependent diffusion coefficient
is essentially dating back to Batchelor (albeit he used α = 3)
in his approach to Richardson turbulent diffusion [28]. SBM,
especially in its subdiffusive form, is widely used to describe
anomalous diffusion [29], albeit it is unsuitable as a physical
model for systems coupled to a thermal reservoir, due to the
explicit time dependence of the diffusion coefficient K (t).
SBM was studied systematically in Refs. [26,30–32].

In stationary systems correlations measured between two
times t1 and t2 are typically solely functions of the time
difference f (|t1 − t2|). In nonstationary systems this func-
tional dependence is generally more involved, e.g., it can
acquire the form f (t2/t1) [33]. In such a nonstationary setting
the origin of time can no longer be chosen arbitrarily. This
raises the question of aging, that is, the explicit dependence
of physical observables on the time span ta between the
original preparation of the system and the start of the
recording of data. Traditionally, aging is considered a key
property of glassy systems [34]. The aging time ta can be
adjusted deliberately in certain experiments, such as for the
time of flight measurements of charge carriers in polymeric
semiconductors in which the system is prepared by knocking
out the charge carriers by a light flash [6]. Similarly, aging
could be checked directly in blinking quantum dot systems,
in which the initiation time is given by the first exposure of
the quantum dot to the laser light source. In other systems,
for instance, the motion of tracers in living biological cells,
the aging time is not always precisely defined. In such cases
it is therefore important to have cognisance of the functional
effects of aging as developed here.

In the following we will analyze in detail the aging
properties encoded in the SBM dynamics in both unconfined
and confined settings. For free aging SBM in Sec. II we
show that the result for the time averaged MSD factorizes
into a term containing all the information on the aging time
ta and another capturing the physically relevant dependence
on the lag time �. This factorization is identical to that of
heterogeneous diffusion processes and scale-free, subdiffusive
CTRW processes. In Sec. III we explore the aging dynamics of
confined SBM. For increasing aging time ta it is demonstrated
that the nonstationary features of SBM under confinement are
progressively washed out, a feature, which is important for the
evaluation of measured time series. Section IV reports the first
passage time density on a semi-infinite domain for aged SBM
which includes a crossover between two scaling regimes as a
result of the additional time scale introduced by ta . Finally,
Sec. V concludes this paper.

II. AGING EFFECT ON UNCONFINED SBM

The position autocorrelation function (covariance) for SBM
in the conventional (ensemble) sense reads [30]

〈x(t1)x(t2)〉 = 2K∗
α min(t1,t2)α. (4)

For an aged process, in which we measure the MSD starting
from the aging time ta until time t , the result for the MSD thus
becomes

〈x2(t)〉a = 〈[x(ta + t) − x(ta)]2〉 = 2K∗
α

[
(t + ta)α − tαa

]
.

(5)

For a nonaged process with ta = 0 the standard scaling (1) of
the MSD is recovered, as it should. In the aged process, the
MSD (5) is reduced by the amount accumulated until time ta , at
which the measurement starts. The limiting cases of expression
(5) interestingly reveal the crossover behavior

〈x2(t)〉a =
{

2αK∗
αtα−1

a t, ta � t,

2K∗
αtα, t � ta.

(6)

While for weak aging (ta � t) the aged MSD (5) becomes
identical to the nonaged form (1), for strong aging (ta � t) the
scaling with the process time t is linear and thus, deceivingly,
identical to that of normal Brownian diffusion. However, the
presence of the power tα−1

a is reminiscent of the anomaly α

of the process. We note that the behavior (5) and thus (6) is
identical to the result for the subdiffusive CTRW [35,36] as
well as aged heterogeneous diffusion processes with a power-
law form of the position dependent diffusivity [37].

In single particle tracking experiments [38–41] one mea-
sures the time series x(t) of the position of a labeled particle,
which is then typically evaluated in terms of the time averaged
MSD. For an aged process originally initiated at t = 0 and
measured from ta for the duration (measurement time) t this
time averaged MSD is defined in the form [36]

δ2
a(�) = 1

t − �

∫ t+ta−�

ta

[x(t ′ + �) − x(t ′)]2dt ′ (7)

as a function of the lag time � and the aging time ta . Averaging
over an ensemble of N individual trajectories in the form

〈
δ2
a(�)

〉
= 1

N

N∑
i=1

δ2
a,i(�), (8)

the structure function 〈[x(t ′ + �) − x(t ′)]2〉 in the integral of
expression (7) can be evaluated in terms of the covariance (4).
The exact result reads〈

δ2
a(�)

〉
= 2K∗

α

(α + 1)(t − �)

[
(t + ta)α+1 − (ta + �)α+1

− (t + ta − �)α+1 + tα+1
a

]
. (9)

In the absence of aging, we recover the known result [26,31,32]〈
δ2(�)

〉
∼ 2K∗

α

�

t1−α
. (10)

Its linear lag time dependence contrasts the power-law form
of the ensemble averaged MSD (1) and thus demonstrates that
this process is weakly nonergodic in the sense of the disparity
[27,42,43] 〈

δ2(�)
〉
	= 〈x2(�)〉. (11)

The equivalence and therefore ergodicity in the Boltzmann
sense is only restored in the Brownian case α = 1. In the
presence of aging, expansion of expression (9) in the limit
t,ta � � of short lag times yields〈

δ2
a(�)

〉
∼ �α(ta/t)

〈
δ2(�)

〉
, (12)

in which we defined the so-called aging depression as

�α(z) = (1 + z)α − zα. (13)
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In this experimentally relevant limit all the information on the
age of the process is thus contained in the aging depression
�α , and the physically important dependence on the lag time �

factorizes, such that Eq. (12) contains the nonaged form (10).
Result (12) is identical to the behavior of aged subdiffusive
CTRW [36] and heterogeneous diffusion processes [25]. In
the limit ta � t of strong aging, the time averaged MSD (9)
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FIG. 1. (Color online) Ensemble and time averaged MSD for
SBM with α = 1/2. Thin lines: Time averaged MSD for 20 individual
trajectories from simulations of the SBM Langevin equation (2) with
trajectory length t = 105. Circles: Averages over those 20 trajectories.
Black thin line: Theory result (12). Thick green line: Ensemble
averaged MSD (5). Three different aging times were considered (top
to bottom): (a) nonaged case ta = 0, (b) weak aging case ta = 103,
and (c) strong aging case ta = 106. In all simulations K∗

α = 1/2 in
the following, unless otherwise indicated.

remarkably reduces to the form〈
δ2
a(�)

〉
= 2αK∗

αtα−1
a �. (14)

In this limit the time averaged MSD thus becomes equivalent
to the aged ensemble averaged MSD, 〈δ2

a(�)〉 = 〈x2(�)〉a , as
evidenced by comparison with result (5). In this limit, that is,
ergodicity is apparently restored, as already observed for aged
CTRW processes [36].

Figure 1 shows the behavior of the ensemble and time
averaged MSD for unconfined SBM at different aging times
in the subdiffusive case with α = 1/2. The thin lines depict
the simulations results for the time averaged MSD for
20 individual trajectories. The first observation is that the
amplitude spread between these 20 time traces is fairly small.
Note that the larger scatter for longer lag times � is due to
worsening statistics when � approaches the trace length t .
The circles in Fig. 1 correspond to the average over the 20
different results for the time averaged MSD. The latter compare
very nicely with the theoretical expectation (12). Finally, the
thick green line is the theoretical result (5) for the ensemble
averaged MSD. The detailed behavior in the three different
aging regimes is as follows:

(i) In the nonaged case (ta = 0, top panel of Fig. 1) the
power-law growth 〈x2(t)〉 
 tα of the MSD contrasts the linear
form 〈δ2(�)〉 
 �, this disparity being at the heart of the weak
ergodicity breaking [26,31,32].

(ii) In the weak aging case (ta = 103, middle panel of
Fig. 1) a major change is visible in the behavior of the MSD,
namely, we see the crossover from the aging-dominated linear
scaling 〈x2(t)〉 
 tα−1

a t to the anomalous scaling 〈x2(t)〉 
 tα ,
encoded in Eqs. (6). The behavior of the time averaged MSD
is largely unchanged in comparison to case (i).

(iii) In the strong aging case (ta = 106, bottom panel of
Fig. 1) we see the apparent restoration of ergodicity: ensemble
and time averaged MSDs coincide, as given by Eq. (14).

The convergence of the ensemble and time averaged MSDs
in the strong aging case for the superdiffusive case with α =
3/2 is nicely corroborated in Fig. 2.
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FIG. 2. (Color online) Ensemble and time averaged MSD for
SBM (2) with α = 3/2 in the strong aging case, ta = 106. The
observation time is t = 105. The spread of the 20 single trajectory time
averages is fairly small. As before, the ensemble and time averaged
MSDs coincide, apparently restoring ergodicity.
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III. AGING EFFECT ON CONFINED SBM

In many cases an observed particle cannot be considered
free during the observation. Examples contain particles mov-
ing in confined space, for instance, within the confines of
living biological cells [14,44]. Similarly, particles measured
in optical tweezer setups experience a confining Hookean
force [12,17,45]. As a generic example for confined SBM we
consider the linear restoring force −kx(t) with force constant
k. The corresponding stochastic equation for this confined
SBM reads [32]

dx(t)

dt
= −kx(t) +

√
2αK∗

αt (α−1)ξ (t), (15)

where, as before, ξ (t) represents white Gaussian noise of
zero mean. The covariance in this confined case yields in the
form [32]

〈x(t1)x(t2)〉 = 2K∗
αtα1 e−k(t1+t2)M(α,α + 1,2kt1), (16)

for t1 < t2 in terms of the confluent hypergeometric function of
the first kind, also referred to as the Kummer function [32,46].
Based on this result we now present the ensemble and time
averaged MSDs.

A. Ensemble averaged MSD of confined SBM

The ensemble averaged MSD for aging SBM, 〈x2(t)〉a =
〈[x(ta + t) − x(ta)]2〉 becomes

〈x2(t)〉a = 2M1(ta + t) + 2M1(ta) − 4e−ktM1(ta), (17)

where we used the abbreviation

M1(t) = K∗
αtα exp(−2kt)M(α,α + 1,2kt). (18)

In the limit k → 0 of vanishing confinement, Eq. (5) for
free SBM is readily recovered from the property M(α,α +
1,0) = 1.

We now discuss the result (17) in the three limits of the
nonaged, weakly aged, and strongly aged processes. The
analysis reveals a rich behavior depending on the values of
the aging time ta and the anomalous diffusion exponent α. For
sub- and superdiffusion, respectively, the various crossovers
are displayed in Figs. 3 and 4.

(i) In the absence of aging (ta = 0) we get back to the result

〈x2(t)〉 = 2M1(t) (19)

reported in Ref. [32]. For t � 1/k this reduces to the nonaged
free SBM result (1), while in the long time limit t � 1/k we
use the expansion

M(α,α + 1,z) ∼ α
exp(z)

z
(20)

of the Kummer function to obtain [32]

〈x2(t)〉 ∼ αK∗
α

k
tα−1. (21)

This result underlines the inherently nonstationary character of
SBM: for subdiffusion the MSD 〈x(t)2〉 progressively decays,
while for superdiffusion it increases. This property reflects the
time dependence of the temperature encoded in the diffusivity
(3) [32]. This nonaged behavior is shown in Figs. 3 and 4
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FIG. 3. (Color online) Ensemble averaged MSD 〈x2(t)〉 for con-
fined aging SBM in the subdiffusive case with α = 0.5 and Kα = 1
at different aging times: (i) nonaged (ta = 0) denoted by the gray
lines; (ii) weakly aged (ta = 0.1) denoted by the blue lines; and
(iii) strongly aged (ta = 106) denoted by the orange lines. In all
cases, the full lines correspond to the force constant k = 0.1, while
the dashed lines stand for k = 0.01. The green line at the bottom of
the graph is a blowup [〈x2(t)〉4 of the case ta = 106 and k = 0.1] in
which the crossover between the two plateaux is more visible.

as the gray lines for two different strengths k of the external
confining potential. How does aging modify this behavior?

(ii) We first consider the case ta � 1/k. If in addition
t � 1/k, this is but the above result (5) for free aging SBM.
However, care needs to be taken when t � 1/k. From Eq. (17)
we find that the first two terms (the third one is exponentially
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FIG. 4. (Color online) Ensemble averaged MSD 〈x2(t)〉 for con-
fined aging SBM in the superdiffusive case with α = 1.5 and Kα = 1
at different aging times: (i) nonaged (ta = 0) denoted by the gray
lines; (ii) weakly aged (ta = 0.1) denoted by the blue lines; and
(iii) strongly aged (ta = 106) denoted by the orange lines. In all
cases, the full lines correspond to the force constant k = 0.1, while
the dashed lines stand for k = 0.01. In all cases the terminal scaling

tα−1 is reached.
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small in t and can be neglected) lead to the asymptotic behavior

〈x2(t)〉a ∼ αK∗
α

k
tα−1 + 2K∗

αtαa . (22)

This implies that for subdiffusion (0 < α < 1) the first term
tends to zero and the leading behavior is the plateau

〈x2(t)〉a ∼ 2K∗
αtαa . (23)

Even for very weak aging, the ensemble averaged MSD
〈x2(t)〉a becomes ta dependent. When experimental data are
evaluated and the exact equivalence ta = 0 is not guaranteed,
the erroneous conclusion could be drawn that the process is
stationary. Note, however, that result (23) is independent of
the strength k of the confining potential and only depends
on the diffusion coefficient K∗

α and the aging time ta , mirror-
ing the fact that this term stems from the initial free motion dur-
ing the aging period and thus indicates an out-of-equilibrium
behavior. Conversely, for superdiffusion (α > 1) the leading
order term indeed shows the growth

〈x2(t)〉a ∼ αK∗
α

k
tα−1 (24)

of the ensemble averaged MSD. The weakly aged behavior is
shown in Figs. 3 and 4 as the blue lines.

(iii) With the asymptotic expansion (20) of the Kummer
function, we find that in the strong aging regime ta � 1/k the
ensemble averaged MSD becomes

〈x2(t)〉a ∼ αk−1K∗
α

[
(ta + t)α−1 + tα−1

a (1 − 2e−kt )
]
. (25)

At short times t � 1/k, this leads us back to the unconfined
result 〈x2(t)〉a ∼ 2αK∗

αtα−1
a t of Eq. (6). At long time t � 1/k,

however, we have to distinguish two different regimes. First,
for ta � t � 1/k we obtain the plateau

〈x2(t)〉a ∼ 2αK∗
α

k
tα−1
a , (26)

which differs from the above result (24) by the factor of
2. Second, for t � ta � 1/k the leading order according to
Eq. (25) again differs between sub- and superdiffusive motion.
For 0 < α < 1 the plateau

〈x2(t)〉a ∼ αK∗
α

k
tα−1
a (27)

emerges. Note, however, that in comparison to Eq. (26) we now
have half the amplitude. In the superdiffusive case α > 1 we
recover result (24). This intricate behavior is shown in Figs. 3
and 4 as the orange lines. In Fig. 3 we pronounce the crossover
between the two plateaux by plotting the fourth power of the
ensemble MSD as the green line.

B. Time averaged MSD of confined SBM

The time averaged MSD for confined SBM can be derived
by substituting the above covariance (16) into the integral (7).
By help of the relation [47]∫ x

yαe−yM(α,1 + α,y)dy

= 1

1 + α
x1+αe−xM(1 + α,2 + α,x), (28)

this procedure yields the general result〈
δ2
a(�)

〉
= 2K∗

α

(t − �)(1 + α)
{M2(t + ta) − M2(ta + �)

+ M2(t + ta − �) − M2(ta)

− 2e−k� [M2(t + ta − �) − M2(ta)]}, (29)

where we used the abbreviation

M2(t) = t1+αe−2ktM(1 + α,2 + α,2kt). (30)

(i) In the limit k → 0 we recover the result (9) of unconfined
aging SBM, while the complete absence of aging restores the
result from Ref. [32].

In the presence of confinement, we distinguish the follow-
ing regimes:

(ii) We now consider the case when the aging time is short
compared to the relaxation time of the system, ta � 1/k.
From the general expression (29) we then find the following
behaviors: (a) when in addition the lag time is short (t �
1/k � � � ta) we recover the nonaged result (10) with its
linear scaling in the lag time �. (b) When the lag time is long
(t � � � 1/k � ta) we find the plateau〈

δ2
a(�)

〉
∼ 2K∗

α

k
tα−1 (31)

known from the nonaged case [27]. (c) Finally, when the
lag time approaches the length t of the time series, the time
averaged MSD 〈

δ2
a(�)

〉
∼ αK∗

α

k
tα−1 (32)

becomes equivalent to the ensemble averaged MSD, Eq. (24).
In contrast to the ensemble averaged MSD, we thus find that
the time averaged MSD is not affected by short aging times as
compared to the relaxation time scale ta � 1/k.

(iii) The second, more interesting case corresponds to long
aging times compared to the relaxation time scale ta � 1/k.
When also t � 1/k, the result is independent of the specific
magnitude of the lag time. From the general expression (29)
by help of relation (20) we obtain〈

δ2
a(�)

〉
∼ K∗

α

k(t − �)

{
(t + ta)α − (� + ta)α

+ (1 − 2e−k�)
[
(t + ta − �)α − tαa

]}
. (33)

If we now consider the regime in which the lag time is
short, t,ta � 1/k � �, we obtain result (12) with the aging
depression (13) from unconfined aging SBM. In the opposite
limit t,ta � � � 1/k when the lag time is long compared to
the relaxation time, we find〈

δ2
a(�)

〉
∼ �α(ta/t)

〈
δ2(�)

〉
, (34)

where 〈δ2(�)〉 is equal to expression (31) and �α(z) is again the
aging depression (13). In the strong aging limit t,ta � � �
1/k, that is, the aged time averaged MSD is generally given by
〈δ2

a(�)〉 ∼ �α(ta/t)〈δ2(�)〉 for any lag time. Similar to subd-
iffusive CTRW processes [36], the occurrence of the factor �α

appears like a general feature for the aging dynamics of SBM.
Figure 5 shows the behavior of the ensemble and time

averaged MSD for confined SBM at different degrees of
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FIG. 5. (Color online) Ensemble and time averaged MSD for
confined SBM for α = 1/2. From top to bottom, the panels represent
the nonaged (ta = 0) case, the case of weak aging (ta = 10−1), and the
case of strong aging (ta = 106), where the observation time is chosen
as t = 5 × 104. The lines represent Eqs. (17) and (29). The force
constants k are indicated in the panels. Note that the time averaged
MSD indeed converges to the ensemble MSD in the limit � → t ,
compare the discussion in Ref. [32] and the zoom-in provided in
Fig. 7.

aging. The graphs represent the full behavior according to
Eqs. (17) and (29). In the absence of aging, the initial linear
growth 〈δ2

a(�)〉 
 � of the time averaged MSD crosses over
to an apparent plateau, contrasting the functional behavior

1
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100 101 102 103 104

<
⎯δ

a⎯⎯ 2 ⎯
(⎯Δ⎯

⎯)
 >

, <
x2  (

t)
>

a

t, Δ

×103
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MSD,          k=0.1
MSD,          k=0.01

FIG. 6. (Color online) Ensemble and time averaged MSD for
confined SBM with α = 3/2 in the strong aging case with ta = 106.
The observation time is t = 5 × 104.

of the ensemble average: at short times we observe the
power-law growth 〈x2(t)〉a 
 tα of unconfined SBM, while
after engaging with the confining potential, the monotonic
decrease 〈x2(t)〉a 
 tα−1 reflects the temporal decay of the
noise strength (i.e., the temperature) [32]. When aging effects
come into play, the ensemble averaged MSD displays notable
differences. In the case of weak aging displayed in the middle
panel of Fig. 5 deviations from the power-law decay of 〈x2(t)〉a
become apparent for longer times t � ta � 1/k. Eventually
the convergence to a common value independent of the force
constants is observed, as predicted by Eq. (23). Finally,
in the strong aging limit, the ensemble and time averaged
MSD are equivalent and ergodicity is seemingly restored:
〈δ2

a(�)〉 = 〈x2(�)〉a , as can be witnessed in the bottom panel
of Fig. 5. The apparent equivalence of ensemble and time
averaged MSDs in the strong aging limit is also proven in
the superdiffusive case for α = 3/2 in Fig. 6. The slight
discrepancy remaining between time and ensemble averaged
MSD in the latter strong (but finite) aging case is shown in
Fig. 7. This difference decreases with growing aging time.
From expansion of the prefactor �α in Eq. (34) it follows via
comparison with expression (26) that the difference between
the ensemble and time averaged MSDs,

〈x2(t)〉a −
〈
δ2
a(�)

〉
∼ α(α − 1)(α − 2)K∗

α

6k

t2

t3−α
a

� 〈x2(t)〉a
(35)

valid for ta � t � �, decays to zero rapidly with growing ta .
We also see that for 0 < α < 1 the ensemble averaged MSD is
larger than the time averaged MSD, while the opposite is true
for 1 < α < 2. In Fig. 7 we also demonstrate the convergence
of ensemble and time averaged MSDs in the limit � → t .

IV. FIRST PASSAGE TIME DENSITY

Apart from the MSD the first passage behavior is a
signature quantity of a stochastic process. We here study
how aging changes the first passage statistic of SBM in the
semi-infinite domain. The probability density function (PDF)
of first passage is found by solving the SBM diffusion equation
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FIG. 7. (Color online) Full behavior of aging confined SBM for ta = 106 with α = 1/2 (left) and α = 3/2 (right), demonstrating the
convergence of the time averaged MSD to the ensemble averaged MSD in the limit � → t , shown for two different potential strengths, as
indicated in the panels. The observation time is t = 5 × 104. In accordance with result (35) the difference between ensemble and time averaged
MSDs vanishes for growing aging time.

with the time dependent coefficient K (t),

∂

∂t
P (x,t) = K (t)

∂2

∂x2
P (x,t), (36)

however, with the aged initial condition

P0(x,ta) = 1√
4πK∗

αtαa
e−x2/(4K∗

α tαa ). (37)

This aged initial condition emerges from a δ(x) peak for a
system initialized some aging time ta before. In this setup t

measures the time span from the aged initial condition (37). To
obtain the first passage PDF for the semi-infinite domain we
solve the SBM diffusion equation (36) for unconfined motion
with the aged initial condition (37) and then use the method of
images. For the PDF of the aged process we obtain

P (x,t) = 1√
4πK∗

α

(
tαa + tα

)e−x2/4K∗
α (tαa +tα ). (38)

In the presence of an absorbing boundary at the origin, the
survival probability for a process initiated originally in x0 > 0
is therefore given by

S (t) =
∫ ∞

0
[P (x − x0,t) − P (x + x0,t)] dx. (39)

Substituting the aged PDF (37) into this expression yields

S (t) = erf

⎛
⎝ x0√

4K∗
α

(
tαa + tα

)
⎞
⎠ (40)

in terms of the error function. The first passage PDF follows
from the relation ℘(t) = −dS (t)/dt ,

℘(t) = αx0t
α−1√

4πK∗
α

(
tαa + tα

)3
exp

(
− x2

0

4K∗
α

(
tαa + tα

)
)

. (41)

For α = 1 (Brownian motion) and in the absence of aging
(ta = 0) we recover the well known Lévy-Smirnov distribu-
tion. Result (41) exhibits a crossover relative to the aging time,

℘ 
 αx0√
4πK∗

α

×
{

t
−3α/2
a tα−1, ta � t,

(
x2

0

/
[4K∗

α]
)1/α

,

t−1−α/2, t � ta,
(
x2

0

/
[4K∗

α]
)1/α

.

(42)

In the strong aging limit the scaling exponent is −(1 − α),
and we observe the explicit presence of the aging time ta
with exponent α. For weak aging, the scaling exponent of t

is −(1 + α/2), as known from subdiffusive CTRW processes.
However, the detailed crossover behavior is different, compare
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FIG. 8. (Color online) First passage time density ℘(t) for α =
1/2, with x0 = 1, and aging time ta = 106. As shown by the dashed
line, the crossover between the aging dominated slope −1/2 to the
slope −5/4 is distinct.

Ref. [48]. We also note that for fractional Brownian motion
the anomalous diffusion exponent α enters oppositely [30,49].
Figure 8 shows the crossover of the first passage density for
aging SBM.

V. CONCLUSIONS

SBM is possibly the simplest anomalous diffusion model,
and it is therefore widely used in literature. Despite its apparent
simplicity SBM exhibits weak ergodicity breaking in the sense
that we observe a distinct disparity between the ensemble
and time averaged MSDs of this process [26,27,31,32]. It is
therefore a natural question to explore the aging effects of
SBM, i.e., the explicit dependence of physical observables on
the time span ta between the original system preparation and
start of the recording of the particle motion. We here showed
how the ensemble and time averaged MSDs depend on ta for
both the unconfined and confined cases.

For unconfined aging SBM we obtained the exact depen-
dence on the aging time ta and observed a striking similarity to
both subdiffusive CTRW with scale-free waiting time distribu-
tions and heterogeneous diffusion processes with power-law
position dependence of the diffusivity. In particular, for short
lag times the time averaged MSD factorizes into the nonaged
expression and the aging depression �α , which indeed has the
same functional form as for the subdiffusive CTRW and the
heterogeneous diffusion process. In the limit of strong aging,
we also showed that ergodicity is seemingly restored and
the disparity between ensemble and time averages becomes

increasingly marginal. However, it should be stressed that due
to its nonstationary nature the system still explicitly depends
on the aging time ta even in the limit when ta tends to infinity.

Confined SBM, in contrast, is qualitatively a quite unique
process. In absence of aging, due to the time dependence
of the diffusivity K (t), there is no thermal plateau for the
ensemble averaged MSD. Instead this quantity is continuously
decaying (subdiffusion) or increasing (superdiffusion). As
shown here the functional behavior of confined aging SBM
is remarkably rich. Concurrently, the time averaged MSD
exhibits an intermediate plateau. In the presence of aging we
observe a deviation from the nonaged power-law behavior of
the ensemble averaged MSD at longer times and a universal
convergence to a plateau value. For strong aging we again
observe the convergence of ensemble and time averaged
MSDs. We note that the behavior of confined CTRW is
opposite: The time averaged MSD exhibits a power-law growth
with exponent 1 − α, while the ensemble averaged MSD
converges to the thermal plateau value [33].

In addition to these quantities we considered the first
passage time density in the semi-infinite domain. In contrast to
the nonaging fractional Brownian motion we found a crossover
between two characteristic scaling laws depending on the
competition between aging and process time ta and t .

When using SBM as a stochastic model cognizance should
be taken of the fact that it is a highly nonstationary process.
The time dependence of its diffusivity corresponds to a
time dependent temperature (noise strength), and is therefore
physically meaningless as description for a system coupled to
a thermostat. There exist, however, cases in which SBM may
turn out to be a physically meaningful approach. For instance,
it was demonstrated that SBM provides a useful mean field
description for the motion of a tagged particle in a granular
gas with a subunity restitution coefficient in the homogeneous
cooling phase [50].

A number of aging features are quite similar between
subdiffusive CTRWs [36], heterogeneous diffusion processes
[37], and aging SBM, as shown here. While fractional Brow-
nian motion is ergodic, transient deviations from ergodicity
and transient aging occur under confinement [17,51]. To
reliably distinguish these models from another, it is therefore
imperative to employ other diagnostic stochastic quantities
with characteristic behaviors for the respective processes
[27,52,53].
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