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Abstract
During the life cycle of bacterial cells the non-mixing of the two ring-shaped
daughter genomes is an important prerequisite for the cell division process.
Mimicking the environments inside highly crowded biological cells, we study
the dynamics and statistical behavior of two flexible ring polymers in the pre-
sence of cylindrical confinement and crowding molecules. From extensive
computer simulations we determine the degree of ring-ring overlap and the
number of inter-monomer contacts for varying volume fractions ϕ of crowders.
We also examine the entropic demixing of polymer rings in the presence of
mobile crowders and determine the characteristic times of the internal polymer
dynamics. Effects of the ring length on ring-ring overlap are also analyzed. In
particular, on systematic variation of the fraction of crowding molecules, a

ϕ−( )1 -scaling is found for the ring-ring overlap length along the cylinder axis,
and a non-monotonic dependence of the 3D ring-ring contact number with a
maximum at ϕ ≈ 0.2 is obtained. Our results demonstrate that polymer rings are
demixed and separated by particular entropy-favourable partitioning of crowders
along the axis of the cylindrical simulation box. These findings help to ratio-
nalize the implications of macromolecular crowding for circular DNA molecules
in confined spaces inside bacteria as well as in localized cellular compartments
inside eukaryotic cells.
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1. Introduction

The statistical effects of spatial external confinement on the properties of ring polymers such as
those depicted in figure 1 is important to the physical understanding of the entropy-driven
segregation of the two bacterial daughter chromosomes upon cell division [1] and the structure
of eukaryotic metaphase chromosomes [2–4]. For rod-like bacteria cells such as E. coli, Bacillus
subtilis, or streptobacillus a directed motion and segregation of duplicated chromosomes along
the cell axis is detected after DNA replication; see, for instance, [5]. In eukaryotes, upon
decondensation of the chromosomes in a strongly limited space inside the nucleus, the existence
of chromosomal territories [6, 7] indicates an ultra-slow polymer mixing dynamics [8–11].
Knotting of DNA molecules in tight spaces inside viral capsids is yet another example of the
effects of external polymer confinement in biology [12–15]. In vitro, the elongation and
compaction of long DNA molecules confined in nano-channels upon increasing fraction of the
crowding agent was indeed detected [16].

Internal polymer confinement in vivo is due to macromolecular crowding, which enforces
DNA condensation in bacterial cells [17, 18] where the volume fraction occupied by crowding
macromolecules such as RNA, ribosomes, or other biomacromolecules reaches ϕ = 30 ... 35%
[19–22]. The abundance of crowding agents effects a viscoelastic environment [23–25] that
severely alters the diffusional dynamics of submicron endogenous cytoplasmic granules and of
tracers inside living cells [26–31]. Concurrently the internal dynamics of polymers and the
macromolecular association kinetics inside biological cells are dramatically changed [32–34].
The effect of various polymeric crowders on the opening-closing dynamics of DNA hairpins
was recently experimentally probed in [35]. Crowding can also facilitate phase separation and
compartmentalization of the bacterial cytoplasm. In theoretical models, inert spherical obstacles
are often used to mimic highly crowded interiors of bacterial [19] and eukaryotic [36] cells.
Crowding particles cause effective interactions between the polymer segments of the same
chain and between the two chains in confinement, as studied in the present paper. From a
theoretical perspective, overlapped segments of long polymer chains experience entropic
repulsion scaling with the number of overlapping polymer blobs [37]. In a dense polymer
melt the entanglements of the chains also slow down the polymer dynamics [38, 39]. In the
presence of static obstacles, the extension and dynamics of ring polymers on a lattice was
analyzed in [40].

A number of simulation studies of polymers under external confinement in various
geometries have appeared in the literature in recent years [41–51]. In particular, the size scaling
of ring polymers in dense melts was analyzed by computer simulations in [47]. As the
concentration of rings c grows and the effective volume available for their expansion decreases,

the scaling exponent for the radius of gyration ≃ νR ng
2 2 decreases from ν = 3 5 to ν ≈ 0.3,

mirroring impeded polymer extension. Neighboring rings in dense melts thus induce a spherical

caging effect, and their dimension was shown to scale as ∼ −R cg
2 0.59 in terms of the ring
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concentration [47]. The segregation of semi-flexible macromolecules in nano-channels was
shown theoretically in [52]. Ring polymers in confinement were successfully used to model the
bacterial chromosome [44] and to rationalize the implications of supercoiling for the contact
maps of eukaryotic interphase chromosomes [45]. More bio-related experimental examples of
polymer rings in confinement can be found in [7, 38, 44, 53]. For more experimental
observations of confined polymers, including DNAs in nano-channels and chromatin folding,
see [54, 55].

More specific with respect to our present study, the entanglement propensity of ring and
linear polymers under external cylindrical confinement and the consequences for the
phenomenon of DNA homologous recombination were analyzed recently in [53]. It was
shown that linear chains penetrate into one another significantly more easily than ring polymers.
Finally, the threading of ring polymers inside a polymer gel was recently studied by simulations
[56].

The statistical properties of linear and ring polymers in the presence of crowding effects
were considered in a number of theoretical and simulations studies. In particular, the behavior
of single knotted polymer rings on a regular lattice of obstacles was simulated in [57].3 For
random-loop and self-avoiding polymers in the presence of crowding, the computer modelling
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Figure 1. Typical conformations of two polymer rings (rendered in red and blue,
respectively) in a cylindrical confinement. Parameters: the rings are n = 200 monomers
long; the cylinder radius is σ=R 4.5 in terms of the monomer size σ, with the fraction
of crowders ϕ = 0 (top) and ϕ = 0.182 (bottom). Crowding particles, which are equal
in size to the chain monomers, are shown in this image in light yellow with 1/2 of their
actual radius, to improve the visibility of the image. Although the cylinder radius in the
majority of our computations is much smaller than the size of a typical bacteria,

σ=L 35 , we prove below that the results for the inter-chain crossing probability are
scalable to bigger bacterial-sized systems.

3 Two scaling regimes for ring dimensions were predicted in [57]. Namely, rings smaller than the lattice size b

behave as a self-avoiding walk, ∼R ng
2 1.15, while large rings follow the law for branched polymers [58]:

∼R ng
2 1. Similarly, for knotted rings the dynamics turns from a self-avoiding walk to a branched polymer

dynamics [57].



in [59, 60] demonstrated a non-monotonic dependence of Rg
2 on the volume fraction occupied

by the crowders, ϕ, featuring a slight minimum in the chain dimensions at ϕ ≈ 0.2. Related to
this, the rates of chemical diffusion-limited reactions in molecularly crowded media in confined
environments was shown to reveal a maximum at ϕ ≈ 0.2 [61].

In a biophysical context, the effect of crowding on gene regulation was studied with
respect to facilitated diffusion and target search on DNA by DNA-binding proteins in [34, 62].
The translocation of polymers between the two reservoirs with crowders of equal [63] and non-
equal [64] sizes was rationalized by simulations. The implications of crowding environments
inside nano-channels were recently examined by simulations [65]. Finally, the effects of
crowders on the looping probabilities of polymer chains in the presence of external confinement
and molecular crowding is also important [66].

Below, we take a step further and analyze the joint effect of external confinement and
internal crowding for two unknotted ring polymers in a model rod-shaped bacteria cell. More
concretely, we perform molecular dynamics simulations for two polymer rings confined in a
cylindric volume in the presence of mobile crowders, which are subject to the same thermal
bath, as illustrated in figure 1. We analyze how the entropic repulsion of these thermally
agitated ring polymers becomes altered under these crowding conditions.

The paper is organized as follows. In the next section, we present the details of the
simulations model. In section 3 we rationalize the effects of external cylindrical confinement
and internal confinement by the crowding obstacles. The main results for the static properties of
the mutual overlap of the polymer rings and their dynamic characteristics are presented. In
section 4 we discuss the basic results and their implications for the biological system and with
respect to polymer physics.

2. Model and implementation of the simulations

2.1. Polymer chains

The standard finitely extensible non-linear elastic (FENE) potential is used to model the
interactions between the monomers in our polymer chains in the bead-spring coarse-grained
model of the DNA molecule, namely,

⎛
⎝⎜

⎞
⎠⎟= − −( )U r

k
r

r

r2
ln 1 . (1)FENE max

2
2

max
2

Here k is the spring constant acting between nearest-neighbor beads and rmax is the maximum
allowed separation between neighboring monomers. The total number of monomers in the ring
polymers varies in the simulations in the range =n 60 ... 350. Excluded-volume interactions
between the polymer segments are introduced by the truncated Lennard-Jones repulsion
(Weeks-Chandler-Andersen potential), that is,

⎪
⎪⎧⎨
⎩

⎡⎣ ⎤⎦ϵ σ σ ϵ σ= − + <( ) ( ) ( )
U r

r r r4 , 2

0, otherwise.
(2)LJ

12 6 1 6

We here introduced the monomer-monomer distance r; σ is the monomer diameter and ϵ is the
strength of the potential. We set k = 30, σ=r 1.5max , and ϵ = 1, where all energies are measured
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in units of the thermal energy k TB , and distances are measured in units of σ. Analogous
repulsive 6-12 Lennard-Jones potentials parameterise the chain-crowder, chain-wall, and
crowder-wall contact interactions. Along the axial z coordinate in our cylindrical geometry a
harmonic potential is applied once a monomer attempts to move outside of the cylinder at

< =z z 00 or > =z z LL . For both the crowding particles and the chain monomers we

parametrized this potential as = −( )U k z z 2z z 0

2
, with =k 100z , and analogously for zL.

The dynamics of the position ( )tri of the ith monomer in a polymer chain is described by
the Langevin equation

 

 

∑
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Here m is the monomer mass, ξ is the friction coefficient, vi is the monomer velocity, and ( )tF

represents Gaussian noise with δ-correlations ξδ′ = − ′( ) ( ) ( )t t k T t tF F 6 B . The standard

Langevin thermostat is used. Similar Langevin equations are used for the dynamics of the
positions rcr j, of the crowding molecules in the presence of the confining cylinder at Rcyl.

Similarly to the procedure described in [67], we implement the velocity Verlet algorithm with
the integration time-step of δ =t 0.01. We use underdamped Langevin Dynamics with friction
coefficient ξ = 0.1 and model the solvent implicitly.

The monomer size is set to σ = 4 nm, determining the chain thickness that stays constant
for the different ring lengths simulated below. This thickness represents the effective physical
DNA diameter including hydration water shells and electrostatic effects [68]. Our approach thus
differs from that taken in [53], where the mixing of ring polymers of different lengths without a
crowding agent was studied and the polymers were assumed to become thinner as they get
longer. This assumption was used in [53] to keep a constant volume fraction ϕ

p
of the polymer

chains Vp in the simulation box of volume V, and it is estimated that [53]

ϕ = = ∼
E Coli

V

V

DNA volume
. volume

1 ... 5%, (4)
p

p

depending on the DNA thickness (the bare DNA diameter plus the electrostatic repulsive salt-
dependent shell around it). We present the ring-ring contact number and overlap distance of
rings for fixed ϕ

p
using expanding simulation cells in figure 13 , which represents the central

result of our study.
The equilibration time of the polymer rings in our simulations depends on their length, the

cell cylinder radius R, and the volume fraction ϕ of crowding particles in the simulation box.
For typical parameters of the ring length

σ σ= ∼l n 200 (5)

and σ=R 4.5 used in the simulations below, the chains equilibrate after ∼ ×4 106 simulation
steps, corresponding to about 1 ms in real time, in the absence of crowders. The ring
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equilibration time grows with the chain length, and longer measurement times are required in
order to sample the conformations of the polymer chains. The equilibration time also grows
with the volume fraction ϕ of crowders due to the slow-down of the polymer dynamics, see
figure 9. More details on the equilibration procedure are presented in appendix A.

2.2. Crowding and confinement

We distinguish two types of volume confinement for the polymer chains: external confinement
by the cylindrical cell walls and internal confinement by mobile crowding obstacles. The model
cell in the majority of our simulations is represented by an impenetrable cylinder of length

σ=L 35 and radius σ σ=R 3.5 ... 5.5 .
By the internal confinement we mimic the poly-disperse soup of various proteins, RNA,

cytoskeletal elements, and organelles in the cell cytoplasm. The crowders in the bacterial
cytoplasm have an average molecular weight of ≈MW 40 ... 67 kDa and diameter of 4...8 nm
[59]. We neglect here the poly-dispersity in crowder sizes observed in real cells [69] and for
simplicity assign to the crowders the same size σ σ=cr as for the chain monomers. The
crowders are simulated as spherical particles of unit mass (similarly to the polymer bead), with
systematically varying volume occupancy ϕ. Each polymer monomer therefore corresponds to
≈12 base pairs of the double-stranded DNA and ≈ ×MW 12 0.66kDa. The characteristic time

in our simulations then corresponds to a real time of τ σ= × ≈( )k T12 660Da 0.23B0 ns.

Simulating the crowders as particles with the more realistic value of MW of 67 kDa will slow
down the crowder and polymer dynamics, renormalizing the elementary simulation time unit to
τ ≈ 0.660 ns.

Varying the volume fraction of crowders in the simulations in the range ϕ< ≲0 0.3 we
mimic the response of a cell to the changes in external osmolarity, exerting a pressure on the
outer cell membrane causing dehydration (osmotic upshift) [70]. This volume fraction is
computed per free solution volume, i.e.,

ϕ
π

=
−

=
−

V

V V

N

R L n

v

2 v
, (6)cr

p

cr
2

where π σ= ( )v 4 2 3
3

is the volume of one chain monomer or of one crowding particle and Ncr

is the number of crowding particles in the box. For chain length n = 200 and cell length
σ=L 35 the volume fraction of the two polymer rings is ϕ ≈ 0.155

p
, 0.094, and 0.063 (close to

the DNA crowding in E.coli [53]) for the respective cylinder radii σ=R 3.5 , σ4.5 , and σ5.5 .
We consider only excluded volume interactions according to the above-mentioned

interaction potentials and neglect other interactions within the ring polymers, including
electrostatic interactions. The latter can be of importance for tightly bent and circular DNAs,
particularly at low-salt, weak-screening conditions [71–73]. Our model also neglects
hydrodynamic interactions (both for rings and crowders) [74, 75], which can alter the short-
time polymer dynamics [76] but should not affect the static overlap properties of the rings.
Polymer relaxation under confinement with and without hydrodynamic interactions was studied
by computer simulations in [77]. For the relaxation time τR of a polymer ring consisting of n

monomers in a long cylindrical pore of radius R the relation τ ∼ n RR
2 0.9 was predicted [44, 77].
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2.3. Ring contacts and decay of correlations

For each simulation step t we determine the number of contacts ( )N tAB between the two ring
polymers as follows. Each monomer is surrounded by a sphere with contact radius

σ=r 1.25 ... 2c that defines the overlap volume. If the centers of mass of a monomer of
another chain stays within this contact sphere for the contact time tc, the contact is recorded as
established. We chose tc = τ0, but the results for the contacts are fairly insensitive to reasonable
variations of tc. The time tc is a measure of the internal dynamics of two intermingled rings.
Within this time scale, the change in distances between contacting monomers should be smaller
than rc. This validates the choice of the temporal and spacial thresholds for counting the number
NAB of ring-ring contacts.

The distance rc represents the ‘radius of action’ within which the monomers are supposed
to be involved in some physical interactions. For the DNA, this can be electrostatic or protein-
mediated inter-molecular contacts [78]. Clearly, the results of counting the number NAB of
contacts depends on the threshold distance rc (for comparison, the choice of σ=r 1.5c was used
in [53]). We analyze the dependence of the contact number on the contact distance rc in
figure 11 below.

The average NAB is computed via averaging over various polymer configurations after the
system has reached its equilibrium. We measure the ring-ring overlap statistics after a
sufficiently long equilibration time, τ ϕ> ( )t 10 C , to ensure the decay of initial correlations of
the polymers. Here τC is the correlation time for ring-ring contacts obtained from an exponential
fit to the ring-ring overlap autocorrelation function defined below. In addition to the three-
dimensional inter-chain contact probability, scaling with NAB , we compute the one-
dimensional mutual overlap length of two rings along the z-axis of the confining cylinder,
lAB . Note that we consider only torsionally relaxed rings, with no effects of super-coiling. The
latter would result in more branched and topologically complex polymer structures, likely with
more extensive contacts.

Following [53], we define the auto-correlation function (ACF) of ring-ring contacts via the
contact number as follows

Δ
Δ Δ

=
+ − +

−
( )

( ) ( ) ( ) ( )
( ) ( )

N t N t N t N t

N t N t
ACF . (7)

AB AB AB AB

AB AB

2 2

The averaging ... is performed over the times times t along the generated trace ( )N tAB with the
corresponding lag time Δ. The ACF characterizes the decay of correlations in the overlap
number of rings.

An additional quantity characterizing the ring-ring overlap is the relative position of their
centers of mass,

Δ = −z z z . (8)CM CM A CM B, ,

From the corresponding probability density Δ( )p z
AB CM along the cylinder axis we compute the

free energy of the overlap of the two rings in terms of
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⎡⎣ ⎤⎦= −( ) ( )F z k T p zln (9)CM B AB CM

in the Shannon sense.

3. Results

3.1. Dimensions and contacts of polymer rings

We verified that the extension of an unconfined ring polymer scales with its length as

∼ ν( )R n n , (10)g
2 2

where ν = 3 5, consistent with the results reported in [57] (not shown). Our polymer rings are
very flexible, the effective persistence length lp being of the order of the monomer size (data not

shown). Because of this extreme chain flexibility, we cannot analyze the implications of
confinement onto the chain persistence (as compared to [44] where ring polymers were shown to

stiffen substantially in tight confinement). Under the cylindrical confinement, the ring size Rg
2

naturally reaches a saturation for long chains. Once the chain dimensions overcome the size of the
cylindrical cell, the polymer starts to fold on itself and its apparent scaling exponent ν decreases.

The initial ring configurations at t = 0 generated in the simulations are well separated,
positioned at the opposite sides of the confining cylinder. They exhibit a fast initial relaxation
followed by a roughly exponential relaxation dynamics. At the later stages, when the polymers
experience external confinement by the cylinder and the other ring, a non-exponential relaxation
dynamics sets in. The spectrum of chain fluctuations in frequency space in the presence of
external confinement and crowding becomes altered as well.

The general trend is that the instantaneous number of ring-ring contacts ( )N tAB fluctuates
strongly in the course of the simulations; compare figure 2. This trend is the same as in recent
simulations for a similar system presented in the supplementary material of [53]. We observe
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Figure 2. Fluctuations of the contact number ( )N tAB of polymer rings as function of
simulation time t, plotted for crowding fractions ϕ = 0 and 0.27. Parameters: the
number of monomers in each ring is n = 200, the radius of the confining cylinder is

σ=R 4.5 , the critical contact distance is σ=r 1.5c , and the cylinder length is σ=L 35 .
Here and below the simulation time is presented in units of the characteristic time τ0.



that in the presence of crowders the ring-ring separation becomes more pronounced, and the
probability density function ( )NPDF AB of their contact numbers exhibits a peak at =N 0AB .
The spread of NAB is slightly more localized in the presence of crowders, but at both crowded

and non-crowded conditions the distributions ( )p NAB have long tails, as evidenced in figure 3
(A). The relative center-of-mass position of the two rings, ΔzCM, shows a larger spread in the
presence of crowders; see figure 3(B).

3.2. Ring swapping

For some choices of the volume and the aspect ratio of the confining cylinder as well as for
shorter polymer lengths, the directed distance ΔzCM between the centers of mass of the two ring
polymers exhibits clear alternations between two states while the rings are well separated near
the ends of the confining cylinder; see figure 4. For such conditions, the diffusion times of the
rings along the cylinder are relatively short, so they can pass one another and swap positions. At
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Figure 3. Probability density function of the ring-ring contact number (A) and centers of
mass difference of the two rings (B), plotted for the parameters of figure 2.

Figure 4. Time traces for the contact number ( )N tAB (black) and the center of mass
relative distance of the rings ΔzCM (red). Every 10,000th and 400th data point is shown

for the ( )N tAB and Δ ( )z tCM trajectories, respectively. Parameters: no crowders (ϕ = 0),
chain length n = 60, cylinder radius σ=R 5.5 , and length σ=L 20 . A video illustrating
the ring swapping events is included in the online supplementary material (available at
stacks.iop.org/njp/16/053047/mmedia).
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time instances when the rings are well separated the number of ring-ring contacts is minimal,
while at almost vanishing center of mass separation, ∼z 0CM , the overlap of the rings is

maximal and thus typically the ( )N tAB traces are peaking at these instances; see the time series

of Δ ( )z tCM and ( )N tAB shown in figure 4. Note that the center of mass distance Δ ⩽z LCM , and
the case of Δ >z 0CM corresponds to the situation in which ring A is located on the left half and
ring B on the right half of the confining cylinder. This type of dynamics is reminiscent of the
periodic tumbling of polymers in shear flows, characterized by configurations with large
extensions alternating with states of strong chain contraction; see, e.g., the studies reported in
[79, 80].

For these conditions of well-separated rings, the distribution of residence times tr, such that
each ring is situated in one of the two well-separated states close to the cylinder ends, is shown
in figure 5 for different ϕ. The mean residence time tr extracted from these histogram is the
characteristic time scale for the internal ring swapping dynamics. As shown in the inset of
figure 5, tr mildly increases with increasing ϕ. The maximum of the residence time histograms
in figure 5 shifts at higher crowding fractions to larger values because of the associated slower
polymer dynamics.

As illustrated in figure 6 the effective free energy for swapping the two rings has a double-
well shape. The height of the barrier separating the two minimum states amounts to several k TB

for the parameters used in the simulations. As the residence times tr in these separated ring states
increases, the height of the free energy barrier between them decreases. This is due to the slower
polymer dynamics at high crowding fractions, as discussed below. It also demonstrates that the
free energy landscape is no true equilibrium measure, as known from the theory of polymer
translocation [80]. The dynamics of ring swapping in more crowded solutions is overwhelmed
by the enhanced viscosity, as compared to the effects of reduced free energy barriers. For
instance, we found that the effective viscosity for the diffusion of a single crowder rises about 4
times as ϕ changes from 0 to 0.3 [65]. Longer rings squeezed into the same confining cylinder
reveal a slower swapping dynamics and the residence times in well-separated states grow until
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Figure 5.Normalized distribution of residence times tr in the well-segregated ring states.
The histograms are obtained from the zigzag traces similar to those presented in
figure 4, but at varying crowding fractions. The inset shows the mean residence time of
rings tr in well-separated states as a function of ϕ.



no swapping at all can be observed during the simulation time. Likewise, the exchange of rings
in the simulation box is prohibited for smaller cylinder radii R, as we examine for the range of
parameters in the subsequent sections.

3.3. Correlations of ring-ring contacts

As demonstrated in figure 2, the number of ring-ring contacts fluctuates strongly and
irregularly. To find a typical time-scale for this variation, we compute the ACF (7) of the ring-
ring contact number from the ( )N tAB time traces. We start with the crowding-free case ϕ = 0.
The resulting curves in figure 7 show a fast relaxation at short times and turn to a nearly
exponential decay at intermediate lag times Δ. At long times, the ACF drops to zero, indicating
a complete loss of correlations. Some fluctuations of the Δ( )ACF at Δ → ∞ indicate
insufficient statistics in the calculation of the time average (7). From figure 7, we observe that
the initial decay of the ACF is slower for smaller cylinder radii, as expected. This is due to a
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Figure 6. Double-well free energy landscape for ring swapping. The inset shows the
magnitude of the free energy barrier computed at Δ =z 0CM . Parameters and notations
for the curves are the same as in figure 5.

Figure 7. ACF of the ring-ring contact number NAB defined in equation (7) in absence of
crowders (ϕ = 0) for different values R of the cylinder radius. Other parameters are the
same as in figure 2.



larger space fraction in the simulation box being filled by the polymer monomers so that their
motions get restricted to a larger extent, with many chains’ moves being prohibited. For longer
rings confined in the same cylinder, the ACF decays more slowly with the lag time Δ, again due
to a smaller space available for the chains (not shown). Note that the intermediate-time decay
exhibits comparable slopes in the logarithmic plot of figure 7.

3.4. Contacts and overlap of polymer rings: crowding effects

Let us now study the effects of the internal confinement due to crowding in more detail. We first
consider one of the two ring polymers under the cylindrical confinement in the presence of

crowding agents. The results for the mean squared gyration radius Rg
2 are shown in figure 8.

We observe that the component of the radius of gyration measured along the cylinder axis is a
slowly decreasing function of ϕ. Crowding particles thus act as a depletant, which effects ring
shrinkage. For a less severe external confinement (larger cylinder radius R), we observe that the
ring is less extended along the cylinder axis, but simultaneously more extended in the cylinder
cross-section ( −x y plane), as shown in figure 8(A). Here we do not elaborate on the variation
of the Flory scaling exponent ν of the gyration radius for a single ring as function of the external
confinement and crowding (for such results see, e.g., those reported in [59]). In the following
we concentrate on the overlap properties of two polymer rings in the cylindrical simulations
cell.

At higher fractions ϕ of crowders the correlation time of maintaining the established
contacts between polymer rings increases due to the slower polymer dynamics, following a
larger effective viscosity in a denser soup of crowders, i.e., the Rouse polymer dynamics is
effectively slowed down by surrounding crowding particles. Concurrently, the same effect is
responsible for a slower decay of the contact autocorrelations at higher values of ϕ, as shown in
figure 9. The associated correlation time τC extracted from an exponential fit of the Δ( )ACF
curves exhibits the power-law dependence

τ ϕ ϕ∼( ) (11)C
3 2
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Figure 8. Mean squared gyration radius Rg
2 of a single polymer ring in the system of

two mixing rings across the confining cylinder (A) and along the cylinder axis (B),
computed for varying crowding fractions ϕ and different radii R of the cylinder. Other
parameters are the same as in figure 2.



on the fraction of crowders; see the inset of figure 9. The 3 2 exponent indicates that the
changes due to crowding are indeed a volume effect. Note that the single-ring relaxation time τR

should not be confused with τC for the ring-ring contacts.
The dependence on the presence of mobile crowders of the three-dimensional contact

characteristics and the effective one-dimensional overlap properties of polymer rings of fixed
length are analyzed in figure 10. We observe that the average number of ring-ring contacts
NAB increases significantly with the decrease of the cylinder radius R, i.e., when the chains are
forced into a stronger contact by the external confinement; see figure 10(B). As function of the
internal confinement due to crowding, in some situations the number of ring-ring contacts NAB

exhibits a weakly non-monotonic dependence; see, e.g., the blue symbols in figure 10(B). This
behavior indicates a tradeoff between crowding and external confinement.

The effective overlap length of the rings along the cylinder axis is, in contrast, a very
reproducible function with the functional relation
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Figure 9. ACF function of ring-ring contacts, equation (7), for different crowding
fractions ϕ and the parameters of figure 2. The inset shows the correlation time τ ϕ( )C

determined from the decay Δ τ−( )exp C of the Δ( )ACF curves.

Figure 10. Average ring-ring overlap length along the cylinder axis (A) and average
contact number (B), plotted for σ=L 35 . The ϕ−(1 ) asymptote in panel (A) represents
the proportionality to ϕ−(1 ) given by equation (12).



ϕ ϕ≈ −( ) ( ) ( )l l 0 1 . (12)AB AB

of the crowding fraction ϕ, compare figure 10A. This fact indicates a nearly ideal mixing of
polymer monomers and crowding particles, as if the chain connectivity plays a minor role. The
absolute values of lAB for different cylinder radii vary only marginally. The decrease in equation
(12) can be understood from a shrinkage of individual ring polymers by the crowders, as
rationalized for longitudinal ring dimensions in figure 8(B). We note a relatively short overlap
length at all crowding densities used in the simulations. It is also consistent with the results of
[53] where, in the absence of crowders, a very limited inter-penetration and overlap of the two
polymer rings was obtained.

We also systematically examined the effect of the contact radius rc on the number of
ring-ring contacts established in the simulations. We find that the average number of contacts
naturally grows with rc; compare figure 11. We also note that the error bars somewhat increase
with ϕ and rc but always stay smaller than the symbol size. Here and below, as proposed in [53],
for the ring-ring contacts the error bars are computed with the blocking method introduced for
correlated data sets in [82].

The statistical effects of the polymer-crowder mixing are analyzed in terms of their
distributions in the simulation cell. We find that for weak and moderate crowding fractions there
is an accumulation of crowders near the cylinder ends, as evidenced in figure 12(A). Following
the trend of demixing, the polymer monomers are located preferentially off the middle of the
cylinder; see figure 12(B). We also observe that at small ϕ the crowding particles are effectively
excluded from regions occupied by the polymers, thus facilitating ring-ring contacts. At
stronger crowding, a moderate peak of crowding particles in the middle of the cell (between the
polymer rings) emerges; see the blue curve in figure 12(A). These mid-positioned crowding
particles trigger an entropy-driven segregation of polymer rings, and their three-dimensional
contact number NAB decreases at larger ϕ values (figure 13(B)).

The mixing properties of polymers and crowders can be probed by the cumulative
probability distribution of their monomers, shown figure 12(C). The decrease of ϕ( )NAB at high
ϕ is due both to a progressive emergence of crowders in between the polymers and a
longitudinal shrinkage of each of the rings with ϕ. The ideal ϕ−( )1 polymer-crowder mixing
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Figure 11. Average number of ring-ring contacts computed for varying contact radius rc

at cylinder radius σ=R 4.5 . Other parameters are the same as in figure 10.



is realized at high ϕ, when the sum of the distributions of the polymer monomers and crowders
is almost constant throughout the simulation cell; see the blue curve in figure 12(C).

3.5. Variation of the polymer length

In the previous sections, most of the results presented were obtained for a constant polymer
length of n = 200 monomers and relatively small simulations cells. To be able to scale up our
results to ranges relevant for bacteria cells, we computed the ring-ring overlap length and
contact number for longer polymers and larger simulation cells. The geometrical proportions of
the confining cylinder, the aspect ratio R L, were kept constant and at the same time the ring
length was adjusted so the polymer volume fraction ϕ = V V

p p stayed constant at ϕ ≈ 0.09
p

.

We observe that both the one-dimensional overlap length of the polymer rings and their three-
dimensional contact number follow universal trends, after normalization with respect to the
number of monomers, i.e., for l nAB and N nAB . These results are illustrated in figure 13, which is
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Figure 12. Distribution of crowding particles (A), polymer monomers (B), and the
cumulative crowder-polymer distribution (C), plotted along the cylinder axis for varying
ϕ fractions. Parameters are the same as in figure 2.

Figure 13. Relative overlap length (A) and contact number of polymer rings (B) in
expanding simulation cells. In this figure the polymer volume fraction is kept constant at
ϕ ≈ 0.09

p
, and the length of the polymer rings is n = 102, 200, and 348 monomers for

cylinder radii of σ=R 3.5 , σ4.5 , σ5.5 , respectively. Note the larger deviations around
the mean for the contact numbers NAB at more crowded conditions (the error bars are
computed by the blocking method [83]). The square symbols represent the same data
set as in figure 10(B) for σ=R 4.5 . The ϕ−(1 ) asymptote in panel (A) indicates
the dependence on the value in the uncrowded solution, ϕ =( )l 0AB , as given by
equation (12).



the main result of this work. The ring-ring overlap length follows the ϕ−( )1 -asymptote typical
for the ideal mixing for all the parameters analyzed in our simulations. In contrast, the number
of contacts NAB reveals a more delicate dependence. For small confining cylinders the contact
number is a monotonically decreasing function (red symbols in figure 13(B)). For larger
simulation cells, the value of ϕ( )NAB exhibits a maximum at ϕ ≈ 0.2 (black and blue symbols

in figure 13(B). This fraction ϕ ≈ 20% is reminiscent of the turning-point value for the non-
monotonic dependencies on the fraction of crowding molecules mentioned in the Introduction,
namely, of the dimensions of self-avoiding polymers [58] and diffusion-limited chemical
reactions [61].

To compute l nAB and N nAB , we averaged over = ×M 2 105, ×2 105, and ×8 104

simulation steps for cylinder radii σ=R 3.5 , σ4.5 , σ5.5 , respectively. The simulation time on a
standard 3–3.5 GHz core machine for each crowding fraction ϕ presented in figure 13 is about
2, 3, and 10 days, respectively. To accumulate reliable statistical information about the ring-ring
contacts at relatively large crowding fractions, particularly long simulations are required
because of the slower dynamics of inter-ring mixing. Last, at the same volume fraction of
crowders ϕ, one can expect crowding particles of larger sizes to cause stronger effects on
mixing properties of polymer rings.

4. Discussion and conclusions

Based on extensive Langevin dynamics simulations we analyzed the behavior of polymer
chains of a circular topology in the presence of external cylindrical confinement and internal
crowding by molecular crowding agents. The size of the cylindrical confinement with respect to
the length of the chains was chosen to represent the situation of two DNA rings in a typical
bacillus cell. The crowding agents were represented by thermally agitated, off-lattice mono-
disperse hard spheres. Our main result, presented in figure 13, is that high concentrations of
crowding agents facilitate the spatial separation of ring polymers in cylindrical confinement. In
addition, we quantified the extent to which the presence of crowding agents slows down the
dynamics of the polymer-crowder system. The simulations for chains of varying length
demonstrate that our model results are robust and in principle scalable to the dimensions of real
bacterial cells.

The effect of molecular crowding on crowding-mediated polymer separation obtained
above are applicable to demixing and mutual exclusion of genome-sized DNA molecules inside
bacterial cells4 as well as to the behavior of relatively short DNA plasmids confined in natural
compartments inside eukaryotic cells. The abundance of macromolecular crowders also offers a
robust and non-specific way to tune the amount of DNA-DNA contacts. The dynamics and
spatial occurrence of the latter are vital for biological processes in vivo such as DNA-DNA
recognition and DNA homologous recombination [53], when the search for the homologous
DNA partner in a coil of a long DNA is to be performed. Note that it would be interesting to
analyze how the DNA-crowder segregation takes place in bacteria with other than rod-like
shapes, such as in nearly planar squarish or spherical bacteria; see the discussion in [37].
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4 Recent experiments show that in E. coli active protein oscillations guide the demixing of the chromosomes and
thus assist entropic effects, see [83].



The compartmentalization of obstacles and polymer chains we observed in figure 12 can
also have implications for aging phenomena of bacterial cells. For E. coli cells, for instance, a
localization of age-related protein aggregates in low-crowding regions near the cell poles and in
between the two DNA nucleoids was observed. This effect was recently quantified by computer
simulations at higher degrees of polymer and DNA crowding inside the nucleoids that hinder
the diffusion of these protein aggregates [84]. The impairment of the diffusion of aggregating
components, which is a heterogeneous effect in a compartmentalized cell, thus directly affects
the rate of aggregate formation.
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Appendix A. Equilibration in the simulations

The chain equilibration in our simulations is performed as follows. Initially two chains are
separated inside a confining cylinder, whose length is larger than the actual cylinder length L we
intend to simulate. The length is then gradually decreased to the value L, while the chains are
allowed to move. During this procedure we monitor the contact number NAB, as shown in
figure A1. As can be seen, the two chains are initially well separated and =N 0AB . The first
arrow indicates when the cylinder length shrinks to the value L. We then let the system evolve
until the second arrow, from which we record the time series ( )N tAB . The time span between the
two arrows corresponds to about 10 times the correlation time τC.

New J. Phys. 16 (2014) 053047 J Shin et al

17

Figure A1. Contact number of two chains during a typical run including the initial
equilibration interval. Initially the contacts are zero, as the chains are well separated.
At the first arrow the confining cylinderʼs length is reduced to the actual value L
intended for the simulations. The second arrow indicates when we start to record the
time series of NAB. The data correspond to a chain length of 200, cylinder radius R = 4.5,
and cylinder length L = 35.
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