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Abstract. Based on the space-fractional Fokker–Planck equation with a δ-sink
term, we study the efficiency of random search processes based on Lévy flights
with power-law distributed jump lengths in the presence of an external drift,
for instance, an underwater current, an airflow, or simply the preference of the
searcher based on prior experience. While Lévy flights turn out to be efficient
search processes when the target is upstream relative to the starting point, in the
downstream scenario, regular Brownian motion turns out to be advantageous.
This is caused by the occurrence of leapovers of Lévy flights, due to which Lévy
flights typically overshoot a point or small interval. Studying the solution of the
fractional Fokker–Planck equation, we establish criteria when the combination
of the external stream and the initial distance between the starting point and
the target favours Lévy flights over the regular Brownian search. Contrary to the
common belief that Lévy flights with a Lévy index α = 1 (i.e. Cauchy flights)
are optimal for sparse targets, we find that the optimal value for α may range
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in the entire interval (1, 2) and explicitly include Brownian motion as the most
efficient search strategy overall.

Keywords: driven diffusive systems (theory), fluctuations (theory), stochastic
processes (theory), diffusion
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4.3. Weak bias expansion for Lévy flight search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5. Discussion 21

Acknowledgments 23

Appendix A. Derivation of the dimensionless equation (3) 23

Appendix B. Proof that P = 0 for v = 0 and α � 1 24

Appendix C. Proof that P = 0 for v �= 0 and α � 1 25

Appendix D. Solution for v = 0 via Fox H -functions 25

Appendix E. General solution for the Brownian case 26

Appendix F. Expansion (32) in terms of H -functions 27

Appendix G. Derivation of the Brownian weak bias expansion (F.2) 28

Appendix H. Implicit Fox H -function expression for ℘fa(s) 29

Appendix I. Implicit formula for the first arrival density 30

References 31

doi:10.1088/1742-5468/2014/11/P11031 2

http://dx.doi.org/10.1088/1742-5468/2014/11/P11031


J. S
tat. M

ech. (2014) P
11031

Optimization of random search processes with an external bias

1. Introduction

Searching for a lost key in a parking lot or a paper on an untidy desk are typical everyday
examples of searching problems [1, 2]. Search processes occur on many different scales,
ranging from the passive diffusive search of regulatory proteins for their specific binding
site in living biological cells [3] to the search for food by animals [4, 5] or computer
algorithms searching for minima in a complex search space [6]. Here we are interested
in random, jump-like search processes. The searcher has no prior information on the
location of its target and performs a random walk until it encounters the target. During
a relocation along its trajectory (a jump), the walker is insensitive to the target. In the
words of movement ecology occupied with the movement patterns of animals, this process
is called blind search with saltatory motion. It is typical for predators hunting at spatial
scales exceeding their sensory range [7–10]. For instance, blind search is observed for
plankton-feeding basking sharks [11], jellyfish predators and leatherback turtles [12], and
southern elephant seals [13]. Saltatory search is distinguished from cruise search, when
the searcher continues to explore its environment during relocations.

The first studies on random search considered the Brownian motion of the searcher
as a default strategy, until Shlesinger and Klafter proposed that Lévy flights (LFs) are
much more efficient in searching for sufficiently sparse targets [14]. In a Markovian LF the
individual displacement lengths x of the walker are power-law distributed, λ(x) ∼ |x|−1−α,
where due to 0 < α < 2 the second moment of the jump lengths diverges, 〈x2〉 → ∞ [15].
This lack of a length scale 〈x2〉1/2 affects a fractal dimension of the trajectory [16,17], such
that local search is interspersed by long, decorrelating excursions. This strategy avoids
oversampling, the frequent return to previously visited points in space of recurrent random
walk processes, such as Brownian motion in one and two dimensions [5, 14, 18, 19]. The
latter are indeed the relevant cases for land-based searchers. Even for airborne or marine
searchers, the vertical span of their trajectories is usually much smaller than the horizontal
span, rendering their motion almost fully two dimensional. The outstanding role of LFs for
random search processes in one and two dimensions was formulated in the LF hypothesis:
Superdiffusive motion governed by fat-tailed propagators optimize encounter rates under
specific (but common) circumstances: hence some species must have evolved mechanisms
that exploit these properties [. . .] [5].

Beginning with the report of LF-search by albatross birds [18, 20] there was a surge
of discoveries of such scale-free search strategies, inter alia, for marine predators [8, 9],
insects such as moths [21], land-based mammals such as deer and goats [22,23], as well as
microorganisms such as dinoflagellates [24]. In some cases these reports were debated.
For instance, an additional investigation showed that spider monkeys indeed move
deterministically [26] and mussels have multimodal rather than power-law relocations
[27, 28]. Similarly, plant lice exhibit Lévy motion on the population level but not for
the motion of individuals [29]. In particular, the disqualification of the LF statistics
for albatrosses [30] became a strong argument against the LF hypothesis. However,
there is strong evidence that for individual albatross birds, LFs are indeed a real search
pattern [31].

From extensive studies of human trajectories it was shown that LF motion patterns are
indeed characteristic [32,33], although in some cases correlations in the motion exist [34].
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Figure 1. Schematic of the search process. A random walker performs random
jumps in the search space. Top: the search is initially biased by a drift away from
the target. The walker first overshoots the target twice in so-called leapovers
before hitting the target. Bottom: the bias is initially directed in the direction
of the target. The searcher overshoots the target and is pushed away from the
target. No detection occurs.

Similarly the paths of fishing boats follow LF statistics [35], although this observation
has also been called into question [36]. Interesting findings were reported from robotics,
where one of the important questions is how robots should search for hidden targets. From
simulations it was concluded that the most successful robots performed motion consistent
with LF foraging [37].

A number of other search strategies were proposed as an alternative to LFs. These
include intermittent dynamics switching between the local diffusive search and ballistic
relocations [38], which may also be of the power-law form [39]. Moreover, searchers may
perform persistent random walks with finite tangential correlations [40], see also the
comparison of persistent walks and Lévy motion [41]. However, while the difference in
performance between models with a scale and LFs may be small, the central advantage
of the LF strategy is its robustness: while other models work best when their parameters
are optimized for specific environmental conditions such as the target density, LFs remain
close to optimal even when these conditions are altered [39]. LFs have thus been promoted
as a preferred strategy when there is insufficient prior knowledge on the search space. In
particular, for sufficiently sparse targets several analyses claim that the optimal value for
the power-law exponent is α = 1 [18, 39, 42–46]. The case α = 1 may, however, have a
narrow limit of applications [47].

Following the continuing debate over the validity of the LF hypothesis, here we extend
our recent study in [48] and scrutinize the LF hypothesis from a different angle. Namely,
we analyze the performance of the LF search mechanism in the presence of an external
bias. Such a bias could, for instance, correspond to an underwater current biasing the
search motion of marine predators or search robots, or to an airflow driving birds of
prey in a preferential direction. It could be a bias in an abstract landscape searched by
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a computer algorithm. Finally, it could also simply be the personal preference of the
searcher based on some prior experience. Such biases are commonplace and their effects
need to be considered in models for random search processes. It turns out that an external
bias may have profound consequences for the efficiency of LF search. Thus, even in the
presence of a small bias LF search may fare worse than Brownian search. Depending on
the initial separation between searcher and target and on whether (from the perspective
of the searcher) the bias is directed towards or away from the target, we find that the
optimal power-law exponent α may range in the entire interval from one to 2, and explicitly
include Brownian motion. Without prior knowledge, it may turn out that Brownian search
is indeed the more efficient search method.

The paper is organized as follows. In section 2 we set up our model in terms of the
fractional Fokker–Planck equation. In section 3 we explicitly calculate the first arrival
density and the search efficiency in the absence of a bias. In particular, we obtain the
optimal search parameters as a function of the initial distance between searcher and target.
In section 4 we generalize these findings to the case when an external bias is present.
We analyze the temporal decay of the first arrival density and introduce a generalized
Péclet number. We draw our Conclusions in section 5. In the Appendix, we detail several
calculations.

2. A model

2.1. Solution of the Fokker–Planck equation with sink term

Imagine the process depicted in figure 1. A random walker moves by random jumps, whose
lengths are chosen according to the power-law distribution λ(x) with

λ(k) = exp (−σα|k|α) ⇒ λ(x) � σα

|x|1+α
(1)

where λ(k) =
∫ ∞

−∞ λ(x) exp(ikx)dx denotes the Fourier transform of λ(x). Its stretched
Gaussian form in k space defines a symmetric Lévy stable distribution, with the long-
tailed asymptotic form λ(x) � |x|−1−α for 0 < α < 2. Consequently the variance of λ(x)
diverges, 〈x2〉 → ∞, while fractional moments 〈|x|δ〉 of order 0 < δ < α are finite [15,16].
In addition to such Lévy stable jump lengths we consider an external drift. This bias
is called uphill (or downhill) when the bias is directed against (along) the walker with
respect to the original walker-target location.

A searcher finds the target when after a jump its position coincides with the location
of the target. That is, the successful search corresponds to the first arrival at the target
coordinate. This process will be substantially different from that of Brownian search, and
consists of a tradeoff between two effects: (i) due to the scale-free jump length distribution
(1) the above-mentioned oversampling is diminished, and less points are revisited multiple
times before eventual location of the target. (ii) Due to the existence of extremely long
jumps the walker may severely overshoot the target, producing so-called leapovers (see
figure 1). The length of these leapovers is distributed as ℘l(�) � �−1−α/2, and is thus wider
than the original jump length distribution (1) [49]. This property renders the first arrival
of an LF different from the process of first passage, and the first arrival efficiency worsens
with decreasing α [50].
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The basis for the mathematical description of the first arrival process of LFs is the
fractional Fokker–Planck equation for the density f(x, t) to find the searcher at position
x at time t in the presence of an external force field [15, 51]. Generalizing the approach
of [50], to describe the first arrival of a searcher to point x = 0, we remove the searcher
from the target location x = 0 by a δ-sink with time dependent weight ℘fa(t),

∂f(x, t)
∂t

= Kα
∂αf(x, t)

∂|x|α − v
∂f(x, t)

∂x
− ℘fa(t)δ(x). (2)

Here, v denotes the constant external bias, Kα is the generalized diffusion coefficient
[15], and ℘fa(t) is the density of first arrival [50], as shown below. The fractional
derivative of the Riesz–Weyl form is defined in terms of its Fourier transform,∫ ∞

−∞ exp(ikx) [∂α/∂|x|α] f(x, t)dx = −|k|αf(k, t), where f(k, t) =
∫ ∞

−∞ exp(ikx)f(x, t)dx is
the Fourier transform of f(x, t) [15]. Equation (2) is completed with the initial condition
f(x, 0) = δ(x − x0) of placing the searcher at x0. If v is positive, the drift is directed
towards positive x, that is, the dynamic equation (2) describes the situation of figure 1.

By a rescaling of variables (see appendix A) we obtain the dimensionless analogue of
equation (2),

∂f(x, t)
∂t

=
∂αf(x, t)

∂|x|α − v
∂f(x, t)

∂x
− ℘fa(t)δ(x), (3)

where v = vσα−1/Kα and f(x, 0) = δ(x − x0). The factor σ has the dimension of length
and is chosen as the scaling factor of the LF jump length distribution, as detailed in
appendix A. In what follows we use the dimensionless variables throughout, but for
simplicity we omit the overlines. Without loss of generality we assume that x0 > 0 in
the remainder of this work. The integration of equation (3) over the position x produces
the first arrival density

℘fa(t) = − d
dt

∫ ∞

−∞
f(x, t)dx. (4)

Thus, ℘fa(t) is indeed the negative time derivative of the survival probability
∫ ∞

−∞ f(x, t)dx.
Analogous to the bias-free case [50] it is straightforward to obtain the Fourier-Laplace

transform of the distribution f(x, t),

f(k, s) =
exp(ikx0) − ℘fa(s)

s + |k|α − ikv
. (5)

Here we express the Laplace image h(s) =
∫ ∞

0 exp(−st)h(t)dt of a function h(t) by explicit
dependence on the Laplace variable s. Integration of equation (5) over the Fourier variable
k yields ∫ ∞

−∞
f(k, s)dk = f(x = 0, s) = W (−x0, s) − W (0, s)℘fa(s) = 0, (6)

where W (x, s) is the solution of equation (2) without the sink term. As this expression
necessarily equals zero, the first arrival density can be expressed through

℘fa(s) =

∫ ∞
−∞ exp(ikx0)�dk∫ ∞

−∞ �dk
, (7)

where we use the abbreviation

� ≡ 1
s + |k|α − ikv

. (8)
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Equation (7) without bias (v = 0) was obtained in [50]. An important observation from
equation (7) is that the first arrival density vanishes, ℘fa(s) = 0, for any s only if α � 1
(for the proof see appendices B and C). Thus the LF search for a point-like target will
never succeed for α � 1. This property reflects the transience of LFs with α < d, where
d is the dimension of the embedding space [52].

2.2. Langevin equation simulations

For the simulation of LFs we use the Langevin equation approach, which in the discretized
version with dimensionless units takes on the form [53]

xn+1 − xn = −vδt + (δt)1/αξα,1(n), (9)

where xn is the (dimensionless) position of the walker at the n-th step, and ξα,1(n) is a
set of random variables with Lévy stable distribution and the characteristic function

p(k) =
∫ ∞

−∞
exp(ikx)ξdξ = exp (−|k|α) . (10)

To obtain a normalized Lévy stable distribution we employ the standard method detailed
in [54].

The modelling of the search process proceeds in the following way. A walker starts
from coordinate x0. Then its position is updated every step according to equation (9)
until it reaches a target or the modelling time exceeds some maximum simulation time
limit. Naturally, the target in the simulations cannot be of point size, because then it will
never be found. Hence the target size in the simulations should be small enough in order
to get correspondence to results from equation (7), but not infinitely small.

We briefly digress to address an important technical issue. A Brownian walker always
explores the space continuously and therefore localizes any point on the line. However, in
Langevin equation simulations, we introduce discrete (albeit small) jump lengths and time
steps. Due to this, even for Brownian motion there is always a non-vanishing probability
to overshoot a point-like target. Thus, even for the Brownian downhill case the simulated
value of probability to eventually find the target becomes less than 1. This effect needs
to be remedied by the appropriate choice of a finite target size. The tradeoff now is
that the target needs to be sufficiently large to avoid the overshoot by the searcher. At
the same time the target should not be too large, otherwise inconsistencies with our
theory based on a point-like target would arise. The likelihood for leapovers across the
target is naturally even more pronounced for the LF case. As a consistency test for the
target size used in the simulations we check the long time asymptotics of the first arrival
density ℘fa(t) against the analytical form given by equation (11). The results for this
test are plotted in figure 2, showing excellent agreement between the simulations and the
theoretical asymptotic behaviour. In figure 3 we explicitly show the effect of a varying
target size. As the target size is successively increased, the LF scaling of the first arrival
density for a point-like target, ℘fa(t) ∼ t−2+1/α, is seen to cross over to the universal
Sparre–Andersen law for the first passage of a symmetric random walk process in the
semi-infinite domain, ℘fp(t) ∼ t−3/2 [50,55]. We see that it is possible to choose the target
size appropriately such that the results of the Langevin equation simulations are consistent
with the theory.
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Figure 2. First arrival density as a function of time for different values of the
stable index α. The coloured curves denote simulation results. The expected
asymptotic behaviour ℘fa(t) ∼ t−2+1/α is depicted by the red lines. The target
sizes were chosen as 0.01 for both α = 2 and α = 1.5, and 0.0005 for α = 1.2.

Figure 3. For a variety of target sites the coloured lines show simulation results
for the density of first arrivals, with α = 1.2 and x0 = 1. The red lines show fits
to the asymptotic power-law form ℘fa(t) � t−γ . According to equation (11) the
expected slope for the first arrival is −1.16. Thus the smallest target size in the
figure leads to the correct value. Increasing target sizes eventually lead to the
universal −3/2 Sparre Andersen scaling of the first passage process.

3. First arrival and search efficiency in the absence of an external bias

We first consider the case in the absence of the bias v and present the solution for the
first arrival density. Moreover we motivate our choice for the efficiency used to compare
different parameter values for the LF search process.

3.1. First arrival density and search reliability

Without external bias, equation (7) can be expressed in terms of the Fox H-function, as
detailed in appendix D. The inverse Laplace transform (D.5) of the H-function allows us

doi:10.1088/1742-5468/2014/11/P11031 8
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to obtain the solution (D.6) in the time domain. From the latter expression we get the
long time asymptotic behaviour of ℘fa(t),

℘fa(t) ≈ C(α)xα−1
0 t1/α−2, (11)

where the constant C(α) is given by equation (D.7). In this way we find one of the central
results of [50] by using the analytic approach of the H-function formalism.

An important quantity for the following is the search reliability, defined as the
cumulative arrival probability

P =
∫ ∞

0
℘fa(t)dt = ℘fa(s = 0). (12)

It follows from equation (D.5) that without a bias P = 1, i.e. the searcher will always find
the target eventually as long as α > 1. In other cases it will turn out that P < 1, that
is, the searcher will not always locate the target no matter how long the search process is
extended.

In the Brownian case α = 2, the H-function in equation (D.5) according to
appendices E and G can be simplified to the well-known result for the first arrival in
the Laplace domain,

℘fa(s) = exp


−

√
sx2

0

K2


 . (13)

Note that in the Brownian case with finite variance 〈x2〉 of relocation lengths, the process
of first arrival is identical to that of the first passage [50].

3.2. Search efficiency

How can one define a good measure for the efficiency of a search process? On a general
level, such a definition depends on whether saltatory or cruise foraging is considered [7],
or whether a single target is present in contrast to a fixed density of targets. For saltatory
motion as considered herein, a typical definition of the search efficiency is the ratio of the
number of visited target sites over the total distance travelled by the searcher [7],

Efficiency =
visited number of targets
average number of steps

. (14)

This definition works well when many targets with a typical inter-target distance are
present. The mean number of steps taken in the search process is equivalent to the typical
time 〈t〉 over which the process is averaged. As we consider here the case of a single target,
in a first attempt to define the efficiency we could thus reinterpret the definition (14) as
the mean time to reach the target and thus take Efficiency = 1/〈t〉, where 〈t〉 would now
correspond to the expectation 〈t〉 =

∫ ∞
0 t℘fa(t)dt. However, in contrast to the situation

with a fixed target density, 〈t〉 diverges for simple Brownian search on a line without
bias [55].

For this reason we propose a different measure for the search efficiency, namely

E =
〈

1
t

〉
. (15)
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Instead of the average search time, we average over the inverse search time. This can be
shown to be a useful measure for situations when 〈t〉 is both finite or diverging. Using the
relation ∫ ∞

0
exp(−st)

g(t)
t

dt =
∫ ∞

s

g(u)du (16)

it is straightforward to show that

E =
∫ ∞

0
℘fa(s)ds. (17)

As an example, consider the efficiency E of a Brownian walker without bias. With
equation (13) we find

E =
∫ ∞

0
exp

(
−

√
s

K2
x0

)
ds =

2K2

x2
0

, (18)

where for this equation we restored dimensionality. This is the classical result for a
normally diffusive process: increasing diffusivity of the searcher improves the search
efficiency per unit time.

Below we demonstrate the robustness of the new characteristic E for several concrete
cases. We mention that the definition 1/〈t〉 leads to contradictory results for the biased
case, as well. This will be shown in the next section.

3.3. Search optimization

We now decree that a given search strategy is optimal when the efficiency E of the
corresponding search process is maximal. In our case of LF search we define the optimal
search as the process with the value of the stable index α for a fixed initial condition x0

and fixed bias velocity v which leads to the highest value of E . As we will see, an optimal
search defined by this criterion is not (always) the same as the most reliable process with
maximal search reliability P .

For LF search without an external drift the density of first arrival is given by
equation (D.5). The search efficiency is obtained by integrating over s,

E =
α

xα
0

cos
(
π

[
1 − α

2

])
Γ(α). (19)

Thus the search efficiency decays quadratically with the initial searcher-target separation
x0 and, depending on the value of α, may become non-monotonic. In the Brownian limit
α = 2 the efficiency is E = 2/x2

0, consistent with the above result (18). In the Cauchy
limit α → 1 the efficiency drops to zero.

Figure 4 shows the efficiency E as a function of the initial searcher-target distance
x0, for fixed values of the power-law exponent α. We observe a strong dependence on x0,
the strongest variation being realized for the Brownian case with α = 2. For close initial
distances (x0 � 5) the Brownian strategy is the most efficient process. However, with
increasing x0, at first LFs with α = 1.5 become more efficient than Brownian motion,
and for x0 � 30 the strategy with α = 1.2 outperforms all the others. This behaviour
is expected because for longer initial separations, the occurrence of long jumps increases
with decreasing α, and thus fewer steps lead the searcher closer to the target. For short
initial separations the occurrence of long jumps would lead to leapovers and thus to a less
efficient arrival to the target.
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Figure 4. Lévy flight search efficiency as a function of the initial position x0, given
by equation (19), for three values of α: α = 1.2, dotted black curve; α = 1.5, red
dashed curve; Brownian case α = 2, blue continuous curve.

Due to the strong dependence on the initial searcher-target separation x0 the efficiency
between different strategies should be compared for a given value of x0. This will be done
in the following. Additional insight can be obtained from the relative efficiency

Erel =
E(α)

E(αopt)
(20)

for a given x0 which is the ratio of the efficiency for some given exponent α over the
maximum efficiency for this initial separation for the corresponding value αopt. In figure 5
we show this relative efficiency as function of the stable exponent α of the jump length
distribution. The value Erel = 1 is obviously assumed at α = αopt. Figure 5 exhibits
a very rich behaviour. Thus, when the searcher is originally close to the target (here
x0 = 1) the Brownian strategy turns out to be the most efficient, and the functional
form of Erel is completely monotonic. For growing initial separation, however, the highest
efficiency occurs for smaller values of α. For instance, the maximum efficiency shifts from
αopt ≈ 1.5 for x0 = 10 to αopt ≈ 1.15 for x0 = 1000. In particular, for large separations
the optimal stable index approaches the value αopt = 1 obtained earlier for different LF
search scenarios [18, 39, 42–46].

The second striking observation is that for larger initial separations the dependence
of Erel on α is no longer monotonic. An implicit expression for αopt is obtained from the
relation

dE(α)
dα

= 0. (21)

The result can be phrased in terms of the implicit relation [48]

x0 = 2 exp
(

1
αopt

+
1
2
ψ

(αopt

2

)
+

1
2
ψ

(
1 − αopt

2

))
. (22)

Here ψ denotes the digamma function. From this relation we can use symbolic
mathematical evaluation to obtain the functional behaviour of the optimal Lévy index
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Figure 5. Relative efficiency for LF search as a function of the power-law
exponent α according to equation (19), displayed for the initial searcher-target
separations x0 = 1 (green dashed curve), x0 = 10 (red dotted curve), x0 = 100
(black dashed curve), and x0 = 1000 (blue continuous curve).

Figure 6. Optimal power-law exponent αopt as a function of the initial searcher-
target distance x0, as described by equation (22).

αopt as function of the initial searcher-target distance x0. The result is shown in figure 6.
Two distinct phenomena can be observed: first, the behaviour at long initial separations x0

demonstrates the convergence of the optimal exponent αopt to the Cauchy value αopt = 1.
Second, the optimal search is characterized by an increasing value for αopt when the initial
separation shrinks, and we observe a transition at some finite value x0: for initial distances
x0 between searcher and target that are smaller than some critical value xcrit, Brownian
search characterized by αopt = 2 optimizes the search. In our dimensionless formulation,
we deduce from the functional behaviour in figure 6 that xcrit ≈ 2.516.
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4. First arrival and search efficiency in presence of an external bias

We now consider the case when an external bias initially either pushes the searcher
towards or away from the target, the downhill and uphill scenarios. In the uphill regime,
we can understand that both the Brownian and the LF searcher may never reach the
target. However, as we will see, due to the presence of leapovers an LF searcher may also
completely miss the target when we consider the downhill scenario.

4.1. Search reliability

We can quantify to what extent a search process will ever locate the target in terms of the
search reliability P defined in equation (12). We obtain this quantity from the first arrival
density. We start with the Brownian case for α = 2, for which the arrival density ℘fa

can be calculated explicitly (see appendix E and [55] for the derivation). In the Laplace
domain, it reads

℘fa(s) = exp

(
− x0v

2K2
− x0

√
v2

4K2
2

+
s

K2

)
, (23)

where we again turned back to dimensional variables to see the explicit dependence on
the diffusivity K2. Thus, in the downhill case with v < 0 we find that due to the relation
P = ℘fa(s = 0) the search reliability will always be unity, P = 1: in the downhill case the
Brownian searcher will always hit the target. In the opposite, uphill case with v > 0, the
result

P = e−vx0/K2 (24)
for the search reliability has the form of a Boltzmann factor (K2 ∝ kBT ) and exponentially
suppresses the location of the target. In this Brownian case we can therefore interpret P as
the probability that the thermally driven searcher crosses an activation barrier of height
∝ vx0.

For the general case of LFs we obtain from equation (7) via change of variables the
Laplace transform

℘fa(s) =

∫ ∞
−∞ exp(ik)�dk∫ ∞

−∞ �dk
(25)

of the first arrival density, where we use the abbreviation

� =
1

sxα
0 + |k|α − i2Peαk

. (26)

In expression (25) we introduced the generalized Péclet number for the case of LFs,

Peα =
1
2
vxα−1

0 . (27)

In the Brownian limit α = 2 and after reinstating dimensional units we recover the
standard Péclet number Pe2 = vx0/(2K2), where the factor two is a matter of choice [55].

In figure 7 we depict the functional behaviour of the search reliability P for four
different values of the Lévy index α including the Brownian case α = 2. The cumulative
probability P depends only on the generalized Péclet number, as can be seen from
expression (25) when we take the relevant limit s → 0. In both panels of figure 7 the left
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Figure 7. Functional dependence of the search reliability P on the generalized
Péclet number Peα defined in equation (27). The lines are obtained numerically
from expression (7), and the symbols in the zoomed-in region in the right panel
are results of Langevin equation simulations. The lines represent the values α = 2
(Brownian case, black continuous line), α = 1.8 (green dashed line), α = 1.5 (red
dotted line), and α = 1.2 (blue dashed-dotted line).

semi-axes with negative Peα values correspond to the downhill case, in which the searcher
is initially advected in direction of the target, while the right semi-axes pertain to the
uphill scenario. The continuous lines correspond to the numerical solution of equation (7),
and the symbols represent results based on Langevin equation simulations. In these
simulations the values of the search reliability P were obtained as a ratio of the number
of searchers that eventually located the target over the overall number of the released
10 000 searchers. To estimate the error of the simulated value for the search reliability, we
calculated P for each consecutive 1000 runs and then determined the standard deviation
of the mean value of these 10 results.

According to figure 7 for the case of uphill search the search reliability is worst for
the Brownian walker and improves continuously for decreasing value of the stable index
α. This is due to the activation barrier (24) faced by the Brownian walker. For LFs this
barrier is effectively reduced due to the propensity for long jumps. The reduction of the
resulting jump length x−vτ , where τ is the typical duration of a single jump, becomes more
and more insignificant for increasing jump lengths x. This is why the efficiency continues
to improve until the Cauchy case is reached. Quantitatively, however, we realize that
for increasing generalized Péclet number even for LFs the value of the search reliability
quickly decreases to tiny values, and that the absolute difference between the different
search strategies is not overly significant.

In the downhill case figure 7 demonstrates that the Brownian searcher will always
locate the target successfully and thus return P = 1 in agreement with previous findings
[55]. In contrast, the search reliability decreases clearly with growing magnitude |Peα|.
This decrease worsens with decreasing stable exponent α. The reason for this is the
growing tendency for leapovers of LFs with decreasing α. Once the LF searcher overshoots
the target, it is likely to drift away quickly from the target and never return to its
neighborhood. Overall, the functional dependence of P on the generalized Péclet number
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Figure 8. Dependence of the search reliability P on the LF power-law exponent
α. Left: downhill case, initially the searcher is advected in direction of the target.
Right: uphill case. We show the results for three different initial conditions. Left:
x0 = 30 (red dotted curve), x0 = 15 (blue dashed curve), and x0 = 1 (black
continuous curve). Right: x0 = 10 (blue dotted curve), x0 = 5 (red dashed
curve), x0 = 1 (black continuous curve). In all cases, v = −0.1 (left) and v = 0.1
(right). The lines are obtained from numerical evaluation of expression (7), and
the symbols denote Langevin equation simulations results.

Peα becomes non-trivial once α < 2. From figure 7 we conclude that if the main criterion
for the search is the eventual location of the target, that is, a maximum value of the search
reliability P , without prior knowledge the gain for a Brownian searcher in the downhill
case is higher than the loss in the opposite case: if we do not know the relative initial
position to the target, the Brownian search algorithm will on average be more successful.

In figure 8 we now turn to the dependence of the search efficiency P on the Lévy index
α for fixed magnitude of the external bias v. In each case we display the behaviour for
three different values of the initial distance x0 between searcher and target. In the downhill
scenario we observe a remarkable non-monotonic behaviour for larger values of x0. Namely,
the search efficiency drops when α gets smaller than the Brownian value α = 2, for which
P = 1. While for the small initial separation x0 = 1 this drop is continuous, for the larger
values of x0 this trend is turned around, and the search efficiency grows again. Due to the
extremely slow convergence of both the Langevin equation simulations and the numerical
evaluation of equation (7) despite all efforts we were not able to infer the continuation of
the P -curve for α-values smaller than 1.2 and thus, in particular, what the limiting value
at the Cauchy case α = 1 is. What could be the reason for this non-monotonicity in the P
versus α dependence? Similar to the existence of an optimal α-value intermediate between
the Brownian and Cauchy cases α = 2 and α = 1, respectively, for the search reliability
we here find a worst-case value for α. This value represents a negative tradeoff of the
target overshoot property and insufficient propensity to produce sufficiently long jumps
to recover an accumulated activation barrier from a downstream location as seen from the
target. In the uphill case the dependence is monotonic: here long jumps become helpful
to overcome the activation towards the target. Thus the search efficiency increases when
α becomes smaller and approaches the Cauchy value α = 1. The value for P significantly
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drops with increasing value of the initial searcher-target separation x0. Consistently with
the previous observations on P the Brownian case fares worst and leads to the smallest
value of P .

4.2. Search efficiency for a Brownian walker

For a Brownian searcher in the presence of an external bias, the mean search time 〈t〉 can
be computed via

〈t〉 = − ∂℘fa(s)
∂s

∣∣∣∣
s=0

. (28)

For the downhill case this value is given by the classical result

〈t〉 =
x0

|v| . (29)

The diffusing searcher moves towards the target as if it were a classical particle, the search
time being given as the ratio of the distance over the (drift) velocity. It is independent of
the value of the diffusion constant. For the uphill case (v > 0), we find the known result

〈t〉 =
x0

v
exp

(
−vx0

K2

)
. (30)

The latter value is in fact smaller than the one for the downhill case. How can this be? The
explanation of this seeming paradox comes from the qualitative difference in the nature
of these averages. In the first scenario the search reliability is unity, that is, the walker
always arrives at the target. In the uphill case only successful walkers count, that is, the
average is conditional. This explains the seeming contradiction with common sense [56].
As we can see from this discussion is that the ready choice 1/ 〈t〉 as a measure for the
search efficiency would state that the uphill motion is more efficient than the downhill
one. This definition would obviously not make much sense. We show that our definition
of the search efficiency, equation (15), is a reasonable measure in this case. With the use
of equations (17) and (23) we find

E =
2K2

x2
0

(
1 +

|v|x0

2K2

) {
1, v � 0

exp (−vx0/K2) , v � 0
. (31)

Indeed, we see that our expression for the efficiency shows that the downhill motion is
more efficient than going uphill for the same initial separation x0.

In figures 9 and 10 the efficiency E is plotted for different values of the drift velocity v
and the initial separation x0 of searcher and target, respectively. As expected, the increase
of the downhill velocity leads to an efficiency growth, and vice versa for the opposite case.
By magnitude of the v-dependence, the decrease in the search efficiency for the uphill case
is much more pronounced than the increase in efficiency for the downhill case. Hence, the
dependence on the initial distance x0 becomes increasingly asymmetric.

4.3. Weak bias expansion for Lévy flight search

In the limit of a weak external bias we can obtain analytical approximations for the
search efficiency. Namely, for sufficiently small values of the generalized Péclet number
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Figure 9. Search efficiency as function of the drift velocity v from numerical
evaluation of equation (31), for three values of the initial searcher-target
separation x0: x0 = 0.5 (dotted black curve), x0 = 1 (red dashed curve), and
x0 = 5 (blue continuous curve).

Figure 10. Search efficiency as function of the initial position x0 calculated from
equation (31) for three values of the drift velocity v: v = −0.1 (dotted black
curve), v = −0.5 (blue dashed curve), and v = −2 (red continuous curve).

Peα and nonzero values of the Laplace variable s the denominators in both integrals of
equation (25) can be expanded into series. The first order expansion reads

℘fa(s) �
∫ ∞

−∞ cos(k)ℵdk −
∫ ∞

−∞ 2Peαk sin(k)ℵ2dk∫ ∞
−∞ ℵdk

, (32)

where we define

ℵ =
1

sxα
0 + |k|α (33)

The integrals appearing in expression (32) can be computed by use of the Fox H-function
technique, as detailed in appendix F. From the result (F.2) we obtain the following
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Figure 11. Comparison of the search efficiency from the approximate expression
(34) and from numerical integration of expression (7) over s, for the initial
searcher-target separation x0 = 1. Results are shown for the cases of zero drift
as well as uphill and downhill drift.

expression for the search efficiency,

E =
α

xα
0

[
cos

(
π

(
1 − α

2

))
Γ(α) − 2

(
1 − 1

α

)
Peα

]
, (34)

where the first term in the square brackets corresponds to the result for the case without
drift (Peα = 0), equation (19). When α = 2, the Brownian behaviour in the small bias
limit is recovered, namely, E = 2/x2

0(1 − Pe2), consistent with the small Pe2 expansion of
equation (31). From equation (F.2) it follows that for the Brownian case α = 2, the first
arrival density in the Laplace domain has the approximate form

℘fa(s) � (1 − Pe2) exp


−

√
sx2

0

K2


 , (35)

which is valid for s > v2/K2, i.e. for short times. After transforming back to the time
domain, we find

℘fa(t) � (1 − Pe2)x0√
4πK2t3

exp
(

− x2
0

4K2t

)
, (36)

as shown in appendix E. This result corresponds to the short time and small Péclet
number limit of the general expression for ℘fa(t) reported by Redner [55]. Thus our
expansion (F.2) works only at short times. However, the approximate expression (34) for
the search efficiency itself turns out to work remarkably well, as shown in figure 11. Here,
the behaviour described by equation (34) is compared with results of direct numerical
integration of equation (7) over s. We see an almost exact match for an initial searcher-
target separation x0 = 1. Instead, for x0 = 10 the agreement becomes worse (not shown
here). The explanation is due to the fact that for small initial separations short search
times dominate the arrival statistic, while for x0 the arrival is shifted to longer times, and
the approximation underlying equation (34) no longer works well.

The presence of an external bias substantially changes the functional form of the
efficiency as compared to the unbiased situation. Figure 12 shows the search efficiency as
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Figure 12. Search efficiency in the presence of a bias as function of the initial
searcher-target separation x0 for different values of the power-law exponent:
α = 2 (black dotted line), α = 1.8 (green dashed-dotted line), α = 1.5 (black
continuous line), and α = 1.2 (blue dashed line). Left: v = −0.5. Right: v = −1.

function of the initial position for two different drift velocities and for a variety of values of
the power-law exponent α. As expected from what we said before, the dependencies of the
search efficiency with respect to positive and negative initial separations is asymmetric, as
this corresponds to the difference between the uphill and downhill cases elaborated above.
Increasing the magnitude of the bias effects a more pronounced asymmetry between x0

values with the same absolute value |x0|. For the downhill case the advantage of the
Brownian search over LF search persists for all values of x0. As expected, the efficiency
drops, however, the general behaviour is similar for all α values. For the uphill case we
observe a remarkable crossing of the curves. For small initial separations x0 the Brownian
search efficiency is highest. Here the activation barrier is sufficiently small such that the
continuous Brownian searcher without leapovers locates the target most efficiently. When
x0 goes to increasingly negative values, successively LFs with smaller α values become
more efficient. In terms of the efficiency we see that for sufficiently large barriers, that is,
when the target is initially separated by a considerable uphill distance from the searcher,
LFs with smaller α fare dramatically better than processes with larger α.

We further illustrate the behaviour of the search efficiency by studying its functional
dependence on the stable index α for different initial distances x0 between searcher and
target as well as for different drift velocities in figure 13. Thus, for short initial separation
x0 shown in figure 13 on the left, the Brownian searcher is always the most efficient for all
cases: unbiased, downhill, and uphill. For larger x0 as shown in the right panel of figure 13,
the situation changes: in the downhill case the Brownian searcher still fares best. However,
already in the unbiased case the LF searchers produce a higher efficiency. An interesting
fact is the non-monotonicity of the behaviour of the search efficiency, leading to an optimal
value for the stable index α, whose value depends on the strength of the bias (and the
initial separation x0). This αopt is shifting towards the Cauchy value α = 1 for increasing
uphill bias.

We can also find a qualitative argument for the optimal value αopt of the power-
law index in the small bias limit. If we denote E0 = E(x0, v = 0), then E(x0, v) ∼=
E0 − (α − 1)v/x0. In comparison to the unbiased case, that is, the efficiency is reduced in
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Figure 13. Search efficiency as function of the power-law exponent α for initial
searcher-target separation x0 = 1 (left) and x0 = 10 (right). We show the
dependence for the following bias velocities: v = −0.5 (blue upper curve), v = 0
(black centre curve), and v = −0.5 (red lower curve). Symbols correspond to
Langevin equation simulations.

Figure 14. Optimal power-law exponent αopt as a function of the initial searcher-
target distance x0 with a bias velocity v = −0.2 (black dashed line) and without
a bias v = 0 (red continuous line).

the uphill case and increased in the downhill case, as it should be. Moreover, the correction
due to the bias is more pronounced for larger values of α. Hence the optimal α necessarily
shifts to larger values for the downhill case in comparison with the unbiased situation,
and vice versa in the uphill case.

This can be perfectly illustrated with figure 14. The plot shows that application of a
bias apparently breaks a symmetry in terms of the initial position of a searcher: optimal
α values increase for the downhill side and drop for the uphill side. Thus, the range of x0

values where the Brownian motion is optimal is effectively shifted.
Note that in appendix I we add an alternative formulation for the first arrival problem

via an implicit expression for ℘fa(t).
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5. Discussion

We generalized the prominent Lévy flight model for the random search of a target to the
case of an external bias. The dynamics of the search is governed by the space-fractional
Fokker–Planck equation in which a δ-sink term incorporates the first arrival of the searcher
to its target. The bias in this equation could represent a choice of the searcher due to some
prior experience, a bias in an algorithmic search space, or simply an underwater current
or airflow. To compare the efficiency of this biased LF search for different initial searcher-
target separations and values of the external bias, we introduced the search efficiency in
terms of the mean of the inverse search time, 〈1/t〉. We confirmed that this measure is
meaningful and in fact more consistent than the traditional definition in terms of the
inverse mean search time, 1/〈t〉. As a second measure for the quality of the search process
we introduced the search reliability, the cumulative arrival probability. When this measure
is unity, the searcher will ultimately always locate the target. When it is smaller than unity,
the searcher has a finite chance to miss the target. As shown here, a high search reliability
does not always coincide with a high search efficiency. Depending on what we expect from
a search process, either measure may be more relevant.

In terms of the efficiency we saw that even in absence of a bias the optimal strategy
crucially depends on the initial separation x0 between the searcher and the target. For
small x0 the Brownian searcher is more efficient, as it cannot overshoot the target. With
increasing x0, however, the LF searcher needs a smaller number of steps to locate the target
and thus becomes more efficient. In the presence of a bias there is a strong asymmetry
depending on the direction of the bias with respect to the initial location of the searcher
and the target. For the downhill scenario the Brownian searcher always fares better, as it
is advected straight to the target while the LF searcher may dramatically overshoot the
target in a leapover event and then needs to makes its way back to the target, against
the bias. The observed behaviours can be non-monotonic, leading to an optimal value for
the power-law exponent α. For strong uphill bias and large initial separation the optimal
α value is unity, for short separations and downhill scenarios the Brownian limit α = 2 is
best. There exist optimal values for α in the entire interval [1, 2], depending on the exact
parameters.

The search reliability for a given value of α solely depends on the generalized Péclet
number. For unbiased search the searcher will always eventually locate the target, that
is, the search efficiency attains the value of unity. In the presence of a bias, unity is
returned for the search reliability for a Brownian searcher in the downhill case. It decays
exponentially for the uphill case. For LF searchers with α smaller than two, the probability
of leapovers reduces the value of the search reliability in the downhill case. In the opposite,
uphill scenario the search reliability is larger for LF searchers compared to the Brownian
searcher. The absolute gain in this case, however, was found to be smaller than the loss
to a Brownian competitor in the downhill case. Without prior knowledge of the bias a
Brownian search strategy may turn out to be overall advantageous. We also found a non-
monotonicity of the search reliability as function of the initial searcher-target separation
x0. It will be interesting to see whether our results for both the search efficiency and
reliability under an external bias turn out similarly for periodic boundary conditions
relevant for finite target densities.
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We note here that we analyzed LF search in one spatial dimension. What would be
expected if the search space has more dimensions? For regular Brownian motion we know
that it remains recurrent in two dimensions, that is, the sample path is space-filling in
both one and two dimensions. On the other hand LFs with 1 < α < 2 are recurrent in one
dimension but always transient in two dimensions. Hence in two dimensions LFs will even
more significantly reduce the oversampling of a Brownian searcher. At the same time,
however, the search reliability will go to zero. In both one and two dimensions (linearly
or radially) LFs are distinct due to the possibility of leapovers, owing to which the target
localization may become less efficient than for Brownian search. Many search processes
indeed fall in the category of (effectively) one or two dimensions. For example, they are
one-dimensional in streams, along coastlines, or at forest-meadow interface and other
borders. For (relatively) unbounded search processes as performed by birds or fish, the
motion in the vertical dimension shows a much smaller span than the radial horizontal
motion, and thus becomes effectively two dimensional. If we modify the condition of
blind search and allow the walker to look out for prey while relocating, in one dimension
this would obviously completely change the picture in favor of LFs with their long
unidirectional steps. This is related to the persistence probability for Lévy flights discussed
in [25]. However, in two dimensions the radial leapovers would still impede the detection
of the target unless it is exactly crossed during a step.

So what remains of the LF hypothesis? Conceptually, it is certainly a beautiful idea:
a scale-free process reduces oversampling and thus scans a larger domain. If the target
has an extended width, for instance, a large school instead of a single fish, LFs will
then optimize the search under certain criteria. However, even when the stable index is
larger than unity, in two or three dimensions an LF may also never reach the target,
due to its patchy albeit scale-free exploration of the search space. Thus, even under LF-
friendly conditions such as extremely sparse targets and/or uphill search, the superiority
of LFs over other search models depends on the exact scenario. For instance, whether it is
important that the target is eventually located with certainty, or whether in an ensemble
of equivalent systems only sufficiently many members need a quick target localization, for
instance, the triggering of some gene expression process responding to a lethal external
signal in the cells of a biofilm. The LF hypothesis even in the case of blind search without
any prior knowledge is therefore not universal, and depending on the conditions of initial
searcher target separation or the direction of a naturally existing gradient with respect to
the location of the target the regular Brownian motion may be the best search strategy.

LFs are most efficient under the worst case conditions of blind search for extremely
sparse targets and, as shown here, for uphill motion. While very rare targets certainly exist
in many scenarios, we should qualify the result for the uphill motion. The above uphill
LF scenario holds for abstract processes such as the blind search of computer algorithms
in complex landscapes or for the topology-mediated LFs in models of gene regulation. For
the search of animals moving against a physical air or water stream, however, we have
to take into consideration that any motion against a gradient requires a higher energy
expenditure. Unless the gradient is very gentle, this aspect relativizes the LF hypothesis
further.

Having said all this, one distinct advantage of spatially scale free search processes
remains. Namely, they are more tolerant to gradually shifting environmental conditions,
for instance, a change in the target distribution, or when the searcher is exposed to a new
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patch with conditions unknown to him. This point is often neglected in the analysis of
search processes. A more careful study of this point may in fact turn back the wheel in
favor of LF search.

It should be noted that LFs are processes with a diverging variance 〈x2(t)〉, and may
therefore be considered unphysical. There exists the closely related superdiffusive model
of Lévy walks, which have a finite variance due to a spatiotemporal coupling introducing
a finite travel velocity, compare, for instance, [57]. This coupling penalizes long jumps.
However, both models converge in the sense that the probability density function of a Lévy
walker displays a growing Lévy stable portion in its centre, limited by propagating fronts.
The trajectory of such a Lévy walk appears increasingly similar to an LF: local search
interspersed by decorrelating long excursions. We expect that at least qualitatively our
present findings remain valid for the case of Lévy walks. It will be interesting to investigate
this quantitative statement in more detail. Concurrently, other modifications of random
search models should be included eventually. For instance, it would be interesting to
discuss combinations with recent random search models including a tendency to return
to previously visited points [61], to the idea of resetting dynamics [62], as well as spatial
and temporal modifications of the parameters similar to those encountered in processes
with position and time dependent diffusivities [63–66].
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Appendix A. Derivation of the dimensionless equation (3)

We here show how to consistently introduce dimensionless units in the fractional Fokker–
Planck equation. If we denote the dimensionless time and position coordinate respectively
by t and x, such that t = tts and x = xxs with the dimensional parameters ts and xs

defined below. Then we can rewrite equation (2) in the form
1
ts

∂f(x, t)
∂t

=
Kα

xα
s

∂αf(x, t)
∂|x|α − v

xs

∂f(x, t)
∂x

− ℘fa(tts)δ(xxs). (A.1)

Note that we are dealing with dimensional density functions so that
f(x, t)d(xxs) = f(x, t)dx, (A.2)

and thus

f(x, t) =
f(x, t)

xs

. (A.3)

Equation (A.1) then assumes the form
∂f(x, t)

∂t
=

Kαts
xα

s

∂αf(x, t)
∂|x|α − v

∂f(x, t)
∂x

− ℘fa(t)δ(x), (A.4)
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where v = vts/xs. We choose the parameters ts and xs as
xs = σ, ts = τ , (A.5)

where σ and τ correspond to the scaling factors of the jump length and waiting time
distributions of the continuous time random walk. These appear in the Fourier and Laplace
transforms of the jump length and waiting time densities [15]. The respective expansions
used in the derivation of the continuous time random walk model for Lévy flights are

λ(k) ≈ 1 − σαkα, ψ(s) ≈ 1 − sτ . (A.6)
The diffusion coefficient Kα in the fractional Fokker–Planck equation is then expressed in
terms of these parameters as [15,58]

Kα =
σα

τ
. (A.7)

We thus obtain the dimensionless dynamic equation (3).

Appendix B. Proof that P = 0 for v = 0 and α � 1

To obtain the search reliability P via the relation P = ℘fa(s = 0) one first integrates
equation (7) over k and then takes the limit s = 0. If s �= 0 and 1 < α � 2, both
integrals in the numerator and denominator of equation (7) converge. In this and the
next appendices we prove that ℘fa(s) = 0 for s > 0 and α � 1. Hence P = 0, which means
that the searcher never reaches the target in the case α � 1.

Taking v = 0 in equation (7) we have

℘fa(s) =

∫ ∞
0 cos(kx0)(s + |k|α)−1dk∫ ∞

0 (s + |k|α)−1dk
. (B.1)

For α � 1 the integral in the denominator diverges at infinity. Let us consider the integral
in the numerator. We notice that∫ ∞

0

cos(k)
kα

dk = Γ(1 − α) cos(π[1 − α]), (B.2)

for α < 1. Thus the numerator of expression (B.1) converges for α < 1. Since the
denominator diverges in this α range, ℘fa(s) = 0 for all values of s. Thus, the search
reliability vanishes, P = 0, and the searcher never reaches its target. The limiting case
α = 1 needs separate attention. We observe that the integral (B.2) diverges. For α = 1,

℘fa(s) = lim
a→∞

∫ a

0 cos(kx0)(s + k)−1dk∫ a

0 (s + k)−1dk
. (B.3)

expression for ℘fa(s). The integrals are∫ a

0
(s + k)−1dk = ln

(
a + s

s

)
, (B.4)

which logarithmically diverges for a → ∞, and∫ a

0

cos(kx0)
s + k

dk =
∫ ax0+sx0

sx0

cos(k − s)
k

dk =
∫ ax0+sx

sx0

cos(k − s)
k

dk

= cos(s)
∫ ax0+sx

sx0

cos(k)
k

dk + sin(s)
∫ ax0+sx

sx0

sin k

k
dk. (B.5)
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The second term in equation (B.5) converges. Thus, in the ratio over the divergent integral
(B.4) it can be neglected. The first term can be modified to∫ ax0+sx

sx0

cos(k)
k

dk =
∫ ∞

sx0

cos(k)
k

dk −
∫ ∞

ax0+sx

cos(k)
k

dk. (B.6)

When a → ∞ the second term in equation (B.6) is the cosine integral at ax0 + sx, and it
vanishes. Altogether, for any finite s

℘fa(s) = lim
a→∞

cos(s)
∫ ∞

sx0
cos(k)/kdk

ln([a + s]/s)
= 0, (B.7)

which completes the proof.

Appendix C. Proof that P = 0 for v �= 0 and α � 1

Let us start from the Cauchy case α = 1. The expression for the first arrival density
follows from equation (7),

℘fa(s) =

∫ ∞
−∞{cos(kx0)[s + |k|] − vk sin(kx0)}�dk∫ ∞

−∞(s + |k|)�dk
(C.1)

with

� =
1

(s + |k|)2 + k2v2 . (C.2)

Alternatively,

℘fa(s) = lim
a→∞

∫ a

0 {cos(kx0)[s + |k|] − vk sin(kx0)}�dk∫ a

0 (s + |k|)�dk
. (C.3)

Let us first consider the integral in the denominator,∫ a

0
(s + |k|)�dk =

1
2(1 + v2)

ln
(1 + v2)a2 + 2sa + s2

s2

−
(

arctan
s + (1 + v2)a

|v|s − arctan
1
|v|

) (
1
|v| +

1
(1 + v2)|v|

)
. (C.4)

At a → ∞ only the first term is significant, and it diverges logarithmically. The integral
in the numerator converges due to the oscillating functions in the integrands. With the
diverging denominator and the converging numerator in equation (C.3), we have that
℘fa(s) = 0 for any finite s. The search reliability vanishes.

For α < 1 in equation (7) with k → ∞ we have kα � k, and the proof is analogous to
the case just considered.

Appendix D. Solution for v = 0 via Fox H-functions

Without a bias, equation (7) takes on the form

℘fa(s) =

∫ ∞
0 cos(k)ℵdk∫ ∞

0 ℵdk
≡ I2

I1
. (D.1)
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where the abbreviation ℵ is defined in equation (33). The integral in the denominator
yields [59]

I1 =
1
α

(
1

sxα
0

)(α−1)/α

Γ
(

1
α

)
Γ

(
1 − 1

α

)
. (D.2)

The integral in the numerator can be obtained in terms of the Fox H-function technique
[60]. Since

1
1 + xα

= H11
11

[
x

∣∣∣∣ (0, 1/α)
(0, 1/α)

]
, (D.3)

we find that

I2 =
(

1
sxα

0

)(α−1)/α ∫ ∞

0

cos
[
s1/αx0y

]
1 + yα

dy

=
√

π

α

1
sxα

0
H12

31

[
2

s1/αx0

∣∣∣∣ (1/2, 1/2), (0, 1/α), (0, 1/2)
(0, 1/α)

]
, (D.4)

where we used equation (D.3) and the integral (2.25.2.4) from [59]. Transforming the
H-function by help of the properties (1.3) and (1.5) from [60] we obtain

℘fa(s) =
√

π

2Γ(1/α)Γ(1 − 1/α)

× H21
13

[
1
2
s1/αx0

∣∣∣∣ ([α − 1]/α, 1/α)
(0, 1/2), ([α − 1]/α, 1/α), (1/2, 1/2)

]
, (D.5)

Using the properties of the Laplace transform of the H-function (see chapter 2 in [60]) we
get the first arrival density in the time domain,

℘fa(t) =
α
√

π

2Γ(1/α)Γ(1 − 1/α)t

× H21
23

[
xα

0

2αt

∣∣∣∣ (1/2, 1), (0, 1)
(0, α/2), ([α − 1]/α, 1), (1/2, α/2)

]
. (D.6)

Expansion of equation (D.6) in the long-time limit yields equation (11), where

C(α) =
α sin2(π/α) sin(π[2 − α]/2)Γ(2 − α)Γ(2 − 1/α)

π2(α − 1)
. (D.7)

Appendix E. General solution for the Brownian case

It is instructive to obtain the well-known first arrival density in the Brownian case directly
from equation (7). For α = 2, equation (7) assumes the form

℘fa(s) =

∫ ∞
−∞ exp(ikx0)�dk∫ ∞

−∞ �dk
≡ I1

I2
, (E.1)

where

� =
1

s + K2k2 − ikv
(E.2)
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The denominators in these integrands are quadratic polynomials in k and hence can be
rewritten as K2(k − k1)(k − k2), where

k1,2 =
iv

2K2
± i

√
v2

4K2
2

+
s

K2
. (E.3)

Then both integrals can be easily calculated by the method of residues, and we arrive at
equation (23).

At short times (v2/K2 < s) equation (23) yields

℘fa(s) = (1 − Pe2) exp


−

√
sx2

0

K2


 . (E.4)

This result can be obtained by first expanding equation (E.1) at small Péclet numbers
and then integrating each of the terms over k. Indeed, from equation (E.1) we get

℘fa(s) �
∫ ∞

−∞ cos(k)�̃dk −
∫ ∞

−∞ 2Pe2k sin(k)�̃2dk∫ ∞
−∞ �̃dk

(E.5)

with

�̃ =
1

sx2
0/K2 + k2 (E.6)

The three integrals in equation (E.5) become∫ ∞

−∞
�̃dk = π

√
K2

sx2
0
,

∫ ∞

−∞
cos(k)�̃dk = π

√
K2

sx2
0

exp


−

√
sx2

0

K2


 ,

∫ ∞

−∞
2Pe2k sin(k)�̃2dk = πPe2

√
K2

sx2
0

exp


−

√
sx2

0

K2


 ,

which yields the result (E.4).
Finally, we note that the inverse Laplace transform of equation (23) leads to the

expression in time domain,

℘fa(t) =
x0√
4πt3

exp
(

−(vt + x0)2

4t

)
. (E.7)

This result coincides with the solution obtained by either the Green’s function technique
or the images method in [55] (see equation (3.2.13) there).

Appendix F. Expansion (32) in terms of H-functions

We show here how expansion (32) is obtained in terms of H-functions. Two out of
three integrals in equation (32) were computed above in appendix D as equations (D.2)

doi:10.1088/1742-5468/2014/11/P11031 27

http://dx.doi.org/10.1088/1742-5468/2014/11/P11031


J. S
tat. M

ech. (2014) P
11031

Optimization of random search processes with an external bias

and (D.4). The last unknown integral from expression (32) can be computed in a similar
way,∫ ∞

−∞

2Peαk sin k

(sxα
0 + |k|α)2 dk = 4Peα

(
1

sxα
0

)2−2/α ∫ ∞

0

y sin
(
s1/αx0y

)
(1 + yα)2 dy

=
4Peα

α

(
1

sxα
0

)2−2/α ∫ ∞

0
sin

(
s1/αx0y

)
yH11

11

[
y

∣∣∣∣ (−1, 1/α)
(0, 1/α)

]
dy

=
8Peα

√
π

α
(sxα

0 )2 H12
31

[
2s1/αx0

∣∣∣∣ (−1/2, 1/2), (−1, 1/α), (0, 1/2)
(0, 1/α)

]
. (F.1)

With these results we obtain the following expression in Laplace space,

℘fa(s) =
√

π

2Γ(1/α)Γ(1 − 1/α)

(
H12

31

[
2

s1/αx0

∣∣∣∣ (1, 1/2), (1/α, 1/α), (1/2, 1/2)
(1/α, 1/α)

]

−22−αPeαH12
31

[
2

s1/αx0

∣∣∣∣ (α/2, 1/2), (1/α, 1/α), ([α + 1]/2, 1/2)
([α + 1]/α, 1/α)

])
. (F.2)

Inverse Laplace transform of equation (F.2) yields

℘fa(t) =
α
√

π

2Γ(1/α)Γ(1 − 1/α)t

(
H21

23

[
xα

0

2αt

∣∣∣∣ (1/2, 1), (0, 1)
(0, α/2), ([α − 1]/α, 1), (1/2, α/2)

]

−PeαH21
23

[
xα

0

2αt

∣∣∣∣ (−1/α, 1), (0, 1)
(1 − α/2, α/2), ([α − 1]/α, 1), ([1 − α]/2, α/2)

])
. (F.3)

Appendix G. Derivation of the Brownian weak bias expansion (F.2)

We represent the first arrival density ℘fa from equation (F.2) as ℘fa = ℘
(1)
fa +℘

(2)
fa , where the

first and second contribution correspond to the first and second terms in the expression
(F.2). Then for α = 2 the order of H-function is reduced by use of the properties 1.2 and
1.3 from chapter 1 in [60]) as well as its definition via the Mellin transform [60]. This
procedure yields

℘
(1)
fa (s) =

1
2
√

π
H12

31

[
2K1/2

2

s1/2x0

∣∣∣∣∣ (1, 1/2), (1/2, 1/2), (1/2, 1/2)

(1/2, 1/2)

]

=
1

2
√

π
H02

20

[
2K1/2

2

s1/2x0

∣∣∣∣∣ (1, 1/2), (1/2, 1/2)
]

=
1

2
√

π
H20

02

[
s1/2x0

2K1/2
2

∣∣∣∣∣ (0, 1/2), (1/2, 1/2)

]
(G.1)

= H10
01

[
s1/2x0

K
1/2
2

∣∣∣∣∣ (0, 1)

]
= exp

(
−s1/2x0

K
1/2
2

)
.

Similar steps for ℘
(2)
fa lead to the result

℘
(2)
fa = − Pe2

2
√

π
H12

31

[
2K1/2

2

s1/2x0

∣∣∣∣∣ (1, 1/2), (1/2, 1/2), (3/2, 1/2)

(3/2, 1/2)

]
= −Pe2 exp

(
−s1/2x0

K
1/2
2

)
. (G.2)
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Thus ℘fa = (1 − Pe2) exp
(
−s1/2x0/K

1/2
2

)
, which is the expansion of the general solution

in the Brownian case, expression (E.4). The same result can be obtained by calculations
in t-space

℘
(1)
fa =

1√
πt

H21
23

[
x2

0

4K2t

∣∣∣∣∣ (1/2, 1), (0, 1)

(0, 1), (1/2, 1), (1/2, 1)

]
=

x0√
4πt3

exp
(

− x2
0

4K2t

)
, (G.3)

and

℘
(2)
fa = − Pe2√

πt
H21

23

[
x2

0

4K2t

∣∣∣∣∣ (−1/2, 1), (0, 1)

(0, 1), (1/2, 1), (−1/2, 1)

]
= − Pe2x0√

4πt3
exp

(
− x2

0

4K2t

)
.

(G.4)

Appendix H. Implicit Fox H-function expression for ℘fa(s)

The expressions for H1(t) and H2(t) in equation (I.1) can be obtained by help of standard
properties of H-function [59] and the identification for the exponential function,

e−z = H10
01

[
z

∣∣∣∣∣ (0, 1)

]
. (H.1)

Consequently,

H1(t) =
∫ ∞

0
cos(k|vt|)H10

01

[
tkα

∣∣∣∣∣ (0, 1)

]
dk

=
√

π

|vt|H
11
21

[
t

(
2

|vt|

)α
∣∣∣∣∣ (1/2, α/2), (0, α/2)

(0, 1)

]
(H.2)

and

H2(t) =
∫ ∞

0
cos(k|vt + x0|) exp (−ktα) dk

=
√

π

|vt + x0|
H11

21

[(
2

|vt + x0|

)α

t

∣∣∣∣∣ (1/2, α/2), (0, α/2)

(0, 1)

]
. (H.3)

To construct the expression (I.3) for the first arrival density, we need the Laplace
transforms of the functions Hi(t). For H1(s) we find

H1(s) = L
{ √

π

|v|τ H11
12

[
τα−1

(
|v|
2

)α
∣∣∣∣∣ (1, 1)

(1/2, α/2), (1, α/2)

]}

=
√

π

2
s1/α−1H12

22

[
s1−α

(
|v|
2

)α
∣∣∣∣∣ (1/α, α − 1), (1 − 1/α, 1)

(0, α/2), (1/2, α/2)

]
(H.4)

Using the expansion of the H-function at small arguments [60] we find at v = 0

H1(s) =
s1/α−1

α
Γ

(
1 − 1

α

)
Γ

(
1
α

)
, (H.5)

which is exactly the same result as one can get by direct computation of the integral∫ ∞
0 e−kαtdk and subsequent Laplace transform.
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At v = 0 from equation (H.3) we get by direct Laplace transform

H2(s) =
√

π

x0s
H12

31

[
2α

sxα
0

∣∣∣∣∣ (0, 1), (1/2, α/2), (0, α/2)

(0, 1)

]

=
√

π

αx0s
H12

31

[
2

s1/αx0

∣∣∣∣∣ (0, 1/α), (1/2, 1/2), (0, 1/2)

(0, 1/α)

]
(H.6)

and hence

℘fa(s) =
H2(s)
H1(s)

=
√

π

x0s1/αΓ(1/α)Γ(1 − 1/α)
H12

31

[
2

s1/αx0

∣∣∣∣∣ (0, 1/α), (1/2, 1/2), (0, 1/2)

(0, 1/α)

]

=
√

π

2Γ(1/α)Γ(1 − 1/α)
H12

31

[
2

s1/αx0

∣∣∣∣∣ (1/α, 1/α), (1, 1/2), (1/2, 1/2)

(1/α, 1/α)

]
. (H.7)

We see that this expression is different from equation (D.5) in the order of the first two
parentheses in the top row of the H-function. However, these brackets can be exchanged
due to property 1.1 of the H-function in [60]. Thus, the H-function solution for the
unbiased case (v = 0) is obtained correctly.

Now let us derive the result for any v in the limit α = 2. For that purpose we note that

H2(t) =
√

π

2
t1/αH11

12

[
1
t

(
|vt + x0|

2

)α
∣∣∣∣∣ (1 − 1/α, 1)

(0, α/2), (1/2, α/2)

]
. (H.8)

For α = 2 the reduction formula for H-functions (property 1.2 of [60]) yields

H2(t) =
√

π

2
√

t
exp

(
(vt + x0)2

4K2t

)
, (H.9)

where we restored the Brownian diffusivity. Alternatively,

H2(s) =
π√

4s + v2
exp

(
−1

2
x0

[
v +

√
4s + v2

])
(H.10)

Since H1(s) = H2(s)|x0=0,

℘fa(s) = exp
(

−1
2
x0

[
v +

√
4s + v2

])
. (H.11)

Inverse Laplace transform of the latter relation produces equation (E.7).

Appendix I. Implicit formula for the first arrival density

We briefly mention a different way to approach the first arrival problem in terms of an
implicit expression for the corresponding density ℘fa(t). From equation (7), by inverse
Laplace transform we find∫ t

0
℘fa(t − τ)dτ

∫ ∞

−∞
eikvτ−|k|ατdk =

∫ ∞

−∞
eikx0+ikvτ−|k|ατdk. (I.1)

With the functions Hi(t) defined in appendix H, we rewrite this relation in the form∫ t

0
℘fa(t − τ)H1(τ)dτ = H2(t), (I.2)
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such that we arrive at the simple form

℘fa(s) =
H2(s)
H1(s)

(I.3)

in terms of the Laplace transforms Hi(s). This is a familiar form for the first passage
density for continuous processes [55], and is also known for the first arrival of LFs [50].
For numerical evaluation or small bias expansions this expression turns out to be useful.
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