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Abstract
We study ultraslow diffusion processes with logarithmic mean squared dis-
placement (MSD) 〈 〉 ≃ γx t t( ) log2 . Comparison of annealed (renewal) con-
tinuous time randomwalks (CTRWs) with logarithmic waiting time distribution
ψ τ τ τ≃ γ+( ) 1 ( log )1 and Sinai diffusion in quenched random landscapes
reveals striking similarities, despite the great differences in their physical nature.
In particular, they exhibit a weakly non-ergodic disparity of the time-averaged
and ensemble-averaged MSDs. Remarkably, for the CTRWwe observe that the
fluctuations of time averages become universal, with an exponential suppres-
sion of mobile trajectories. We discuss the fundamental connection between the
Golosov localization effect and non-ergodicity in the sense of the disparity
between ensemble-averaged MSD and time-averaged MSD.
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1. Introduction

Ever since Pearsonʼs defining Letter to the Editor of 1905 [1], and Einsteinʼs and Smo-
luchowskiʼs mean free path studies [2], random walks have been used as a standard tool in
approaching a multitude of nonequilibrium phenomena across disciplines [3–6]. Usually
renewal random walks are used [5], in which jumps have no memory, reflecting the motion in
an annealed environment [7]. This contrasts with random walks in quenched environments in
which a particle progressively builds up correlations when it revisits locations with site-
specific properties [7]. The prototype approach is based on Temkinʼs lattice model with site-
dependent probabilities for jumping left or right [3, 8].

A great leap forward came with Sinaiʼs study of a special case of Temkinʼs model in
which a walker jumps from site x to ±x 1 with the site-specific probability ε= ±p s(1 )x x

1

2
[9]. Here, the amplitude ε< <0 1, and = ±s 1x with probability 1 2 [3, 10]. Sinai diffusion
can be viewed as a random walk in the quenched potential landscape created by a standard
random walk. A simple argument for the temporal spreading in Sinai diffusion goes as
follows [7]. To span a distance x from its starting point, the particle needs to cross an energy
barrier of order x with activation time τ τ σ∼ xexp ( )1 , where σ is a measure for the
disorder strength versus the thermal energy and τ1 a fundamental time scale. The distance
covered by the walker during time t then scales as τ≃x tln ( )2 4

1 .
Sinai diffusion is related to random-field Ising models [11, 12] and helix-coil boundaries

in random heteropolymers [13]. With the inherently quenched heterogeneity of biomolecules,
Sinai-type models describe mechanical DNA unzipping [14], translocation of biopolymers
through nanopores [15, 16], and molecular motors [16]. Ultraslow diffusion with mean
squared displacement (MSD)

γ≃ >γ
γx t K t( ) 2 ln , 0, (1)2

in fact has a much wider scope in disordered systems of low dimension: e.g., in vacancy-
induced motion [17], biased motion in exclusion processes [18], motion in ageing
environments [19], compactification of paper [20] or grain [21], dynamics in glassy systems
[22], record statistics [23], the ABC model [24], diffusion with exponential position
dependence of the diffusivity [25], and dynamics in nonlinear maps [26]. Logarithmic
diffusion (1) with γ = 1/2 also emerges in interacting many-particle systems in one
dimension [27].

Previous work focused on ensemble-averaged observables. The routine observation of
single-particle trajectories in the laboratory forces us to investigate time averages theoreti-
cally. Moreover, in real systems the landscape is often quenched, but the analysis of time
averages has mostly relied on ideas valid for the annealed scenario [6, 28]. It was also found
that quenched disorder can dramatically affect the statistics of time averages [29–31]. There
thus exists a pressing need for theoretical results going beyond ensemble averages that would
shed light on ergodic properties in systems with quenched disorder.

Here we report a comparative study of Sinai diffusion and ultraslow continuous time
random walks (CTRWs) with superheavy-tailed waiting times [26, 32–34]. We study their
time-averaged MSD and demonstrate the fundamental disparity between ensemble and time
averages. These weakly non-ergodic behaviors [28, 35] are, up to a prefactor, identical for the
two processes. We discuss why, despite the seeming similarity, the problems of ergodicities in
annealed and quenched systems are very different. In addition, we unveil the universal
exponential fluctuations of the time-averaged MSD of the CTRW process and provide
numerical evidence of the Golosov localization effect for different disorder realizations in
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Sinai diffusion. Concurrently, the PDF of the CTRW process is shown to be practically
indistinguishable from that of Sinai diffusion.

2. Sinai diffusion

We start with the analysis of Sinai diffusion. In the continuum limit, its MSD reads [11, 36]

≃x t t( ) (61 180) ln ( ), (2)2 4

in scaled units. Here 〈 〉· is an ensemble average over white Gaussian noise and ∼· a disorder
average. Figure 1 shows the excellent agreement with our extensive simulations.

To simulate Sinai diffusion, we follow the approach of [36] based on a discrete-space
Fokker–Planck equation for a particular realization of the random potential. Mapping the
Fokker–Planck equation onto the corresponding (imaginary time) Schrödinger equation,
we obtain the propagator as an expansion in eigenstates from diagonalization of the
Schrödinger operator. From the disorder-averaged one-point and two-point propagators,
we evaluate the time-averaged and ensemble-averaged MSDs (see also below). The
results were averaged over 5000 realizations of the random potential with 108 time steps
each [37].

Individual time series x(t) garnered by modern single-particle tracking techniques or from
simulations are typically evaluated in terms of the time-averaged MSD [6, 26]

∫δ Δ
Δ

Δ=
−

′ + − ′ ′
Δ−

t
x t x t t( )

1
[ ( ) ( )] d , (3)

t
2

0

2

with the lag time Δ and the length t of the time series. The overline . denotes the time
average. Averaging equation (3) over many trajectories embedded in different realizations of
the disorder, we obtain

⎡⎣
⎤⎦

∫δ Δ
Δ

Δ

Δ

∼
−

〈 ′ + 〉 + ′

− ′ ′ + ′

Δ−  


t

x t x t

x t x t t

( )
1

( ) ( )

2 ( ) ( ) d , (4)

t
2

0

2 2

where the two-point position correlation function

Δ Δ′ ′ + = 〈 ′ + 〉〈 ′ 〉 ×x t x t x t x t f y( ) ( ) ( ) ( ) ( ) (5)2 2

is known from renormalization group calculations by Le Doussal et al [36], where
Δ= ′ + ′y t tln ( ) ln and
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Inserting this into equation (4), we obtain our first main result, the time-averaged MSD:

δ Δ Δ Δ≃ = 〈 〉
t

t
x t

t
( )

3721

17080
ln ( ) ( )

549

854
, (7)2 4 2

up to corrections of order Δ t( )2 [37]. We observe in equation (7) the distinct disparity
between the MSD (2) and its time-averaged analogue (7). In contrast to the logarithmic time
dependence (2) for the MSD, the time-averaged MSD (7) grows linearly with the lag time Δ.
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Concurrently, it displays an ageing dependence proportional to t tln ( )4 , i.e., the process is
progressively slowed down. Physically, this is effected when the random walker hits
increasingly deeper wells. In figure 1, without fitting, we see excellent agreement between the
analytical prediction (7) and the simulations, including the dependence on t.

However, when discussing time averages in nontrivial quenched systems such as a Sinai
landscape, we must distinguish between at least two averaging scenarios. In the first case each
path is realized on its own unique quenched landscape, and after averaging the individual

Figure 1. Ensemble-averaged (□, top and left axes) and time-averaged (■, bottom and
right axes, for =t 107 and =t 108) MSD of Sinai diffusion. The simulations agree
excellently with the analytical results (full lines) from equations (2) and (7). Note that
we show 〈 〉− x t10 ( )3 2 such that for sufficiently long trajectories (long t in equation (7)),

δ〈 〉 ≫x2 2.

Figure 2. Standard deviation 〈 〉 − 〈 〉x t x t[ ( ) ( ) ]2 2 1 2 for individual realizations of the
quenched potential landscape in the Sinai model. The universal localization due to the
Golosov effect is seen distinctly. The horizontal black line shows the value 32.
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time-averaged MSDs δ2 over the disorder we get equation (7). Second, we can consider one
unique disordered system with an ensemble of non-interacting particles which all start at the
origin. The thermal noise is independent for each particle. Still, in the long time limit we can
expect that the time-averaged MSD for all particles will depend on the specific realization of
the disorder, and due to the Golosov localization effect all trajectories will yield similar values
for the time-averaged MSD. Hence we now focus on the Golosov effect [38]: in a given
realization of the disorder, the ratio 〈 〉x t t( ) ln2 for a fixed initial position up to a prefactor of
order unity becomes deterministic: the particles get stuck in the deepest potential minimum
that they can reach within the time t. In particular, for the standard deviation the result
〈 〉 − 〈 〉 ≃x t x t[ ( ) ( ) ] 322 2 1 2 in scaled units was obtained [38]. Figure 2 shows that a universal
localization of this MSD does indeed emerge. The variations of the onset and height of the
plateaus in figure 2 reflect different realizations of the disorder. We emphasize the slow
convergence to the Golosov effect, found after 104 to 105 time steps. While in a simpler map-
based system a Golosov-type localization was previously observed numerically [39], to the
best of our knowledge this is the first numerical demonstration and analysis of the funda-
mental Golosov effect in the Sinai model. This observation is thus our second main result.

3. Ultraslow CTRWs

In contrast to systems with quenched disorder, those with annealed disorder are typically
amenable to a rigorous treatment. It would therefore be desirable to have a process that
captures the essential features of the Sinai diffusion. We show that such a process is given by
a renewal CTRW on a one-dimensional lattice with the asymptotic form ψ τ τ τ∼ h( ) ( ) of the
distribution of waiting times τ elapsing between successive jumps [34]. Here τh ( ) is a slowly
varying function5. Jumps to the left and to the right are equally likely, and the probability that
no jump occurs until time t is ∫Ψ ψ τ τ= ∞

t( ) ( )d
t

, in terms of which we express our results.
A typical example is the logarithmic form [26, 32–34]

Figure 3. MSD 〈 〉x t( )2 of the CTRW (γ = 4, τ = e0 , δ〈 〉 =x 12 are used for all CTRW

plots). Main graph: log–log scales. Inset: 〈 〉x t( )2 versus tln ( )4 with linear asymptote.

5 That is, μτ τ∼h h( ) ( ) as τ μ→ ∞ >for 0. For instance, τ τ∼ γh ( ) 1 ln ( ) with γ > 0
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Ψ τ τ= +γ γt t( ) ln ( ) ln ( ), (8)0 0

where having τ > 00 avoids a divergence at t = 0. The MSD is given by δ Ψ〈 〉 ∼ 〈 〉x t x t( ) ( )2 2

[37], where δ〈 〉x2 is the variance of the jump lengths [41]. The specific form (8) recovers the
MSD (1) with diffusivity δ τ= 〈 〉γ

γK x [2 ln ( )]2
0

6 [26, 32, 34], i.e., for γ = 4, we find a Sinai-
like diffusion. Figure 3 demonstrates the convergence of the simulations to the predicted
logarithmic behavior. The agreement, including the prefactor, after some 106 steps becomes
excellent. In the inset of figure 3 we show the linear asymptotic scaling of 〈 〉x t( )2 as a
function of tln ( )4 .

In this CTRW process, the MSD (1) can be rewritten as 〈 〉x t( )2 = δ〈 〉〈 〉x n t( )2 via the
average number of jumps 〈 〉n t( ) of the random walker from t = 0 up to time t, and thus

Ψ〈 〉 ∼n t t( ) 1 ( ). To calculate δ〈 〉2 we need the correlation function Δ〈 ′ + − ′ 〉x t x t[ ( ) ( )]2

(see equation (3)). As individual jumps are independent random variables with zero mean,
Δ〈 ′ + − ′ 〉x t x t[ ( ) ( )]2 = δ Δ〈 〉 〈 ′ + 〉 − 〈 ′ 〉x n t n t[ ( ) ( ) ]2 . The time-averaged MSD is then

δ δ Δ Ψ〈 〉 ≃ 〈 〉x t t[ ( )]2 2 . For the form (8), we have

δ Δ Δ∼ x t t( ) ( ) . (9)2 2

Ultraslow CTRWs thus exhibit weak ergodicity breaking with a linear dependence on Δ,
similarly to CTRWs with a power-law form for ψ τ( ) [28, 41, 42] and other processes [6, 43–45].
Equation (9), up to the numerical factor 549 854, equals the relation (7) between 〈 〉x2 and δ2 for
the disorder-averaged Sinai diffusion. This similarity is our third main result.

We plot in figure 4 results from our simulations for the time-averaged MSD, demon-
strating the convergence of the numerical results to the expression (9) as a function of the
length t of the time series. Figure 4 also depicts the time-averaged MSD as a function of the

Figure 4. Numerical results for δ〈 〉 × t2 for the CTRW versus t for Δ = 20 to 200 in
steps of 20 (×, bottom to top). Lines show equation (9), without an adjustable
parameter. Bottom right: δ Δ2 versus lag time Δ with =t 107 for ten different
realizations, showing distinct amplitude scatter. Thick lines represent equation (9) and
the average δ〈 〉2 of the ten plotted realizations.

6 We choose the values δ〈 〉 =x 12 and τ = e0 .
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lag time Δ for ten individual realizations, along with the result (9) for the mean behavior. A
significant amplitude variation between the individual realizations is observed. This implies
that, unlike for Brownian motion, the experimental observation of a single trajectory pro-
ducing δ2 does not provide the full information on either 〈 〉x2 or δ〈 〉2 .

Time averages of physical observables such as the MSD (3) in weakly non-ergodic
systems remain random variables even in the limit of long measurement times, but have a
well-defined distribution [6, 28, 41, 42, 46]. To derive these fluctuations for the ultraslow
CTRW process in terms of the dimensionless variable ξ δ δ= 〈 〉2 2 , we make use of the

relation δ Δ δ Δ〈 〉 = 〈 〉n t n t( ) ( ) ( ) ( )2 2 [42, 47] and invoke the probability for the occurrence
of n jumps up to time t, ψ τ ψ= − −p s s n s( ) [1 ( )] exp { ln [ ( )]}n

1 in Laplace space [3]. For
the latter, we get after Laplace inversion Ψ Ψ∼ −p t t n t( ) ( ) exp { ( )}n . Finally, after carrying
out the change of variables ϕ ξ ξ ξ= ×p n( ) ( ) d dn , we arrive at the exponential form for the
distribution of time averages:

ϕ ξ ξ∼ −
→∞
lim ( ) exp ( ). (10)
t

This result is universal in the sense that it is independent of the specific form of the waiting
distribution for ultraslow diffusion. The maximum of ϕ ξ( ) is at ξ = 0, i.e., many realizations
of the ultraslow CTRW do not perform any jump. Trajectories with many jumps (larger ξ
values) are exponentially suppressed. The ergodicity-breaking parameter [42] is

ξ= 〈 〉 − =→∞EB lim 1 1t
2 . The universal fluctuations of ultraslow CTRWs shown in figure 5

are another central result. For Sinai diffusion this point remains open, as our simulations do
not provide sufficiently precise traces for analyzing amplitude fluctuations. The results for the
Golosov effect (figure 2) show that the simulation times are beyond our reach.

Figure 5. The amplitude scatter distribution ϕ ξ( ) versus ξ δ δ= 〈 〉2 2 for Δ = 500 and
increasing t successively approaches the exponential (10) shown by the full line;
compare the realization with =t 1012. Inset: convergence →EB 1 of the ergodicity-
breaking parameter versus t for Δ = 20.
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4. The similarity of the PDFs

We would expect the PDF P x t( , ) to be more sensitive to the deep differences between the
CTRW and Sinai diffusion. Figure 6 shows good convergence of the numerical data to the
Sinai PDF [48, 49]

⎛
⎝⎜

⎞
⎠⎟∑

π
π∼ −

+
− +

=

∞
P x t

t n

n x

t
( , )

4

ln ( )

( 1)

2 1
exp

(2 1)

4 ln ( )
(11)

n

n

2 2
0

2 2

2

for increasing t. At all times, the zeroth term of this series contributes ≈0.33 to the
normalization. Higher order, alternating terms effect a distinct central plateau, while the wings
of the PDF (11) are dominated by the zeroth term. The numerical results nicely corroborate
the flat central region of the PDF, which is physically due to the local bias of the Sinai
diffusion at each site effecting the small depletion at the origin. We compare in figure 6 the
PDF (11) with the CTRW PDF [26, 32, 34]

⎡⎣ ⎤⎦Ψ δ Ψ δ∼ −{ }P x t t x x t x( , ) ( ) 2 exp 2 ( ) . (12)2 2

As we are interested in the qualitative comparison of the CTRW and Sinai diffusion in
equation (11), we rescale the zero-order term with a factor of order unity such that it is
identical to the PDF (12) with its distinct cusp at the origin. Figure 6 shows that the full result
(11) perfectly matches the tails of the CTRW PDF (12). In the analysis of experimental data,
the PDFs of the two processes will be practically indistinguishable unless very accurate data
are available.

Figure 6. PDF (11) for Sinai diffusion (thick gray line) with numerical results for two
times (■ and □), showing good convergence. Shifted curves (top): the rescaled PDF
(12) of the ultraslow CTRW (thick blue line) with the zero-order term of the Sinai PDF
(11) (medium yellow line) and the result (11) with 100 terms (thin black line), showing
perfect agreement of the tails.
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5. Conclusions

Sinai diffusion and the ultraslow renewal CTRW are fundamentally different: the former
takes place in a quenched random potential, the latter in an annealed environment. Despite
this difference, they exhibit identical logarithmic scalings of the ensemble MSD and weak
ergodicity breaking: the time-averaged MSDs scale linearly with the lag time Δ and explicitly
depend on the process time t in a characteristic way. We pointed out the deep connection
between the Golosov phenomenon and ergodicity breaking, a topic that demands rigorous
mathematical treatment. The fluctuations of the amplitude of the time-averaged MSD for the
ultraslow annealed model exhibit a remarkable universality: extended motion recorded in
terms of the time-averaged MSD is exponentially suppressed and details of the waiting time
distribution do not matter. The importance of the initial conditions, i.e. two particles starting
at the same location in the same or distinct realizations of the potential, for the fluctuations of
time averages and the commutativity of averages over thermal noise and disorder remain open
questions, and are the topics of our current investigations [37]. Our current and future results
will be of interest beyond the Sinai model under investigation in the field of strongly dis-
ordered systems in the presence of thermal noise.
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