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From scaling arguments and numerical simulations, we investigate the properties of the generalized
elastic model (GEM) that is used to describe various physical systems such as polymers, membranes,
single-file systems, or rough interfaces. We compare analytical and numerical results for the subdif-
fusion exponent β characterizing the growth of the mean squared displacement 〈(δh)2〉 of the field h
described by the GEM dynamic equation. We study the scaling properties of the qth order moments
〈|δh|q〉 with time, finding that the interface fluctuations show no intermittent behavior. We also in-
vestigate the ergodic properties of the process h in terms of the ergodicity breaking parameter and
the distribution of the time averaged mean squared displacement. Finally, we study numerically the
driven GEM with a constant, localized perturbation and extract the characteristics of the average drift
for a tagged probe. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4858425]

I. INTRODUCTION

In the past two decades, considerable theoretical and nu-
merical effort has been put into the characterization and quan-
titative modeling of stochastic patterns such as surface growth
processes,1, 2 spatiodynamic profiles of elastic chains,3 single-
file systems,4 membranes,5, 6 and polymers,7–10 as well as
fluid interface motion through porous media,11, 12 the shape
of vortex lines in high Tc superconductors,13 tumor growth,14

and crack propagation.15 For obvious reasons, these processes
are of substantial interest both from a fundamental physics
and technological applications points of view. To obtain a
quantitative understanding, different continuum models have
been proposed and studied to reproduce the dynamics of
such natural phenomena. The simplest and well-known ex-
amples are the Edwards-Wilkinson and the Mullins-Herring
equations.1, 2 Such models provide information about the out-
of-equilibrium dynamics of the field h(x, t) that describes the
height profile of the surface under consideration, a membrane,
etc. For processes such as the spatiotemporal evolution of a
polymer configuration, h becomes a vector field. In what fol-
lows, we concentrate on the scalar field h and its governing
diffusion-noise equation.16

The generalized elastic model (GEM) proposed and an-
alyzed in Refs. 17–20 unifies various classes of stochastic
processes such as the configuration dynamics of semiflexi-
ble, flexible, and Rouse polymers, fluid membranes, single-
file system, fluctuating interfaces, solid surfaces, and the
diffusion-noise equation. Suppose you follow the dynamics
of a particular tracer particle in a stochastic system described
by the field h(x, t). This could be a labeled lipid molecule in
a membrane or an individual particle in a single-file system.
The motion of such a tracer particle is then necessarily cou-
pled to the rest of the system, and this correlated dynamics
effects the subdiffusive motion of the tracer particle, charac-

terized by the subdiffusion exponent β in the mean squared
displacement of the field h with time,

〈(δh)2〉 � t2β, (1)

with 0 < β < 1/2.21 The dynamic exponent β is but one
of three scaling exponents characteristic for stochastic pro-
cesses described by the GEM, the other two being the rough-
ness exponent ξ and the dynamic exponent ν. The triple of
these exponents are most commonly used to classify sur-
face growth dynamics.1, 2 Here we investigate numerically the
scaling properties of the GEM, in particular, we obtain the
dynamic exponent τ (q, β) of the general qth order moments
〈|δh|q〉 � tτ (q, β).

Starting from early studies of the long-time out-of-
equilibrium dynamics of glassy materials,22 many com-
plex systems characterized by anomalous diffusion23, 24

were shown to exhibit ageing effects and weak ergodicity
breaking.25–32 Respectively, these effects refer to the depen-
dence of the dynamics of such system on their age since the
initial preparation, and the fact that long time and ensem-
ble averaged observables behave differently and are irrepro-
ducible. In particular, important consequences of such weak
ergodicity breaking were studied in the non-stationary contin-
uous time random walk (CTRW) model and used to interpret
single molecule tracking data.33–35 Similar weak ergodicity
breaking is observed for regular diffusion equation dynamics
with space-dependent diffusion coefficient and explicitly ag-
ing CTRW processes.36, 37 Closely related to the GEM, other
anomalous diffusion systems such as fractional Brownian mo-
tion and fractional Langevin equation motion are ergodic,38

but exhibit transient aging and weak ergodicity breaking.39

As originally pointed out by Taloni et al.,18 time and ensem-
ble averages of the squared displacement of a tracer particle
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in the GEM with non-equilibrium initial conditions are dis-
parate. In the present paper we study numerically the ergodic
properties of the GEM by probing quantities such as the am-
plitude scatter of time averaged observables and the ergodicity
breaking (EB) parameter.

In order to further characterize the viscoelastic proper-
ties of the system under study, we also consider the case of
a driven GEM, that is, the response of the GEM dynamics to
an external localized force, supposed to act only on a single
tagged probe.19 Below we analyze the driven GEM numeri-
cally in order to investigate the motion of this tagged probe.

The paper is organized as follows: in Sec. II we introduce
the notation and define the GEM and the GEM with local-
ized perturbation. In Sec. III we report a general method to
simulate the GEM numerically. The numerical results are dis-
cussed in Sec. IV. Finally, we draw our conclusions in Sec. V.
To be self-explanatory we add Appendices A–C to explain ef-
ficient ways to approximate the space fractional operator and
to generate fractional Gaussian noise.

II. DEFINITIONS AND SETTINGS

The GEM is defined in terms of the stochastic linear par-
tial integrodifferential equation17

∂

∂t
h(x, t) =

∫
ddx ′�(|x − x′|) ∂z

∂|x′|z h(x′, t) + η(x, t), (2)

where the scalar field h(x, t) is parameterized by the coordi-
nate x and time t. The integral kernel �(|x − x′|) of the spatial
convolution integral represents the generally non-local cou-
pling of different sites x and x′. Moreover, ∂z/∂|x|z is the
multidimensional Riesz-Feller fractional space derivative of
order z which is defined via its Fourier transform through the
functional relation:40

F

{
∂z

∂|x|z h(x, t)

}
≡ −|q|zh(q, t). (3)

Here, h(q, t) is the Fourier transform of h(q, t). The Gaus-
sian noise η(x, t) is fully determined by its first two moments,
〈η(x, t)〉 = 0 and

〈η(x, t)η(x′, t ′)〉 = 2kBT �′(|x − x′|)δ(t − t ′), (4)

where �′(r) with r = |x − x′| represents spatial correlation
properties of the noise.

It is important to note that, in general, �(r) �= �′(r),
that is, both functions may be chosen independently. In
what follows, to extract the scaling properties of the GEM
we first consider the general situation with long ranged
hydrodynamic-style interactions, �(r) ∼ r−α1 , and fractional
Gaussian noise with long range spatial correlations, �′(r)
∼ r−α2 . We will discuss the following special cases:

(a) The interaction is local, �(r) = δ(r), and the noise is
an uncorrelated Gaussian random variable, �′(r) = δ(r).
This special case corresponds to taking α1 = α2 = d.41

(b) The interaction term � is non-local with long-range
power-law interaction and the random noise η has
long-range correlations, both with the same exponents
α1 = α2 = α.

(c) The interaction is local, �(r) = δ(r) (α1 = d), and the
noise is long-range correlated, �′(r) ∝ r−α (α2 = α).

(d) The interaction is non-local, �(r) ∝ r−α (α1 = α), and
the noise is uncorrelated and Gaussian, �′(r) = δ(r)
(α2 = d).

In cases (a) and (b) the fluctuation-dissipation relation of
the second kind holds, whereas in cases (c) and (d) it is vi-
olated. In the latter case the noise would then be viewed to
be external. The properties of the GEM in the presence of the
fluctuation-dissipation theorem have been studied analytically
by Taloni et al.17–20 It is worthwhile mentioning that z = 2 in
case (a) corresponds to the Edwards-Wilkinson equation, and
z = 4 describes the universality class of the Mullins-Herring
equation.1, 2 The Edwards-Wilkinson and Mullins-Herring
equations with long-range correlated power-law noise [cases
(a) and (c)] were studied in Refs. 42–44. Krug et al.45

used Eq. (2) with local interaction �(r) = δ(r) to study the
first passage statistics of locally fluctuating interfaces. There
Eq. (2) was solved numerically for the special cases z = 2 and
4. Majumdar and Bray46 considered the same model to study
the first-passage properties in space.

Bearing in mind certain physical situations such as a cy-
toskeletal filament pushing a single lipid in a vicinal mem-
brane with some force,19 it will be interesting to study the
influence of such localized perturbations. To that end we con-
sider the extended GEM equation

∂

∂t
h (x, t) =

∫
ddx ′�(x − x′)

×
[

∂z

∂|x′|z h(x′, t) + F{h(x′, t), t}δ(x′ − x�)

]
+ η (x, t) , (5)

such that the external force F acts only on the single (tagged)
probe at position x�.19 This local force breaks the translational
invariance of the problem. We are interested in measuring the
average drift 〈h(x�, t)〉F0 in the perturbed system with the con-
stant force F{h(x ′, t), t} = F0�(t) for different types of the
GEM. The forced problem will be discussed in Sec. IV D.

III. THE GEM ON A LATTICE

To solve Eqs. (2) and (5) numerically, we convert the dy-
namic formulation to discrete time and space in d = 1. To that
end we define t = n
t with n = 1, 2, . . . , N and x = i
x with
i = −L/2, . . . , L/2, where 
t and 
x are the grid steps in time
and space, respectively. To approximate the time derivative
one can use a simple forward Euler differential scheme,

∂h(xi, tn)

∂t
= h(xi, tn+1) − h(xi, tn)


t
. (6)

In Subsections III A and III B, we review the methods to ob-
tain a discrete version of the fractional operator ∂z/∂|x|z and
to generate the correlated noise η(x, t) with long-range cor-
relation �′(r) ∼ r−α . Then, we use the discrete version of
Eqs. (2) and (5) in our numerical simulations.
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A. The discretized fractional operator

Rewriting the integral term of the GEMs (2) and (5) with
a power-law kernel �(r) in terms of a space-fractional dif-
ferential expression allows us to use known numerical meth-
ods for analysis. Indeed the concept of fractional operators
has been successfully applied to a wide field of problems in
physics, chemistry, finance, biology, and hydrology.15, 24, 40, 47

Here we employ the discrete-space representation of the
Riesz-Feller derivative ∂z/∂|x|z of fractional order z. Different
numerical methods have been proposed to simulate such frac-
tional operators.48 We here pursue the following approach.
We rewrite the Riesz-Feller derivative in terms of the stan-
dard Laplacian 
2 as ∂z/∂|x|z := −(−
)z/2,49 and then use
the matrix transform method proposed by Ilic et al.50 to
approximate the discrete space fractional operator (see also
Appendix A).

Let us first consider the usual Laplacian in one dimension
and a complete set of orthogonal functions {φ(x)}. In terms of
the finite difference method,


φ(x) = φ(x − a) − 2φ(x) + φ(x + a)

a2
, (7)

where a represents the lattice constant. With the Fourier rep-
resentation

φ(x) = 1

2π

∫
φ̂(q)e−iqxdq, (8)

we obtain the Fourier transform of the discretized Laplacian
Eq. (7) as

(̂
)φ(q) = −[2 − 2 cos(qa)]φ(q). (9)

On the other hand one can find the elements of the matrix
representation of the Laplacian,

Al,m = −
∫ 2π

0

dq

2π
[2 − 2 cos(qa)]eiq(l−m), (10)

where the tridiagonal matrix A ≡ tridiag(1,−2, 1) has
nonzero elements only in the main diagonal and the first di-
agonals below and above the main one.

We now use the approximation proposed by Ilic et al.
(compare also Appendix A and Refs. 48 and 50) to find the
Fourier representation of the fractional Laplacian. Namely,
we start with the Fourier representation of the discretized
Laplacian (−
) with the minus sign, λ(q) = 2[1 − cos (q)]
and raise it to the appropriate power, (2[1 − cos (q)])z/2.51

Here the lattice constant has been set equal to one.52, 53 The
elements of the matrix K, representing the discretized frac-
tional Laplacian −(−
)z/2, are then given by

Kl,m = −
∫ 2π

0

dq

2π
eiq(l−m)(2[1 − cos(q)])z/2

= �(−z/2 + n)�(z + 1)

π�(1 + z/2 + n)
sin

( z

2
π

)
, (11)

where n = |l − m|, and the fractional order z ≥ 1. In the
special case z = 2 the K matrix is equal to the matrix A of
the regular Laplacian. Moreover, if α/2 is an integer, then
K(n) = (−1)α−n+1Cα,n+α/2 for n ≤ α/2 and K(n) = 0 for n
> α/2, where the Cα, n + α/2 represent binomial coefficients.51

B. Fractional Gaussian noise

Several methods have been used to generate one-
dimensional random processes with long-range correlations,
for instance, the successive random addition method,54 the
Weierstrass-Mandelbrot function55 as well as the optimization
method.56 A very efficient way to generate fractional Gaus-
sian noise is the modified Fourier filtering method,57 compare
also Appendix B.

Following Ref. 57, one needs a slightly modified correla-
tion function to deal with the singularity of �′(r) at r = 0 and
to generate the correlated noise. We use the form

�′
c(r) = (c2 + r2)−α/2, (12)

with the asymptotically correct behavior �′
c(r) ∼ r−α at

r � c. The continuum limit of the spectral density �′
c(q)

becomes

�′
c(q) ≡ F

{
�′

c(r)
} =

√
π21−γ c−γ

�(α/2)
|q|γ Kγ (c|q|), (13)

where γ = (α − 1)/2 and Kγ is the modified Bessel function
of order γ . Then for small values of c and q, Eq. (13) leads to
the asymptotic behavior �′

c(q) ∼ qα−1 (see Eq. (B4)).
The numerical algorithm for generating correlated noise

η for arbitrary values of α consists of the following steps:

(i) Generate a one-dimensional array of uncorrelated
Gaussian random variables, wi , and compute their
Fourier transform wq .

(ii) Calculate {η(q, tn)} = [�′
c(q)]1/2wq , where �′

c(q) is
given by Eq. (13).

(iii) Calculate the inverse Fourier transform η(xi, tn)
= F−1{η(q, tn)} to obtain the correlated noise with the
desired correlation exponent α in the real space.

We should note that we use periodic boundary conditions,
i.e., �′

c(r) = �′
c(r + L) in the interval [−L/2, . . . , L/2], con-

sequently we get the correlated sample with the same peri-
odicity. It is also possible to generate a sample with natural
boundary conditions. To this end, one first needs to generate
a sample with periodic boundary conditions, of size 2L, and
then cuts the sequences of the fractional Gaussian noise time
series into two separate parts with the same size L, where each
part obeys an open boundary condition.

For the uncorrelated case �′(r) = δ(r), the noise η has
a Gaussian distribution and every η(xi, tn) is an independent
random variable with zero mean and unit variance (with the
convention kBT = 1 in Eq. (4)).

With these definitions we represent Eqs. (2) and (5) in
terms of discrete space and time variables xi = i
x and tn
= n
t in the form

hn+1
i = hn

i + 
t

L/2∑
j=−L/2

L/2∑
k=−L/2

�(|i − j |)Kj,kh
n
k

+
√

2
tηn
i , (14)

where hn
i approximates the field h(xi, tn) at the ith lattice point

and the nth time step. At any given time step n, one needs to
generate the random process ηn

i with the appropriate correla-
tion function �′. Analogously, the lattice version of the driven
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GEM with localized perturbation becomes

hn+1
i = hn

i + 
t

L/2∑
j=−L/2

L/2∑
k=−L/2

�(|i − j |)Kj,kh
n
k

+
t�(|i − i�|)F{h(i�, n), n} +
√

2
tηn
i , (15)

where i� corresponds to the position of the tagged probe. In
Sec. IV we present our numerical results and compare them
with the analytical predictions.

IV. RESULTS

To determine the time evolution of the scalar field h(x, t)
and to obtain the dynamic scaling properties of the GEM, we
simulated this model on a lattice of size L = 4098 with non-
thermal initial condition h(x, 0) = 0. All simulation measure-
ments are based on an ensemble of 500 realizations. In the
simulations the time increment 
t should be small enough to
ensure the stability of the numerical algorithm, and we find
that 
t = 0.05 is a good working choice. As offset for �′

c

we choose c = 0.05. As already mentioned above, in order
to avoid finite size effects we impose periodic boundary con-
ditions. At first we consider the unbiased discrete GEM (14)
with non-thermal initial condition [h(i, 0) = 0, i ∈ [−L/2, . . . ,
L/2]], and we measure the scaling exponents β and τ (q, β) of
the second and qth order moments. Then we test the ergodic
properties of the GEM with non-thermal initial condition. Fi-
nally, we move to the lattice version of the driven GEM (15)
with localized perturbation and measure the average drift for
the tagged probe.

A. Scaling laws and the h-correlation function

The solution of the GEM (2) has a continuous scale in-
variance property, that is, for a physical observable O the
relation

O(λx, λνt) = μ(λ)O(x, t) (16)

arises, where μ(λ) is a power function of the scale factor λ.
This means that Eq. (2) does not change under a scaling trans-
formation x → λx and t → λν t, together with the correspond-
ing rescaling in the amplitude, h → λξ h.

The scaling properties of the stochastic field h(x, t) in a
d-dimensional space of linear size L can be also characterized
in terms of the global interface width W (t) defined by the
root-mean-square fluctuation of the random profile h(x, t) at
site x and time t, that is,

W (t) =
〈∫

ddx

Ld
[h(x, t) − 〈h(t)〉Ld ]2

〉1/2

, (17)

where 〈h(t)〉Ld = L−d
∫

ddxh(x, t). This width W (t) scales
as

W (t) ∼ Lξf (t/Lν) ∼
{

tβ, t � ts

Lξ , t � ts
, (18)

where ts = Lν is the so-called saturation time and f(x) is a
scaling function with the property f(x) ∼ xβ for x � 1 and
f(x) ∼ const. for x � 1.1, 2 According to Eq. (18), we obtain

the constraint β = ξ /ν between the scaling exponents. With
these relations we obtain the scaling exponents ξ , ν, and β

for different forms of the interaction kernel � and the noise
correlation function �′. To this end we consider �(r) ∼ r−α1

and �′(r) ∼ r−α2 . If α1 = d, the hydrodynamic interaction is
local, while α2 = d corresponds to a system with uncorrelated
thermal noise. The scale transformations x → λx and t → λν t
transform the GEM (2) according to

∂

∂t
h(x, t) = λν−γ

∫
ddx ′�(x − x′)

∂z

∂|x′|z h(x′, t)

+ λ(ν−α2)/2−ξ η(x, t), (19)

where γ = z + α1 − 1. The scale-invariance of the solution
of the GEM (2) implies that ν = z + α1 − d and ξ = (z + α1

− α2 − d)/2. This specifies the dynamic scaling exponent:

β = (z + α1 − α2 − d)

2(z + α1 − d)
. (20)

Thus, the dynamics generated by the model is always sub-
diffusive (2β < 1), reflecting the effect of correlations and
interactions in our model.

We now turn to determine the scaling properties of the
h-correlation function for the GEM with general interaction
kernel �(r) ∼ r−α1 and noise correlation �′(r) ∼ r−α2 . Some
previous measures of the h-correlation for the special cases
with α1 = α2 = d [our case (a)] and α1 = α2 = α [our case
(b)] were studied in Refs. 17, 18, and 20.

To derive the h-correlation function for the GEM with
general interaction kernel �(r) and noise correlation �′(r) we
follow the method put forward in Ref. 18. We first consider
the flat initial condition h(x, 0) = 0, the so-called non-thermal
initial condition.18, 45 We mention that the dynamics of the
GEM depends on the specific choice of the initial condition
of Eq. (2), compare the discussion in Ref. 18. Then, the one-
point, two-time correlation function reads

〈δth(x, t)δt ′h(x, t ′)〉 = 〈[h(x, t) − h(x, 0)]

×[h(x, t ′) − h(x, 0)]〉

= K[(t + t ′)2β − |t − t ′|2β], (21)

where β matches the result of our above scaling arguments,
compare Eq. (20), and we find

K = 2kBT πd/2

(2π )d�(d/2)

�(1 − 2β)

z − d

(
(4π )d/2

2α

�((d − α)/2)

�(α/2)

)2β

.

(22)
The dynamic scaling exponent β for the different cases intro-
duced in Sec. II now assumes the values:

(a) α1 = d, α2 = d, and β = (z − d)/2z.
(b) α1 = α, α2 = α, and β = (z − d)/2(z + α − d).
(c) α1 = d, α2 = α, and β = (z − α)/2z.
(d) α1 = α, α2 = d, and β = (z + α − 2d)/2(z + α − d).

The results of our analysis for the two cases (a) and (b)
are in agreement with those of Refs. 18 and 20, and our case
(c) agrees with the result of Ref. 45.

It is worthwhile mentioning that the same calculations
can be performed for the system in the stationary state.17 The
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one-point, two-time correlation can then be written as

〈δth(x, t)δt ′h(x, t ′)〉st

= K[(t)2β + (t ′)2β − |t − t ′|2β], (23)

where β is again given by Eq. (20). Therefore, the dynamic
exponent β is a universal quantity, that does not depend on
the specific initial condition.

Note that in order to calculate the mean squared dis-
placement 〈(δh)2(t)〉 and 〈(δh)2(t)〉st for the probe particle,
one should set t = t′ in Eqs. (21) and (23), respectively. The
mean squared displacement for these two cases follows in the
forms:

〈(δh)2(t)〉 = K(2t)2β,

(24)
〈(δh)2(t)〉st = 2Kt2β.

In Fig. 1 we show numerical results for the subdiffusion
exponent β as function of the fractional order z for the cases
(a) to (d) introduced in Sec. II. The exponent is measured from
the power-law dependence of the mean squared displacement
with time, see the first equality in Eq. (24). The results of
the numerical simulations are shown by the symbols, and the
solid curves demonstrate the analytical result (20). In all fig-
ures the error of the simulations results are of the order or
smaller than the size of the symbols. We observe excellent
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FIG. 1. Comparison between theoretical predictions (solid curves) and nu-
merical results (symbols) for the subdiffusion exponent β of the mean
squared displacement 〈(δh)2(t)〉 of the probe particle. The GEM (2) with d
= 1 is specified by the interaction kernel �(r) ∼ r−a1 and correlated noise
with �′(r) ∼ r−a2 , where α1 and α2 for the different cases (a)–(d) depicted
in panels (a)–(d) are chosen as (a) α1 = 1, α2 = 1; (b) α1 = 0.7, α2 = 0.7;
(c) α1 = 1, α2 = 0.7; and (d) α1 = 0.7, α2 = 1.

agreement with the theoretical result for all our cases in the
interesting range for z between 1 and 4.

B. Scaling properties of qth order moments

We now turn to the scaling properties of the qth order mo-
ments 〈|δh(t)|q〉. According to the scale-invariance property,

h(s1/νx, st) ≡ sξ/νh(x, t), s > 0, (25)

and the condition 〈|δh(st)|q〉 = sqξ /ν〈|δh(t)|q〉, we find

〈|δh(t)|q〉 ∼ t τ (q,β), (26)

where β = ξ /ν and τ (q, β) = qβ. When the exponent τ (q,
β) is a linear function of q, the process is referred to as a
mono-scale process, and the stochastic profile h(x, t) is non-
intermittent.58

We studied the scaling behavior of the qth moment nu-
merically. In Fig. (2) dτ (q, β)/dq is plotted vs q for the four
paradigmatic examples, the cases (a)–(d). The figure shows
that the dτ /dq is equal to β and independent of q, which
demonstrates that the height fluctuations in the GEM are not
intermittent.

C. Ergodic properties

In Subsections IV A and IV B, we obtained the scaling
exponents β and τ (q, β) for the GEM with non-thermal ini-
tial condition. For this purpose we used the ensemble average
of the second and qth order moments. For example, to de-
termine the subdiffusion exponent β one needs to obtain the
ensemble average of the observable (δh)2. In many experi-
ments, however, one measures time averages of physical ob-
servables (see, for instance, Refs. 33 and 34). For an ergodic
process, the long time average of an observable produces the
same result as the corresponding ensemble average, while for
a non-ergodic process the correct interpretation of the time
average requires a separate theory. We here consider a single
trajectory of length T (measurement time) and define the time
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FIG. 2. The dots show the values of dτ (q, β)/dq obtained in numerical simu-
lations of the GEM with interaction kernel �(r) ∼ r−α1 and correlated noise
with �′(r) ∼ r−α2 . The parameters α1, α2, and z correspond to the four cases
(a)–(d) and are equal to: (a) α1 = 1, α2 = 1, z = 4.0; (b) α1 = 0.7, α2 = 0.7,
z = 2.0; (c) α1 = 1, α2 = 0.7, z = 1.3; (d)α1 = 0.7, α2 = 1, z = 2.0. This plot
demonstrates the mono-scaling (non-intermittent) behavior of fluctuations.
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average as

δ2h(
) = 1

T − 


∫ T −


0
dt [h(x, t + 
) − h(x, t)]2 ,

(27)
where 
 denotes the lag time. It was shown in Ref. 18 that the
additional ensemble average 〈δ2h〉 of the quantity (27) for sys-
tems with non-thermal initial condition tends to the value of
the ensemble averaged mean squared displacement 〈(δh)2(t)〉st

in the stationary state, if 
/T → 0. This means that the pro-
cess is ergodic, and sufficiently long time averages reproduce
the exact behavior predicted by the ensemble quantities.

A useful quantity to measure the fluctuations between
different realizations of a dynamic process is the probabil-
ity density function of the amplitude scatter φ(ε) in terms of
the dimensionless variable ε = δ2h/〈δ2h〉.33, 34, 59 Thus, φ(ε)
measures how reproducible individual realizations δ2h are
with respect to the ensemble mean of the time averages, 〈δ2h〉.
For an ergodic system, φ(ε) has bell shape around the ergodic
value ε = 1, and for long measurement times T it converges
to a δ-peak, limT → ∞φ(ε) = δ(ε − 1).33, 59

Another measure of ergodic violation is the ergodicity
breaking parameter33

EB = lim
T →∞

〈
(δ2h)2

〉 − 〈
δ2h

〉2〈
δ2h

〉2 . (28)

The sufficient condition for ergodicity is EB = 0.
Here we restrict ourselves to the special case (b). To study

the ergodic properties of the GEM, we calculate the ampli-
tude scatter probability density function φ(ε) and the ergod-
icity breaking parameter EB. In the top panel of Fig. 3 we
show that the shape of φ(ε) becomes sharper with decreas-
ing 
 when the measurement time T is fixed. In the limit

 � T, the probability density function has a peak close
to the ergodic value δ2h/〈δ2h〉 = 1, which indicates the er-
godicity of the process. In the bottom panel of Fig. 3 we de-
pict the ergodicity breaking parameter EB as a function of
the lag time 
 for different values of the measurement time
T. We see that indeed the ergodicity breaking parameter con-
verges to the ergodic value EB → 0 for 
/T → 0. A similar
behavior of the probability density φ(ε) and EB parameter
was observed in simulations with different parameters α and
z for all cases (a)–(d), compare also the examples shown in
Appendix C.

D. The GEM with localized perturbation

In Sec. IV, so far we studied the properties of the un-
biased GEM. We now report results of numerical simula-
tions of the driven GEM with a constant localized perturba-
tion, F{h(x′, t), t} = F0�(t), compare Eq. (5). We consider
the motion of a tagged probe located at x�. The results for an
untagged probe will be presented elsewhere. Obviously, the
stochastic term in Eq. (5) does not make a contribution to the
average drift 〈h(x�, t)〉F0 , since 〈η(x, t)〉 = 0. Thus, basically,
the average drift is determined by the nature of the hydro-
dynamic friction kernel �(r). Following Refs. 19 and 20 we
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FIG. 3. Top panel: Probability density function of the scaled random variable
ε = δ2h/〈δ2h〉 for different values of the lag time 
 for the case (b) with
α = 0.7 and z = 2.5. The measurement time T = 2 × 104. Bottom panel:
Ergodicity breaking parameter EB as a function of the lag time 
 for three
different values of T for the same parameters.

determine the average drift,

〈h(x�, t)〉F0 ∝ F0t
2β ′

, (29)

where the dynamic scaling exponent is β ′ = (z − d)/2z for the
local interaction and β ′ = (z − d)/2(z + α − d) for the non-
local hydrodynamic interaction, where the former expression
holds for the cases (a) and (c), while the latter formula is valid
for the cases (b) and (d). Note that β ′ = β for the GEM obey-
ing the fluctuation-dissipation relation of the second kind, cor-
responding to local hydrodynamic interaction and uncorre-
lated noise [case (a)] and that with non-local interaction and
correlated noise [case (b)]. Thus, the Einstein relation

〈h(x�, t)〉F0 = 〈(δh)2(t)〉st

2kBT
F0 (30)

holds for the tagged probe in the two cases (a) and (b), where
〈(δh)2(t)〉st is defined by Eq. (24).

We simulated the GEM with constant local force on a
one-dimensional lattice, see Eq. (15). Then we calculated the
average drift and extracted the dynamic exponent β ′ accord-
ing to Eq. (29). The results are shown in Fig. 4. The main
panel depicts β ′ as a function of z for local [case (a)] and
non-local [case (b)] interactions. The results of the simula-
tions shown by the symbols perfectly agree with the analyti-
cal findings (solid curves), i.e., β ′ = (z − 1)/2z for the local
and β ′ = (z − 1)/2(z + α − 1) for the non-local cases, re-
spectively. In addition, in the insets we show 〈h(x�, t)〉F0 as a
function of the applied force F0 for several values of z.



024106-7 Ghasemi Nezhadhaghighi, Chechkin, and Metzler J. Chem. Phys. 140, 024106 (2014)

1.5 2 2.5 3 3.5 4 4.5

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

z

β

 

 

case (a)
case (b)
analytic
analytic

0 5 10
0

5

10

F0

t−
2β

h
(x

,t
)

F
0

0 5 10
0

5

10

15

F0

t−
2β

h
(x

,t
)

F
0 case (b)

case (a) z = 1.4

z = 3.4
z = 2.4

z = 3.4
z = 2.4

z = 1.4

FIG. 4. Dynamic scaling exponent β ′ for the GEM with local [cases (a) and
(c)] and nonlocal [cases (b) and (d), with α = 0.7] hydrodynamic interac-
tions. Main panel: numerical results are shown by the symbols, whereas the
solid (red) lines correspond to the theoretical relations β ′ = (z − 1)/2z and (z
− 1)/2(z + α − 1) for the two cases (a) and (b), respectively. Insets: The
relation between 〈h(x�, t)〉F0 and F0 for the tagged tracer in the GEM [cases
(a) and (b)] for different fractional order z. Solid red lines correspond to the
analytical expression t−2β ′ 〈h(x�, t)〉F0 = K

kBT
F0 [see Eqs. (29) and (30)].

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we studied the interface dynamics of the
generalized elastic model with two types of interactions, local
and long-range non-local ones, in the presence of uncorrelated
as well as long-range correlated noise. We generalized some
of the previous results from Taloni et al.17–19 on the scaling
properties of the GEM, and we developed a discrete numerical
scheme to simulate the one-dimensional GEM on the lattice
by using a discretized version of the Riesz-Feller fractional
operator. We performed numerical simulations and measured
the dynamics scaling exponents β for the second moment and
τ (q, β) for the qth order moments of the random field h for
four paradigmatic cases of the GEM. We also analyzed the er-
godic properties of the GEM and demonstrated the ergodicity
of the process by measuring the amplitude scatter of individ-
ual trajectories and the ergodicity breaking parameter. Finally,
we simulated the driven GEM with localized perturbation and
measured the scaling exponent β ′ from the scaling properties
of the mean drift of a tagged probe. All numerical results are
in perfect agreement with the analytics, thus supporting the
numerical scheme developed herein.

It will be interesting to apply this numerical algorithm to
other relevant aspects of interface dynamics, such as the pres-
ence of quenched disorder, and GEM with nonlinear terms.
Another direction is to develop numerical tools to study the
GEM in higher dimensions. New effects are also expected for
two-dimensional systems with broken symmetry or directed
external perturbation.
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APPENDIX A: THE MATRIX TRANSFORM METHOD

The discrete space fractional operator can be efficiently
generated by the matrix transform algorithm proposed in
Refs. 48 and 50. This method is based on the following
definition:50 Consider the Laplacian (−
) on a bounded re-
gion D, with a complete set of orthonormal eigenfunctions
φn and eigenvalues λ2

n, i.e., (−
)φn = λ2
nφn. An orthogonal

and complete set of functions {φn} may be used to expand an
arbitrary function f(x) in the following form:

f =
∞∑

n=1

cnφn, with cm =
∫

D

φn(x)f (x)dx. (A1)

Then, for any f one can define (−
)z/2 as

(−
)z/2f =
∞∑

n=1

cnλ
z
nφn. (A2)

It is worthwhile mentioning that the complete set of func-
tions {φn} is also the eigensolution of the fractional operator,
(−
)z/2φn = λz

nφn. This definition provides a new method
and corresponding numerical scheme to approximate a space-
fractional operator.

APPENDIX B: THE MODIFIED FOURIER
FILTERING METHOD

The celebrated fractional Gaussian noise can be effi-
ciently generated by the algorithm proposed in Ref. 57. Con-
sider the noise η(x, t) with the correlation function

〈η(x, t)η(x ′, t ′)〉 ∝ �′(r)δ(t − t ′), (B1)

where r = |x − x′| and �′(r) ∼ r−α in the limit r → ∞. For the
fixed time instant tn, the noise is generated on a uniform, one-
dimensional grid with L points. Following the discrete Fourier
transformation, the Fourier component of the correlated noise
η(xi, tn) is defined by

η(q, tn) =
L/2∑

xi=−L/2

η(xi, tn)e−iqxn , (B2)

where q assumes the values q = 2πm/L with m = {−L/2, . . . ,
L/2}. The idea of the Fourier filtering method is to simulate a
process η(q, tn) with the spectral density

�′(q) = 〈η(q, tn)η(−q, tn)〉 ∼ qα−1, (B3)

for q → 0, and transform the resulting series to real space. The
correlated noise is then constructed by filtering the Fourier
components of a sequence of normally distributed random
numbers {wi}i=1,...,L with the correlation function 〈wiwj 〉
∼ δi,j and the Fourier transform wq . Then one generates the
Fourier transform coefficients of the correlated noise by

η(q, tn) = [�′(q)]1/2wq. (B4)
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FIG. 5. Top panel: Probability density function of the scaled random variable
ε = δ2h/〈δ2h〉 for different values of the lag time 
 for the case (b) with
α = 0.3 and z = 2.5. The measurement time T = 2 × 104. Bottom panel:
Ergodicity breaking parameter EB as a function of the lag time 
 for three
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APPENDIX C: ERGODIC PROPERTIES
OF THE PROCESS

As pointed out above, the ergodic properties of the GEM
are independent of the parameters z and α as well as of cases
(a)–(d) defined in Sec. II. In Figs. 5 and 6 we provide two ex-
amples of the typical behavior of the amplitude scatter prob-
ability density function and the EB parameter. Qualitatively,
these figures are very similar to Fig. 3.
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