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We consider the area coverage of radial Lévy flights in a finite square area with periodic boundary conditions.
From simulations we show how the fractal path dimension df and thus the degree of area coverage depends on
the number of steps of the trajectory, the size of the area, and the resolution of the applied box counting algorithm.
For sufficiently long trajectories and not too high resolution, the fractal dimension returned by the box counting
method equals two, and in that sense the Lévy flight fully covers the area. Otherwise, the determined fractal
dimension equals the stable index of the distribution of jump lengths of the Lévy flight. We provide mathematical
expressions for the turnover between these two scaling regimes. As complementary methods to analyze confined
Lévy flights we investigate fractional order moments of the position for which we also provide scaling arguments.
Finally, we study the time evolution of the probability density function and the first passage time density of Lévy
flights in a square area. Our findings are of interest for a general understanding of Lévy flights as well as for the
analysis of recorded trajectories of animals searching for food or for human motion patterns.
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I. INTRODUCTION

Lévy flights are Markovian random walk processes, in
which the lengths of individual jumps are distributed according
to a probability density λ(x) of the asymptotic power-law
form [1–4]

λ(x) � σα

|x|1+α
, 0 < α < 2, (1)

where σ is a scaling factor of physical dimension length
[σ ] = cm. The resulting motion is spatially scale free due
to the divergence of the jump length variance

∫
x2λ(x)dx.

Lévy flights were popularized by Benoı̂t Mandelbrot, who
named them after his teacher, French mathematician Paul
Lévy [5]. They have been mainly applied in the modeling
of search processes, following the original idea by Klafter
and Shlesinger [6]: While regular random walks in one or
two dimensions have a high probability to return to already
visited sites, Lévy flights combine a thorough local search
with occasional long excursions, leading them to areas which
likely have not been visited before. This strategy reduces
unnecessary oversampling and thus represents an advantage to
the searcher. Indeed, trajectories consistent with the long-tailed
jump length pattern (1) have been reported for various animal
species [7–11]. Even for molecular search, Lévy flights may
emerge from the topology of the search space [12]. Due to a
mix of modern means of transportation, also human motion
behavior is characterized by travel lengths with a power-
law distribution [13]. Long-tailed distributions of relocation
lengths also change significantly the distribution pattern of
diseases, as regular diffusion fronts are broken by, for instance,
long-distance air travel, thus carrying the disease to completely
disconnected places [14].

For land-based animals typical search processes are essen-
tially two dimensional. In many cases we may also neglect
the vertical dimension for birds or fishes, when the lateral

extension is considerably larger than the maximal height and
depth difference of the trajectory. Unbounded Lévy flights
have a fractal dimension equal to the stable index df = α. In an
unbounded, two-dimensional search space, for a single Lévy
flight trajectory therefore the area coverage is incomplete.
Thus, some given area element in the search space may be
hit by one single trajectory while it may be missed by another.
In many cases, however, the search space is bounded. For
instance, animals only search for food in their own territory,
or the business travel patterns of an individual are confined to
a certain country or continent. Apart from facing a bounded
search space, it is often also relevant to have to consider finite
time effects. For instance, a predator often does not cover
its entire territory on a single day. It is therefore of interest to
explore the time evolution of the area coverage of Lévy flights:
How long does it take for the animal to efficiently explore
its entire patch, or a disease to reach every little town in a
country? How large is the area coverage at a given time? These
questions of area coverage are directly connected with the
ergodic properties of Lévy flights, that is, the reproducibility
between individual realizations of the process.

In this paper, we consider radial Lévy flights in two-
dimensional square areas with periodic boundary conditions.
We investigate the time evolution of the effective fractal
dimension of the flights for varying stable index α. As a
complementary measure for the area coverage we analyze
the time evolution of the mean squared displacement up to
its saturation. Moreover, we analyze the time evolution of
the probability density function and its moments. We also
pursue the question on the typical time for the Lévy flight to
first reach or pass the boundary of the square interval. The
paper is organized as follows. In Sec. II, we briefly review
the mathematical foundation of Lévy flights, before exploring
the characterization of Lévy flights in Sec. III. Section IV
summarizes the results.
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FIG. 1. (Color online) Trajectories of radial two-dimensional
Lévy flights for different values of the stable exponent α, showing 400
steps each in a 1000 × 1000 box under periodic boundary conditions.
The starting points for all trajectories were in the center of the square
area. Note the significantly longer excursions for smaller values of α.
The dashed line for the case α = 0.7 depicts a jump across the periodic
boundary. For all trajectories we chose σ = √

2. The enlargement
illustrates the self-similar nature of the Lévy flight trajectories.

II. LÉVY FLIGHTS

For jump length distributions of type (1), the variance
〈x2〉 = ∫ ∞

−∞ x2λ(x)dx of jump lengths diverges, while frac-
tional moments 〈|x|δ〉 of order 0 < δ < α exist [4]. The lack
of scale 〈x2〉 carries over directly to the random motion itself
and is responsible for several peculiar phenomena. Thus,
the long-tailed nature of λ(x) allows occasional, extremely
long jumps to occur. This creates local clusters of the points
of visitation along the trajectory, connected by long jumps.
The clustering occurs on all scales (“clusters within clusters
within clusters”), so that unvisited holes exist on all scales
within the sample path. Consequently, Lévy flights have a
fractal graph dimension df = α [2]. Figure 1 depicts typical
sample trajectories of Lévy flights with a different stable
index α. Note the distinct long jumps for smaller values of
α. Remarkably, the discontinuous jumps on arbitrarily large
scales induce a principal discrepancy between first passage
and first arrival events. For instance, while their first passage
behavior on a semi-infinite domain obeys the Sparre-Anderson
universality [15,16], their first arrival behavior is significantly
reduced with decreasing stable index α [15], as Lévy flights
strongly overshoot a point target [16]. On finite domains
the first passage behavior is also modified [17,18]. Another
interesting effect is the occurrence of multimodal distributions
for Lévy flights in the presence of steeper than harmonic
potentials [19,20].

Lévy stable laws with a power-law asymptotic behavior
(1) emerge as the limiting distribution for the sums of
independent, identically distributed random variables with
diverging variance, by virtue of the generalized central limit
theorem [2,3,5,21]. In the symmetric case the characteristic
function 〈exp(ikx)〉 of a Lévy stable law is given by the

stretched Gaussian [2–5,21]

λ(k) ≡
∫ ∞

−∞
λ(x)eikxdx = exp(−σα|k|α), (2)

where, as mentioned, σ sets a typical length scale characteristic
of the width of the characteristic function (2) and λ(x) itself.
For 0 < α < 2 the characteristic function (2) leads to the
asymptotic power law (1), while in the limit α = 2, we
recover a Gaussian distribution for λ(x) with finite moments
of all orders. From the details of the microscopic jump length
distribution, only the tail property (1) is directly passed on
to the macroscopic displacements in the sense of the limiting
transition of many summands.

Here, we consider two-dimensional, radial Lévy flights
in square boxes of edge length 2a, with periodic boundary
conditions. This means that each time the particle crosses
one edge of the box, it will enter from the opposite edge,
as shown in Fig. 1. All Lévy flights start from the origin in the
center of the square box. For each step in the two-dimensional
trajectory we draw a flight distance r , whose distribution λ(r)
is identical to (1) and independently a flight direction θ . As
we use the symmetric distribution with characteristic function
(2) the “radius” r carries a sign, and we therefore choose the
direction θ uniformly from the interval [0,π ]. The projection
of displacements onto the x axis is thus r cos(θ ). We call
this a radial, two-dimensional Lévy flight. Such radial Lévy
flights have been used to analyze search processes (see, e.g.,
Ref. [7]), and they appear to be a natural choice for an animal
that controls radial distances during its motion. We note that
radial Lévy flights are slightly different from two-dimensional,
Cartesian Lévy flights defined in terms of two-dimensional
characteristic functions exp(−[σ ∗]α|k|α) [22].

In what follows we calculate parameters such as the fractal
dimension, spatial moments of the trajectories, the mean first
passage time, and the probability density function of radial
Lévy flights, in order to characterize their properties under
periodic boundary conditions. We particularly focus on the
area coverage of radial Lévy flights and its measurement from
given recorded trajectories.

III. RESULTS AND DISCUSSION

A. Fractality of confined Lévy flights

The fractal dimension df indicates how completely a
fractal object fills the available embedding space. While for
mathematical fractals such as the von Koch snowflake or
the Cantor set df equals the self-similarity dimension of
the object, for random fractals df is defined in a statistical
sense. That is, df is an average measure for the fractal, albeit
the details of each realization will be different. Stochastic
trajectories are one example for random fractals. Thus, the
sample path of Brownian motion has a fractal dimension
df = 2: It is completely space filling in two dimensions, but
it is sparse in three dimensions, as reflected in its returning
(Polyá) probability [2,23]. A Lévy flight with stable index
0 < α < 2 is already sparse in a two-dimensional embedding,
and for 0 < α < 1 even in one dimension. A common way to
determine the fractal dimension of random fractals is the box
counting method [24], which we apply below.
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TABLE I. Value of the stable index α of free, radial Lévy flights.
We compare the input stable index α used to generate the sample
trajectories and the output value for α as measured from the box
counting analysis of the sample trajectories. The number of steps is
an indication for the number of steps of the simulated Lévy flight
(duration of the trajectory) necessary to determine α to reasonable
accuracy. For α = 1.2 we also include values for the output α

for significantly shorter trajectories, demonstrating the tendency to
undershoot the input α in such cases of insufficient statistics.

Input α Number of steps Output α

0.7 20 000 0.67 ± 0.11
1.2 400 0.91 ± 0.10
1.2 2000 1.07 ± 0.11
1.2 10 000 1.12 ± 0.09
1.2 50 000 1.13 ± 0.11
1.2 250 000 1.14 ± 0.11
1.7 100 000 000 1.62 ± 0.02

Specifically in our Lévy flight case we choose a suitable
square area of size (2a)2, in which we apply the box counting
algorithm. For the bounded Lévy flights this square is defined
by the periodic boundary conditions, while in the case of
free Lévy flights it is chosen such that it extends beyond
the fringe of the finite albeit long trajectory. In the box
counting analysis we then draw on the original square a
lattice with lattice constant 2aε, where ε is a scaling factor
of magnitude 0 < ε � 1. The number of boxes covering the
original square with edge length 2a is then given by 1/ε2.
For each ε we count the number of boxes N (ε) containing
at least one point of visitation of the trajectory. For an
underlying fractal geometry and sufficiently small ε, a power-
law relation of the form N (ε) � ε−df is expected [24], and this
box counting dimension df corresponds to the mathematical
Hausdorff fractal dimension of the object [24].

To validate our method we first determine the frac-
tal dimension of unbounded Lévy flights, for which the
value df = α is expected. Our results are summarized in
Table I. We find that the fractal dimension reproduces the stable
index α quite reliably. However, the number of random walk
steps (overall duration of the sample trajectories) necessary
to obtain sufficient agreement between the input and output
values for α increases dramatically with growing α. In Fig. 2
we show the box counting results for free Lévy flights with
trajectories of 400–250 000 steps. As we can see the number
of filled boxes N (ε) for shorter trajectories does not have a
well-defined power-law region, while for an increasing number
of steps the scaling region extends and allows us to determine
a well-defined power-law exponent. If we determined local
slopes in the log-log plot, it is clear that the obtained values will
undershoot the expected limiting value df = α. In Table I we
also show the output value for the stable index α measured from
the data shown in Fig. 2. This finite-size property needs to be
taken into consideration when analyzing stochastic trajectories
with the box counting method.

We consider here a particle motion in a periodic square
box with edge length 2a. Confinement of a Lévy flight will
eventually alter its fractal properties significantly. Namely, due
to reflections at the periodic boundaries, more and more points
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FIG. 2. (Color online) Box counting analysis of free Lévy flight
trajectories of different duration t with stable index α = 1.2 and
σ = √

2. If the analyzed sample trajectories are too short, no clear
scaling window is returned. For an increasing number of steps of the
trajectories the power-law behavior converges, and the box counting
analysis eventually returns a sufficiently good value for the fractal
dimension and thus the stable index of the trajectory. The horizontal
lines indicate for the different trajectory durations the maximal
number of filled boxes to which N (ε) saturates: Each box is filled
with exactly one point of visitation of the trajectory such that a further
increase in resolution does not increase the number of necessary boxes
to cover the trajectory points. A straight line was fitted in the log-log
plot to produce the results listed in Table I.

of visitation reach previously unvisited areas, and in the limit
of extremely long trajectories we would expect a full area
coverage, i.e., the box counting method should return a fractal
dimension df = 2. In particular, in this limit each realization
will be equivalent in the sense that all points of the area are
visited, as long as we disregard the temporal sequence of the
visitation.

Figures 3 and 4 show the results of box counting analyses
for Lévy flights with stable indices α = 0.7 and α = 1.2. The
results represent trajectories in boxes of varying size a (left
panels) and at different numbers of steps per trajectory, t (right
panels). In each realization the random walker starts in the
center of the box. Consequently there exists a typical time
scale τ ∼ aα for the interaction with the confining boundaries
(see below). For small times or large boxes (t 
 τ ), boundary
effects are barely visible: The behavior is N (ε) � ε−α for
the whole range of scale factors ε. Of course, we observe
a deviation of this scaling when ε → 1: As long as we
only measure at such a low resolution, obviously finite-size
effects occur, in particular, at ε = 1 the single box will
always contain the trajectory, and N (1) = 1. Interestingly,
the expected scaling for unconfined Lévy flights is already
reached for ε = 1/8. In contrast, once the random walker
crosses the periodic boundaries many times (t � τ ), the
behavior is more complex: A typical scaling factor ε0 separates
two fractal regimes. On large scales ε � ε0, the trajectory
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FIG. 3. (Color online) Results of the box counting method applied to radial Lévy flights with stable index α = 0.7 and σ = √
2 for various

box sizes a (left) and evolution times t (right). Both panels show the number N (ε) of filled boxes at scale factor ε. Consistently for all cases
we see a turnover from ε−2 scaling at large ε to ε−α scaling at small ε. See text.

shares its fractal characteristics with Brownian motion, i.e.,
N (ε) � ε−2. On small scales ε 
 ε0, we identify the fractal
scaling N (ε) � ε−α . In what follows, we work out an intuitive
reasoning for this curious bifractal behavior that is also useful
for the practical determination of the fractal dimension of an
empirical trajectory.

Imagine that we cut the full trajectory each time when the
random walker crosses the boundary. Any of the resulting
individual fragments of the trajectory could as well be part

of an unbounded Lévy flight, and therefore it represents a
fractal with box counting dimension df = α. Following this
reasoning we can thus reinterpret the geometric structure in a
periodic box as a stack of several fractal structures (fragments),
each characterized by the same fractal dimension α. Due to
the statistical nature of the stochastic trajectory, the points of
visitation in individual fragments will differ, and each fragment
lives in a separate virtual copy of the bounding box. Since
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FIG. 4. (Color online) Results of the box counting method applied to radial Lévy flights with stable index α = 1.2 and σ = √
2 for various

box sizes a (left) and evolution times t (right). Both panels show the number N (ε) of filled boxes at scale factor ε. Consistently for all cases
we see a turnover from ε−2 scaling at large ε to ε−α scaling at small ε. See text.
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Lévy flights are Markovian, the statistical properties of the
fragments are independent from one fragment to the next.

Assume that the complete set of the points of visitation
of a trajectory is contained in a total number nc of copies
(fragments) of our square box of size (2a)2; nc will be
determined below. To obtain the fractal dimension, the
bounding box is divided into 1/ε2 smaller local boxes, and
the number N (ε) of filled local boxes (i.e., containing at least
one point of the trajectory) is counted. When scanning an
individual box for trajectory points, the algorithm does not
care which copy (fragment) of the system they originate from.
Let p denote the probability to find some points of visitation
in any of the copies of a local box within the stack. Since the
copies are independent but share the same fractal dimension,
p can be expressed in terms of p̄, the probability to find some
points in one individual copy of the local box,

p = 1 − (1 − p̄)nc . (3)

Since the individual copies of our system are sets with a fractal
dimension of α, on average we expect

p̄ = N (ε)

1/ε2
= ε(2−α). (4)

We combine Eqs. (3) and (4) and find for the entire stack with
all copies (fragments) of the trajectory the sought-after relation
between the (ensemble averaged) number of filled boxes N and
the scaling factor ε,

N (ε) = p · (1/ε2) = ε−2[1 − (1 − ε(2−α))nc ]. (5)

It is worthwhile to check some limiting cases and compare
them to known results as well as the numerical analysis
presented in Figs. 3 and 4. For α = 2, the measured fractal
dimension should be df = 2, both in the absence and presence
of the periodic boundaries. Indeed, Eq. (6) in this case yields
N (ε) ∼ ε−2. Next, we consider unbounded Lévy flights by
setting the number of copies (fragments) to nc = 1. In this
case, we find N (ε) = ε−α , as expected. Interestingly, for any
nc > 1, Eq. (5) exhibits a turnover from one scaling regime to
another. Namely,

N (ε) �
{

ε−2, ε � ε0,

ncε
−α, ε 
 ε0,

(6)

leads to the area-filling result with exponent 2 or a scaling
with the fractal graph dimension df = α. The turnover occurs
at some characteristic value ε0 to be determined below. The
predicted behavior from Eq. (6) explains the observations in
Figs. 3 and 4.

We interpret the turnover behavior (6) of confined Lévy
flights as follows. According to the above reasoning the
random motion in a periodic box can be interpreted as a stack
of fractal sets, each containing a fragment of an unbounded
trajectory. These fractal sets are stochastically independent and
share the same fractal dimension α. If the scaling factor ε is
large (i.e., ε ∼ 1), the stack of trajectory fragments likely has
points in all local boxes. Although in each copy (fragment)
we may find some empty local boxes, they are unlikely to be
in the same place for all copies. We therefore find a fractal
dimension of 2 for the entire trajectory. However, once we
increase the resolution (i.e., ε is smaller), the positions of filled

local boxes in each of the copies of the system become more
and more specific. In this regime, it is unlikely to find filled
local boxes at the same position for all copies. Thus, reflecting
the independence of individual fragments, the total number of
filled boxes is simply given by the number of copies nc times
the number of filled boxes per copy, ε−α . From this analysis
we see that it is important to choose the window of scaling
factors ε sufficiently wide in order to be sure that an actual
fractal object with df < 2 is not mistaken for a completely
area-filling object (df = 2) due to finite-size effects.

We now address the question how the number of copies
(fragments) nc scales with the overall duration t of the
trajectory and the size a of the square domain. We distinguish
two regimes: When t 
 τ � aα , then any interaction of the
random walker with the boundaries is negligible, and we are
essentially facing an unbounded Lévy flight. In this limit,
we observe that nc ≈ 1 and the fractal dimension is α. The
opposite limit is t � τ . In the interpretation of a stack of
independent copies (fragments) of our system worked out
above, this means that nc becomes a large number. Then,
Eq. (5) assumes the following asymptotic form,

N (ε) ∼ ε−2

{
1 − exp

[
−

(
ε

ε0

)(2−α)]}
, (7)

with the characteristic scaling factor

ε0 = n1/(α−2)
c . (8)

ε0 separates the two fractal regimes in Eq. (6). In order to
estimate how nc (and consequently ε0) relates to box size a

and trajectory duration t , we note that τ is a typical time scale
for boundary crossings. In particular, if t � τ , we observe
many boundary crossings and therefore expect nc ∼ t/τ ∼
t/aα . This yields the desired relation for ε0,

ε0 ∼ aα/(2−α)

t1/(2−α)
. (9)

To compare these results with the numerical data, we
introduce the rescaled quantities

ε → ξ ≡ εt1/(2−α)a−α/(2−α),
(10)

N (ε) → g ≡ N (ε)t−2/(2−α)a2α/(2−α).

With this choice Eq. (7) assumes the scaling form

g(ξ ) ∼ ξ−2

{
1 − exp

[
−

(
ξ

Cα

)(2−α)]}
, (11)

where 0 < Cα is an appropriate scaling constant independent
of the trajectory duration t and the domain size a. The rescaled
version of the numerical data is displayed in Fig. 5. Indeed,
the rescaled data points collapse neatly onto a single curve
for a fixed value of α. The analytical form of Eq. (11) is also
included in the plot. Due to the excellent collapse of data
and analytical form, however, this curve is hardly visible. The
parameter Cα was fitted for the individual trajectories, and the
corresponding value is given in the figure legend.

A similar reasoning would apply in other embedding
dimensions as well. For instance, adopting the above steps
to a three-dimensional embedding, we expect that we see
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FIG. 5. (Color online) Rescaled results from Figs. 3 and 4 in terms of the scaling variable ξ and the scaling function g(ξ ) (see text for
details). We chose those trajectories, for which the duration t exceeds the characteristic time scale τ . We see an excellent data collapse for all
cases shown in the legend.

a turnover of the number of filled boxes as a function of
the scale factor ε from N (ε) ∼ ε−3 to N (ε) ∼ ε−α . The
characteristic scale factor for the turnover will scale as ε0 ∼
aα/(3−α)/t1/(3−α). Note that according to this observation even
for ordinary Brownian motion we would observe a turnover
from scaling exponent −3 to −2.

What do these results imply for an animal searching on a
finite domain? We saw that on finer and finer scales (ε � ε0)
the trajectory assumes the fractal dimension df = α of a free
Lévy flight. Only at a sufficiently coarse resolution (ε 
 ε0)
does a finite trajectory exhibit an apparent area-filling behavior,
i.e., the scaling N (ε) � ε−2. For a searching animal using a
Lévy flight search strategy this implies that in order to scan
the entire area exhaustively during a single trajectory, it is
imperative to have a reasonable field of vision, i.e., to be able
to scan an area around each point of the trajectory. Even more
efficient would be a constant scanning as discussed in Ref. [7],
such that the scanned on-the-fly area represents a sausage.
Without such provisions the scanning of the area by the Lévy
flight remains sparse a forteriori. However, in a bounded
system, the optimal scanning radius will actually depend on
the system size and search time, and should be directly related
to the spatial scale aε0 beyond which the clustering nature of
Lévy flight search strategies become relevant.

B. Moment analysis

We now turn to another quantity to characterize a Lévy flight
trajectory on a finite domain with periodic boundary conditions
and investigate the scaling behavior of spatial moments. To this
end we consider the mean squared displacement 〈x2(t)〉, for
which we concentrate on the behavior along one of the axes
of our square area. While this variance naturally diverges for
a free Lévy flight or a Lévy flight in an harmonic external
potential [4,20], it is already finite in steeper than harmonic
external potentials [15]. In our square area the mean squared

displacement is thus a valid measure for the motion. Figure 6
shows the time dependence of the one-dimensional variance
for different values of the stable index α. The saturation of the
mean squared displacement is comparatively sharp, such that
we can read off a typical time scale τ from Fig. 6 (see below).
In the initial regime of effectively unbounded motion, t 
 τ ,
all graphs depict a linear time dependence, independently of
α. This highly contrasts the properties of unbounded Lévy
flights, where x scales as t1/α in the diffusion limit. In fact,
from measuring the mean squared displacement alone, one
could conclude to measure confined Brownian motion. Thus,
the effect of the boundaries goes beyond ensuring the finiteness
of the second moment. Interestingly, the boundaries also have
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100 101 102 103 104 105
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t
α = 0.7
α = 1.7
α = 2.0

FIG. 6. (Color online) One-dimensional mean squared displace-
ment of Lévy flights in a box with periodic boundary conditions and
size 1000 × 1000 as function of time t , for different values of α. Here,
10 000 sample trajectories have been used for the ensemble average
〈x2(t)〉. The horizontal black line represents the expected stationary
value a2/3 = 83 333, where a = 500. Note that the early diffusion
process is “normal” in the sense that 〈x2(t)〉 grows linearly in time,
despite the underlying scale-free jump distributions. See text.
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FIG. 7. (Color online) Diffusion constant vs box size. With the
initial linear growth of the mean squared displacement, one can
associate a diffusion constant Dx = 〈x2(t)〉/(2t). The latter has a
power-law dependence on the edge length 2a of the box. Only for
bounded Brownian motion, α = 2, the (large) system size does not
affect the initial diffusion parameters.

a distinct quantitative effect on the initial diffusion coefficient
Dx = 〈x2(t)〉/(2t), as shown in Fig. 7: Dx depends on the size
of the system. Enlarging the box increases the (finite) variance
of individual jump lengths, thereby increasing Dx .

How can this behavior occur? To obtain the full picture
we compute arbitrary moments of absolute displacements
from our simulations. We generally find an initial power-law
time dependence 〈|x|δ(t)〉 � t e(δ) before the occurrence of
saturation. More precisely, from the data for the scaling
exponent e(δ) displayed in Fig. 8, we expect that in the
asymptotic limit 1 
 t 
 τ ,

〈|x|δ(t)〉 �

⎧⎪⎨
⎪⎩

t δ/α, 0 < α < 2 and 0 < δ < α,

t, 0 < α < 2 and δ � α,

tδ/2, α = 2 and δ > 0.

(12)

We note that this type of moment scaling is actually a
familiar one in the theory of Lévy flights. It also occurs
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FIG. 8. (Color online) Scaling exponent e(δ) for moments 〈|x|δ〉
of arbitrary order δ > 0. The exponent is obtained by a numerical fit to
a power law, 〈|x(t)|δ〉 � t e(δ). The theoretical prediction [black dotted
lines, Eq. (12)] is valid only in the asymptotic limit 1 
 t 
 τ �
aα . For this simulation, 2a = 105, t ∈ {10, . . . ,30}. The calculation
of higher order moments exploits the far tails of the distribution,
requiring a relatively large number (108) of trajectories.
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FIG. 9. (Color online) Rescaled mean first passage time of
confined Lévy flights as function of the stable exponent α, for different
box sizes. Here, 104 . . . 105 sample trajectories have been used for
each data point.

when truncating the distribution (1) for the jump lengths at
some fixed distance [25–27], or when considering the effects
of a finite ensemble [28]. Roughly speaking, the truncation
distance is analogous to the largest value drawn from a
finite ensemble. In our system this role is played by the
finite edge length of the box. In all such cases, the initial
dynamics resemble an ordinary, unbounded Lévy flight, albeit
with finite moments of type (12). In particular, we conclude
that the second moment of bounded motion mimics normal
diffusion, but the associated diffusion coefficient must depend
on the system size parameter a. Conversely, at early times,
moments with 0 < δ < α are adopted from the unbounded
Lévy flight and are thus independent of a. At later times, all
moments, independent of the fractional order δ, saturate at
〈|x|δ(∞)〉 � aδ . The typical time scale for the interaction with
the boundaries therefore scales as

τ � aα but also τ � a2/(2Dx). (13)

This necessarily implies that

Dx = Dx(a) � a2−α. (14)

The above relation is in nice agreement with our power-law
fits in Fig. 7. The exponent also consistently coincides with
the one found for the dependence on the truncation parameter
in truncated but unbounded Lévy flights, as anticipated in
Ref. [27].

C. Mean first passage time

As a further characteristic we briefly address the role of
the mean first passage time 〈τ1〉 of our confined Lévy flights
to the boundary of the area. On a semi-infinite domain, Lévy
flights show the universal Sparre-Anderson scaling �τ

−3/2
1 of

the distribution of first passage times, so the mean first passage
time 〈τ1〉 diverges [15,16]. On our finite domain it converges
and depends crucially on α. We determined the mean first
passage time for Lévy flights with different values of α and
for different box sizes (a = 250, 500, 1000, and 2000). From
scaling arguments we would expect that the mean first passage
time grows as 〈τ1〉 � aα as a function of the initial distance
from the absorbing boundary [see Eq. (13)]. Figure 9 depicts

042136-7



VAHABI, SCHULZ, SHOKRI, AND METZLER PHYSICAL REVIEW E 87, 042136 (2013)

the rescaled mean first passage time a−α〈τ1〉 as a function of α.
We observe that the scaling relation holds provided that we can
approximate the Lévy flight by a continuous diffusion process.
Conversely, by choosing small values for aα , we generate a
random walker that escapes the box after only a few number
of steps and the universal scaling (13) breaks down. From the
monotonic nature of the graphs we conjecture that, for certain
fixed parameters σ and a, one may find an optimal value for
the stable index α which minimizes the mean first passage
time.

We note that the analogous first passage time problem in
one dimension has been treated analytically and numerically
[29,30]. A generalization to our two-dimensional problem,
however, is not straightforward: Although we fix the scale
σ = √

2 for individual jump distances r , displacements are
still affected by random jump directions θ . One may argue
that effectively the scale of displacements along the x, y, or
radial coordinate is not fixed, but has a nontrivial relation to
the tail parameter α. Consequently, such considerations raise
the general question of how to appropriately fix a jump length
scale for variable stable exponents in multidimensional Lévy
flights.

D. Probability density function

Finally, we examine the probability density function of
the process. Figure 10 shows the time evolution of the
unidirectional probability density function P (x,t) for Lévy
flights with stable indices α = 0.7 and 1.7. For comparison
we also present graphs for Brownian motion, α = 2. Starting
with the sharp initial condition P0(x) = limt→0 P (x,t) = δ(x),
the probability density function successively broadens until
it reaches equidistribution, Pst(x) = 1/(2a). We observe that
the specific characteristics of the different cases 0 < α < 1,
1 < α < 2, and α = 2 remain discernible up to relatively long
times. Thus up to some 10% of the overall simulation time, it is
still possible to distinguish the basic shapes of the probability
density functions for these cases. The overall simulation time
needed to reach saturation is, however, dramatically different,
as already observed in the labels shown in Fig. 10. This figure
also demonstrates how fitting to a stable law, Eq. (2), yields
an approximation of α. The fits in this figure show excellent
agreement with simulation data.

Thus, from fitting probability density functions alone we
could conjecture that the initial dynamics of the searcher
starting far off the edges of the box is essentially unaffected by
boundary conditions: At small times, the spatial distribution
can be approximated by the stable law from an unbounded
Lévy flight. However, the effect of boundaries is known
to be highly nonlocal if the random walk is governed by
long-tailed jump statistics (1). Due to the non-negligible
probability for extremely long excursions, the searcher probes
the nature of the boundaries from the very start of its motion.
For example, this leads to modifications on the associated
diffusion equations [31,32]. Figure 11 highlights the specific
tail properties of the early-time distribution. Despite the almost
perfect fit quality of stable distributions along virtually the
whole search space, there are considerable deviations in the far
tails near the boundaries. In particular, the distinct heavy-tail
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FIG. 10. (Color online) Time evolution of the unidirectional
probability distribution function P (x,t) of confined Lévy flights with
α = 0.7 and 1.7, as well as Brownian motion with α = 2 in a box
of edge length 2a = 1000, for σ = √

2. In each case 10 000 sample
trajectories were used to create an individual curve for P (x,t). Fits
(dashed black lines) correspond to stable distributions as in Eq. (2).

property, Eq. (1), is already lost at this early stage of the random
walk.

IV. CONCLUSIONS

Area coverage of stochastic processes is an important
criterion for the efficiency of search or spreading processes.
Here we investigated the time evolution of the area coverage
in finite territories of Lévy flights. As measures we used
the fractal dimension and moments of displacements of the
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FIG. 11. (Color online) Tail analysis for the probability distribu-
tion function P (x,t) of confined Lévy flights at an early stage of the
random walk. The stable fits (dashed black curve) were performed for
the same time instants as in Fig. 10, but a larger number of 3 × 106 of
random walks were needed to produce precise tail data (continuous
red curve).

Lévy flight. Consistently, we found that both quantities show
a distinct saturation behavior, such that a clear time scale can
be determined for reaching full area coverage. However, this
time scale crucially depends on the value of the stable index α:
When α approaches the limiting value two, this time scale
increases significantly. As expected, smaller values for α,
allowing for longer jump lengths, effect more efficient area
coverage and thus search efficiency. In general, the number of
steps necessary to reach full area coverage is relatively large.
Thus searchers using this type of strategy will likely not be able
to achieve absolute certainty to find a given target randomly. A
field of vision, as introduced in the search literature, will abate
this problem and render Lévy flights a very efficient search
strategy.

As shown in our detailed analysis, interesting turnover
behaviors come into play when we want to determine the
fractal dimension of a stochastic trajectory. Thus, when the
resolution in the box counting approach is too coarse, we
will always recover full area coverage and thus an apparent
fractal dimension of 2. Care has therefore to be taken to choose
appropriate analysis windows. Concurrently, one needs to be
aware of the subtlety of the scaling of spatial moments with
time: For fractional moments whose order is at least equal to
the stable index, we obtain a linear scaling with time, and the
stable index α does not come into play. Only when the order
of the moment is smaller than α do we obtain a typical scaling
of free Lévy flights.

The analysis of the area coverage is completed with the
study of the equilibration behavior of the probability density
function of the process, allowing one to distinguish different
domains of the stable index α (smaller or larger than one) up
to relatively long times. Moreover, the mean first passage time

τ1 scales with the index α and the system size approximately
in the scaling fashion 〈τ1〉 � aα .

From the data analysis point of view, we find that studying
one single type of the above measures is usually not enough to
identify a given motion as a bounded Lévy flight. The fractal
dimension does have a characteristic behavior for long-tailed
jump lengths, but quite extensive data is necessary to achieve
reliable results from a box counting algorithm. Although fitting
the spatial distributions by stable laws might agree nicely
at the early stages of the process, their characteristic heavy
tails are quickly reshaped by interactions with the bound-
aries. While the mean squared displacement indicates normal
diffusion, the associated diffusion constant turns out to
depend on the system size and lower order moments indicate
superdiffusion. Finally, an analysis based on first passage times
only yields decisive results if data on a variety of system sizes
is available. Usually a combination of these complementary
methods is necessary to determine the Lévy flight nature of a
given process.

Finally, let us briefly address the ergodicity of the process.
Ergodicity of stochastic processes has recently received con-
siderable interest, following the possibility to record single
trajectories of molecules or small tracers in biological matter
or animals and human motion patterns, and to determine the
expectation values of physical observables from time averages
[33]. In an ergodic process, we expect that the time average of
a physical observable becomes representative for the system
and equal to the corresponding ensemble average at sufficiently
long (infinite) times [34]. This holds true for Brownian motion
as well as anomalous diffusion with Gaussian but power-law
correlated noise described by the fractional Langevin equation
or fractional Brownian motion [35–37]. However, for anoma-
lous diffusion processes characterized by diverging time scales
for the interjump waiting times, time averages remain random
even for infinitely long trajectories, and time averaged ob-
servables behave differently from their ensemble analogs [33,
35,38], as also observed experimentally [39,40]. So what can
be said about the ergodicity of Lévy flights? Unconfined Lévy
flights in two dimensions (and generally when α is smaller than
the embedding dimension) are nonergodic in the sense that they
do not fully cover the area even at arbitrarily long times. Thus,
for instance, the expectation of the outcome to find the particle
in the first quadrant of the area will remain a random quantity
[41]. Sufficiently long, confined Lévy flights, in contrast, are
ergodic, as in the above sense they cover the full accessible
area and each realization leads to the same result [42].
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