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Abstract. We demonstrate the non-ergodicity of a simple Markovian stochastic
process with space-dependent diffusion coefficient D(x). For power-law forms
D(x) ' |x |

α, this process yields anomalous diffusion of the form 〈x2(t)〉 '

t2/(2−α). Interestingly, in both the sub- and superdiffusive regimes we observe
weak ergodicity breaking: the scaling of the time-averaged mean-squared
displacement δ2(1) remains linear in the lag time 1 and thus differs from the
corresponding ensemble average 〈x2(t)〉. We analyse the non-ergodic behaviour
of this process in terms of the time-averaged mean-squared displacement
δ2 and its random features, i.e. the statistical distribution of δ2 and the
ergodicity breaking parameters. The heterogeneous diffusion model represents
an alternative approach to non-ergodic, anomalous diffusion that might be
particularly relevant for diffusion in heterogeneous media.
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Since the early systematic studies of Perrin and Nordlund [1], single particle tracking has
become a routine method for tracing individual particles in microscopic systems [2], but also
for animal [3] and human [4] motion patterns. In a wide range of systems and over many
time and length scales, these measurements reveal anomalous diffusion with mean squared
displacement (MSD) 〈x2(t)〉 ' t p [5]: subdiffusion (0 < p < 1) was found for the passive
motion of tracers in living biological cells [6–11], a field in which single particle tracking has
proved to be particularly useful, or for bacteria in biofilms [12]. A comprehensive review on
anomalous diffusion in the crowded environment of living cells was recently published [13].
More generally, subdiffusion is observed in a large variety of systems, including charge
carrier transport in amorphous semiconductors [14], tracer dispersion in groundwater [15] or in
fractal systems [16, 17]. Superdiffusion (p > 1) is observed for active motion in the biological
cells [11] of mussels [18], plant lice [19] or higher animals and humans [3, 4].

Given the broad use of single particle tracking methods to garner diffusion data in both
micro- and macroscopic systems and thus the need to evaluate and physically interpret the
recorded time series x(t) of the particle position, the ergodic properties of a stochastic process
are of particular current interest: is the information obtained from time averages of a single
or few trajectories representative for the ensemble? In other words, are sufficiently long time
averages reproducible and equivalent to the corresponding ensemble averages [20, 21]? This
question has motivated some vivid activity in the field of statistical physics recently. Thus, of the
various stochastic models for anomalous diffusion, diffusion on random fractals has been shown
to be ergodic [22]. Fractional Brownian and fractional Langevin equation motion driven by long-
range correlated Gaussian noise are transiently non-ergodic [23–26]. In contrast, subdiffusive
Scher–Montroll continuous time random walks (CTRW) [14, 27] with diverging characteristic
waiting time exhibit weak ergodicity breaking [28], and time averages remain random even
in the long time limit [29]. Weak ergodicity breaking was indeed observed for the blinking
dynamics of quantum dots [30], protein motion in human cell walls [7], lipid granule diffusion
in yeast cells [8] and of insulin granules in MIN6 cells [9].

While CTRW processes represent an elegant tool to describe anomalous diffusion, the
occurrence of power-law distributed waiting times is far from universal. We therefore ask the
question of whether we can create a simple, alternative stochastic model that still features
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this intricate, weakly non-ergodic behaviour. Here we show that the MSD of Markovian,
heterogeneous diffusion processes (HDPs) with space dependent diffusion constant D(x) ' |x |

α

scales like 〈x2(t)〉 ' t p with p = 2/(2 − α), while the time averaged MSD δ2 scales linearly in
both sub- (α < 0) and superdiffusive (α > 0) regimes. We quantify the non-ergodicity in terms
of the ergodicity breaking parameters and the amplitude scatter distribution of δ2. We showcase
the analogies and differences between HDPs and other non-ergodic diffusion processes.

Physically, a space dependent diffusivity appears a natural description for diffusion in
heterogeneous systems. Examples include Richardson diffusion in turbulence [31] as well
as mesoscopic approaches to transport in heterogenous porous media [32] and on random
fractals [33]. Recently, maps of the local cytoplasmic diffusivities in bacterial and eukaryotic
cells showed a highly heterogeneous landscape [34], recalling the strongly time-varying
diffusion coefficients of tracers in cells, see e.g. [35].

1. Heterogeneous diffusion model

We start with the Markovian Langevin equation for the displacement x(t) of a test particle in a
heterogeneous medium with space dependent diffusivity D(x), namely,

dx

dt
=

√
2D(x)ζ(t).

Here, ζ(t) is white Gaussian noise with δ-correlation 〈ζ(t)ζ(t ′)〉 = δ(t − t ′) and zero mean
〈ζ(t)〉 = 0. In the following we interpret the Langevin equation in the Stratonovich sense [36],
to ensure the correct limiting transition for the noise with infinitely short correlation times [37]5.
Specifically, for D(x) we employ the power-law form [38, 39]6

D(x) = D0|x |
α. (1)

The dimension of D0 is [D0] = cm2−α s−1. In the Stratonovich interpretation, we introduce
the substitution y =

∫ x [2D(x ′)]−1/2 dx ′, where y(t) is the Wiener process [36]. For the initial
condition P(x, 0) = δ(x) a compressed (α < 0) or stretched (α > 0) Gaussian probability
density function (PDF)

P(x, t) =
|x |

1/p−1

√
4π D0t

exp

(
−

|x |
2/p

(2/p)2 D0t

)
(2)

emerges (see appendix A), with p = 2/(2 − α). The ensemble averaged MSD 〈x2(t)〉 =∫
x2 P(x, t) dx becomes

〈x2(t)〉 =
0(p + 1/2)

π1/2

(
2

p

)2p

(D0t)p. (3)

5 See the explanation in [37]. The corresponding diffusion equation for the PDF P(x, t) has the symmetrized
form

∂ P(x, t)

∂t
=

∂

∂x

[√
D(x)

∂

∂x

(√
D(x)P(x, t)

)]
.

6 In our model α < 2 to ensure the growth condition for existence and uniqueness of the solution of a Markovian
stochastic differential equation, see [38].
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Figure 1. Time evolution of the PDF for sub- (left) and superdiffusion (right).
We compare simulations results (full lines) to the analytical result (dashed) of
equation (2) with D0 = 1. The small discrepancy is due to the rectified form of
the diffusion coefficient at the origin implemented in simulations (see text).

Thus, for α < 0 we find subdiffusion, and superdiffusion for α > 0. Brownian motion with
〈x2(t)〉 = 2D0t emerges for α = 0, and α = 1 produces ballistic motion. The diffusion becomes
increasingly fast when α tends to 2.

Figure 1 compares the PDF (2) to simulations results (see below). Compared to the
Gaussian shape of Brownian motion (α = 0), we observe a depletion in regions of higher
diffusivity. For subdiffusion, this causes the central dip of the PDF, while for superdiffusion
probability is shifted towards the origin. Note that the shape of the PDFs is significantly different
from those of CTRW processes. In particular, for the subdiffusive case, the CTRW-PDF has a
pronounced cusp at the origin [5]. Curiously, the subdiffusive shape in figure 1 resembles the
propagator for retarded wave motion [40].

To characterize the HDP, we calculate the position autocorrelation (see appendix A) for the
case t2 > t1,

〈x(t1)x(t2)〉 =
2p+1

√
π

0(p + 1)0(
p
2 + 1)

p2p0(
p
2 + 1

2)
[D0t1](p+1)/2

×[D0(t2 − t1)]
(p−1)/2

2 F1

(
1 − p

2
,

p

2
+ 1;

3

2
;

−t1

t2 − t1

)
(4)

with the hypergeometric function 2 F1(z). The Brownian limit 〈x(t)x(t + τ)〉 = 2D0t follows for
α = 0, while for t1 = t2 we recover equation (3). The asymptotic behaviour of expression (4),
〈x(t)x(t + τ)〉 ' τ (p−1)/2t (p+1)/2 for τ/t � 1 implies that the correlations decay with τ for
subdiffusive processes whereas they increase in the case of superdiffusion, similar to fractional
Brownian motion (FBM) [23]. We also obtain the correlation of two consecutive increments
along x(t). For τ/t � 1, we find the simple expressions for p = 1/2 and 2:

〈[x(t) − x(t − τ)][x(t + τ) − x(t)]〉 ∼

{
−τ

√
D0/t, p =

1
2 ,

(D0τ)2, p = 2.
(5)

Indeed the occurrence of antipersistence (negative correlations) for subdiffusion and persistence
for superdiffusion holds for all values of p (appendix A), again similar to FBM. We present exact
results for the velocity autocorrelation function in appendix A.
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To connect to single particle tracking experiments we now turn to the time averaged MSD
of a trajectory x(t),〈

δ2(1)
〉
=

1

T − 1

∫ T −1

0

〈
[x(t + 1) − x(t)]2

〉
dt, (6)

where 1 is the lag time and T the length of the time series x(t). In equation (6) we introduced
the additional average over individual trajectories, 〈δ2(1)〉 = N−1

∑N
i=1 δ2

i (1) [29]. For 1 � T
we find the linear 1-dependence (compare appendix B)〈

δ2(1)
〉
=

0(p + 1/2)

π 1/2

(
2

p

)2p

D p
0

1

T 1−p
. (7)

Remarkably, this result holds for both sub- and superdiffusive regimes, and we find the exact
match 〈

δ2(1)
〉
= (1/T )1−p

〈x2(1)〉.

Equation (7) is our central result. Despite the simple nature of the Markovian HDP, we find that
it displays weak non-ergodicity, i.e. the scaling of time and ensemble averages is different,
〈δ2(1)〉 6= 〈x2(1)〉. Linear scaling of the type of equation (7) was found for subdiffusive
CTRWs [29], but also for correlated CTRWs [41], ageing, non-renewal CTRW processes
[42] and time-scaled Brownian motion [43]. It contrasts the ultraweak non-ergodicity of
superdiffusive CTRWs [44]. In particular, the dependence on the length T of the time series
is identical to CTRW and correlated CTRW subdiffusion: with increasing T the effective
diffusivity Deff ' T p−1 decreases. In the superdiffusive regime, this Deff increases with time,
the particle becomes more mobile. For HDP processes the ageing dependence on T arises when
the particle continues to venture into regions of changing diffusivities, for subdiffusive CTRWs
this is due to increasingly longer sojourn times.

Exploring HDPs in more detail numerically, we note that the Langevin equation in the
Stratonovich interpretation leads to an implicit mid-point iterative scheme for the particle
displacement. At step i + 1, we thus have xi+1 − xi =

√
2D([xi+1 + xi ]/2)(yi+1 − yi), where the

increments (yi+1 − yi) of the Wiener process represent a δ-correlated Gaussian noise with unit
variance. Unit time intervals separate consecutive iteration steps. In our numerical study we
consider the two generic cases p = 1/2 and 2. To avoid divergencies in the discrete scheme, for
subdiffusion we regularize the diffusivity at x = 0, choosing D(x) = D0 A/(A + x2), such that
for x2

� A we recover the original relation (1). For superdiffusion, to avoid trapping at x = 0
and thus prohibitively expensive simulations, we use the shifted form D(x) = D0(|x | + 1), again
with the correct scaling for large |x |.

2. Numerical results

From the generated trajectories, we compute the PDF (figure 1) as well as the ensemble and
time averaged MSDs. The MSDs are shown in figure 2. For the ensemble averaged MSD (blue
curve) we observe excellent agreement with equation (3). In the subdiffusion case, the predicted
behaviour (3) is reached after less than a dozen steps, such that the rectification of D(x) and
the choice of the off-centre initial position x0 are practically negligible. For superdiffusion, an
extended region of almost normal diffusion is observed for small particle displacements, as long
as |x | < 1 in the rectified D(x). The long time behaviour shows good agreement between theory
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Figure 2. Ensemble and time averaged MSDs for sub- and superdiffusive HDPs
for T = 105, D0 = 1 and A = 0.01. The thin red lines show results for individual
time averaged trajectories, the thick blue lines refer to the ensemble averaged
MSD 〈x2(t)〉 and the trajectory average 〈δ2〉 of the time averaged MSD. The
expected results (3) and (7) are shown by dashed lines. The time averaged MSDs
are logarithmically sampled. The initial position is x0 = 0.1 for all trajectories.
For subdiffusion, the discrepancy of theory and simulated results for 〈δ2〉 is due
to the D(x) rectification, see text.

and simulations. The time averaged MSDs and their mean 〈δ2〉 follow nicely the predicted linear
scaling. Only when the lag time 1 approaches T the linear behaviour levels off due to the finite
trajectory length T .

Next we study the apparent diffusion coefficients and scaling exponents from the individual
δ2. The points of each trace δ2 were logarithmically binned. The initial part of the trajectory, 1 =

1–102 steps, was fitted by a linear law with diffusivity D1. The long-time regime, 1 ∼ 102–104

steps, was fitted with two parameters, δ2 = Dβ1
β . The distributions of D1, Dβ and β were

then fitted with the three-parameter gamma distribution, g(z) ∼ zν−1 e−z/b e−a/z, the parameters
being fixed by the first three moments obtained from the histograms. This gamma distribution
was recently proposed for the spread with 1 of δ2 of a Brownian walker [45]. In addition, we
extracted the amplitude scatter PDF φ(ξ = δ2/〈δ2〉) of individual δ2 around the mean 〈δ2〉.

Figures 3 and 4 show the results of this analysis, together with the fits to the gamma
distribution, g(z). We see that the amplitude scatter shows a pronounced spread around the
ergodic value ξ = 1 in both sub- and superdiffusive regimes. The shape of φ(ξ) changes only
marginally with 1 in the linear region of δ2. Broad distributions of φ(ξ) are known from both
sub- and superdiffusive CTRWs. The differences are, however, that for subdiffusive CTRWs
φ(ξ) has a finite value at ξ = 0 due to completely immobilized particles [29]. For superdiffusive
CTRWs φ(ξ) decays to zero at ξ = 0, but changes significantly with 1 [44]. The scatter
distribution φ(ξ) is thus a good criterion to distinguish HDPs and CTRWs.

More specifically, for subdiffusion the distributions of D1 and the amplitude scatter φ(ξ)

are wider, while for superdiffusion they show a sharper peak with a maximum shifted to the
mean at ξ = 1. The width of φ(ξ) is roughly unity for subdiffusion and 1/2 for superdiffusion.
It changes only slightly with T in the range T = 103–105, see figure 3. The distributions for
Dβ typically exhibit a long power-law tail with f (Dβ) ∼ D−1.2...1.4

β . The distributions for the

New Journal of Physics 15 (2013) 083039 (http://www.njp.org/)

http://www.njp.org/


7

Figure 3. Amplitude scatter PDF φ(ξ) for subdiffusive HDP (top) and
distributions of the fit parameters D1, Dβ and β (bottom). Parameters 1 and T
are indicated in the panels. In the upper panel the red, green and blue curves
denote the same trace lengths as in figure 1. The shaded histograms are the
simulations results shown simultaneously for three T values. The curves are the
Gamma-distributions shown in every of the upper panels for one trace length T
only, with the corresponding colour. Solid envelopes are three-parameter fits to
g(z) (see text). At least 103 trajectories were analysed for each T , with T = 105.

Figure 4. The same as in figure 3 but for superdiffusive HDPs.
New Journal of Physics 15 (2013) 083039 (http://www.njp.org/)
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Figure 5. Ergodicity breaking parameters EB (thick) and EB (thin blue curves)
as obtained from simulations (T = 105). The theoretical asymptotes for EB (left
panel, dashed lines) and approximate equation (C.1) for EB (right panel, see
appendix C).

apparent long-time exponent β are similar for sub- and superdiffusion, with 〈β〉p=1/2 ≈ 0.86 and
〈β〉p=2 ≈ 0.92. Finite T -effects lead to the undershoot of 〈β〉 compared to the theoretical value
of unity.

Consider now the ergodicity breaking parameter [29]

EB = lim
T →∞

(〈
(δ2)2

〉
−

〈
δ2

〉2
)

〈
δ2

〉2 (8)

that provides a good measure for the dispersion of time averaged MSDs for different types
of diffusion processes [46]. The sufficient condition of ergodicity of a process is EB = 0. A
necessary condition is that the ratio of the time and ensemble averaged MSD equals unity. Here
we observe that this condition is not fulfilled for p 6= 1,

EB =

〈
δ2(1)

〉
/〈x2(1)〉 = (1/T )1−p.

The ergodicity breaking parameters EB and EB extracted from simulations data at 1/T � 1 is
EB ≈ 0.4 for sub- and EB ≈ 1.4 for superdiffusion, indicating the weakly non-ergodic nature of
HDP processes in both regimes. The parameter EB follows the predicted scaling for large 1 and
T values, i.e. when both ensemble and time averaged MSDs have converged to the theoretical
scaling (figures 2 and 5). For Brownian diffusion our simulations yield the correct finite-time
scaling EB(1) =

4
3

1

T and sharp amplitude scatter φ(ξ) ∼ δ(ξ − 1) at T → ∞, indicating the
ergodic behaviour for long traces and the self-averaging property of normal diffusion. For p = 2
at 1/T → 0 the estimated theoretical value is EB = 2/3 (equation (C.1)) close to the value from
simulations.

The simulations show that for subdiffusion, EB increases with 1/T , while for
superdiffusion it decreases with 1/T (figure 5). In both cases EB approaches unity as
1 → T . At 1/T � 1, EB for p < 1 assumes smaller values, indicating weaker deviations from
ergodicity, in contrast to superdiffusion, see figure 5. The parameter EB defined via the fourth
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moment is overall a more robust characteristic of the process. For instance, it varies only slightly
with T and 1 for 1/T � 1 (not shown).

3. Conclusions

Anomalous diffusion is a widely observed phenomenon across many scales and disciplines.
Following the dramatic increase of single particle tracking studies, the question arises of how
we can physically interpret the recorded trajectories in terms of time averages of observables
such as the MSD. Namely, in most cases the available physical theories provide results for the
ensemble averages of physical observables. Once a system exhibits weak ergodicity breaking,
however, the inequivalence of ensemble from time averages prohibits the application of such
ensemble theories to the measured, time-averaged quantities. The quantitative interpretation
of time averages therefore requires knowledge about whether the system is ergodic and the
standard results can be used to fit the data, or whether the system is weakly non-ergodic. In that
case knowledge of the time averaged observables is indispensable.

Here we discussed the seemingly simple Markovian HDP with power-law space-dependent
diffusion coefficient, defined in terms of a Langevin equation, which is fully local in both
space and time. Despite this locality HDPs are weakly non-ergodic: the time averaged MSD
δ2(1) scales linearly with the lag time 1 for both sub- and superdiffusion. Such a behaviour
was previously known for subdiffusion from more complex processes: CTRWs with diverging
characteristic waiting time [29], CTRWs with correlated waiting times [41], non-renewal,
ageing CTRWs [42] and time-scaled Brownian motion [43]. For superdiffusion only an
ultraweak ergodicity breaking was reported in which the coefficients of the time and ensemble
MSDs differ [44], while space-correlated CTRWs feature a Richardson-type hyperdiffusive
scaling of the time averaged MSD [41].

The amplitudes of δ2(1) of different trajectories show a broad and asymmetric
distribution, another sign of non-ergodicity. In contrast to CTRW subdiffusion, however, in
HDPs there is no contribution from completely immobile trajectories. Concurrently, HDPs
exhibit (anti)persistence of the increment correlation functions, such that for subdiffusion
(superdiffusion) subsequent increments preferentially have opposite (equal) direction. This
property is similar to the noise correlator of FBM, moreover the velocity autocorrelator of both
HDP and FBM processes is strikingly similar.

HDPs represent new tools for the description of weakly non-ergodic dynamics. Due to
their intuitive formulation in terms of space-dependent diffusivities this dynamic behaviour
of HDPs directly follows from the physical properties of the environment. HDPs may be
distinguished from other processes due to the difference in the amplitude scatter distribution
of time averaged MSDs, the increment autocorrelation function, as well as the two ergodicity
breaking parameters. It will be interesting to see whether two-dimensional generalizations of the
HDP model may grasp some of the interesting dynamical patterns observed in single particle
motion in biological cells.

How general are the results obtained herein for power-law forms of the position dependent
diffusion coefficient? A preliminary numerical analysis shows that similar forms of weak
ergodicity breaking is observed when we consider diffusivities with both stronger and weaker
x-dependence, for instance, exponential or logarithmic forms. Details will be presented in a
separate publication.
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Appendix A. Probability density function

To solve the Langevin equation ẋ(t) =
√

2D(x)ζ(t) in the Stratonovich sense we introduce the
new variable [36]

y(x) =

∫ x dx ′

√
2D(x ′)

=

√
2/A

2 − α
|x |

(2−α)/2 sign(x), (A.1)

where y(t) is the Wiener process with the known Gaussian PDF for the initial condition
y(0) = 0, namely,

P(y, t) =
1

√
2π t

exp

(
−

y2

2t

)
. (A.2)

Returning to the x-variable yields the PDF (2).
With the back-transformation y → x , from equation (A.1) we find that x(t) =

2p/2 p−p
|y|

psign(y), and the autocorrelation function is evaluated via the two-point PDF for
the Wiener process

〈x(t1)x(t2)〉 =
2p

p2p

∫
∞

−∞

dy1

∫
∞

−∞

dy2 P(y1, t1)sign(y1)sign(y2)|y1|
p
|y2|

pπ(y2, t2|y1, t1), (A.3)

where we used the transition probability

π(y2, t2|y1, t1) =
1

√
2π(t2 − t1)

exp

(
−

(y2 − y1)
2

2(t2 − t1)

)
. (A.4)

Evaluating the integral in equation (A.3) we arrive at equation (4).

Appendix B. Time averages

To obtain the time averaged MSD, we calculate the auxiliary integral

I (τ ) =
1

T − τ

∫ T −τ

0
〈x(t)x(t + τ)〉dt. (B.1)

To this end, we use the representation of the hypergeometric function via the Fox H -function
(see [47], equation (1.131)) and then employ the integral over the H -function following [48],
equation (8.3.2.7), arriving at

I (τ ) =
2p p−2p0(p + 1)(D0τ)(p−1)/2(D0(T − τ))(p+1)/2

0(p/2 + 1/2)0(1/2 − p/2)

×H 3,1
3,3

[
τ

T − τ

∣∣∣∣ (1, 1),
(

3
2 , 1

)
,
(

5
2 + p

2 , 1
)(

3
2 + p

2 , 1
)
,
(

1
2 −

p
2 , 1

)
,
(
1 + p

2 , 1
) ]

. (B.2)

Finally, we use [48], equation (8.3.2.3)] to find the result for the time averaged MSD,
equation (7).
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Figure C.1. Normalized velocity autocorrelation function C (δ)
v (τ ) for sub- and

superdiffusion (dashed lines). The dotted curve corresponds to uncorrelated
Brownian motion (p = 1), and the solid green curves represent FBM with the
indicated Hurst coefficients (in the MSD, p = 2H ).

Appendix C. Approximative scheme for the EB parameter

We now outline an approximative scheme to evaluate the ergodicity breaking parameter EB.
Namely, from equation (A.1) we express the particle displacement through |x(t)| ∼ |y(t)|p,
where y(t) is the Wiener process. Then, we take 〈x2(t)〉 = (2D0tp−2)p, which at 1/T � 1
yields 〈δ2(1)〉 ≈ (2D0 p−2)p1/T 1−p. Thus EB(1) = 〈δ2(1)〉/〈x2(1)〉 ≈ (1/T )1−p, identical
to the result in the main text derived from the exact approach (A.1). The fourth moment of the
time averaged MSD in this approximative scheme becomes〈
(δ2(1))2

〉
=

1

(T − 1)2

∫ T −1

0
dt ′

∫ T −1

0
dt ′′

〈[x(t ′ + 1) − x(t ′)]2[x(t ′′ + 1) − x(t ′′)]2
〉, (C.1)

involving a combination of altogether nine terms, each containing a product of four
noise terms ζ(t). Using 〈ζ(t1)ζ(t2)ζ(t3)ζ(t4)〉 = δ(t1 − t2)δ(t3 − t4) + δ(t1 − t3)δ(t2 − t4) + δ(t1 −

t4)δ(t2 − t3), the integrals from the Wiener processes disappear and two integrations are left.
These were evaluated numerically for a given value of p to extract the scaling of the ergodicity
breaking parameter

EB(1) =

〈
(δ2)2

〉
−

〈
δ2

〉2

〈
δ2

〉2 (C.2)

for 1/T � 1. Using the result
〈
δ2(1)

〉2
∝ 12, we expand the fourth moment up to 12 to

compute EB(1/T → 0), corresponding to the limit T → ∞. For Brownian motion (p = 1)
we find the correct scaling EB = (4/3)(1/T ). The scheme for HDPs with p = 2 yields
EB(0) = 2/3, close to the simulations results. Overall, this approximative scheme predicts that
EB grows as the system deviates from the ergodic state p = 1 for both sub- and superdiffusion,
see figure 5.
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Appendix D. Velocity autocorrelations

We now determine the normalized velocity autocorrelation function

C (δ)
v (τ ) =

〈[x(τ + δ) − x(τ )][x(δ) − x(0)]〉√
〈[x(τ + δ) − x(τ )]2

√
〈[x(δ) − x(0)]2〉

. (D.1)

With the position autocorrelations (4), C (δ)
v (τ ) becomes a universal function of δ/τ . C (δ)

v (τ ) is
plotted in figure C.1. Thus, for superdiffusion the correlations remain positive, for subdiffusion
C (δ)

v (τ ) features a negative region mirroring the anti-persistence of the motion. In figure C.1
we also show the complete decay of the correlations within the increment δ for Brownian
motion. Moreover, we include the velocity autocorrelation function of FBM for the sub- and
superdiffusive cases. The general behaviours are quite similar.
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[4] González M C, Hidalgo C A and Barabási A-L 2008 Nature 453 779
Brockmann D, Hufnagel L and Geisel T 2006 Nature 439 462

[5] Metzler R and Klafter J 2000 Phys. Rep. 339 1
Metzler R and Klafter J 2004 J. Phys. A: Math. Gen. 37 R161

[6] Golding I and Cox E C 2006 Phys. Rev. Lett. 96 098102
Weber S C, Spakowitz A J and Theriot J A 2010 Phys. Rev. Lett. 104 238102
Bronstein I, Israel Y, Kepten E, Mai S, Shav-Tal Y, Barkai E and Garini Y 2009 Phys. Rev. Lett. 103 018102

[7] Weigel A V, Simon B, Tamkun M M and Krapf D 2011 Proc. Natl Acad. Sci. USA 108 6438
[8] Jeon J-H, Tejedor V, Burov S, Barkai E, Selhuber-Unkel C, Berg-Sørensen K, Oddershede L and Metzler R

2011 Phys. Rev. Lett. 106 048103
[9] Tabei S M A, Burov S, Kim H Y, Kuznetsov A, Huynh T, Jureller J, Philipson L H, Dinner A R and

Scherer N F 2013 Proc. Natl Acad. Sci. USA 110 4911
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