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Abstract
Single-particle experiments produce time series x(t) of individual particle trajectories,
frequently revealing anomalous diffusion behaviour. Typically, individual x(t) are evaluated in
terms of time-averaged quantities instead of ensemble averages. Here we discuss the
behaviour of the time-averaged mean squared displacement of different stochastic processes
giving rise to anomalous diffusion. In particular, we pay attention to the ergodic properties of
these processes, i.e. the (non)equivalence of time and ensemble averages.

PACS numbers: 02.50.−r, 05.40.Fb, 05.10.Gg

(Some figures may appear in colour only in the online journal)

1. Introduction

In 1908, Jean Perrin, as part of his endeavour to determine
Avogadro’s number, published his seminal experiments on
the Brownian motion of small putty grains in an aqueous
solution [1]. Perrin’s analysis was based on a large number
of such single-particle trajectories. As each trajectory was
comparatively short, he used an ensemble average over many
trajectories to obtain reliable statistics. The disadvantage was
that this ensemble average had to be taken over not completely
identical particles, thus adding an error to his results that
was difficult to gauge. A few years later, in 1914, it was
Ivar Nordlund who came up with the idea to record the
Brownian motion of a single mercury drop sedimenting in
an aqueous solution through projection on a moving film [2].
His technique allowed him to extract meaningful results from
individual single trajectories by performing a single trajectory
time average.

The key to Nordlund’s approach is Boltzmann’s ergodic
hypothesis, a simplistic explanation of which is given in
figure 1. With respect to the single-particle trajectories
recorded by Perrin and Nordlund this means that the ensemble
average over a large number of particles is equal to the
long-time average taken over the trajectory of a single particle.
For the concrete example of free Brownian motion ergodicity

can be shown as follows [3]. The ensemble-averaged
mean-squared displacement (MSD) is calculated as spatial
average

〈x2(t)〉 =

∫
∞

−∞

x2 P(x, t) dx = 2K1t (1)

over the probability density function (PDF) P(x, t) to find
the particle at position x at time t in an unbounded domain.
The diffusion coefficient K1 has the dimension of length2

per time. Here and in the following, for convenience we
restrict our discussion to one dimension; generalization to
higher dimensions is straightforward. Sampling the position
of many particles as a function of time, one may reconstruct
the PDF P(x, t) and then calculate the spatial average over
x2. Alternatively, from the measurement of a single trajectory
x(t) one may calculate the time-averaged MSD

δ2(1, T )=
1

T −1

∫ T −1

0

[
x(t +1)− x(t)

]2
dt, (2)

where 1 is the so-called lag time and T the overall
measurement time. To obtain a unique, smooth result also
at finite measurement times, one may average δ2(1, T ) over
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Figure 1. Ergodic hypothesis: distributing a large amount N of
identical particles randomly into various boxes, the probability of
occupation in box i is given by the ratio 〈p〉i = Ni/N of particles in
the box versus N . According to the ergodic hypothesis 〈p〉i is the
same as the fraction of time pi = ti/t during the overall
experimental time t spent in a given box by a single particle that is
hopping randomly between the boxes: limN→∞〈p〉i = limt→∞ pi .
The ensemble mean is the same as the time average if only the
number of particles and the averaging time are sufficiently large.

many trajectories,

〈
δ2(1, T )

〉
=

1

N

N∑
i=1

δ2
i (1, T )

=
1

T −1

∫ T −1

0
〈[x(t +1)− x(t)]2

〉 dt. (3)

We can write the average 〈[x(t +1)− x(t)]2
〉 over the square

particle position as the typical square length 〈δx2
〉 of an

individual jump times the number of jumps performed during
the time interval (t, t +1). On average, the latter is given
by the lag time 1 divided by the typical time τ per jump.
Then, identifying K1 = 〈δx2

〉/[2τ ] in the typical random walk
sense, we find that〈

δ2(1, T )
〉
= 2K11= 〈x2(1)〉. (4)

Brownian motion is thus ergodic in the above sense. For
long measurements of Brownian motion the number of jumps
self-averages and we can write δ2(1, T )= 〈x2(1)〉.

1.1. Single-particle tracking and anomalous diffusion

Today, single-particle tracking has advanced into a standard
tool for probing the motion of tracers in a large number
of systems, in particular in microscopic systems such as
biological cells. In many cases, one observes anomalous
diffusion of the subdiffusive form [4, 5]

〈x2(t)〉 ' Kαtα, 0< α < 1, (5)

where the physical dimension of the generalized diffusion
coefficient is length2 per timeα .

Examples of such subdiffusion include the motion of
single RNA molecules and DNA chromosomal loci [6, 7],
or lipid granules and viruses [8, 9] in the cytoplasm
of living bacteria and yeast cells. Similarly, one finds
subdiffusion of eukaryotic telomeres [10] or of membrane
proteins [11, 12]. Such results are consistent with control
experiments in crowded protein or dextran solutions [13, 14],
or in reconstituted actin networks [15]. Anomalous diffusion
of single particle time averages also occurs in large scale

Figure 2. Trajectory–trajectory scatter of the time-averaged MSD
for different realizations of a free CTRW process with waiting time
distribution (6) with α = 0.5. The amplitude scatter as well as local
variations in the slope within individual trajectories mirror the
influence of a single or a few long waiting times, see text.

computer simulations, see, for instance, [16]. On somewhat
larger scales subdiffusion occurs for the motion of single
bacteria in a biofilm [17]. Common to most of these examples
is, furthermore, a pronounced amplitude scatter between
the time-averaged MSD δ2(1, T ) of individual particle
trajectories, compare figure 2.

Anomalous diffusion is no longer universally described
by a Gaussian PDF of the walker. In fact there exist several
classes of stochastic processes giving rise to anomalous
diffusion. As shown here the resulting subdiffusive dynamics
is not always ergodic.

2. Continuous time random walk (CTRW)
subdiffusion: weak ergodicity breaking

One of the best-known theories for describing subdiffusion of
form (5) is the Scher–Montroll CTRW [18, 19]. In this model,
a random walker after each jump becomes immobilized for
a random waiting time t before it is allowed to jump again.
The waiting times are independent and identically distributed
according to the waiting time PDF ψ(t). If the latter is
of power-law form as originally proposed by Scher and
Montroll [18],

ψ(t)'
τ α

t1+α
, 0< α < 1, (6)

the process possesses a diverging mean waiting time,∫
∞

0 tψ(t) dt → ∞. This scale-free property indeed
leads to the subdiffusive form of the ensemble averaged
MSD (5) [18, 19]. Due to this lack of time scale, one can
no longer distinguish the duration of a single or a few
jump events from the limit of many jumps, as now extreme
events may occur such that single waiting times become
of the order of the entire process time. Indeed, for free
CTRW subdiffusion the time-averaged MSD for 1� T
becomes [20, 21]〈

δ2(1, T )
〉
= 2Kα

1

0(1 +α)T 1−α
, (7)
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which clearly differs from the ensemble result (5). For
processes with diverging characteristic waiting time the
inequivalence of time and ensemble averages is commonly
referred to as weak ergodicity breaking [22, 23]. Interestingly,
the lag time dependence deceivingly suggests normal
diffusion, and the process’ anomaly is only visible in the
measurement time (T ) dependence: on continuation of the
process over increasingly long times, longer and longer
waiting times occur, leading to increased immobilization of
the diffusing particle.

The second effect of the scale-free waiting time
distribution is shown in figure 2: indeed the amplitudes
of individual trajectories exhibit a pronounced scatter, as
seen in experiments. Introducing the dimensionless variable
ξ = δ2(1, T )

/
〈 δ2(1, T )〉, the distribution φα(ξ) for CTRW

subdiffusion assumes a one-sided Lévy stable form [20]. For
instance, for the case α = 1/2 it possesses the Gaussian form

φ1/2(ξ)=
2

π
exp

(
−
ξ 2

π

)
, (8)

which implies that there is a finite amount of probability
at ξ = 0, i.e. there exist realizations for which the particle
does not move at all during the measurement. Only in
the Brownian limit α = 1, we attain ergodic behaviour,
φ1(ξ)= δ(ξ − 1) such that for sufficiently long measurements
different realizations behave uniformly (self-averaging). Note
that an identical result for the scatter distribution φ(ξ)

was found for biased motion [20], and drift-diffusion in
a periodic potential [24]. Recently, it was shown that this
is a very generic property of CTRW subdiffusion, as the
ratio δ2(1, T )

/
〈 δ2(1, T )〉 is proportional to the number

n(T ) of performed jumps in the corresponding interval,
n(T )/〈n(T )〉 [27].

For confined CTRW subdiffusion two more remarkable
features have been revealed. First, once the particle engages
in the confinement of the potential the time-averaged MSD
does not converge to a plateau but exhibits the scaling [28]
(compare also [29])〈

δ2(1, T )
〉
∼

(
〈x2

〉B − 〈x〉
2
B

) 2 sin(πα)

(1 −α)πα

(
1

T

)1−α

(9)

within the limits 1� T and 1� (1/[Kαλ1])1/α . Here λ1 is
the lowest non-zero eigenvalue of the Fokker–Planck operator
in the external potential, a measure of when the confinement
becomes relevant. The above form for the time-averaged MSD
is universal in the sense that only the prefactor depends on
the specific choice of the external potential V (x), through the
moments of the associated Boltzmann distribution, 〈x j

〉B =∫
x j exp(−V (x)/[kBT ]) dx/Z . Here the normalization is

given in terms of the partition Z =
∫

exp(−V (x)/[kBT ]) dx .
The second remarkable property is that while in a CTRW all
jumps are independent and thus for free motion the velocity
autocorrelation vanishes, under confinement such correlations
do occur [3]: the velocity autocorrelation attains a negative
value, with a slow power-law recovery back to zero value, and
through fitting from data is practically indistinguishable from
the velocity autocorrelation of the fractional Brownian motion
(FBM)/fractional Langevin equation (FLE) motion discussed
below.

2.1. Ageing behaviour of the time-averaged MSD

CTRW subdiffusion displays ageing effects [25, 26]:
ensemble-averaged correlation functions of observables,
taken at two times t2 and t1, are no longer solely functions
of the time difference, |t2 − t1|. With this breakdown of
stationarity, the statistical properties of such systems are no
longer time translation invariant. While many experiments
and simulations initiate the system at the same time as they
start recording the trajectories, this is not always the case.
Assume that the system was prepared at t = 0 but the time
series x(t) is recorded from ta > 0. Then we can show that
the time-averaged MSD experiences a correction in the form
of a universal prefactor [27]

3α(ta/T )=

(
1 +

ta
T

)α
−

(
ta
T

)α
, (10)

which exclusively depends on the ratio of ageing time ta to
measurement time T . The entire lag time dependence of the
time-averaged MSD remains unaltered by the ageing of the
process, this statement remaining valid for a large class of
physical observables [27].

A remarkable property of ageing is that the probability
that the random walker performs no jumps at all during the
measurement time of the process increases with the ageing
time. A consequence is that the trajectory–trajectory-averaged
time-averaged MSD from experiment does not take into
account completely stalled trajectories, and its value would
thus differ from the theoretically calculated one [27].
Awareness of this fact is vital to properly extract the
anomalous diffusion constant and other quantities from
single-particle tracking data falling into the class of CTRW
subdiffusion.

3. FBM/FLE motion: ergodic, and still not

3.1. Fractional Brownian motion

In contrast to the CTRW process, in which each jump is
independent of the previous one, FBM is strongly correlated.
Originally discussed by Kolmogorov [30] and brought to fame
by Mandelbrot and van Ness [31], free FBM is defined in
terms of the Langevin equation

dx(t)

dt
= ζ(t). (11)

If the motion occurs in the presence of an external potential
V (x), the corresponding force −V ′(x) is added to the
right-hand side. The process is fuelled by stationary, fractional
Gaussian noise ζ(t) of zero mean and autocorrelation

〈ζ(t)ζ(t ′)〉 ∼ αKα(α− 1)|t − t ′
|
α−2. (12)

For subdiffusion the noise correlator is negative, sometimes
referred to as anti-correlation.

FBM is ergodic in the sense that for free motion the
time-averaged MSD is〈

δ2(1, T )
〉
= 2Kα1

α, (13)

3



Phys. Scr. 86 (2012) 058510 R Metzler and J-H Jeon

i.e. we find an equivalence to expression (5). The above
equality also holds for a single trajectory as long as T
is sufficiently large; see also [32]. Under confinement the
time-averaged MSD for FBM saturates to a plateau [33]. The
distribution of trajectory–to-trajectory amplitude fluctuations
of the time-averaged MSD is Gaussian, its width decreasing
with increasing measurement time [34].

3.2. Fractional Langevin equation motion

In definition (11) of FBM, the process is fed by external
noise, which directly drives the velocity ẋ . If the noise is
to be considered as internal and consequently the fluctuation
dissipation theorem needs to be fulfilled, we arrive at the
FLE [35]

m
d2x(t)

dt2
= −γ

∫ t

0
|t − t ′

|
α−2 dx(t ′)

dt ′
dt ′ +

√
γ kBT

α(α− 1)Kα

ζ(t),

(14)

where again ζ(t) is fractional Gaussian noise, m the particle
mass and γ the friction coefficient. To produce subdiffusive
motion in the case of the FLE, the noise (12) needs to be
positively correlated, with 1< α < 2 [36]. FLE motion turns
over from ballistic behaviour 〈x2(t)〉 ' t2 to subdiffusion of
form (5) with exponent 2 −α in the overdamped limit. In
the latter, FLE motion fulfils the same properties as FBM
motion [37].

The velocity autocorrelation for an arbitrary time
interval δt ,

Cδt (t)=
〈[x(t + δt)− x(t)] · [x(δt)− x(0)]〉

δt2
(15)

for FBM in free space becomes [3]

Cδt (t)

Cδt (0)
=

|t + δt |α − 2tα + |t − δt |α

2δtα
. (16)

Here, we used the normalized version, which does not have
any free fit parameter, once δt is set and α known from the
measurement of the MSD. For free FLE motion a closed-form
result involves the generalized Mittag–Leffler functions [37].
However, in the overdamped limit, it reduces exactly to the
form (16).

That FBM as well as FLE motion are not entirely benign
with respect to their ergodic behaviour was demonstrated
recently [38]: accordingly, the relaxation behaviour to the
stationary limit under confinement is different for time and
ensemble averages of the MSD. While the ensemble average
displays the conventional exponential relaxation due to the
confinement, the time average relaxes in power-law form. To
determine properly the relaxation times from experiment it is
imperative to have detailed knowledge about this relaxation
behaviour.

4. Correlated CTRW motion

It is not always justified to assume complete independence
of successive jumps in a CTRW process. Thus diffusion in
inhomogeneous materials, the random walks of humans or

animals or financial market dynamics involve correlations;
see, e.g., the recent discussion in [39]. At the same
time, fractional Gaussian noise involves a very specific
type of correlation. As an alternative one may consider
CTRW processes with built-in correlations. A quite flexible
way of introducing correlations into CTRW motion was
discussed recently. Thus successive waiting times are assumed
correlated such that waiting time τi corresponds to waiting
time τi−1 plus a small increment, ξi . The increments may
be positive or negative. Successive waiting times are thus
correlated, short ones following similarly short ones, and vice
versa. The concept in fact corresponds to a random walk in the
space of waiting times. We write the current waiting τi time
as [40–42]

τi =

∣∣∣ξ1 + ξ2 + · · · + ξi−1

∣∣∣. (17)

For the distribution of the ξi we may choose a symmetric
Lévy stable law, defined through its Fourier transform as
exp(−cγ |k|

γ ). The process then reproduces equation (5) with
α = γ /(1 + γ ), whose range spans from 0 to 2/3 [40, 41]. In
the limit γ = 2 the mode relaxation is stretched exponential,
P(k, t)' exp(−ct1/2), whereas for 0< γ < 2 it is of
power-law form, ' t−γ [42].

Due to the absolute value in definition (17), the mean
waiting time is constantly growing towards larger values,
diverging for long process times. The correlated CTRW
process indeed exhibits violation of ergodicity [42],〈

δ2(1, T )
〉
'

1

T 1−γ /(1+γ )
, (18)

such that the range of the ageing exponent 1 − γ /(1 + γ ) is
in between 1/3 and 1, and is thus more pronounced than for
the case of uncorrelated CTRW motion. Moreover, the process
ages, as shown via the decaying response of the process to a
sinusoidal driving force [42].

5. Discussion

Anomalous diffusion processes such as CTRW and
FBM/FLE motion have been around for a considerable
time. But only now, prompted by single-particle tracking
techniques revealing anomalous diffusion, scientists realise
the need to understand not only the ensemble average but
also time averages of physical quantities. In this paper, we
summarized recent findings in this field, some of which
are a priori quite surprising, in particular, the occurance
of ergodicity breaking in the sense of the inequivalence of
ensemble and time averages.

It is important to tell which stochastic mechanism
underlies the dynamics of a given system. Thus CTRW
subdiffusion leads to increased immobilization and
weakly nonergodic volume–surface exchange [43, 44]. The
corresponding first passage behaviour, due to the very nature
of the waiting time statistics, is characterized by diverging
mean first passage times, even in finite domains [5, 45].
However, these diverging characteristic time scales can be
mended by the introduction of a cut-off in the distribution of
waiting times [8]. Interestingly, while this measure disposes
of the ageing and broad scatter properties, it maintains the
weakly nonergodic behaviour of the time-averaged MSD [8].

4
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FBM/FLE motion, in contradistinction, has finite mean first
passage times on bounded domains (see [46] and references
therein). At the same time, it has an increased recurrence
and thus samples the volume more efficiently within local
domains. Physically, both processes are very different,
and so are all the secondary processes predicted from the
corresponding stochastic theory. Anomalous diffusion on
fractal supports such as critical percolation clusters [47] is
not discussed here; however, it shares many common features
with FBM/FLE motion [48].

How can one distinguish different stochastic
mechanisms? While all of the mechanisms share the same
scaling of the MSD (5), complementary quantities may well
set the mechanisms apart. Thus one may consider as diagnosis
tools the velocity autocorrelation function [3], moment ratios
of the form 〈x4(t)〉/〈x2(t)〉2 for the particle position x and
the mean maximal excursions at a given time [49], or the
p-variation method [50]. Combining as many such methods
as possible increases the likelihood to unambiguously
determine a stochastic process for given sets of data.

Subdiffusion does not necessarily mean less efficient
dynamics of the associated processes. Thus it has been argued
that subdiffusion would foster diffusion-limited chemical
reactions, as the reactants after their first encounter do not
escape each other too quickly and thus have a chance for
additional encounters until the reaction is complete [6, 51].
Moreover, subdiffusion could assist in dynamic localization
of objects, making physical separation of domains
unnecessary [10]. Finally, recent scenarios show that in
more complicated biochemical contexts subdiffusion would
indeed be the reasonable choice for the system [52, 53].
Anomalous diffusion in the context of single-particle tracking
experiments in biological cells is discussed in [54].
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