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Correlated continuous-time random walks in external force fields
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We study the anomalous diffusion of a particle in an external force field whose motion is governed by
nonrenewal continuous time random walks with correlated waiting times. In this model the current waiting time
Ti is equal to the previous waiting time Ti−1 plus a small increment. Based on the associated coupled Langevin
equations the force field is systematically introduced. We show that in a confining potential the relaxation
dynamics follows power-law or stretched exponential pattern, depending on the model parameters. The process
obeys a generalized Einstein-Stokes-Smoluchowski relation and observes the second Einstein relation. The
stationary solution is of Boltzmann-Gibbs form. The case of an harmonic potential is discussed in some detail.
We also show that the process exhibits aging and ergodicity breaking.

DOI: 10.1103/PhysRevE.85.051103 PACS number(s): 05.40.Fb, 02.50.Ey, 02.70.−c, 05.10.−a

I. INTRODUCTION

Over recent years, the physics community has shown grow-
ing interest in anomalous diffusion. A particularly important
class are subdiffusion processes, characterized in terms of the
mean-squared displacement (MSD) [1]:

〈x2(t)〉 � Kγ tγ , 0 < γ < 1. (1)

Subdiffusion has been observed in a large variety of systems,
starting with the seminal study of charge carrier transport
in amorphous semiconductors by Scher and Montroll [2].
Other examples range from tracer dispersion in subsurface
aquifers [3] over transport on critical percolation clusters [4],
to the motion of bacteria in biofilms [5] and of tracers in living
biological cells [6].

Classical diffusion processes with γ = 1 in absence or pres-
ence of an external force are typically described in terms of the
Fokker-Planck equation [7] or, equivalently, by the Langevin
equation [8]. The description of subdiffusion dynamics of the
form of Eq. (1) involves other, more sophisticated methods.
The three most widely used mathematical models effecting
subdiffusion of the form of Eq. (1) are: (i) the continuous time
random walk (CTRW) of Montroll and Weiss [9], in which af-
ter each jump an independent, random waiting time T is drawn
from a power-law distribution ψ(t) � τ γ /T 1+γ with diverging
mean waiting time. Such CTRWs were the starting point
to derive the fractional Fokker-Planck equation [1,10]. An
alternative approach are coupled Langevin equations [11]. (ii)
Fractional Brownian motion (FBM) is a Gaussian process pow-
ered by correlated noise of the form 〈ξγ (t)ξγ (t ′)〉 � (γ − 1)
|t − t ′|γ−2 [12]. For subdiffusion the noise is anticorrelated,
and the walk dimension exceeds 2. (iii) The third model is
diffusion on a fractal support such as a critical percolation
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cluster, causing subdiffusion by the scale-free topology (bottle-
necks, dead ends) such that γ = 2/dw, where dw > 2 is the
walk dimension [13].

Empirically, it turns out that many processes displaying
anomalous diffusion are correlated in the sense that increments
of the process are not independent of prior increments. Such
correlations are expected when we deal with living creatures
capable of decision-making, such as bacterial motion [5] or
the movement ecology of animal motion [14]. In a recent
study of human mobility, the inadequacy of renewal CTRW
processes without correlations was explicitly discussed [15].
Correlations also occur in financial market dynamics [16] or
chaotic and turbulent flows [17].

CTRW are renewal processes and therefore are not
amenable to include such correlations. While FBM includes
power-law correlations and has indeed been used to model
financial data [18], it is confined to Gaussian processes and
turns out to be mathematically cumbersome, in particular, with
respect to first-passage properties [19]. Finally, diffusion on a
fractal is confined to very particular topologies.

In this paper we study the dynamics of an alternative model
of subdiffusion with intrinsic correlations, namely, correlated
CTRW (CCTRW) processes. This approach is based on the
picture of correlated waiting times [20], in which the nth
waiting time Tn explicitly depends on previous waiting times,
Ti with 0 < i < n. Here we derive the continuous-time limit of
CCTRW processes and apply this result to introduce coupled
Langevin equations describing subdiffusion dynamics in the
presence of an external force F (x). We show that this process
satisfies generalized Einstein relations and converges to the
Boltzmann-Gibbs equilibrium distribution. The corresponding
relaxation of modes follows either power-law or stretched
exponential patterns. Additionally, we discuss phenomena of
ergodicity breaking as well as aging in the form of decaying
linear response.

II. CORRELATED CTRW

Our starting point is the CTRW with correlated waiting
times introduced in Refs. [20,21]. Thus, we assume that the
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FIG. 1. (Color online) Typical trajectory of a renewal CTRW with
power-law waiting times [α = 2/3 (a)], compared to a trajectory of a
CCTRW [α = 2 (c)]. In (b) and (d) the corresponding waiting times
are shown. For the renewal CTRW some of the waiting times are
extremely long, leading to subdiffusion. In the CCTRW case with
α = 2, the mean of each increment ξi is finite. However, 〈Ti〉 → ∞
as i → ∞, producing subdiffusion; Eq. (1) with γ = 2/3.

waiting time Ti equals

Ti = |τi |, (2)

where τi is the sum of random increments ξj :

τi = ξ1 + · · · + ξi . (3)

Thus, the waiting times may grow or decrease, while each
waiting time Ti is given by Ti = |τi−1 + ξi |. Here the absolute
value guarantees positivity of the Ti , and thus the Ti may be
viewed as a random walk in the space of waiting times with
a reflecting boundary condition at the origin [22]. We assume
that the distribution of the iid random variables ξj is symmetric
and heavy-tailed (α-stable) with Fourier transform:

〈exp(ikξj )〉 = exp
(− 1

2 |k|α)
, 0 < α � 2. (4)

The average position of a particle diffusing symmetrically on
a semi-infinite line grows indefinitely. In fact, for 1 < α � 2
the mean waiting time grows like 〈T 〉 � t1/α . As shown below
the process of Eq. (2) indeed leads to subdiffusive behavior
of the type of Eq. (1). In Fig. 1 we compare a renewal CTRW
with independent random waiting times with a CCTRW
for α = 2. For the renewal CTRW most waiting times are
relatively small, with occasional large outliers giving rise
to pronounced stalling events in the trajectory. In contrast,
in the CCTRW process the waiting times develop smoothly,
producing a trajectory reminiscent of a regular random walk
albeit with, on average, continuously growing waiting times.

The Langevin equations for the position x and the time
t corresponding to the continuous-time limit process of the
above-defined CCTRW have the subordination form (details
of the derivation are left to another paper [23])

ẋ(s) = �(s), (5a)

ṫ(s) = |y(s)|, ẏ(s) = �α(s). (5b)

Here, �(s) represents standard white Gaussian noise, formally
�(s) = dB(s)/ds, where B(s) is the Brownian motion with
〈B2(1)〉 = 2D. In Eq. (5a), x as function of s would thus

represent the Wiener process, and the physical dimension of
the diffusion constant is [D] = cm2/sec. The variable s can
be viewed as a counting process (number of jumps) and is
sometimes called operational time. The physical time of the
process is related with s through Eq. (5b): first, ẏ(s) are time
increments of the α-stable kind, the noise �α(s) = dLα(s)/ds,
being defined in terms of the symmetric distribution Lα with
characteristic function

〈exp[ikLα(s)]〉 = exp
(−s 1

2 |k|α)
, 0 < α � 2. (6)

The process time t is then defined as the absolute value of the
series y(s). Note that for regular CTRW the coupling between
s and t occurs via a one-sided stable process. Also note that
both noises � and �α are independent.

To solve the system of Eqs. (5a) and (5b), one first
solves Eq. (5a), producing the driving process x(s). Next, one
solves Eq. (5b) to obtain the process t(s), thus yielding the
process s(t), which is inverse to t(s). Finally, one assembles
both processes x(s) and s(t) to obtain the solution as the
subordination

X(t) = x[s(t)]. (7)

An external force F (x) is included in our description by
adding the drift term to Eq. (5a) in the usual way. Instead of
Eq. (5a), this yields the Langevin equation

ẋ(s) = F (x(s))
mη

+ �(s), (8)

with particle mass m and friction coefficient η. Equations (8)
and (5b) describe the dynamics of a particle performing a
CCTRW under the influence of the external force F (x).

In the explicit solution Eq. (7) of Eqs. (8) and (5b), the
position x satisfies the stochastic differential equation

dx(s) = F [x(s)]

mη
ds + dB(s), (9a)

and the subordinator s(t) is the inverse of

t(s) =
∫ s

0
|Lα(u)|du. (9b)

Thus, t(s) is the solution of Eq. (5b). The process s(t) can also
be represented as

s(t) = inf{s � 0 : t(s) > t}. (10)

Equation (8) together with Eq. (9b) is one of our central results.

A. MSD in the force-free case

In the unbiased case with F ≡ 0, the solution to Eqs. (8)
and (5b) has the simple form X(t) = B[s(t)]. It is not difficult
to verify that X(t) is α/[2(α + 1)]-self-similar [23]. Thus, the
MSD is

〈X2(t)〉 = 2Dcαtα/(α+1). (11)

The constant cα = 〈s(1)〉 depends on the specific distribution
of the correlated waiting times and has physical dimension
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[cα] = sec1−α/(α+1). It can be represented as

cα = α + 1

α

∫ ∞

0

1

x(α+1)/α
h

[
1

x(α+1)/α

]
dx. (12)

Here, h(x) is the probability density function of t(1) =∫ 1
0 |Lα(u)|du. In the limit α = 2, h(x) can be expressed in

terms of a confluent hypergeometric function [24].
Thus, X(t) satisfies subdiffusion of the kind of Eq. (1), with

exponent γ = α/(α + 1), in agreement with the result derived
in Ref. [20]. Interestingly, since 0 < α � 2, this exponent
ranges exclusively between zero and 2/3. CCTRW processes
can, therefore, not span the range between 2/3 and 1 [25].
Moreover, for α 	 1, the leading term of γ = α/(α + 1) is
equal to α. Thus, for small values of α, the MSD of CCTRW
behaves similarly to the MSD of CTRW with independent
power-law waiting times.

B. Stationary solution and Einstein relations

What happens in a confining external potential
V (x) = − ∫ x

F (x)dx? Since s(t) in Eq. (7) tends to infinity
as t → ∞, we obtain that the probability density function of
the stationary solution of Eqs. (8) and (5b) equals

Wst(x) ∝ exp

(
− V (x)

Dmη

)
. (13)

Comparing this expression with the Gibbs-Boltzmann equi-
librium distribution Weq ∝ exp(−V (x)/[kBT ]), we obtain
a generalized Einstein or Einstein-Stokes-Smoluchowski
relation,

D = kBT

mη
, (14)

connecting the noise strength D with the dissipative parameter
η via the thermal energy kBT .

Another important relation for regular diffusion processes
is the linear response behavior, often called the second Einstein
relation. To see whether the CCTRW process fulfills this
relation, we calculate the first moment of X(t) in the presence
of a constant force, F0, obtaining

〈X(t)〉F0 = F0
cαtα/(α+1)

mη
. (15)

Comparison of the above result with Eq. (11) indeed leads to
the second generalized Einstein relation

〈X(t)〉F0 = F0

2

〈X2(t)〉
kBT

. (16)

Thus, the CCTRW process preserves the two fundamental
physical properties of diffusion processes, in analogy to regular
subdiffusive CTRW [1,10].

C. Single-mode relaxation

Let us now determine the relaxation dynamics of CCTRW
processes. To this end, we consider the Fourier transform
of X(t) in the force-free case. At given wave number k,
the temporal behavior defines the mode relaxation. Denote
by W (x,t) the probability density function of X(t) and by
W (k,t) = 〈exp(−Dk2s(t))〉 its Fourier transform. We consider

FIG. 2. (Color online) Single-mode relaxation corresponding of
CCTRW subdiffusion for various exponents α (double-logarithmic
scale) from simulations of the CCTRW process (solid lines). The
dashed line is the theoretically predicted asymptotic behavior of the
single mode for α = 1.75. For 0 < α < 2, we observe power-law
type relaxation, whereas for α = 2 the model displays stretched
exponential pattern. In each case k = 1.

two cases. The first case is 0 < α < 2, for which we ob-
serve the following upper and lower bounds for the process
t(s) in Eq. (9b). Denote by As = | ∫ s

0 Lα(u)du| and Bs =
s × supu∈[0,s] |Lα(u)|. Then we have As �

∫ s

0 |Lα(u)|du =
t(s). Moreover, t(s) � s × supu∈[0,s] |Lα(u)| = Bs . Conse-
quently, since all three processes As � t(s) � Bs are nonde-
creasing, we see that exp[−Dk2(At )−1] � exp[−Dk2s(t)] �
exp[−Dk2(Bt )−1], where (At )−1 and (Bt )−1 are the respective
inverse of As and Bs [26]. Now, using the fact that both As

and Bs are (α + 1)/α-self-similar and heavy-tailed with index
α, by the Tauberian theorem we obtain

W (k,t) � 1/tα (17)

at long times t . Here, the notation W (k,t) � t−α means that
c1t

−α < W (k,t) < c2t
−α for appropriate positive constants c1

and c2, which depend only on the parameters α and k. Thus,
for 0 < α < 2, we obtain asymptotic power-law single-mode
relaxation, as demonstrated in Fig. 2 based on numerical
simulations. However, note that the relaxation exponent α

differs from the exponent γ = α/(1 + α) of the MSD, unlike
for renewal CTRW [1].

For the case α = 2, application of the self-similarity prop-
erty of s(t) together with the fact that the integral

∫ 1
0 L2(u)du

is normally distributed with mean 0 and variance 1/3,
yields another set of inequalities, d1Z

3/2
3 [Dk2(3/2)1/3t2/3] �

W (k,t) � d2Z
3/2
3 [Dk2(3/2)1/3t2/3]. Similar to before, d1

and d2 are appropriate positive constants, and Zv
q (x) =∫ ∞

0 yv−1e−yq

e−x/ydy is the Krätzel function [27]. The asymp-
totic behavior of the Krätzel function [27] yields

W (k,t) � exp(−ct1/2), (18)

for long times t . Here, c = D3/4|k|3/227/43−1/2. Remarkably,
in the case of α = 2, we obtain a stretched exponential decay
of single modes (compare Fig. 2).
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D. Harmonic potential

Let us now address the case of an external harmonic
potential, V (x) = κx2/2. Then, the explicit solution Eq. (7)
of Eqs. (8) and (5b) has the form

X(t) = x0 exp

[
−κs(t)

mη

]
+

∫ s(t)

0
exp

{
κ[u − s(t)]

mη

}
�(u)du,

(19)
where x0 is the initial condition. It follows that the first moment
of X(t) satisfies

〈X(t)〉 =
〈
x0 exp

[
−κs(t)

mη

]〉
. (20)

Thus, for 0 < α < 2 it decays to zero as 1
tα

, whereas for α = 2
the decay is stretched exponential. The variance of X(t) is
given by [using relation (16)]

Var[X(t)] = kBT

κ

(
1 −

〈
exp

[
−2κs(t)

mη

]〉)
, (21)

converging to the thermal value limt→∞ Var[X(t)] = kBT /κ .
Similar to before, the average 〈exp[− κs(t)

mη
]〉 decays to zero

as 1
tα

for 0 < α < 2, while for α = 2 the decay is stretched
exponential.

E. Weak ergodicity breaking and aging

To further characterize the CCTRW process we address
the question of whether it obeys ergodicity in the Boltzmann
sense, i.e., whether for a sufficiently long time the time
average MSD X(t) equals the ensemble averaged MSD (11).
For subdiffusive renewal CTRW this property is violated
and so-called weak ergodicity breaking observed due to the
diverging characteristic waiting time [28,29]. Generally, the
time-averaged MSD is defined as

δ2(�,t) = 1

t − �

∫ t−�

0
[X(t ′ + �) − X(t ′)]2dt ′, (22)

where � is the so-called lag time and t represents the length of
the time series X(t ′). For Brownian motion, δ2(�,t) → 2D�

for sufficiently long t , matching the ensemble average 〈x2(�)〉
as expected for an ergodic process. From Eq. (11) we see that

〈[X(t ′ + �) − X(t ′)]2〉 = 2Dcα[(t ′ + �)α/(α+1)

− (t ′ + �)α/(α+1)]. (23)

This in turn implies a linear scaling with the lag time

〈δ2(�,t)〉 ∼ 2Dcα

�

t1−α/(α+1)
, (24)

for � 	 t . Thus, the model displays weak ergodicity breaking
for any 0 < α � 2. Interestingly the form of relation Eq. (24) is
equivalent to the one obtained for subdiffusive renewal CTRW
with power-law waiting time distribution ψ(T ) � τ γ /T 1+γ ,
with the substitution γ → α/(1 + α), compare Refs. [28,29].

Another manifestation of a dynamic anomaly in the
CCTRW model is aging, i.e., the dependence of the process
dynamics on the time elapsing since system initiation. More
precisely, we investigate the response of the process to a
sinusoidal, time-dependent external field. In the case of such a
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FIG. 3. (Color online) First moment of a CCTRW process with
sinusoidal external force. As time proceeds, the response to the force
diminishes, a manifestation of aging. In (a) we have the case α = 0.5,
whereas in (b) the Gaussian case α = 2 is depicted.

time-dependent force F (t), the CCTRW process has the form

X(t) = 1

mη

∫ t

0
F (τ )ds(τ ) + B[s(t)]. (25)

This is the consequence of the subordination method applied
carefully to systems under the influence of time-dependent
forces [30–32]. Consequently, the first moment of X(t) for the
force F (t) = F0 sin(ωt) equals [23]

m(t) =〈X(t)〉= cαα

α + 1

F0

mη

∫ t

0
u−1/(α+1) sin(ωu)du. (26)

Due to the factor u−1/(α+1), the response to F (t) decays as time
proceeds for any 0 < α � 2, as demonstrated in Fig. 3. This
result shows that the correlated waiting times lead to significant
deviations when compared to the classical Markovian case. A
similar behavior was reported in Ref. [30] for subdiffusive
renewal CTRW with heavy-tailed waiting times.

III. CONCLUSIONS

We studied a model of subdiffusion in external force
fields, which originates from a CTRW process with correlated
waiting times. This CCTRW model was rephrased in terms of
coupled Langevin equations, equivalent to the definition within
the framework of subordination, the random time change
using the operational time of the system. We showed that
the stationary solution of the model equals the Boltzmann
distribution, and that the model satisfies the generalized Ein-
stein relations in consistency with the fluctuation-dissipation
relation. The relaxation dynamics of single modes, depending
on the parameter value of the exponent α, is either of
power-law or stretched-exponential form. Similar to renewal
CTRW processes with heavy-tailed waiting times, our model
displays weak ergodicity breaking. Moreover, the response to
time-dependent fluctuating forces stagnates at long times, a
manifestation of aging.

We believe that the introduced CCTRW model is an
interesting alternative in the modeling of complex systems
showing anomalous diffusion under the influence of external
force fields. It relaxes the renewal property of standard CTRW
theory and is thus of interest in all those cases, where the
nonrenewal behavior is relevant: search strategies in movement
ecology, human motion patterns, or financial market dynamics,
but also various physical processes such as turbulent flows or
complex systems with strong inhomogeneities.
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There are numerous open lines to be pursued for CCTRW
processes. Thus, we may ask for the shape of the corresponding
Fokker-Planck-type dynamic equation, how correlations in the

jump length are consistently introduced in the presence of an
external force, or how the stochasticity of time averages in the
CCTRW model can be quantified.
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