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Using analytical techniques and Langevin dynamics simulations, we investigate the dynamics of
polymer translocation into a narrow channel of width R embedded in two dimensions, driven by a
force proportional to the number of monomers in the channel. Such a setup mimics typical exper-
imental situations in nano/microfluidics. During the translocation process if the monomers in the
channel can sufficiently quickly assume steady state motion, we observe the scaling τ ∼ N/F of the
translocation time τ with the driving force F per bead and the number N of monomers per chain.
With smaller channel width R, steady state motion cannot be achieved, effecting a nonuniversal de-
pendence of τ on N and F . From the simulations we also deduce the waiting time distributions
under various conditions for the single segment passage through the channel entrance. For differ-
ent chain lengths but the same driving force, the curves of the waiting time as a function of the
translocation coordinate s feature a maximum located at identical smax, while with increasing the
driving force or the channel width the value of smax decreases. © 2011 American Institute of Physics.
[doi:10.1063/1.3575239]

I. INTRODUCTION

The transit of biopolymeric chains across membranes
through nanopores, the translocation process, is a recur-
rent theme in cell biology.1–4 In biological membranes the
nanopore is typically constituted by a channel protein, the
transmembrane proteins of the haemolysin family being a
prominent example.5 One family member, α-haemolysin, is
also often employed in single nanopore setups in vitro.6 More
recently, solid state nanopores in artificial supports, such as
silicon compound membranes are manufactured by ion or
electron beam techniques and open up the possibility for con-
trolled technological applications.7, 8

In biology, important examples for translocation pro-
cesses are the passage of RNA or proteins through pores in
the nuclear membrane, of proteins across mitochondrial and
chloroplast membranes or through the endoplasmatic reticu-
lum, the cell-to-cell exchange of DNA across the cell walls,
or the viral injection of RNA and DNA molecules.1 In tech-
nology, biopolymer translocation is envisaged to be useful for
rapid DNA sequencing, gene therapy, and, ultimately, toward
controlled drug delivery.

The transport of biopolymers through a nanopore has at-
tracted broad interest in the statistical physics community, as
it represents a challenging problem in polymer physics.9–25

A quantity of particular interest is the average transloca-
tion time τ as a function of the chain length N , usually
assumed to follow a scaling law τ ∼ Nα . The scaling ex-
ponent α hereby reflects the efficiency of the translocation
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process. Thus, for completely directed (ratcheted) motion,
one would expect τ ∼ N , while for normally diffusive un-
biased translocation τ ∼ N 2.9, 10 Generally, the value of α

differs from these limiting behaviors, as effected by the en-
tropic degrees of freedom of the chain-to-be-translocated.
In particular, when the translocation dynamics is governed
by unbiased anomalous diffusion26 of the form 〈s2(t)〉
∼ tβ (0 < β < 1) in terms of the translocation coordinate s,
the value of the scaling exponent α = 2/β becomes larger
than 2.16, 27

During the passage of a long flexible chain through a
nanopore, its two extremities cannot access the volume op-
posite the membrane, and the monomer(s) in the pore are
more of less unable to move. This reduction of the acces-
sible degrees of freedom of the polymer involves a con-
siderable entropic barrier during the pore passage. While
unbiased translocation has been argued to feature the same
scaling exponent α = 1 + 2ν as the free diffusion of the poly-
mer by its radius of gyration,12–14 where the Flory expo-
nent is ν = 0.588 in 3D and ν2D = 0.75 in 2D,28–30 the as-
sociated prefactor is much larger.12 Thus efficient polymer
translocation requires the presence of driving forces. Most
experimental6–8 and theoretical16–24, 31 studies focus on the
driving force provided by an external applied electric field,
which mainly falls off across the pore. In this case, α de-
pends on the translocation dynamics. For slow transloca-
tion, i.e., under low driving force and/or high friction, α ≈ 1
+ ν ≈ 1.588 in 3D,16, 32 while α ≈ 1.37 in 3D32 for fast
translocation due to the highly deformed chain conforma-
tion on the trans side, reflecting a pronounced nonequilibrium
situation. In addition, for translocation achieved by pulling
one end of the polymer with a constant force, α ≈ 2.0 was

0021-9606/2011/134(13)/135102/8/$30.00 © 2011 American Institute of Physics134, 135102-1

Downloaded 05 Apr 2011 to 129.187.254.46. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3575239
http://dx.doi.org/10.1063/1.3575239
http://dx.doi.org/10.1063/1.3575239
mailto: kluo@ustc.edu.cn
mailto: metz@ph.tum.de


135102-2 K. Luo and R. Metzler J. Chem. Phys. 134, 135102 (2011)

FIG. 1. Schematic representation of polymer translocation into a long 2D
channel of width R. The driving force acting on the bead in the channel can
be provided by an applied intrachannel electric field or a uniform flow of the
solvent in the channel. We assume that the net force on the chain is propor-
tional to the number of monomers, s(t), in the chain.

established.16, 33 The above examples of translocation in-
volve constant forces throughout the process. A different
situation is encountered for translocating chains whose pas-
sage is effected by binding proteins, so-called chaperones or
chaperonins.34 Due to the fact that the chaperones bind more
than one monomer of the chain-to-be-translocated, interest-
ing variations occur in the effective driving force due to the
“parking lot effect.”

Here we consider a case motivated by state-of-the-art flu-
idic nanochannel setups, in which the driving force grows
constantly with the progress of the translocation process, until
a saturation is reached when the entire chain is in the chan-
nel. In such setups one or multiple nanochannels branch off
a micron-sized feeder channel (access hole).35, 36 The driv-
ing force is provided by the liquid flow: while the flow field
is quite low in the feeder channel, the flow velocity is much
higher inside the narrow channel. Once one end of the chain
enters the nanochannel, it is veritably sucked inside, the over-
all drag force on the chain increases as more and more of
the monomers enter the channel. Similarly, one might think
of setups in which an electric field falls off in a long chan-
nel. If each monomer of the chain-to-be-translocated carries
a net charge, the force acting on the chain will increase with
the proportion of the chain inside the channel. This is not the
case for the relatively short channel,37 where the driving force
cannot be proportional to the translocated monomers once the
first monomer has passed through the pore. In many cases
such fluidic setups are built in a pseudo-two-dimensional ge-
ometry, i.e., the channel is sandwiched between two parallel
walls that are close to each other. Having such scenarios in
mind we consider the geometry depicted in Fig. 1. We inves-
tigate this problem using analytical techniques and Langevin
dynamics (LD) simulations. The paper is organized as fol-
lows. In Sec. II, we describe our model and the simulations
technique. In Sec. III, we present and discuss our results. Fi-
nally, the conclusions are drawn in Sec. IV.

II. MODEL AND METHODS

In our numerical simulations, the polymer chains are
modeled as bead-spring chains of Lennard-Jones (LJ) par-
ticles with the finite extension nonlinear elastic (FENE)
potential.38 Excluded volume interactions between beads

are taken into consideration by a short range repulsive LJ
potential:

ULJ(r ) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

+ ε, (1)

for r ≤ 21/6σ and 0 for r > 21/6σ . Here, σ is the diameter of
a bead and ε is the potential depth. The connectivity between
neighboring beads is modeled as a FENE spring with

UFENE(r ) = −1

2
k R2

0 ln

(
1 − r2

R2
0

)
, (2)

where r is the distance between consecutive beads, k is the
spring constant, and R0 is the maximum allowed separation
between connected beads.

We consider the geometry shown in Fig. 1: two strips
with separation R consisting of stationary particles with a
bead–bead distance σ form the walls of the channel, as well
as the “membrane” containing the pore. Between all bead-
wall particle pairs, there exists the same short range repul-
sive LJ interaction as described above. In the LD simulations,
each bead is subjected to conservative, frictional, and random
forces, respectively, with39

mr̈i = −∇(ULJ + UFENE) + Fext − ξvi + FR
i , (3)

where m is the bead mass, ξ is the friction coefficient for a sin-
gle bead, vi = ṙi is the bead velocity, and FR

i is the random
force satisfying the fluctuation-dissipation theorem. The ex-
ternal force is expressed as Fext = Fx̂ , where F is the external
force strength per bead, exerted on the translocating beads lo-
cated inside the channel, and x̂ is a unit vector in the direction
along the channel. Therefore, the driving force for the whole
chain is proportional to the number of translocated beads. Ex-
perimentally, this external driving force acting on the beads in
the channel can be provided by an applied intrachannel elec-
tric field or a uniform flow of the solvent in the channel.

In the present work, we use the LJ parameters ε and σ and
the bead mass m to fix the energy, length, and mass scales, re-
spectively. The time scale is then given by tLJ = (mσ 2/ε)1/2.
The dimensionless parameters in our simulations are R0 = 2,
k = 7, ξ = 0.7, and kB T = 1.2 unless otherwise stated. The
Langevin equation is integrated in time by a method described
by Ermak and Buckholz40 in 2D.

Initially, the first bead of the chain is placed just inside the
channel (at x = 0.75, y = 0), while the remaining beads are
under thermal collisions described by the Langevin thermo-
stat to obtain an equilibrium configuration. The translocation
time is defined as the time duration between the beginning
of the translocation and the last monomer entering into the
channel. Note that, in contrast to many translocation setups,
we allow the chain to escape from the channel back toward
the cis side of the membrane. Typically, we average our data
over 1000 independent runs.

Here, we should mention that the effect of hydrody-
namic interactions is neglected in our simulation. Recent lat-
tice Boltzmann41, 42 and molecular dynamics43 simulation re-
sults show that hydrodynamics is screened out in a narrow
pore, which is the case here and in the experiments.
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III. RESULTS AND DISCUSSION

In this section, we present our simulation results and dis-
cuss them in view of scaling arguments provided in the fol-
lowing subsection.

A. Scaling arguments

In standard translocation models, where the driving force
acts solely in a short channel, only a single bead currently in-
side the channel experiences the driving force. For sufficiently
slow translocation in the short nanopore, i.e., under low driv-
ing force and/or high friction, the exponent α in the scaling
law τ ∼ Nα for the translocation time τ can be estimated by
the balance of driving force F and frictional force. The ve-
locity of the center of mass along the direction of the driving
force is v ∼ F/ξ . The chain is not severely deformed during
slow translocation processes, and the chain moves a distance
of Rg during the translocation. Thus, the translocation time
becomes τ ≈ Rg/v ∼ N 1+νξ/F .16, 17, 32 Similarly, for poly-
mer translocation under a constant pulling force acting on one
chain end, the polymer travels a distance of R‖ ∼ N during
translocation, and τ ≈ R‖/v ∼ N 2ξ/F .33 However, if the ex-
ternal driving force is a function of time as for the present
problem in a long channel with an intrachannel force, the
translocation dynamics becomes different, as outlined in the
following.

For a polymer of chain length N in a good bulk sol-
vent in two dimensions (2D), the radius of gyration of the
chain Rg scales as Rg ∼ N ν2D σ , where ν2D = 0.75 is the
Flory exponent in 2D and σ is the segment length. For a
polymer confined between two strips embedded in 2D, the
chain will extend along the channel to form blobs of size
R, as long as R > σ . Each blob contains g ∼ (R/σ )1/ν2D

beads, and the number of blobs is nb = N/g ∼ N (σ/R)1/ν2D .
The free energy cost for the chain confinement in units
of kB T is F = N (σ/R)1/ν2D .28 The blob picture then pre-
dicts the longitudinal size of the chain to be R‖ = nb R
∼ Nσ (σ/R)1/ν2D−1 ∼ N R−1/3.28 The longitudinal relaxation
time τ‖ is defined as the time needed by a polymer to move
a distance of the order of its longitudinal size, R‖. Thus, τ‖
scales as τ‖ ∼ R2

‖/D̃ ∼ N 3 R−2/3, where D̃ ∼ 1/N is the dif-
fusion constant of the chain.

For a completely confined polymer in a 2D long channel
under an external field, the total driving force is N F with F
being the force acting on one bead. If the chain moves a dis-
tance of the order of R‖ under weak driving forces, the time
cost can be estimated as τss ∼ R‖/v ∼ N R−1/3/F , where v
∼ F is the velocity of the polymer. Under strong driving
forces, R‖ ∼ N is still correct,44 but R‖ ∼ R−1/3 breaks down
due to the deformation of the blob and the elongation of
the chain under the driving force. Thus, one can only obtain
τss ∼ N/F . For polymer translocation through a long channel
with length L 	 Rg , we therefore obtain τss ∼ L/v ∼ 1/F ,
which is independent of N.45 This steady state behavior in
the channel, valid sufficiently far away from the two chan-
nel ends, is due to the fact that the force F acts uniformly on
each monomer. The behavior is different when we consider
the translocation time τ measuring the time from threading

the first monomer into the channel until the moment when the
entire chain is inside the channel.

To assess the capture of a polymer into the long channel
under the influence of the intrachannel field, the situation is
somewhat complicated due to the fact that the driving forces
are proportional to the number of translocated beads. How-
ever, we still can give a rough estimate, if the chain monomers
sufficiently quickly reach a steady state in the channel. If s(t)
monomers are located inside the channel, the chain on the
cis side experiences the friction force Fcis, f and the entropic
force Fcis,e, while the translocating part experiences the fric-
tion force Ftrans, f , the entropic force Ftrans,e, and the driving
force s(t)F . According to the balance of driving force, fric-
tional forces, and entropic forces, we obtain the force relation:

Fcis, f + Fcis,e + Ftrans, f + Ftrans,e = s(t)F. (4)

Based on the blob picture,

Ftrans, f ≈ ξs(t)
d R‖(t)

dt
≈ C R−1/3ξs(t)

ds(t)

dt
(5)

with C being a constant. For a chain with size N = 128 in
a channel with R = 4.5 in units of σ , the longitudinal size
is R‖ ≈ 90.73, and then we obtain C = 1.17. Once more than
g monomers enter into the channel, Ftrans,e ≈ 2.12kB T/R ac-
cording to field-theoretical methods for 2D geometries (strips)
and hard-wall boundaries.46 Under the assumption that the
chain on the cis side is close to its equilibrium state and is not
severely deformed [Fcis,e Rg(N − s(t)) < kB T ], Fcis,e can be
estimated as Fcis,e ≈ kB T Lx/[R2

g(N − s(t))],28 with Lx be-
ing the elongation of the chain along the x direction. In ad-
dition, Fcis, f = ξ

∑N
i=s(t)+1 vi , which under sufficiently slow

translocation is negligible compared with Ftrans, f , due to the
much slower velocity. Thus, at the beginning of the transloca-
tion, Fcis,e plays an important role. However, once more than
g monomers enter the nanopore, Fcis,e can be neglected com-
pared with Ftrans,e. Due to the fact that the driving force s(t)F
increases over time, after reaching a critical s(t) the transloca-
tion dynamics is dominated by the balance between the driv-
ing force s(t)F and Ftrans, f , particularly for larger F where
Ftrans,e becomes negligible. Then the translocation dynamics
is dominated by

C R−1/3ξs(t)
ds(t)

dt
= s(t)F, (6)

such that

τ ∼ ξ
N

F
R−1/3. (7)

If Ftrans,e cannot be neglected, once more than g monomers
enter into the channel, the translocation dynamics is con-
trolled by

C R−1/3ξs(t)
ds(t)

dt
+ Ftrans,e = s(t)F, (8)

such that

τ ≈ C R−1/3ξ
N

F
− C R−1/3ξ Ftrans,e

F2
[1 − ln(F N − Ftrans,e)].

(9)
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10 100 1000

10

100

1000

FIG. 2. Translocation time τ predicted in Eq. (9) is plotted as function of
chain length N for different channel widths R and driving forces F.

The results in Eqs. (7) and (9) are based on Eq. (5), where the
equilibrium value of R‖ is used. As mentioned above, under
strong driving forces R‖ ∼ N is still correct, but R‖ ∼ R−1/3

breaks down. Therefore, we do not expect the scaling ex-
ponents of τ with R predicted in Eqs. (7) and (9) to be
strictly correct. However, we can still use Eq. (9) with Ftrans,e

≈ 2.12 kB T/R for the equilibrium state to estimate the scal-
ing of τ with N . Figure 2 demonstrates that the scaling τ ∼ N
for long chains is fulfilled, and Ftrans,e is thus important only
for short chains.

If during the translocation process the monomers in the
channel cannot sufficiently quickly assume steady state mo-
tion, the translocation dynamics is more complicated, as dis-
cussed in the following based on numerical results.

B. Simulation results

We now proceed to present our numerical results and dis-
cuss them in the light of above scaling arguments.

1. Translocation probability as function of the driving
force F and channel width R

In our simulations initially the first monomer is held in
place right at the channel entrance. After equilibration of the
chain with fixed first monomer, the constraint is relieved. At
high driving force F , already acting on the first monomer, the
probability is relatively high that the chain will actually com-
pletely move into the channel, and not escape back to the cis
side. At lower F retraction becomes more frequent. In this
context we refer to a successful translocation as the event
when the chain fully enters the pore, i.e., all N monomers
are inside the channel such that the chain reaches the translo-
cation coordinate s = N . If the first monomer retracts from
the channel, the translocation is viewed as unsuccessful. In
Fig. 3, we show the translocation probability of successful
events as function of the driving force F and for different
chain lengths N . For each value of F and N we perform as
many translocation attempts until 1000 successful transloca-
tion events are reached. In the investigated force range the
translocation probability increases almost linearly with the
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FIG. 3. Translocation probability as function of the driving force F for a
fixed channel width R = 4.5. The results for various chain lengths approxi-
mately coincide. The line indicates a linear relation between the translocation
probability and the driving force F per beads.

increasing translocation force F , and is approximately inde-
pendent of the chain length N . This implies that it is impor-
tant to capture the first few monomers in the channel, such
that the overall force s(t)F reaches a sufficiently large value
to prevent chain retraction from the pore.

Figure 4 depicts the translocation probability as func-
tion of the channel width R for two chain lengths, at driving
forces F = 0.2 and 0.5. The resulting curves show an increase
from quite small channel width toward wider channels, as ex-
pected. This is due to the decreased entropic resistance against
threading of the chain into the channel. The approximate in-
dependence of the chain length suggests that this is, again, a
more local effect: it matters to succeed sucking the first few
monomers into the channel to ensure complete translocation.
At larger values for R we observe a flattening of the curve,
likely due to the elongation of the chain in the channel.

2. Translocation times as function of the chain
length N and channel width R

Figure 5 shows the translocation time τ as function of
the chain length N for different driving forces F and channel

2 3 4 5 6

0.0

0.1

0.2

0.3

FIG. 4. Translocation probability as function of the channel width R for driv-
ing forces F = 0.2 and 0.5, and for two chain lengths.
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FIG. 5. Translocation time τ as function of chain length N for different chan-
nel widths R and driving forces F.

widths R. For N ≥ 32, a good scaling behavior τ ∼ Nα is ob-
served, with scaling exponent α ≈ 1 for F = 0.1 . . . 0.5 and
R = 4.5, as well as for F = 0.5 and R = 6.0. In these cases,
the driving force dominates the translocation dynamics, and
the value of α is in agreement with the result (7) obtained from
our scaling arguments. For N < 32, Ftrans,e ≈ 2.12 kB T/R
increases and is no longer negligible for weak driving forces
as predicted in Eq. (9) and plotted in Fig. 2. Decreasing
R for fixed F = 0.2, the scaling exponent α is reduced to
0.88 ± 0.01, and 0.81 ± 0.01 for R = 3.0 and 2.0, respec-
tively. The relaxation time of the chain increases with decreas-
ing R, which leads to significant nonequilibrium situations.
This factor leads to a more complicated translocation dynam-
ics that can no longer be grasped by our simple scaling ar-
guments leading to Eqs. (7) and (9). The resulting behavior,
however, is good news: increasing the overall force exerted
on the chain during the process of threading the chain into the
channel leads to a more efficient translocation, with a scaling
exponent smaller than one. It should be noted that once the
entire chain is fully in the channel and reaches a steady state,
the typical time to cover a distance R‖ becomes independent
of N , as shown above.

The radius of gyration of the polymer along the channel
axis x , which is proportional to R‖, at the moment just after
complete entrance into the channel, for different values of the

10 100
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10 100

0.04

0.06

0.08

FIG. 6. Radius of gyration of the translocating polymer at the moment just
after translocation, i.e., full entrance into the channel, for different transloca-
tion forces F and channel widths R. The insert shows the translocation veloc-
ity v as a function of the chain length N.
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FIG. 7. Translocation time τ as function of the channel width R for N = 128
and F = 0.2 and 0.5.

translocation force F and channel width R turns out to follow
the almost linear relation Rg,x ∼ N . This is demonstrated in
Fig. 6. This is perfectly in line with our scaling arguments for
R‖ developed above. The inset in Fig. 6 shows the transloca-
tion velocity, which decreases with the chain length N , and al-
most saturates for larger N . With the increasing channel width
R, the translocation time decreases rapidly and then saturates
for larger R, as shown in Fig. 7. Likely, this behavior is due
to the decaying influence of the entropic force in the channel,
Ftrans,e ∼ kB T/R and the elongation of the chain under the
driving force.

3. Translocation time as function of the driving force F

Figure 8 shows the translocation time τ as function of
the driving force F for different chain lengths N . We ob-
serve a behavior close to the predicted inverse proportional-
ity with F , τ ∼ F−1 from Eq. (5), for different chain lengths
when the channel entropic force Ftrans,e ∼ kB T/R is less pro-
nounced. However, for smaller R, such as R = 2.0, the en-
tropic force Ftrans,e plays a more important role in the translo-
cation dynamics: thus, for N = 64 and R = 2.0, the chain
cannot fully enter the nanopore at all, while for F ≥ 0.2, we
observe τ ∼ F−1.15.

0.2 0.4 0.6
102

103

104

FIG. 8. Translocation time τ as function of the driving force F.
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FIG. 9. Waiting time distribution for different chain lengths under driving
force F = 0.2 and with channel width R = 4.5. We define the waiting time
of bead s as the average time between the events that bead s and bead s + 1
move away from the channel entrance.

4. Waiting time distribution

The dynamics of a single segment passing through the
pore during translocation is an important quantity consider-
ably affected by different driving mechanisms. The nonequi-
librium nature of the translocation process has significant ef-
fects on this quantity. We numerically calculated the waiting
times for all beads in a chain of length N . The waiting time
of bead s for successful translocation hereby is defined as the
average time between the events that bead s and bead s + 1
move away from the channel entrance and further into the
channel.

Figure 9 shows the waiting time distribution for differ-
ent chain lengths under driving force F = 2.0 and with chan-
nel width R = 4.5. Interestingly, the maximum waiting time
occurs at smax ≈ 10 for all measured chain lengths. With in-
creasing s, the waiting time increases rapidly to the maximum
value, before a significantly softer decay. For increasing chain
length a plateau appears. This form of the waiting time distri-
bution again suggests that the initial capture of the chain in
the channel is a local process, unaffected by the remainder of
the chain on the cis side. At later stages of the process the
leftover monomers are sucked into the channel more easily,

0 20 40 60 80 100 120 140
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20

25

FIG. 10. Waiting time distribution under different driving forces for chain
length N = 128 and channel width R = 4.5.
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FIG. 11. Waiting time distribution for different channel width R and chain
length N = 64 under driving force F = 0.2.

due to the high force s(t)F reached by the s(t) monomers
in the channel. Figure 10 shows the waiting time distribution
under different driving forces F , for chain length N = 128
and channel width R = 4.5. We observe that the number of
monomers corresponding to the maximum waiting time, smax,
shifts to smaller values with the increasing driving force, as
one would expect. Increasing R, we find that smax rapidly de-
creases but saturates for larger R, compare Fig. 11.
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FIG. 12. Chain conformation during translocation for channel width R
= 4.5 and chain length N = 128 under the driving force F = 0.1.
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FIG. 13. Chain conformation during translocation for channel width R
= 4.5 and chain length N = 128 under the driving force F = 0.5.
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FIG. 14. Chain conformation during translocation for channel width R
= 2.0 and chain length N = 128 under the driving force F = 0.2.

The coming into existence of nonequilibrium situations
in the translocation process, we display typical chain config-
urations in the Appendix. Due to the increasing driving force
s(t)F , the chain on the cis side experiences trumpet, stem-
flower, and straight chain conformations during the transloca-
tion process, see Figs. 12–14.

IV. CONCLUSIONS

Using Langevin dynamics simulations, we investigated
the dynamics of polymer translocation into a long channel
embedded in a two-dimensional geometry, mimicking typical
nano/microfluidic setups used, for instance, for DNA analy-
sis. We analyzed how the translocation dynamics depends on
the chain length N of the chain-to-be-translocated, the driv-
ing force F, and the channel width R. During the translo-
cation process if the monomers in the channel can suffi-
ciently quickly assume steady state motion, we observe the
scaling τ ∼ N/F of the translocation time τ with F and N.
With smaller channel width R, steady state motion cannot be
achieved, effecting a nonuniversal dependence of τ on N and
F. We also find that the waiting time distribution shows a max-
imum at the same translocation coordinate smax for different
chain lengths, and smax decreases with the increasing driving
force or channel width. We believe that this study opens up a
new aspect to translocation studies, adding relevant quantita-
tive information on the growing field of biopolymer analysis
in nanochannels.
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APPENDIX: TRANSLOCATION SNAPSHOTS

To get an idea of the translocation process, we show the
typical chain conformation for different stages of the translo-
cation process. The chain length N = 128. Figures 12 and
13 shows chain conformation during the translocation for
channel width R = 4.5 under the driving force F = 0.1 and
F = 0.5, respectively. For F = 0.1, at t = 100 the typical
trumpet chain conformation occurs. At t = 100 and t = 1200,
we observe the typical stem-flower conformation. Finally, the
chain is almost straight at t = 1500. For F = 0.5, the chain
is stretched to a straight conformation at t = 300. Figure 14
shows the chain conformation during translocation for chan-
nel width R = 2.0 under the driving force F = 0.2. The chain
in the channel is very straight during the translocation.
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