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Combining the advection-diffusion equation approach with Monte Carlo simulations we study chap-
erone driven polymer translocation of a stiff polymer through a nanopore. We demonstrate that the
probability density function of first passage times across the pore depends solely on the Péclet num-
ber, a dimensionless parameter comparing drift strength and diffusivity. Moreover it is shown that the
characteristic exponent in the power-law dependence of the translocation time on the chain length, a
function of the chaperone-polymer binding energy, the chaperone concentration, and the chain length,
is also effectively determined by the Péclet number. We investigate the effect of the chaperone size
on the translocation process. In particular, for large chaperone size, the translocation progress and
the mean waiting time as function of the reaction coordinate exhibit pronounced sawtooth-shapes.
The effects of a heterogeneous polymer sequence on the translocation dynamics is studied in terms of
the translocation velocity, the probability distribution for the translocation progress, and the monomer
waiting times. © 2011 American Institute of Physics. [doi:10.1063/1.3669427]

I. INTRODUCTION

Translocation, the passage of biopolymers such as
proteins, DNA, and RNA through narrow channels in lipid
membranes is a quite ubiquitous process of fundamental im-
portance in biology and biotechnology. Such channels in bio-
logical cells are constituted by specific channel proteins, such
as the ones of the haemolysin family. Particularly common
is the channel protein α-haemolysin, that is also employed in
numerous setups in vitro. Alternatively, silicon based com-
pound solid state nanopores are used. The significance of
translocation thereby encompasses pure transport of polymers
through the channel, but also applications to chain sequencing
and drug delivery.1–4 Due to an entropic barrier thwarting the
passage of the polymer as a result of constrictions imposed
by the pore confinement, efficient polymer translocation re-
quires a driving force. Such a force could be purely entropic
itself, for instance, it could emerge from spatial confinement
of the chain-to-be-translocated in a virus capsid, a membrane
vesicle, or confinement in nanofluidic setups.5–7 Alternatively,
both in living cells and in vitro, charged chains may be driven
by cross-membrane electrical potential differences, a method
that has so far received most experimental and theoretical
attention.5, 8–16 While usually the length of the pore is con-
sidered much less than the length of the translocating poly-
mer, in modern nanofluidic setups long nano-sized channels
are used, whose length is much larger than the chain’s.17 In
such cases, the driving force is proportional to the length of
the chain inside the channel.18

Here we consider yet another driving mechanism, which
is quite widespread in nature. Namely, we consider the effec-

a)Author to whom correspondence should be addressed. Electronic mail:
abdolvahab@physics.sharif.edu.

tive chemical potential difference between cis and trans side
of the pore, effected by binding proteins called chaperonins
or chaperones.1, 19–33 Chaperone-driving is particularly com-
mon in eukaryotic mitochondria.1 Chaperones exist in dif-
ferent concentrations on the cis and trans sides. Once (re-
versibly) bound to the chain, they prevent back-sliding of the
chain through the pore, and thus partially ratchet the translo-
cation, as sketched in Fig. 1. To pinpoint the effects of the
chaperone-driving mechanism, in agreement with the major-
ity of previous studies we consider a chain with large persis-
tence length compared to the chain length (stiff chain limit),
such that we can neglect polymeric degrees of freedom, which
strongly change the dynamics of the translocation process.
The length of the chain-to-be-translocated in our study is L
= Mσ , where M is the number of monomers of individual
size σ . We also assume that chaperones are only present on
the trans side of the pore. The size of the chaperones is λσ ,
where λ is typically larger than 1. In our previous work we
combined a Monte Carlo simulation approach with a mean
field theory,22 showing that by variation of the effective bind-
ing energy (EBE),

E i
eff = −1

λ
log

[
c0v0 exp

(
− εi

kBT

)]
, (1)

the translocation dynamics changes continuously from purely
diffusive to ballistic translocation. In Eq. (1), εi is the chap-
erone binding energy per monomer of the polymer, c0 the
chaperone concentration, and v0 their eigenvolume. The term
c0v0 is thus the probability that a chaperone is next to a given
binding site.22 In Ref. 22 we also considered effects of the
sequence of sites with different binding affinity to the chaper-
ones on the translocation time.
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FIG. 1. Translocating polymer consisting of monomers of size σ . On the
trans side binding proteins (chaperones) of size λσ bind to the translocating
chain, giving rise to a chemical potential difference. The number m of already
translocated monomers is a natural “reaction coordinate” of the translocation
process.

Here, we study in a continuous advection-diffusion
model the probability density function (PDF) for translocation
times as a first passage problem.34 The model predictions are
compared with results from Monte Carlo simulations. Inter-
estingly, we find that the PDF of translocation times is solely
determined by the dimensionless Péclet number

Pe = LV

2D
, (2)

where V is the mean translocation velocity and D the diffusiv-
ity of the chain. The Péclet number, technically equivalent to
the product of the Reynolds and Prandtl numbers, compares
the strength of advection to the thermal diffusivity. It van-
ishes for unbiased diffusion. The Péclet number will be shown
to determine the characteristic exponent of the translocation
time as function of the chain length. In the following, we also
study the effect of the chaperone size λ and of a heterogeneous
sequence of chain monomers with different chaperone affin-
ity on the process, finding a pronounced sawtooth-pattern for
the probability distribution of the translocation progress and
the mean waiting time as function of the reaction coordinate
m (Fig. 1).

In what follows, we first introduce our theoretical model.
Its results are compared to simulations results in Sec. III, fol-
lowed by a discussion of the effects of the chaperone size on
the translocation pattern in Sec. IV. We draw our conclusions
in Sec. V.

II. DRIFT-DIFFUSION MODEL

Theoretically, the polymer translocation can be described
by a bivariate master equation of the form

∂

∂t
P ∗(m, n, t) = L∗(m, n)P ∗(m, n, t), (3)

where P*(m, n, t) is the probability distribution to find the
translocating chain at reaction coordinate m (m monomers
have passed the pore), and with n chaperones bound to it on
the trans side, at time t. The operator L∗(m, n) then details the
incoming and outcoming fluxes from state (m, n), i.e., back-
ward/forward motion of the chain through the channel and
chaperone binding/unbinding.22, 29, 30, 32 Under the assumption
that the dynamics of chaperone (un)binding is fast compared
to the diffusive motion of the chain by one monomer’s dis-
tance, we adiabatically eliminate the number n of bound chap-
erones from Eq. (3). Given that the chain’s longitudinal diffu-
sivity in free space is inversely proportional to the number M
of monomers and even slower when passing through the pore
channel,35 for sufficiently long chains and high chaperone
concentrations the assumption of comparatively fast chaper-
one (un)binding dynamics is reasonable. The procedure of
adiabatic elimination of n from Eq. (3) yields the master
equation

∂P (m, t)

∂t
= L(m)P (m, t)

= W+(m − 1)P (m − 1, t)

+W−(m + 1)P (m + 1, t)

−[W+(m) + W−(m)]P (m, t), (4)

where W+(m) and W−(m) are, respectively, the transition rates
for forward and backward motion, further specified below.
Thus, the first term on the right hand side of Eq. (4) de-
notes an increase of the reaction coordinate by 1 from m
− 1 to m, i.e., the chain-to-be-translocated moves to the trans
side, while the second term corresponds to stepping back to
the cis side by one monomer, etc. P(m, t) is the probability
distribution of finding m monomers of the chain to the right
of the pore at time t. The slowness of the diffusive steps of
the translocation process also ensures that we may assume
detailed balance to hold for the forward and backward rates
in the associated operator L(m), compare the discussion in
Ref. 30.

Let us now specify the rates W appearing in Eq. (4). To
this end, we note that in our model we do not have any chap-
erones on the cis side of the membrane. Thus, feeding of
the chain to the trans side by one monomer step (m → m
+ 1) corresponds to the constant rate W+(m) = k ≡ 1/2τ 0,
where τ 0 is the typical time it takes the bare chain to dif-
fuse over the distance σ of the monomeric size, i.e., τ 0 ≈
σ 2/(2D). The factor 1/2 in the expression for W+ is intro-
duced due to the fact that only half of all diffusion attempts
go in the direction of the trans side. By virtue of the de-
tailed balance condition the backward rate W−(m) then fol-
lows in the form W−(m) = kZ (m − 1)/Z (m),29, 30, 32 where
Z (m) is the partition function of the translocation problem.
In a mean field sense, we introduce the effective chaper-
one binding probability P per monomer of the chain-to-be-
translocated. Physically, the backsliding of the chain through
the pore can only occur when no chaperone is bound to the
chain at the monomer immediately to the right of the pore.
The associated probability is 1 − P, so that the backward
rate becomes W−(m) = 1/(2τ0)(1 − P ). P depends on the
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binding energy between a chaperone and the chain monomers
it covers, as well as the chaperone concentration.22 However,
while the choice of the constant k for the rate W+ directly
mimics the physical picture of the forward motion, we note
that we have a freedom of choice for the rates W+ and W−.36

For the sake of retrieving a true diffusion constant in the de-
sired continuum limit, we prefer the following choice for the
forward and backward rates:

W+(m) = 1

2τ0

(
1 + P

2

)
, (5)

W−(m) = 1

2τ0

(
1 − P

2

)
. (6)

With above rates (5) and (6) the average velocity of the
polymer becomes36

V = σ (W+ − W−) = σ

2τ0
P, (7)

while we obtain

D = σ 2

(
W+ + W−

2

)
= σ 2

2τ0
(8)

for the diffusion coefficient. Thus, the drift velocity (7) is lin-
ear in the binding probability and vanishes in the absence
of chaperones. The diffusion coefficient (8) according to our
choice of the transfer rates (5) and (6) is independent of the
binding probability. With the quantities (7) and (8) we obtain
the diffusion advection equation for chaperone driven poly-
mer translocation in the form

∂P(x, t)

∂t
+ V

∂P(x, t)

∂x
= D

∂2P(x, t)

∂x2
, (9)

as the continuum limit of the master equation (4) in the
mean field sense. In Eq. (9), we define the continuous co-
ordinate x = mσ . The quantity P(x, t) denotes the proba-
bility density to find the chain at translocation coordinate x
at time t (see Appendix A). The initial condition is to start
from x = 0, P(x, 0) = δ(x). The boundary conditions are re-
flective on the left at x = 0, corresponding to the assump-
tion that the chain is not allowed to fully retract from the
pore. On the right at x = L = Mσ , we impose an absorbing
boundary condition, mirroring our goal to determine the first
passage time for the translocation process. In this so-called
transmission mode, the dynamic equation (9) allows for an
explicit solution in Laplace space.34 As a result, the Laplace
transform

j (L, s) =
∫ ∞

0
j (x, t)e−st dt

∣∣∣∣
x=L

. (10)

of the probability flux at the right can be written as

j (L, s) = Pse
Pe

Pe sinh(Ps) + Ps cosh(Ps)
, (11)

where

Pe = V L

2D
= 1

2
PM (12)

is the Péclet number; a dimensionless parameter compar-
ing the respective intensity of drift and diffusion.34 At large
Péclet numbers, we are in a drift-dominated regime, while at

small values of Pe, thermal fluctuations driving the diffusion
are dominant. Moreover, in Eq. (11) we introduced the dimen-
sionless quantity

Ps = L

√
V 2

4D2
+ s

D
= M

√
P 2

4
+ 2τ0s. (13)

The Laplace inverse of the flux, j(L, t) corresponds to the
probability density function (PDF) of first passage for com-
plete translocation. Its corresponding moments can be ob-
tained by Taylor expansion, following the procedure outlined
in Ref. 34. In particular, for the mean first passage time we
find

T = L2

D

[
1

2Pe
− 1

4Pe2 (1 − e−2Pe)

]
. (14)

Differentiation of ln (T) with respect to L yields the scaling
exponent α of the relation T ∼ Lα in the form

α = L
∂

∂L
ln(T ) = 1 + 1 − (1 + 2Pe)e−2Pe

2Pe − 1 + e−2Pe
(15)

For small values of the Péclet number, the asymptotic behav-
ior becomes

α ≈ 2 − 2

3
Pe + 2

9
Pe2, (16)

while in the limit of large values of Pe, the dominating term is

α ≈ 1 + 1

2Pe
. (17)

Thus, as expected, the value of the scaling exponent α contin-
uously changes from 2 for small Péclet numbers to 1 for large
Pe, that is, from purely diffusive behavior to fully ballistic
translocation. The binding probability as mean field parame-
ter can be obtained from the relation

P = exp
(
	λ

i=1E i
eff

)
1 + exp

(
	λ

i=1E i
eff

) (18)

in which E i
eff is the effective binding energy between

monomer i and a chaperone, defined in Eq. (1). Thus, for a
homopolymer the Péclet number simplifies to

Pe = M

2

exp (λEeff)

1 + exp (λEeff)
, (19)

where λ is the length of BPs.
Fig. 2 shows the variation of the scaling exponent α ver-

sus the Péclet number from Eq. (15), from diffusive to ballistic
motion. The inset depicts the dependence of α on the EBE for
3 different chain lengths, demonstrating the non-universality
of α with respect to the chain length.

III. COMPARISON WITH SIMULATIONS

In this section, we compare above results from the simple
drift-diffusion model with simulations of chaperone-driven
translocation of a stiff polymer chain. Similar to the quality
of an analogous drift-dominated approach for driven translo-
cation reported in Ref. 16, our model for chaperone driving is
observed to be in excellent agreement with detailed simula-
tions (compare Appendix C).
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FIG. 2. It shows scaling exponent α (T ∼ Mα), from Eq. (15) versus Péclet
number. The inset also shows α versus EBE for 3 different lengths.

A. Homopolymer chain

We start with the discussion of the behavior of the PDF
of first passage of the chain across the pore as well as the
scaling exponent α defined in Eq. (15), for the case of a
homopolymer chain, i.e., all chain monomers are identical.
In Subsection III B we turn to the case of a heteropolymer
chain.

Fig. 3 compares the theoretical first passage PDF, cal-
culated from Eq. (11), with simulations performed over 105

time steps (see Appendix C). We observe excellent agree-
ment over the whole range of the PDF for chain length M
= 100 and chaperone size of λ = 2 monomer lengths, for
positive values of the EBE. Results for negative EBEs are
good for the mean first passage time, however, the agreement
with the overall PDF is less satisfactory (results not shown
here). The reason is that for negative EBE the binding dy-
namics is dominated by few events, and thus the justification
for the adiabatic elimination of the (un)binding dynamics of
the chaperones is no longer given. In this case, Fig. 3 cor-
roborates the usefulness of the continuum approach in terms
of Eq. (9).

In Fig. 4 we plot the scaled PDF of translocation times
for different values of the Péclet number. It shows how
the PDF changes from a broad distribution in the diffu-
sion dominated regime at small Pe to a significantly nar-
rower distribution in the regime of drift domination (large

0 0.5 1 1.5 2

x 10
4

10
−4

10
−3

T

P
D

F

 

 

8
2
1
0
8
2
1
0

FIG. 3. Compare the probability density function(PDF) of translocation time
that is obtained from simulation by theory. The markers show simulation re-
sults and the lines represent theory (Eq. (11)). The theory and simulation are
in good agreement with each other in special for positive EBE. Numbers in
the figure legends shows the EBE in kBT.
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E4L1000
E4L100000
E2L1864

Pe=89.93, α=1.01

Pe=16.77, α=1.03

Pe=0.02, α=1.99

FIG. 4. Compare the probability density function(PDF) of translocation time
for different length and different EBE that has been obtained from theory
(Eq. (11)). The numbers in the legends are EBE (in kBT) and length; for
example E2L10000 means that the EBE = 2 and M = 10000. In middle, we
plot PDF of translocation time for two polymers with different length and
EBE, but the same Pe that as can be seen are exactly the same.

Pe). As demonstrated in the intermediate case, distribu-
tions for two polymers with different length and differ-
ent EBE but the same Pe show indistinguishable forms of
the PDF.

One of the most important parameters in polymer translo-
cation is the scaling exponent α in the mean first passage
time versus chain length dependence, T � Mα . To deter-
mine the exponent α reliably from simulations is a very
time consuming process, as it requires the repeated perfor-
mance of translocation of sufficiently long chains, in order
to observe a sufficiently significant scaling window. As we
showed recently,22 the scaling exponent α in this problem de-
pends on length, binding energy, and concentration of bind-
ing proteins; based on a simple mean field theory, we dis-
cussed that the Péclet number is the characterizing parameter
for this problem. Here we demonstrate that the first passage
time PDF obtained from our continuous model for various
parameters agrees nicely with the simulations over the en-
tire range. It turns out that the only relevant parameter is the
Péclet number, as demonstrated in Fig. 4. Thus, chaperone
driven polymer translocation of a stiff homopolymer is, to a
good approximation, completely defined by the value of the
Péclet number Pe. The scaling exponent α then follows from
Eq. (15).

From Eq. (14) we obtain the reciprocal velocity 1/〈V〉37

as function of the binding probability P, in the form

1

〈V 〉 = σ

DP

[
1 − 1

MP
(1 − e−MP )

]
. (20)

It varies from σ /(DP) at PL � 1 to a plateau of value L/(2D)
at PL � 1. Fig. 5 depicts this behavior for a chain of length
M = 100 and varying EBEs, i.e., different binding proba-
bilities. The comparison with the simulations results shows
good agreement at smaller values of P−1, while a lesser de-
viation is observed at larger values of P−1. This is most
likely due to finite size effects, i.e., small numbers of bound
chaperones.
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FIG. 5. Plot the inverse velocity of polymer that is obtained from simulation
by theory (Eq. (20)) with respect to inverse binding probability (inset is the
same but with zoom on small numbers).

B. Heteropolymer chain

Let us now address the translocation dynamics for the
case of a heteropolymer chain, i.e., a chain consisting of
monomers with different identity. A chaperone is assumed to
feature different binding affinities to each of the monomer
types. For simplicity we consider the minimal case of two
monomer species, say, A and B. We also restrict our discus-
sion to binding proteins, that cover λ = 2 chain monomers.
Even for such a basic assumption interesting effects are ob-
tained, as discussed here. To see this, we make use of the mean
field parameter PAB designating the probability that A and B
are nearest neighbours. The value of this adjacency probabil-
ity varies from PAB = 1/(M − 1) � 0 in a block copolymer
(A)M/2(B)M/2 to PAB = 1 in a completely adjacent sequence,
(AB)M/2.22, 28 We study polymers with two different sequence
patterns: one, for which the central part of the chain consists
of A (B) monomers, around which the concentration of B (A)
monomers is gradually increased. To be able to grasp this vari-
ation of monomer type, we consider three different regions
of the chain, namely, domains with only A or B monomers,
as well as domains built of AB blocks. The associated
translocation velocities in our continuum approach are then
given by

VAA = σ

2τ0
PAA,

VAB = σ

2τ0
PAB, (21)

VBB = σ

2τ0
PBB.

In the above sense, these three types of regions allow us
to construct the chain-to-be-translocated symmetrically, with
five regions, for instance,

BBBB . . . ABAB . . . AAAA . . . BABA . . . BBBB.

(22)

Altogether we thus have six boundaries, including the re-
flective and absorbing boundaries at the chain’s extremi-
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FIG. 6. Comparison of the transloaction time PDFs for polymers with effec-
tive binding energies Eeff(A) = 2 and Eeff(B) = −2 and with varying adja-
cency probabilities PAB (indicated in % for the different curves in the plots).
The PDFs are obtained from our theoretical model (Eq. (11)) by numerical
Laplace inversion (full lines). These are compared to simulations (symbols).
Left: Translocation time PDF for chains with central B monomers. Right:
Translocation time PDF for chains with central A monomers. In the right
graph both the maxima are shifted to longer times and the exponential tails
are wider. Simulations points from Ref. 22.

ties at m = 0 and m = M, respectively. For the intrachain
boundaries, the total probability flux j (x, t) = VP(x, t)
− D(∂P(x, t))/(∂x) as well as the probability itself must be
continuous (for more details, see Appendix B). Using the
method introduced in Ref. 34 with these boundary conditions,
we calculate the flux j(L, s) of chain-exits at the pore to the
trans side in Laplace space. We then invert this result numeri-
cally to the time domain, and thus reconstruct the overall PDF
of polymer translocation times. In Fig. 6 we compare these
results with simulations, observing good agreement, with no
adjustable parameter. As expected, an exponential decay is
observed.38 Above findings provide additional insight into the
translocation dynamics of heteropolymer chains, compared
to previous studies of the translocation time dependence on
chain-pore interactions of AnCn block copolymers in Ref. 39.

IV. SAWTOOTH BEHAVIOR OF TRANSLOCATION
DYNAMICS FOR λ > 6

In Sec. III we only considered chaperones that cover ex-
actly λ = 2 chain monomers. To assess how different values
of the chaperone size λσ affect the translocation time, we per-
form simulations for λ values between 2 and 10. In Fig. 7 we
show the probability distribution P(m, t) as function of the
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FIG. 7. Probability distribution P(m, t) of the translocation progress, to find
the chain with m translocated monomers at time t � T/4, where T is the mean
translocation time. The numbers before A, B indicate the value of PAB in
percent. We use the effective binding energies Eeff(A) = 2 and Eeff(B) = −2.
The inset shows the negative of the logarithm of P(m, t), that is a measure for
the free energy at t � T/4 as function of m in terms of kBT, for a completely
adjacent polymer (PAB � 99%).

reaction coordinate at t � T/4 for three polymer sequences
with λ = 10. Note that for larger λ because of the summation
over λ binding energies the transition between drift and dif-
fusion dominated regimes will become increasingly sharp. At
the same time a “parking-lot” effect is observed: after bind-
ing of a chaperone to the chain-to-be-translocated close to
the membrane pore, the chain first needs to diffuse at least
by the distance λ, before the next chaperone can bind next
to the pore. This causes the sawtooth-shape in Fig. 7. For
parts of the polymer chain consisting of monomers with neg-
ative EBE, the binding probability is near unity: as soon as a
chaperone finds enough empty space, it will bind to the chain,
and thus we see a ratchet-like PDF in this case. The inset in
Fig. 7 also shows −ln (P(m, t)), that is the effective free en-
ergy, as function of the reaction coordinate m at time t � T/4,
for a completely adjacent polymer.

Figs. 8 and 9 show the mean waiting time (MWT) and
cumulative waiting time (CWT) for λ = 6. In analogy to
the observations for the probability distribution in Fig. 7,
we see a periodicity with length λ in the plot. This saw-
tooth behavior occurs for that polymer part, in which the
EBE is negative, and it appears stronger when that part goes
first.
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FIG. 8. It compares mean waiting times (MWTs) for λ = 6 and E(A) = 0,
E(B) = −2 for a copolymer that goes through the pore from its two sides.
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FIG. 9. It compares cumulative waiting times (CWTs) for λ = 6 and E(A)
= 0, E(B) = −2 for a copolymer that goes through the pore from its two
sides.

V. CONCLUSIONS

Based on a continuous drift-diffusion model, we obtain
the full probability density function of passage times for
chaperone-driven translocation of a stiff polymer. We con-
sider both homopolymeric and heteropolymeric chains with
different sequences. Comparison to Monte Carlo simulations
shows very good overall agreement, such that for sufficiently
long chains and large chaperone binding energy the drift-
diffusion model is a good approximation to the full problem.
Using this theoretical model we obtain the exponent α of the
scaling relation T ∼ Mα between mean translocation time T
and number of monomers M of the chain-to-be-translocated.
We also show how α is affected by the chain length, the bind-
ing energy and the chaperone concentration in solution. In
particular we demonstrated that all relevant quantities, includ-
ing the distribution of translocation times, is fully specified by
the dimensionless Péclet number. We moreover discuss the
effect of larger chaperone size on the probability distribution
and mean waiting times of the translocation process, giving
rise to pronounced sawtooth effects.
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APPENDIX A: THE CONTINUUM TRANSITION

For long chains (Mσ � 1) the size σ of an individual
monomer becomes small, and we may therefore expand the
master equation (4) as follows. To this end we change the no-
tation from P(m + 1, t) to P(x + σ, t), and from W±(m + 1)
to W±(x + σ ), etc. As a result the corresponding continuum
equation becomes

∂P(x, t)

∂t
= 1

2

∂2

∂x2
[σ 2(W+(x) + W−(x))P(x, t)]

− ∂

∂x
[σ (W+(x) − W−(x))P(x, t)]. (A1)
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Defining

D ≡ σ 2

2
[W+(x) + W−(x)] = σ 2

2τ0
(A2)

and

V ≡ σ [W+(x) − W−(x)] = σ

2τ0
P, (A3)

we arrive at the advection-convection equation (9).

APPENDIX B: SOLUTION OF THE DRIFT-DIFFUSION
EQUATION FOR A MAX-MIN SEQUENCE

Here we suppose that Eeff(A) = 2 and Eeff(B) = −2.
For these EBE’s the maximum sequences are defined as
(B)NBB/2(BA)NAB/4(A)NAA

(AB)NAB/4(B)NBB/2, in which NAB

= PAB(M − 1), NAA = NBB = ((M − 1) − NAB)/2 = (M
− 1)(1 − PAB)/2. The minimum case is constructed in the
same manner simply by exchanging A and B. We here find
the first passage PDF for these types of polymers.

To solve Eq. (9), we pass to the Laplace space, in which
we find

sP(x, s) − δ(x) + V
∂P(x, s)

∂x
= D

∂2P(s, t)

∂x2
, (B1)

in which we included the initial condition P(x, 0) = δ(x). The
result of this equation for a region with velocity Vi is then

Pi(x, s) = A+(i)eB+(i)x + A−(i)eB−(i)x, (B2)

where

B±(i) =
Vi ±

√
V 2

i + 4Ds

2D
≡ Pe ± Ps, (B3)

in which Pe is the Péclet number and Ps is defined in Eq. (13),
and the A±(i) are obtained from the boundary conditions:(

V1P1(x, s) − D1
∂P1(x, s)

∂x
= 1

)
|x=0, (B4)

(Pi(x, s) = Pi+1(x, s)) |x=Li
(i = 1, 4), (B5)

(
∂Pi(x, s)

∂x
= ∂Pi+1(x, s)

∂x

)
|x=Li

(i = 1, 4), (B6)

(P5(x, s) = 0) |x=L, (B7)

in which Lis are defined for the maximum sequence as:

L1 = σ

(
NBB

2

)
,

L2 = σ

(
NBB + NAB

2

)
,

L3 = σ

(
NBB + NAB

2
+ NAA

)
,

L4 = σ

(
NBB

2
+ NAB + NAA

)
, (B8)

and accordingly for the minimum sequence. For polymers
with sequences introduced in Sec. III, there exist 5 regions,

thus i = 1, . . . , 5 and we have 10 unknowns A±. The bound-
ary conditions provide 10 equations from which we obtain the
10 unknowns. From the boundary conditions at start and end
of the translocation, we have respectively j(0, s) = 1 and j(L,
s) = 0 [Eqs. (B4) and (B7)]. The remaining 8 equations are
obtained from continuity of probability and flux at the four
middle boundaries [Eqs. (B5) and (B6)]. Solving these equa-
tions provide the A±(i) and thus the probability in the Laplace
space. We then numerically Laplace-invert this result. The
theoretical results plotted in Fig. 6 are obtained in this way.

APPENDIX C: SIMULATIONS DETAILS

We use a Monte Carlo method to simulate the transloca-
tion process of polymers of size 100 monomers. Translocation
of each of these polymers was performed 105 times. For each
move of the polymer we bind and unbind the chaperones with
Boltzmann probability for 5 m times in which m is the num-
ber of monomers in the trans side, this number is selected to
ensure equilibration.22, 30 To find the entire PDF of the translo-
cation time numerically, we used the Metropolis approach. In
the simulations, we attempt to move the polymer to the right
and to the left with equal a priori probability. However, al-
though the polymer may always move to the right, a move
to the left is permitted only when the monomer next to the
pore on the trans side is vacant. As in the theory, the bound-
ary conditions in our simulations are reflecting at the left end
and absorbing at the right end.
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