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We study the translocation of stiff polymers through a nanopore, driven by the chemical-potential gradient
exerted by binding proteins (chaperones) on the trans side of the pore. Bound chaperones prevent backsliding
through the pore and, therefore, partially rectify the polymer passage. We show that the sequence of chain
monomers with different binding affinity for the chaperones significantly affects the translocation dynamics. In
particular, we investigate the effect of the nearest-neighbor adjacency probability of the two monomer types.
Depending on the magnitude of the involved binding energies, the translocation speed may either increase or
decrease with the adjacency probability. We determine the mean first passage time and show that, by tuning the
effective binding energy, the motion changes continuously from purely diffusive to ballistic translocation.
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I. INTRODUCTION

The passage of polymeric chains through a nanopore in
a membrane is of fundamental importance in biology and
nanotechnology [1–4]. In a biological lipid bilayer membrane,
the nanopore is typically constituted by a channel protein.
A prominent example are the transmembrane proteins of the
haemolysin family used by bacteria to puncture or even disrupt
the red blood cells of the infected host [1,5]. α-haemolysin is,
in fact, commonly used in single nanopore setups for in vitro
translocation experiments [6]. Conversely, in artificial supports
such as silicon compound membranes, solid-state nanopores
can be created by ion- or electron-beam techniques [7,8].
Some important examples for such translocation processes
in living cells include the passage of proteins through the
endoplasmic reticulum [1,4,9], the transport of RNA through
the nucleus pore membrane, the translocation of polypeptide
chains from the inner mitochondrial or chloroplast membranes
through the associated matrix [1,10], or the DNA plasmid
passage from cell to cell through the cell walls [1]. Similar
macromolecular transport processes occur in gene transfer
[11], which is fundamental to understanding the way in
which DNA may be incorporated into living cells. Not least,
translocation has potentially far-reaching applications in bio-
and nanotechnology, including rapid DNA sequencing, gene
therapy, and controlled drug delivery [6,12,13].

The principal mechanism to drive the polymer through
a pore employed in single molecule setups consists of a
transmembrane electric-potential difference that mainly falls
off inside the pore, using the fact that biopolymers carry
charges and therefore experience a drift in the presence of
the electric field [6]. This type of experimental translocation
has received considerable interest from a theoretical point
of view; compare, for instance, Refs. [14–21]. In nature,
another driving mechanism exists, namely, the building-up
of a transmembrane chemical-potential gradient, visible in
an effective nonzero force directed toward the trans side,
due to the presence of binding proteins, so-called chaperones
or chaperonins, that nonspecifically bind to the chain-to-be-
translocated [1,22]. A chaperone binding to the chain close

to the pore on the trans side prevents backsliding. As we
follow the details of their binding and unbinding dynamics,
we find that these chaperones therefore partially rectify the
translocation. In Fig. 1 we present a sketch of this process.
It should be noted that, typically, a binding protein occupies
more than one monomer of the chain-to-be-translocated. Thus,
DNA-binding proteins usually cover between 5 and 20 base
pairs [1]. This gives rise to interesting physical phenomena
(for instance, the “parking-lot effect” connected with the
nonoptimal packing of binding proteins on the chain discussed
in the following). Chaperone-driven translocation was studied
previously in terms of statistical models for a homopolymeric
chain [1,14,15,23–28] or in a random energy model [29].

Here we pose the question of how a specific sequence
of different monomers in the chain-to-be-translocated affects
the translocation dynamics. For the chaperones, that is, the
sequence of different monomers causes a local variation of the
binding affinity, and therefore changes the overall translocation
dynamics. We investigate the case of a relatively stiff chain, for
which the persistence length is much larger than the monomer
size. For moderately long chains, we therefore neglect the
polymeric degrees of freedom of the translocating chain that
would overlay the chaperone-driving effects. For the simplest
case of a chain consisting of two different types of monomers
A and B, we evaluate the mean first passage times of the
translocation process under variation of the chain composition
and length, chaperone binding affinity, and chaperone volume
concentration. In particular, we show how different parameters
lead to the transition from a purely diffusive translocation
dynamics up to the case of ballistic translocation (pure
ratcheting). Moreover, we study the behavior of the waiting
times of individual monomers during their passage through
the pore, and we determine the effective force exerted by the
chaperones on the chain.

We assume that, in our test polymers, the two monomer
types A and B are adjacent to each other with probability PAB .
We use a Monte Carlo method to simulate the translocation
process of polymers with sizes from 100 to 900 monomers. Our
simulations were performed for several randomly constructed
polymers with the same PAB , and the translocation of each
of these polymers was performed at least 103 times. To
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FIG. 1. (Color online) Translocating polymer consisting of
monomers of size σ . On the trans side, binding proteins (chaperones)
of size λσ bind to the translocating chain, giving rise to a chemical
potential difference. The number m of already translocated monomers
is a natural “reaction coordinate” of the translocation process.

compute the mean translocation time numerically, we used
the Metropolis approach; cf. Refs. [28,30]. In the simulations,
we attempt to move the polymer to the right and to the left
with equal a priori probability. However, although the polymer
may always move to the right, a move to the left is permitted
only when the monomer next to the pore on the trans side
is vacant [26,28,30]. The simulations results are compared
to explicit calculations based on a master equation for the
chaperone-driven translocation process.

We start our analysis with the master equation approach to
the translocation process in Sec. II, before studying explicitly
the sequence dependence of the mean translocation time in
Sec. III. We draw our conclusions in Sec. IV.

II. MASTER EQUATION FOR CHAPERONE-
DRIVEN TRANSLOCATION

The translocating stiff polymer chain consists of M

monomers of length σ . The number of already translocated
monomers is denoted by m, and therefore the length of the
chain on the trans side is mσ . As sketched in Fig. 1, the
chaperones are located exclusively on the trans side, at a
volume concentration c0. One chaperone covers λ monomers.
On binding to the polymer, the chaperones prevent backsliding
through the pore when the bound chaperone is located next
to the pore [26–28]. In this study, for simplicity we assume
that λ = 2. Given the two different monomer types A and
B, we therefore have three different binding energies for a
given chaperone. Namely, depending on the nature of the
two monomers to which the chaperone binds (AA, AB, BB,
and BA), we only need three binding energies per chaperone,
denoted by εAA, εAB = εBA, and εBB .

A convenient stochastic description of the chaperone-
driven translocation process may be based on the probability
distribution P (m,t) for finding m translocated monomers
at time t . Given the discrete nature of the variable m, the
dynamics of P (m,t) follows the master equation [27,28]

∂P (m,t)

∂t
= W+(m − 1)P (m − 1,t)

+W−(m + 1)P (m + 1,t)

− [W+(m) + W−(m)]P (m,t), (1)

where W+(m) and W−(m) are, respectively, the transition
probabilities per unit time for forward and backward motion,
further specified later. Thus, the first term on the right-hand
side of Eq. (1) denotes an increase of m coming from state
m − 1; that is, the chain moves one monomer from the cis
to the trans side. Similarly, the second term stands for the
backsliding of the chain through the pore toward the cis
side by one monomer (passage from state m + 1 to m). The
last line of Eq. (1) stands for the passage to the trans side
(m → m + 1) and cis side (m → m − 1), respectively. Note
that in Eq. (1), we already averaged out the degrees of freedom
of the chaperones. This is possible in the reversible binding
regime [28] when the typical chaperone binding and unbinding
times are short compared to the time it takes the polymer to
diffuse a distance σ [10,31].

As no chaperones exist on the cis side and we assume that
chaperones cannot actively pull the chain through the pore, the
forward rate is given by the constant

W+(m) = k ≡ 1

2τ0
, (2)

where τ0 is the typical time it takes the bare chain to diffuse
over the distance σ of a monomer. The factor 1

2 is introduced
here as, on average, only every other attempted step is
directed toward the trans side of the pore. As we assume,
furthermore, that the system should eventually reach thermal
equilibrium, the backward rate is fixed by the detailed balance
condition [32]

W−(m)Zλ(m) = W+(m − 1)Zλ(m − 1), (3)

where Zλ(m) is the partition function of the problem that will
be defined later. Thus, we obtain

W−(m) = k
Zλ(m − 1)

Zλ(m)
. (4)

Note that, for flexible translocating polymers, the close-to-
equilibrium assumption behind the detailed balance condition
may be violated under conditions of strong driving [21].
From the forward and backward rates, we may then deduce
the mean translocation time, corresponding to the calculation
of the mean first passage time (MFPT). The result is given
by [33]

T =
M∑

m=0

(
�(m)

m∑
m′=0

1

W+(m′)�(m′)

)
, (5)

where we made use of the abbreviation

�(m) =
m∏

u=1

(
W−(u)

W+(u)

)
. (6)
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In the absence of polymeric degrees of freedom of the
chain-to-be-translocated, the partition function Zλ is solely a
measure for the contributions of the chaperones. It is made up
of the following three contributions: (i) The first part is the
Boltzmann weight

exp

(
− ε

kBT

)
, (7)

where ε represents the binding energy per chain monomer for a
translocating homopolymer chain; the heterogeneous case will
be considered later. Moreover, kBT denotes thermal energy.
Note that, in our notation, the value of ε may be positive or
negative. A negative value of ε indicates an affinity between
chaperone and chain, while a positive value of ε indicates
that binding is unfavorable. (ii) The second contribution
corresponds to the number of complexions 	λ(m,n), counting
the different ways in which one can distribute n chaperones of
length λ over m monomers. This quantity is given by [27,28]

	λ(m,n) =
(

m − (λ − 1)n
n

)
= [m − (λ − 1)n]!

n!(m − λn)!
. (8)

(iii) Finally, the third part accounts for the chaperone entropy
in the solution [28,34]. This results in the factor(

N

Nt

)n

, (9)

in which N is the total number of (indistinguishable) chap-
erones. Moreover, Nt = V/v0 is the number of voxels in the
total volume V of the compartment on the trans side of the
membrane in units of the volume v0 occupied by an individual
binding particle [35]. By taking all three contributions together,
we obtain the partition factor for a given combination of m

and n,

Zλ(m,n) = 	λ(m,n)χλn, (10)

where we took

χ =
[
c0v0 exp

(
− ε

kBT

)]1/λ

(11)

and the volume concentration c0 = N/V . Based on expression
χ we define the effective binding energy (EBE)

Eeff = − log(χ ), (12)

which is a useful quantity to characterize the translocation
process, as we will show. The partition function Zλ(m) needed
for the definition of the transfer rates follows from expression
(10) by summation over all allowed values of n,

Zλ(m) =
nmax∑
n=0

Zλ(m,n), (13)

where the maximum number of binding proteins on the chain
is given by nmax = [m/λ], the largest integer number smaller
than or equal to m/λ.

Physically, from our definition of the partition function
(10), we see that the backward rate (4) is proportional to
the probability 	λ(m − 1,n)/	λ(m,n) that the binding site
closest to the pore on the trans side is vacant. Similarly, the
expression N/Nt = Nv0/V = c0v0 is the probability that a
chaperone is next to a given binding site. In terms of the

free energy F (m,n) = −kBT log Zλ(m,n) we see that a larger
χ value leads to a lower free energy (i.e., a more efficient
translocation process). This can be achieved by increasing the
volume concentration or the absolute binding energy |ε|.

A. The special case λ = 1

The consideration of the simplest case λ = 1 (i.e., when the
chaperone size matches the monomer size of the chain-to-be-
translocated) will be instructive for the subsequent discussion.
We therefore present some analytical results pertaining to this
case.

For λ = 1, the partition function Z1(m) reduces to the exact
form

Z1(m) =
m∑

n=0

m!

n!(m − n)!
(χ )n = (1 + χ )m, (14)

and we find the simple result for the quantity �(m),

�(m) = (χ + 1)−m. (15)

The mean translocation time therefore becomes

T (M) = 2τ0

M∑
m=0

(
(χ + 1)−m

m∑
m′=0

(χ + 1)m
′
)

. (16)

By carrying out the sum, we obtain the result

T (M) = 2
τ0

χ2
(χ + 1)[(χ − 1) + χM + (χ + 1)−(M+1)].

(17)

For large values of the constant χ > 1 (i.e., negative EBE), we
expect an efficient translocation. Indeed, we find in the limit
M � 1 that the mean translocation time

T (M) ∼ 2τ0
1 + χ

χ
M ≡ M

v
(18)

scales as the chain length M . This corresponds to diffusion
under a constant bias. In Eq. (18) we defined the velocity

v ≡ W+ − W− = 1

2τ0

χ

1 + χ
, (19)

in which the expression χ/(1 + χ ) is the binding probability
P . For very strong chaperone binding (χ � 1), the binding
probability tends to 1, and we recover the ballistic limit
T (M) = 2Mτ0 of completely ratcheted motion (i.e., on av-
erage at every other time step τ0, the chain successfully moves
one monomer to the trans side, while all attempts to move to
the cis side are prohibited due to full chaperone coverage).

Conversely, for poor binding we have χ < 1 and obtain the
expansion

T (M) = 2
τ0

χ2
(χ + 1)

(
(M + 1) (M + 2)

2
χ2

− (M + 1) (M + 2) (M + 3)

6
χ3 + · · ·

)
. (20)

In the limit χM � 1, the result

T (M) ∼ 2τ0
χ + 1

2
M2 ≡ χ + 1

2K
M2 (21)
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FIG. 2. (Color online) Left: Scaling exponent α of the mean translocation time T (M) � Mα for λ = 2 and with identical effective binding
energy for all monomers, as function of the EBE. We see the turnover from drift-dominated motion (α = 1) to the diffusive scaling with α = 2.
The theoretically predicted behavior (5) agrees well with the simulation results. Note that α does not cross the threshold value 2. For Eeff = 4.0
we find α = 1.95, while for Eeff = 4.5 we find α = 1.97. Right: Examples for the scaling behavior of T (M) � Mα at PAB = 0.10, for λ = 2
with fitted slopes (L = Mσ ). The two dashed lines indicate the limiting behaviors T (M) � M1 and T (M) � M2. The pairs Eeff (A),Eeff (B) are
indicated in the plots.

yields, corresponding to the diffusive scaling, T (M) � M2. In
Eq. (21) we defined the one-dimensional diffusion constant
K = 1/(2τ0). In the limit of very small χ (i.e., highly positive
EBE), essentially no binding of chaperones occurs, and we
obtain the result T (M) = M2/(2K) of unbiased diffusion.
Depending on the order parameter χM , the mean translocation
time T (M) reaches from linear scaling in the case of complete
ratcheting (χM � 1) to the purely diffusive M2 dependence
when no binding occurs (χM � 1). An analogous result
pertains to the case of general λ for a homopolymer chain
in the long-chain limit [28,30].

Figure 2 shows the scaling exponent α of the mean
translocation time with chain length T (M) � Mα as a function
of the EBE, for λ = 2. In this case the EBE shown on the axis
is assumed homogeneous along the translocating chain. In the
figure we include the results from Monte Carlo simulations
and the theoretical prediction based on numerical evaluation
of Eq. (5) (for chain lengths 100–900). By sweeping the EBE,
the exponent changes continuously from the diffusive scaling
α = 2 to the linear behavior corresponding to biased diffusion.
The figure is universal in the sense that the EBE is the only
free parameter determining the scaling exponent α, for finite
M . For fixed values of c0v0, the variation of α is solely due
to a change in the binding energy ε; conversely, at fixed ε, the
value of the EBE reflects changes of the concentration c0. For
instance, if the volume concentration of chaperones is fixed
to c0 = 10 μM and their eigenvolume is fixed to v0 = 2nm3,
then the binding energies ε = −6.66kBT and ε = −4.66kBT

correspond to EBE values of −1 and 1, respectively. It is
interesting to see that, at around Eeff = 4kBT , the slope α = 2
is reached, while up to Eeff = 1kBT , essentially no influence
of the EBE on α is observed, and thus the motion is completely
drift dominated. Note, however, that the proportionality factor
in the scaling law T (M) � Mα does depend on the EBE; as
we will see later. In the right panel of Fig. 2 we show examples
for the scaling of the mean translocation time with chain
length.

III. SEQUENCE DEPENDENCE OF THE MEAN
TRANSLOCATION TIME

We now include the effect of the sequence of monomers
with different binding affinities for chaperone binding. As
stated earlier, we consider two sorts of monomers, A and B,
and we consider chaperones of size λ = 2. The adjacency
probabilities of finding two different monomers next to
each other are PAA, PBB , and PAB , with the corresponding
binding energies εAA, εBB , and εAB = εBA. For simplicity,
we assume equal numbers of the two monomers, NA = NB .
Our simulation was performed for five to ten randomly
constructed polymers with the same PAB , and each polymer
was translocated for at least 103 times.

A given sequence of monomers A and B along the
chain-to-be-translocated corresponds to a form of quenched
disorder. That means that the contribution from the binding
energy enters the partition function through the fixed sequence
εm, where m = 1,2, . . . ,M denotes the monomers along the
translocating chain, and assumes the two values εA and εB .
For a random sequence of monomers, only specified by the
probability PAB that monomer A is adjacent to monomer B,
we can investigate the effect of PAB in a mean-field approach.
To this end, we write the backward rate W−(m) in the form

W− = 1

2τ0
(1 − P ), (22)

where P is the mean-field binding probability. This quantity
is based on the explicit probabilities for finding a chaperone
bound to the monomer pair AA, AB, or BB, for which the
equilibrium expressions are, respectively,

P bind
AA = χ (A)2

1 + χ (A)2
, P bind

BB = χ (B)2

1 + χ (B)2
,

(23)
P bind

AB = χ (A)χ (B)

1 + χ (A)χ (B)
.
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FIG. 3. (Color online) Mean translocation time T as a function of the adjacency probability PAB for different values of EBE for monomer
types A and B, varying between −2 and 2. The chain length is M = 100 monomers, and λ = 2. In all cases the EBE is comparatively small,
and the translocation speed improves for increasing adjacency probability PAB . In the plots, the pairs of numbers a,b denote the effective
binding energies Eeff (A),Eeff (B).

The binding probability per chaperone in this mean-field
approach is therefore

P = 1
2 (1 − PAB)

(
P bind

AA + P bind
BB

) + PABP bind
AB , (24)

in terms of the adjacency probability PAB . Thus, when we
have a fully alternating sequence (AB)M/2 corresponding to
PAB = 1, then P = P bind

AB , and the translocation is dominated
exclusively by the sum of the two binding energies (Fig. 3).
In the opposite limit of a block copolymer (A)M/2(B)M/2

or (B)M/2(A)M/2, we observe PAB = 0 and P ∼ 1
2 (P bind

AA +
P bind

BB ) [36].
The mean-field translocation time, according to Eq. (5),

becomes

T = 2τ0

P

(
M + 1 − 1 − P

P
[1 − (1 − P )M+1]

)
. (25)

For sufficiently long chains M � 1, any value of P different
from 0 leads to the approximate drift-diffusion behavior
T ∼ 2τ0M/P , reaching its minimum for maximal binding,
P = 1. Conversely, when binding becomes very poor, P → 0,
the leading-order scaling of T with the chain length
follows the diffusive scaling T ∼ τ0M

2. In the Appendix, we
introduce the diffusion advection equation as the continuum
limit of the translocation process. As shown there, the Péclet
number Pe = PM/2 distinguishes between drift-dominated
and diffusion-dominated regimes.

To see how the translocation dynamics depends on the
sequence of monomer types A and B we perform simulations,
in which we vary the respective EBE between −2kBT and
2kBT and study the dependence of the mean translocation
time T on the adjacency probability PAB . Figure 3, for a
polymer length of M = 100, confirms that higher values of the
EBE, implying weaker binding affinity, indeed lead to longer
translocation times. We observe that the mean translocation
time is increasingly sensitive to the adjacency probability for
the growing difference between the EBE of monomers A and
B: T is highest when A and B separate into a block copolymer.
In this case, there is one part of the chain that shows high
affinity to the chaperones, and therefore translocates faster,
while the second part of the chain has low chaperone affinity,
and experiences a smaller translocation bias. For instance,

for the combination 2, − 2, the effect for the relatively short
chain M = 100 already amounts to a factor of 4 between
vanishing and full adjacency. At around PAB ≈ 0.5, the decay
of T with growing PAB turns over to a plateau for larger
PAB . This is an interesting observation; it indicates that for
the best translocation performance, there is approximately
no difference between a completely random sequence of
monomers A and B (PAB = 1/2), or a completely adjacent
sequence (AB)M/2. For small difference of the EBE for
monomers A and B, an almost constant dependence of T

with PAB is observed. As it should, no sensitivity of T with
PAB shows when both monomer types have the same EBE.
We also see a clear difference of the T values for identical
EBE values of 1 and 0 [e.g., (1,1) vs (0,0)]. Thus, despite
the fact that the scaling exponent α is insensitive to values
of EBE below ≈1 (cf. Fig. 2), the corresponding prefactor
still significantly varies when the EBE values range in this
interval. We also observe that several curves converge to each
other. As expected from our mean-field analysis, this occurs
for all cases in which the sum of the two EBEs coincides, as
the combined binding energy dominates the translocation time
at high adjacency.
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FIG. 4. (Color online) Mean translocation time T as a function
of the adjacency probability PAB for different values of EBE for
monomer types A and B, varying between 1 and 8. The chain length is
M = 100 monomers. Here the sum of the two EBEs is large, effecting
an increase of T with PAB , in contrast to the trend for smaller EBE
values in Fig. 3.
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FIG. 5. (Color online) MFPT vs EBE [Eeff (A) = EBE(B)] for
M = 100 and λ = 2. Hardly any variation is observed up until
Eeff ≈ 0, while above Eeff ≈ 4 a plateau is reached. An inflection
occurs at Eeff ≈ 2. In this plot we also consider cases with chaperone-
chaperone cooperativity. These are indicated by the numbers from
−2 to 2: For each bound chaperone that binds right next to another
chaperone, this EBE offset is added to the overall binding affinity.
No significant dependence on the cooperativity is observed. The solid
line is the result of the mean-field approximation, Eq. (25).

Will the mean translocation time always decrease with
PAB? As shown in Fig. 4, there may be situations when T

actually increases with PAB . To understand this phenomenon,
consider the results for the mean translocation time of a
homopolymer as function of EBE plotted in Fig. 5. We see
that T is essentially insensitive to EBE for values below
≈0. At larger values of EBE, the curve T (EBE) exhibits an
inflection, changing from positive to negative curvature. With
the results from our mean-field approach this implies that, also
in a heteropolymer, for a highly adjacent sequence of A and B

monomers the sum of the two binding energies reaches high
values when only one of the two EBE values is high. Thus,
in a random or completely adjacent A-B sequence, the mean
binding affinity is still low, and chaperones do not bind to any
part of the chain. By contrast, when the sequence is less mixed,
chaperones may still bind to the domains rich in the monomer
with the higher chaperone affinity. In this case a portion of the

chain induces a more directed translocation dynamics, whereas
the rest of the chain has almost freely diffusive character. As
a consequence, for such EBE values, the mean translocation
time T indeed increases with PAB . Thus, the absolute values
of EBE strongly influence the translocation dynamics. Note
that, for the parameters considered here, cooperativity between
adjacently binding chaperones does not significantly influence
the magnitude of T (Fig. 5).

A. Probability density function of translocation times

A measure for the spread of the translocation times is
the corresponding probability density function (PDF), which
is expected to decay exponentially [37]. In Fig. 6 we show
the results for the translocation time PDF for polymers with
effective binding energies Eeff(A) = 2 and Eeff(B) = −2, for
different adjacency probabilities PAB . The chains used in these
simulations were constructed such that, for a given value of
PAB , the center of the chain consisted exclusively of B (A)
monomers, around these we put monomer pairs AB, and
toward the extremities we locate exclusively A (B) monomers.
In the left part of Fig. 6 we collect the results for B monomers
in the center, while in the right part the central monomers are
of type A. It can be seen that the translocation becomes less
efficient with decreasing adjacency. Moreover, those chains
with higher chaperone affinity in their center (central B

monomers) translocate faster. For (statistically) symmetrical
distributions of chain monomers around the middle of the
chain, the passage of the central part of the chain therefore
corresponds to a limiting regime of the translocation process.
For block copolymers this behavior changes, as we will
demonstrate for the monomer waiting times.

1. Direction invariance of translocation time probability density

It was demonstrated quite generally that the probability
densities for the first passage in a finite geometry are direction
independent, despite the presence of an external bias [38].
For the translocation problem this means that, with respect to
the translocation force, the downhill and uphill translocation
time distributions are identical. The reason for this seeming
contradiction is that, for these distributions, only successful
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FIG. 6. (Color online) Transloaction time PDFs for polymers with effective binding energies Eeff (A) = 2, and Eeff (B) = −2, and with
varying adjacency probabilities PAB (indicated in % for the different curves in the plots). Left: Translocation time PDF for chains with central
B monomers. Right: The same, but with central A monomers. In the right graph both the maxima are shifted to longer times and the exponential
tails are wider.
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FIG. 7. (Color online) Left: PDF of the first passage times for a
polymer with EBE = 0 and M = 12. The curve “LPassage” stands for
chains that are released on the trans side of the pore (at m = M) and
then translocate uphill to the cis side (m = 0). The curve “RPassage”
stems from the opposite, downhill translocation from m = 0 to m =
M . Both curves show excellent agreement, as predicted theoretically.
Right: Plot of the return time distributions. “LReturn” denotes chains
that are released at m = 0 and eventually return uphill, rather than
translocating to m = M . “RReturn” corresponds to chains that are
released at m = M and return to that point, and do not translocate
uphill. In this plot the effect of the chaperones leading to a bias toward
the trans side is visible at longer times.

events are considered: The net flux of the translocation process
remains directed.

We analyzed this prediction for chaperone-driven translo-
cation; the results are displayed in Fig. 7. As can be seen, the
agreement between left-to-right and right-to-left translocation
time probability densities is perfect, thus corroborating the
invariance for reversible chaperone driving. The chains used
for this analysis are relatively short (M = 12), to allow
sufficient repeats (105 times) of the uphill translocation. In this
setup, the previously reflecting boundary at m = 0 is changed
to an absorbing boundary in the simulations. For the chosen
parameters, the probability to move from trans to cis side
versus moving from cis to trans side is about 0.7. Note the
logarithmic ordinates in both plots of Fig. 7, in which the linear
asymptotic corresponds to the expected exponential decay of
first passage distributions in a finite domain. In Fig. 7 we also
plot the return time distribution to the left (m = 0) and right
(m = M) boundaries. Here the bias toward the right (trans)
side is reflected in the obtained statistics.

B. Waiting times and effective translocation force

We now proceed to analyze the waiting times per monomer
(i.e., the time elapsing between the passage of monomer m and
m + 1 through the pore). In Fig. 8 we show the mean waiting
time, averaged over 103 translocation runs, for three cases with
different adjacency and chain orientations versus translocation
direction. For negligible adjacency, corresponding to the block
copolymers AM/2BM/2 or BM/2AM/2, depending on the chain
direction, the waiting times clearly differ for the two polymer
blocks. For the completely mixed chain, the mean waiting
time is approximately constant throughout the translocation
process, as expected.
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FIG. 8. (Color online) Mean waiting time for the following
cases. Top panel: Low adjacency PAB � 0.01, and EBEs Eeff (A) = 0
and Eeff (B) = −2. The chain part rich in monomer type B enters
the pore first, and translocation is faster for the first half of the
chain. Middle panel: Same as before, but now the chain part rich
in monomer type A enters the pore first. Bottom panel: Same EBE
values, but almost complete adjacency (PAB = 0.99); the waiting
times are approximately constant throughout the chain. Note the
oscillations due to the size of the chaperones, λ = 2.

Figure 9 features the cumulative waiting time correspond-
ing to Fig. 8 (i.e., we plot the sum of the waiting times up
until position m). In this plot, for the block copolymer case
the difference between higher and lower binding affinity and
the resulting effective force exerted on the chain is distinct,
and the summation smoothens the behavior. In contrast to the
block copolymer case, the completely adjacent chain does not
lead to a change in slope.

Finally we evaluate the effective force exerted on each
monomer during the translocation process; cf. Refs. [28,39].
Figure 10 shows the results for two block copolymers, and
a case of maximal adjacency. In the block copolymer case,
an appreciable force is only exerted for those monomers with
significant binding energy. In that case strong oscillations oc-
cur, stemming from the parking-lot effect: A single chaperone
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FIG. 9. (Color online) Cumulative waiting times corresponding
to Fig. 8.
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FIG. 10. (Color online) Effective force F (m) exerted by the
chaperones on the translocating chain. The EBE values are Eeff (A) = 0
and Eeff (B) = −2, and we have λ = 2. Solid (green) line: Block
copolymer (A)50(B)50. Dash-dotted (black) line: Block copolymer
(B)50(A)50. Dashed (blue) line: Completely adjacent chain (AB)50.

needs two free binding sites to bind. The chain therefore
needs to randomly make two steps to the trans side before an
additional chaperone can bind. Indeed, the sawtooth pattern
has a repeat of two monomers. The fact that the value of the
force does not drop down to zero stems from the finite binding
energy for the second polymer block. In the opposite case
of complete adjacency, (AB)M/2, initial oscillations due to
the parking-lot effect occur; however, they die out after some
40 monomers arrive on the cis side.

IV. CONCLUSIONS

We investigated the effect of the sequence dependence of
the binding energies of binding proteins (chaperones), which
partially rectify the passage of a stiff polymer chain through
a small pore in a membrane. In particular, we analyzed
the dependence of the mean translocation time T on the
adjacency probability PAB of two kinds of monomers, A

and B. Depending on the value of the effective binding
energies for chaperone binding to A and B, we observe three
behaviors of T as a function of PAB that can be understood
in terms of a mean-field approach: (i) When the difference
between the binding affinity to monomers A and B is small,
T is approximately independent of the adjacency probability
PAB . (ii) When the values of the EBE are sufficiently small,
an increase of PAB leads to appreciable chaperone binding
throughout the translocating chain, and therefore T decreases
with growing PAB . (iii) The opposite case is observed when the
EBEs are large. This effect is related to the curvature change
in the T (Eeff) dependence.

As a function of the adjacency probability PAB at given
EBE values, there exist two regimes: one, in which the value
of T varies with PAB , and another, in which T reaches a
plateau. This effect is due to the mixing of A and B; we
demonstrated that already at values of PAB around 1/2 the
dynamic response approaches that of a completely mixed
chain. The key parameters of sequence-dependent chaperone-
driven translocation are therefore the effective binding energy
and the degree of mixing of monomers A and B along the
chain.

Additional details were shown in the analysis of the
probability density function for the first passage of the chain
across the pore. The decay of this PDF is exponential, and the
maximum becomes increasingly sharp when the translocation
approaches the completely rectified case (ratchet). Moreover,
it turns out that a limiting step is connected to the translocation
of the central part of the chain. We also showed that, as
predicted, the translocation time PDF for chaperone driving is
symmetric for uphill and downhill motion, while the existing
bias is preserved in the left-right return time distributions. The
waiting times per monomer and the effective force exerted on
the translocating chain mirror the size effect of the chaperones,
covering more than one chain monomer: This effect produces
pronounced oscillations as a function of the translocation
coordinate m.

The detailed distribution of binding affinities along chains-
to-be-translocated may therefore be used to tune the transloca-
tion dynamics in chaperone-driven translocation processes. It
would be interesting to extend this study to naturally occurring
chaperones and typical chain sequences, including possible
chaperone-chaperone cooperativity effects. In particular, it
would be interesting to see to what extent the chaperone driving
is sequence optimized in living cells.
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APPENDIX: DRIFT-DIFFUSION MODEL FOR
CHAPERONE-INDUCED TRANSLOCATION

For the case of a homogeneous chain and chaperone size
λσ we can introduce the continuum limit of the master
equation (1). With the diffusion constant D = σ 2/[2τ0] and
the velocity

v = W+ − W− = 1

2τ0

χλ

1 + χλ
, (A1)

we can pass from the difference quotient to the differentials,
and reach the diffusion advection equation

∂P(x,t)

∂t
+ v

∂P(x,t)

∂x
= D

∂2P(x,t)

∂x2
, (A2)

where x is the dimensional translocation coordinate, obtained
from mσ in the simultaneous limit σ,τ0 → 0. Finally, P(x,t)
is the probability density to find the chain at coordinate x at
time t . The initial condition is to start fully on the cis side of
the pore (i.e., at x = 0). The boundary conditions are reflecting
at x = 0 and absorbing at x = L = Mσ . Note that, due to the
absorbing boundary condition, the distribution P(x,t) is not
normalized but decays to zero over time.

In this so-called transmission mode, the problem can
be solved exactly in Laplace space. The result for the
corresponding probability flux across the absorbing boundary
can be written in the form [40]

j (L,s) = Pse
Pe

Pe sinh(Ps) + Ps cosh(Ps)
, (A3)
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where

Pe = vL

2D
(A4)

is the Péclet number defined as the dimensionless
ratio of the flow versus the diffusion strength. For
large Pe, the problem is dominated by the (directed)
drift; in the opposite case, by (random) diffusion. With
the binding probability P = χλ/(1 + χλ) we therefore
see that

Pe = 1
2PM. (A5)

Moreover, in Eq. (A3) we defined the quantity

Ps = 1

2D

√
v2 + 4DsL. (A6)

In Eq. (A3) the Laplace transform of the probability flux is
given by

j (L,s) =
∫ ∞

0
j (x,t)e−st dt

∣∣∣∣
x=L

. (A7)

Taylor expansion of this relation in terms of the Laplace
variable s then produces the moments of the first passage time.
In particular, for the mean first passage time, corresponding to
the mean translocation time, one obtains [40]

T = L2

D

(
1

2Pe
− 1

4Pe2 (1 − e−2Pe)

)
. (A8)

At low driving, corresponding to high EBE values, the
translocation is purely diffusive, T ∼ L2/[2D], while at high
Péclet numbers, the mean translocation time decreases as
T ∼ L/v.
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