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Abstract
We demonstrate that continuous time random walks in which successive waiting
times are correlated by Gaussian statistics lead to anomalous diffusion with
the mean squared displacement 〈r2(t)〉 � t2/3. Long-ranged correlations of
the waiting times with a power-law exponent α (0 < α � 2) give rise to
subdiffusion of the form 〈r2(t)〉 � tα/(1+α). In contrast, correlations in the
jump lengths are shown to produce superdiffusion. We show that in both cases
weak ergodicity breaking occurs. Our results are in excellent agreement with
simulations.

PACS numbers: 05.40.Fb, 02.50.Ey

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The continuous time random walk (CTRW) theory was introduced more than 40 years ago
[1] to extend regular random walks on lattices to a continuous time variable. We characterize
each jump in a CTRW process by a waiting time τ elapsing after the previous jump, and a
variable jump length ξ . Each τ and ξ are independent random variables, identically distributed
according to the probability densities ψ(τ) and λ(ξ). For a power-law form ψ(τ) � τ−1−β

with 0 < β < 1 the characteristic waiting time
∫ ∞

0 τψ(τ) dτ diverges and the resulting CTRW
is subdiffusive, 〈r2(t)〉 � tβ . For λ(ξ) � |ξ |−1−γ with 0 < γ < 2, the jump length variance∫ ∞
−∞ ξ 2λ(ξ) dξ diverges and we obtain a superdiffusive Lévy flight. Spatiotemporal coupling

of jump length and waiting time leads to Lévy walks with finite 〈r2(t)〉 � tβ with 1 < β < 2
[2]. The CTRW model was championed in the seminal work on charge carrier transport in
amorphous semiconductors [3]. The CTRW theory has also been successfully applied in
subsurface tracer dispersion [4], tick-tick dynamics in financial markets [5], cardiological
rhythms [6], electron transfer [7], noise in plasma devices [8], dispersion in turbulent systems
[9], search models [10] or in models of gene regulation [11], among many others [12]. CTRW
models are closely related to the fractional Fokker–Planck equation [12, 13].
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In a CTRW process after each jump, a new pair of waiting time and jump lengths are drawn
from the associated distributions, independent of the previous values. This independence of
the waiting times and jump lengths giving rise to a renewal process is not always justified. As
soon as the random walker has some form of memory, even a short one, the variables become
non-independent. Examples are found in financial market dynamics [14], single trajectories
in which there is a directional memory [15], or in astrophysics [16]. An important application
is to search processes and human motion patterns in which memory and conscience will likely
lead to a non-renewal situation. A general mathematical framework was developed for non-
independent CTRWs [17]; however, it is quite cumbersome to apply and the cases solved so
far only lead back to normal diffusion. An approach to coupling of waiting times based on
the Langevin equation formulation of CTRW processes was recently introduced [18]. Some
special cases were explored that bridge between CTRW and fractional Brownian motion [19].
Here we introduce a simple way to establish correlations in CTRW processes. Correlations
between successive waiting times are shown to give rise to subdiffusion even when they are
Gaussian, while correlations between jump lengths produce superdiffusion. We also consider
long-ranged correlations and discuss anticorrelation effects. Our scaling arguments are in
excellent accord with simulations.

After introducing the general framework we demonstrate how correlated waiting times
lead to subdiffusion and weak ergodicity breaking. We then consider correlations in the jump
length, and proceed to analyse anticorrelation effects. Finally, we provide some details on the
derivations and draw our conclusions.

2. General framework

Let us briefly review the general framework for correlated CTRWs from [17] for correlated
waiting times. Then the waiting time ψn for a given step n is conditioned by the previous
waiting time ψn−1, as quantified by the joint probability P(ψn,ψn−1) = P(ψn|ψn−1)P (ψn−1).
Here P(ψn−1) is the probability of having the waiting time ψn−1 in the previous step, and
P(ψn|ψn−1) is the conditional probability of finding a waiting time ψn for given ψn−1. The
normalization conditions are∫ ∞

0
P(ψn) dψn = 1,

∫ ∞

0

∫ ∞

0
P(ψn,ψn−1) dψn dψn−1 = 1,∫ ∞

0
P(ψn|ψn−1) dψn = 1.

(1)

By recurrence, we obtain the joint probability

P(ψn,ψn−1, . . . , ψ0) =
n∏

k=1

P(ψk|ψk−1)P (ψ0), (2)

demonstrating that the waiting time ψn in fact depends on all previous waiting times. Note
that in the decoupled case P(ψk|ψk−1) = f (ψk)g(ψk−1), we get back to a regular renewal
CTRW.

The marginal probability of ψn is defined as P(ψn) = ∫ ∞
0 P(ψn|ψn−1)P (ψn−1) dψn−1.

According to equation (2), this leads to an n-fold integration over the product on its right-hand
side. In the general case, it is quite hard to compute this quantity, and this is why in previous
literature only normal diffusion was treated in this framework.
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3. Random walk of waiting times

Instead of constructing the process from definitions (1) and (2) we start from a different angle.
Namely we build the value of waiting time ψn from the previous waiting time plus a random
deviation δψn:

ψn = ψn−1 + δψn. (3)

The sequence of waiting times can therefore be viewed as a random walk in the space of
waiting times. Similarly, we will proceed with coupled jump lengths below. The waiting time
ψn can therefore be expressed through ψn = ∑n

i=0 δψi , where we assumed that ψ0 = δψ0,
without loss of generality. A reflecting boundary condition at ψ = 0 ensures that the waiting
times are positive. If the random variations δψn are normally distributed, we can obtain the
following conditional probability:

P(ψn|ψn−1) = 1√
4πσ 2

[
exp

(
− (ψn − ψn−1)

2

4σ 2

)
+ exp

(
− (ψn + ψn−1)

2

4σ 2

)]
. (4)

The mean squared displacement (MSD) for this process grows with the number of steps as
〈(�ψ(n))2〉 ∼ 2σ 2n for large n. To proceed, we compute the probability P(t, n) to have made
n steps up to time t. In the Laplace space1

P(s, n) =
∫ ∞

0
P(t, n) e−stdt = 1 − ψn(s)

s

n−1∏
i=0

ψi(s). (5)

After some calculations we arrive at (see the appendix)

P(s, n) = 1

s

[
δψ

(√
n(n + 1)(2n + 1)

6
s

)
− δψ

(√
(n + 1)(n + 2)(2n + 3)

6
s

)]
. (6)

We obtain the Laplace transform of the mean number of steps by summation, 〈n(s)〉 =∑∞
n=0 nP (s, n). With the approximations detailed in the appendix, we find in a leading order

around s = 0 (corresponding to long times),

〈n(s)〉 ∼ 1

s

31/3
(5/3)

(sτ )2/3
⇒ 〈n(t)〉 ∼

(
t

σ

)2/3

, (7)

where we assumed τ ∝ σ . At long times the Gaussian waiting time correlation results in the
subdiffusion law [20]

〈r2(t)〉 = 〈δr2〉〈n(t)〉 ∼ Kt2/3, (8)

where 〈δr2〉 is the jump length variance of the process and K = 〈δr2〉/σ 2/3 the generalized
diffusion constant. Equation (8) is one of the main results of this work. We stress again that
this subdiffusion emerges from a random process that has a finite waiting time in each step.
However, as time proceeds this waiting time slowly diverges [〈�ψ(n)〉 ∼ n1/2], due to the
diffusive coupling of waiting times.

If we take a sharp correlation of waiting times with σ = 0, equation (4) leads to
P(ψn) = δ(ψn − ψ0) + δ(ψn + ψ0). At each step the waiting time is the same. The
mean waiting time is 〈ψn〉 = ∫ ∞

0 ψ [δ(ψ − ψ0) + δ(ψ + ψ0)] dψ = ψ0 such that we find the
classical Brownian motion with the diffusion coefficient 〈δr2〉/ψ0, as it should be.

Consider now the case of a stable distribution with index α for δψ . For 1 < α � 2 the
first moment 〈δψ〉 = τ of the random walk in ψ space is still finite. We then follow similar
steps as outlined above, obtaining

〈n(t)〉 ∼ (t/σ )α/(α+1) ⇒ 〈r2(t)〉 � Ktα/(α+1). (9)

1 We denote the Laplace transform by explicit dependence on the variable: f (s) = L {f (t)} = ∫ ∞
0 f (t) exp(−st) dt .
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Figure 1. 〈r2(t)〉 for a waiting time correlated 3D Gaussian walk. The δψ follow an α-stable law
with scale factor c = 1; α decreases from top to bottom. Simulations (—) and power-laws (· · ·)
with fitted exponents 0.35, 0.50, 0.60, 0.66. Theoretical values α/(α + 1): 0.33, 0.50, 0.60, 0.66.
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Figure 2. Same as figure 1 with α = 0.5 and various scale factors c (c increases from top to bottom).
Simulations (—) and power-laws (· · ·) with slope 0.33 (c = 1, 10, 100) and 1 (c = 1.000, 10.000).
Note the turnover to slope α/(α + 1) at t ∼ c. Compare with the text.

The case 0 < α � 1 is somewhat more involved. We argue that for any stable distribution,

we have
∑n

i=1 ψi(t)
d∼ n−(α+1)/αδψ(n−(α+1)/αt), where

d∼ is a scaling equality of distributions.

This leads to the relation t (n)/σ
d∼ n(α+1)/α , such that equation (9) still holds for any 0 < α � 2.

We note that result (9) was retrieved from a Langevin equation approach in [18].
For a stable distribution the jumps between successive waiting times become increasingly

larger when α is decreased, affecting even slower diffusion 〈r2(t)〉 � tα/(α+1). In the limit
α = 2, we are back to the Gaussian diffusion in ψ space and a 2/3 subdiffusion in position
space, 〈r2(t)〉 � t2/3. In figure 1 we demonstrate excellent agreement between our analytical
findings and simulations results of random processes performed with stable correlations
between successive waiting times.

The characteristic function of the stable variable δψ is φδψ(q) = exp(−|cq|α), see [20].
While at long times the predicted subdiffusive behaviour is attained, we observe a transient
regime of normal diffusion, 〈r2(t)〉 � t , when the scale factor c increases (see figure 2). At
short times, we may neglect the probability that the random walker makes more than one step.
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The probability of making the first step corresponds to the cumulative function of the waiting
time distribution Fδψ(t),

Fδψ(t) = 2

π

∫ ∞

0

sin(tq)

q
φδψ(q) dq ∼ 2
(1 + 1/α)

πc
t. (10)

Thus, the initial linear slope in the ensemble average is due to the linearity of the cumulative
function for short waiting times. This effect vanishes as soon as the probability increases that
the walker makes two or more steps, and converges to the predicted long-time behaviour (9).

3.1. Weak ergodicity breaking

When dealing with the time series of a single particle trajectory of length T, instead of the
ensemble averaged MSD 〈r2(t)〉 one calculates the time-averaged MSD

δ2(�, T ) = 1

T − �

∫ T −�

0
[r(t + �) − r(t)]2 dt, (11)

relating two positions separated by the lag time �. Ensemble averaging equation (11)
the square brackets become 〈[r(t + �) − r(t)]2〉 = 〈δr2〉〈nt,t+�〉 where 〈δr2〉 is the (finite)
variance of jump lengths, and 〈nt,t+�〉 counts the average number of jumps in the time
interval [t, t + �]. For the normal diffusion 〈n(t)〉 = t/τ and therefore δ2(�, T ) = 2 dK�

behaves exactly as the ensemble average such that the lag time � is exchangeable with the
process time t of the ensemble average. In contrast, in a subdiffusive renewal CTRW with
the waiting time density ψ(t) � t−1−α (0 < α < 1), while 〈r2(t)〉 � tα , it turns out that
δ2(�, T ) � �/T 1−α for � 
 T , i.e. we observe a so-called weak ergodicity breaking
[21, 22]. Do we observe similar behaviour for our coupled CTRW? With equation (7) and the
relation 〈nt,t+�〉 = 〈n0,t+�〉 − 〈n0,t 〉,

〈[r(t + �) − r(t)]2〉 ∼ 2K[(t + �)α/(1+α) − tα/(1+α)], (12)

with K = 〈δr2〉/(2 dσα/(1+α)), and therefore〈
δ2(�, T )

〉
∼ 2 dK�/T α/(1+α). (13)

Thus, our non-renewal, coupled CTRW also exhibits a weak ergodicity breaking, even in the
limit α = 2 of Gaussian waiting time coupling. Simulations of this process indeed confirm the
predicted scaling of the time averaged MSD with both lag time � and measurement time T. In
figure 3 we demonstrate that individual trajectories show significant scatter in their amplitude,
as observed for renewal CTRW subdiffusion [21].

4. Correlated jump lengths

Let us now consider a random walk with constant waiting time ψ = 1 but correlated jump
lengths. If r(t) is the position of the walker we define x(t) = r(t) − r(t − 1) (x(0) = 0). The
jump length is now assumed to diffuse in x space, with increments δx(t) = x(t) − x(t − 1)

that are normally distributed with mean 0 and variance σ . We find

P(x(t) = (x, y, z)) = 1

(πσ 2t)3/2
exp

(
−x2 + y2 + z2

σ 2t

)
, (14)

with variance 〈x2(t)〉 = 3
2σ 2t . For this process we have r(t) = r(0) +

∑t
i=1 x(i) and obtain

(see the appendix)

〈[r(t) − r(0)]2〉 = t (t + 1)(2t + 1)σ 2

4
. (15)
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Figure 3. Time-averaged MSD as a function of � for a CTRW with correlated waiting time
(T = 2000). The plots show a scatter between individual trajectories that becomes more
pronounced for decreasing α. The data approximately scale as the ensemble average, equation (13).
For very small α we observe a plateau due to the occurrence of extremely long waiting times of
the order of T.
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Figure 4. 3D random walk with correlated jump lengths. We chose x(0) = 0. δx(t) is normally
distributed with σ = √

2. Simulations (◦) and theory (—), equation (15).

Thus, when we assume a diffusion in the space of jump lengths we obtain a Richardson-type
t3 scaling. Figure 4 demonstrates excellent agreement of equation (15) with the simulations
result. For a fixed jump length (σ = 0) all steps have the same length and direction, and the
corresponding random walk is ballistic, 〈r2(t)〉 = x2(0)t2.

Classical diffusion cannot be retrieved with this mechanism, as this would require
directional randomness for jumping left/right. In fact we obtain for the jump correlations
that 〈x(t) · x(t + τ)〉 = 3

2σ 2t . The position correlations become

〈r(t) · r(t + τ)〉 = t (t + 1)(2t + 1)σ 2

4
+

3σ 2t (t + 1)τ

4
. (16)

If the increments δx are distributed according to a stable distribution of exponent α

and scale factor c, each coordinate of r(t) is distributed according to a stable distribution
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Figure 5. Time-averaged MSD as a function of � for ten different trajectories of length T = 2000
with the jump length correlation. We chose σ 2 = 2.

of exponent α and scale factor c(t) = (∑t
i=1 iα

)1/α
c � ct(1+α)/α . The mean squared

displacement diverges for 0 < α < 2 but we observe the superdiffusive scaling x ∼ t (1+α)/α .
In the limit α = 2, using 2c2 = σ 2 we retrieve the previous result (15), while for α → 0 we
find the regular Lévy flight scaling x ∼ t1/α [12].

4.1. Weak ergodicity breaking

The process with coupled jump lengths has the same waiting time for each jump. Could it
still be subject to weak ergodicity breaking? Combining equations (11) and (16) we obtain
the equality 〈

δ2(�, T )
〉
= 3σ 2

4
�2T + σ 2

(
�

4
+

3�2

4
− �3

4

)
. (17)

In the limit � 
 T we find the scaling 〈δ2(�, T )〉 � �2T , contrasting the leading cubic
behaviour 〈r2(t)〉 � t3 of the ensemble average. Thus, also the non-renewal CTRW with
coupled jump lengths leads to a weak ergodicity breaking. Again, simulations corroborate the
scaling with lag time � and overall process time T. In figure 5 we show the scatter between
different trajectories.

5. Anticorrelated waiting times

Another way to introduce correlations is to consider diffusion on a network of nodes on each of
which a different distribution is assumed. We illustrate this approach by anticorrelated waiting
times. Namely we have two waiting time distributions, �1 and �2, such that �1 is centred
around short waiting times and �2 around longer ones. We start by choosing a waiting time
from one of the �i and then pass from one waiting time distribution to the other according to
the following rules: (i) if we are in a state �1 and get a waiting time shorter than a preset t1,
we shift to �2 for the next step. Otherwise we remain with �1. (ii) If we are in a state �2 and
find a waiting time longer than a given t2, we shift to �1, otherwise stay in �2.

We can view this process as a diffusion in a network with two nodes. Being at node i
at step n means that the nth waiting time is extracted from distribution �i . The transition
probabilities between the two nodes are P1 = ∫ t1

0 �1(t) dt and P2 = ∫ ∞
t2

�2(t) dt . The
probability that the nth waiting time is chosen from the distribution �1 is Pr(�1, n) =

7
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Figure 6. Anticorrelated CTRW for a 3D Gaussian walk. ψ1 and ψ2 are normal distributions
centred around 0 and 100. The shift times are t1 = t2 = 50.

(1−P1)Pr(�1, n−1)+P2Pr(�2, n−1), and similarly for �2. These two equations can easily
be solved. With a given initial condition we find

Pr(�1, n) = P2 + λn(P1Pr(�1, 0) − P2Pr(�2, 0))

P1 + P2
, (18)

with λ = 1 − P1 − P2. For n → ∞ we converge to the equilibrium probability Pr(�1) =
P2/(P1 + P2). If both distributions have a finite characteristic waiting time we see that at
n → ∞, 〈ψ〉 = (P2〈ψ1〉 + P1〈ψ2〉)/(P1 + P2).

Consider two limits: (i) if P1 = 1 and P2 = 1 (i.e. t1 → ∞ and t2 = 0) we change
the waiting time at each step. Roughly, if we begin with the distribution �1 we expect
t = n(〈ψ1〉 + 〈ψ2〉)/2 + [1 − (−1)n](〈ψ2〉 − 〈ψ1〉)/4. If 〈ψ1〉 
 〈ψ2〉, at the beginning we
have a short waiting time alternating with a long one. After a long time t 
 〈ψ2〉, however,
we see a smooth curve for the mean squared displacement, see figure 6. (ii) If P1 
 1, we
have a classical CTRW governed by distribution ψ1 that after a while is somewhat modified
by distribution ψ2. At long times we find the same result as in case (i). This model can easily
be extended to a wider network of nodes.

6. Conclusions

We demonstrated that the elusive coupled, non-renewal CTRW can indeed be applied to non-
Brownian processes. Compared to previous models we believe that the idea of diffusion in
the space of waiting times or jump length is quite intuitive and generic, such that this model
will lend itself to a broad class of phenomena. In particular, this approach allows us to
consider Lévy stable correlations in waiting times and jump lengths, significantly generalizing
previous results. We find that correlated waiting times lead to subdiffusion while correlations
in the jump lengths give rise to superdiffusion, even when the waiting time or jump length
increments are Gaussian. We also showed that anticorrelations in the long-time limit produce
normal diffusion.

Both temporal and spatial correlations are demonstrated to lead to weak ergodicity
breaking: the long-time average of the mean squared displacement of a single trajectory
shows different scaling behaviour than the corresponding ensemble average. Surprisingly this
is also the case for jump length correlations in which successive jumps are separated by
constant waiting times.
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Appendix. Explicit derivation of the jump statistics

We here show how the average number of jumps for correlated waiting time, and the position
correlations are calculated.

A.1. Waiting time correlation

To pass from equation (5) to (6) we note that

n−1∑
i=0

ψi =
n−1∑
i=0

i∑
j=0

δψj =
n−1∑
i=0

(n − i)δψi. (A.1)

For a stable law we know that the sum Y of independent, identically distributed random
variables X fulfils [20]

Y =
n∑

k=1

akXk ⇒ Y (s) = X

⎛
⎝(

n∑
k=1

aα
k

)1/α

s

⎞
⎠ . (A.2)

With
∑n−1

i=0 (n − i)2 = ∑n
i=1 i2 = n(n + 1)(n + 2)/6 we see that in the Laplace domain

n−1∏
k=0

ψk(s) = δψ

(√
n(n + 1)(2n + 1)

6
s

)
, (A.3)

leading to equation (6). The mean number of steps, 〈n(s)〉 = ∑∞
n=0 P(s, n)is then found to be

〈n(s)〉 = 1

s

∞∑
n=1

δψ

(√
n(n + 1)(2n + 1)

6
s

)
. (A.4)

Due to its Gaussian nature we know that δψ(s) = 1 − τs + o(s), where τ is the mean
waiting time for a Gaussian random variable of variance σ . As we are only interested in
the behaviour at long times, i.e. small s, we approximate δψ(s) ∼ exp(−τs) and derive the
leading contribution of 〈n(s)〉 around s = 0. With n(n + 1)(2n + 1)/6 ≈ n3/3,

〈n(s)〉 ∼ 1

s

∞∑
n=1

exp(−[n3/3]1/2sτ ). (A.5)

Approximating the sum by an integral, we finally obtain equation (7). For a Lévy stable
statistics of the increments ψi , we use the characteristic function δψ(ω) = exp(−c|ω|α) in
Fourier space denoted by the frequency ω. We find

n−1∏
i=0

ψi(ω) = exp

(
−

n∑
i=1

iα|cω|α
)

, (A.6)

from which we obtain the average number of steps

〈n(ω)〉 =
∞∑

n=0

n
1 − exp(−(n + 1)α|cω|α)

iω
e− ∑n

i=1 iα |cω|α . (A.7)

9
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After approximation of the harmonic number
∑n

i=1 iα ≈ n1+α/(1 + α) and turning from sum
to integral, we find after Fourier transform

〈n(t)〉 ∼ (α + 1)1/(α+1)

2 cos (απ/[2(α + 1)])

(
t

c

)α/(α+1)

. (A.8)

In the limit α = 2 we return to expression (7).

A.2. Jump length correlation

Assume the Gaussian distribution (14) for the jump displacement x(t) = r(t) − r(t − 1) in
the tth jump, with initial condition x(0) = 0. The incremental change of the jump lengths
is δx(t) = x(t) − x(t − 1). Consequently, 〈x2(t)〉 = 3

2σ 2t . We can then calculate the MSD
(�r(t) = r(t) − r(0)),

〈[�r(t)]2〉 =
〈(

t∑
i=1

x(i)

)2〉
=

〈(
t∑

i=1

i∑
j=1

δx(j)

)2〉

=
〈(

t∑
i=1

(t + 1 − i)δx(i)

)2〉

=
t∑

i=1

t∑
j=1

(t + 1 − i)(t + 1 − j)〈δx(i) · δx(j)〉. (A.9)

Due to independence of the increments, 〈δx(i) · δx(j)〉 = 3
2σ 2δij , we obtain the exact

relation (15).
For the jump correlation 〈r(t) · r(t + τ)〉, we start with

〈x(t) · x(t + τ)〉 =
〈

x(t) ·
(

x(t) +
τ∑

i=1

δx(t + i)

)〉
. (A.10)

As x(t) and δx(t + i) are uncorrelated and of mean 0, we obtain 〈x(t) · x(t + τ)〉 = 3
2σ 2t . This

expression allows us to obtain the position correlation

〈r(t) · r(t + τ)〉 =
〈

r(t) ·
(

r(t) +
τ∑

i=1

x(t + i)

)〉
. (A.11)

Since x(t) have zero mean we obtain

〈r(t) · r(t + τ)〉 = 〈(r(t))2〉 +
t∑

i=1

τ∑
j=1

〈x(i) · x(t + j)〉. (A.12)

As 〈x(i) · x(t + j)〉 = 3
2σ 2i, we arrive at equation (16).

For a Lévy distribution of the jump increments the position distribution of the overall
process is stable with index α and scale factor c(t) ∼ ct(1+α)/α/(1 + α)1/α . If we concentrate
on the x coordinate, the characteristic function becomes P(q, t) = exp(−|qc(t)|α). While the
variance of this law diverges, one can calculate fractional moments of order 0 < δ < α [12],
scaling like 〈|x|δ(t)〉 � c(t)δ . We therefore find the superdiffusive scaling x2 ∼ t2(1+α)/α . In
the limit α → 2, this reproduces the cubic scaling x2 ∼ t3 found for Gaussian correlations
in the jump increments. For decreasing α the superdiffusion is enhanced, and in the limit of
small α we find the scaling x2 ∼ t2/α of a regular Lévy flight, i.e. a renewal process with a
Lévy stable jump length distribution λ(ξ) of index α.
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