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The Khinchin theorem provides the condition that a stationary
process is ergodic, in terms of the behavior of the corresponding
correlation function. Many physical systems are governed by
nonstationary processes in which correlation functions exhibit
aging.We classify the ergodic behavior of such systemsand suggest
a possible generalization of Khinchin’s theorem. Our work also
quantifies deviations from ergodicity in terms of aging correlation
functions. Using the framework of the fractional Fokker-Planck
equation,we obtain a simple analytical expression for the two-time
correlation function of the particle displacement in a general bind-
ing potential, revealing universality in the sense that the binding
potential only enters into the prefactor through the first two
moments of the corresponding Boltzmann distribution. We discuss
applications to experimental data from systems exhibiting anoma-
lous dynamics.

anomalous diffusion ∣ ergodicity breaking ∣ single particle trajectories ∣
continuous time random walk ∣ irreversibility

Important tools for analyzing the generally complicated
dynamics of physical observables O are their two-time correla-

tion functions COðt2;t1Þ. These are pair products of dynamic
observables that are averaged over an ensemble, as defined
below. When such a correlation function describes a stationary
process, COðt2;t1Þ is a function of the time difference only; that
is, COðt2;t1Þ ¼ ĈOðjt2 − t1jÞ. For such processes the correlation
function contains the dynamical information on other physical
observables via fundamental theorems (1). For instance, the
Wiener-Khinchin theorem relates the power spectrum to the
correlation function, or the fluctuation-dissipation theorem con-
nects correlation functions to linear response functions. Another
well-known example is Khinchin’s theorem (2), which provides a
criterion for ergodicity of a process in terms of the corresponding
stationary correlation function. However, the stationarity prop-
erty is found to be violated in numerous systems (see below).
These systems exhibit aging properties that are intimately con-
nected to the nonstationary behavior. Correlation functions in
aging systems behave very differently from their stationary coun-
terparts (3–6). For instance, systems may be characterized by cor-
relation functions of the type COðt2;t1Þ ¼ hOðt1∕t2Þ (if t2 ≥ t1); i.e.,
the two times enter as a quotient rather than their difference.
This nonstationary behavior is also connected to a breaking of
ergodicity in the sense that long-time averages differ from ensem-
ble averages of the same quantities (3, 7–10). The relation
between correlation functions and ergodicity breaking can be
quantified by the Edwards–Anderson parameter (3); see below.

We here present a possible generalization of the Khinchin the-
orem for aging systems, namely, provide the condition for ergo-
dicity for systems exhibiting aging. Moreover, for systems with
broken ergodicity we relate fluctuations of time averages to
the corresponding correlation function. In particular, we derive
an analytical expression for the two-time position correlation
function in the presence of an external binding potential UðxÞ
based on the general framework of the fractional Fokker–Planck
equation (11–13). The latter describes systems in which the mean
squared displacement in free space scales subdiffusively as tα, the

anomalous diffusion exponent α ranging in the interval 0 < α < 1
(12–14). Our results for the correlation function are quite general
and could also be applied to continuous time random walk
(CTRW) systems in confined geometries and mean field descrip-
tions of models such as the quenched trap model (14). In parti-
cular, we show that for sufficiently long times the correlation
function behaves universally, and the dependence on the potential
UðxÞ enters only in the prefactor through the first two moments of
the corresponding Boltzmann distribution. Moreover, we demon-
strate agreement of our results with experimental data.

Physical systems displaying nonstationary behavior such as
aging and ergodicity breaking traditionally included glassy systems
such as spin glasses (3), colloidal glasses (15), gels (16), turbulent
systems (17), or tracer dispersion in subsurface hydrology (18),
among others. More recently advanced single-molecule experi-
ments reveal other types of complex systems with similar behavior.
These are systems exhibiting anomalous diffusion and slow, non-
exponential relaxation dynamics (12–14, 19). For instance, they
include blinking quantum dots (20–23), or biologically relevant
systems. The latter include subdiffusion of tracer particles in living
biological cells (24–29) or reconstituted crowding systems (30–33),
protein conformational dynamics (34), or themotion of bacteria in
a biofilm (35). Here we show how the knowledge of the aging
correlation function allows us to quantify the nonergodic behavior
of the underlying process.

Correlation Functions and Ergodicity
Let x be the state of our system—a general point in the phase
space whose dynamics is given by a one parameter flow on the
state space, Ft where t is time (the state space is assumed to
be equipped with the Borel σ-algebra). We refer to an observable
as a measurable function on state space, OðxÞ, which in time t is
therefore OðFtxÞ. We then define the “finite-time average”

Ōðx;tÞ≔ 1

t

Z
t

0

OðFt0xÞdt0 [1]

and the ensemble average

hOi≔
Z

OðxÞμðdxÞ; [2]

where μ is a stationary ensemble measure. The ergodic theorem
asserts that the infinite time limit exists for μ-almost every x,

lim
t→∞

Ōðx;tÞ ¼ Ōðx;∞Þ≕ ¯̄OðxÞ; [3]
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where the function ¯̄OðxÞ is constant on ergodic components, and
that if there exists only one ergodic component, then

¯̄OðxÞ ¼ hOi; [4]

for μ-almost every x. The connection between the ergodic
theorem for the observable O and its two-time correlation func-
tion COðt1;t2Þ≔hOðFt1 ·ÞOðFt2 ·Þi ¼ ∫OðFt1xÞOðFt2xÞμðdxÞ was
established by Khinchin (2), a work of considerable impact on
statistical physics (36–38). Khinchin’s theorem states that an
observable O is ergodic if the associated correlation function is
“irreversible,” in the sense that if O fulfills

lim
jt2−t1j→∞

COðt2;t1Þ ¼ hOi2; [5]

then the process is ergodic, namely, Eq. 4 holds. In the derivation
of Khinchin’s theorem, it is assumed that the process is stationary
and the system reached a steady state, COðt2;t1Þ ¼ ĈOðjt2 − t1jÞ.
Note that for stationary systems (39), irreversibility is a broader
concept than ergodicity, and therefore Khinchin’s theorem can-
not always be reversed.

Having in mind aforementioned nonstationary systems, the
following question arises: Does irreversibility imply ergodicity
also for aging systems? And if not, what theorem replaces
Khinchin’s? To start answering these questions, we quantify ergo-

dicity in terms of second moments, namely, if h ¯̄O2i ¼ hOi2 the
dynamics is ergodic, as originally pointed out by Khinchin, and

h ¯̄Oi ¼ hOi holds for processes where hOðFt ·Þi converges to a
constant. From Eq. 1 we find for the second moment

hŌð· ;tÞ2i ¼ 1

t2

Z
t

0

Z
t

0

hOðFt2 ·ÞOðFt1 ·Þidt2dt1: [6]

Assuming a symmetric correlation function COðt1;t2Þ ¼ COðt2;t1Þ
and aging behavior of the above form COðt2;t1Þ ¼ hOðt1∕t2Þ
(t2 ≥ t1) (i.e., we use the aging regime as the “steady state” of
the system similarly to invoking stationarity in Khinchin’s
theorem), Eq. 6 becomes

hŌð· ;tÞ2i ¼ 2

t2

Z
t

0

Z
t2

0

hOðt1∕t2Þdt1dt2: [7]

After the substitution ðt1;t2Þ → ðz;t2Þ, where z ¼ t1∕t2, we find the
time-independent result

hŌð· ;tÞ2i ¼
Z

1

0

hOðzÞdz: [8]

Eq. 8 is a general relation between the fluctuation of the
time-averaged and ensemble-averaged correlation functions.
For ergodicity to hold, we require for μ-almost every x that
limt→∞ Ōðx;tÞ2 ¼ hOi2 due to Eqs. 3 and 4, and so, because
hhOi2i ¼ hOi2, the condition

hOi2 ¼
Z

1

0

hOðzÞdz [9]

must be fulfilled. Simultaneously we can rewrite the irreversibility
condition limΔ→∞hOðt∕tþ ΔÞ ¼ hOi2 in the form

lim
z→0

hOðzÞ ¼ hOi2: [10]

Thus, to fulfill Eq. 9 the condition 10 is not sufficient, and
Khinchin’s theorem does not hold for aging systems. Namely,
irreversibility does not imply ergodicity in an aging system. We

propose a generalization of Khinchin’s theorem stating that in
the case of irreversible dynamics the condition for ergodicity
in an aging system is given by

lim
z→0

hOðzÞ ¼
Z

1

0

hOðzÞdz: [11]

Thus the knowledge of the correlation function resolves the ques-
tion of ergodicity also for an aging system.More importantly, with
the help of Eq. 8 the correlation function allows one to quantify
the fluctuations of the time averages and ergodicity breaking:

h ¯̄O2i − hOi2 ¼
Z

1

0

½hOðzÞ − hOð0Þ�dz; [12]

where we assumed irreversibility. For the case when the aging
regime starts only for long enough time this relation holds for
t comparable or larger than the starting time of the aging regime.
We now turn to the calculation of the correlation function in an
aging system and prove that it is irreversible but still nonergodic.
The result will be shown to exhibit universal features that,
together with Eq. 12, imply a generic behavior of the fluctuations
of time averages.

Model
Fractional Dynamics. We consider fractional dynamics (see below)
xðtÞ≔Ftx and focus on the state variable as the observable,
namely, OðFtxÞ ¼ xðtÞ. Note that xð0Þ ¼ x. To be specific we con-
sider anomalous diffusion in an external potential
UðxÞ ¼ −∫ xFðx0Þdx0, because this problem attracted considerable
attention in physical sciences (11, 12). The probability density
function of xðtÞ is governed by the fractional Fokker–Planck
equation (11, 12)

∂f ðx;tÞ
∂t

¼ Kα 0D
1−α
t LFPf ðx;tÞ; [13]

in which the Fokker–Planck operator LFP ¼ − ∂
∂x ½FðxÞkBT

� þ ∂2
∂x2

includes drift and diffusion terms (40), Kα is the anomalous
diffusion coefficient of dimension m2∕ secα, and kBT the thermal
energy. The fractional Riemann–Liouville operator

0D
1−α
t zðtÞ ¼ ∂

∂t
1

ΓðαÞ
Z

t

0

zðt0Þ
ðt − t0Þ1−α dt

0; ð0 < α < 1Þ [14]

involves long-range memory effects (12, 13). Eq. 13 describes the
time evolution of the single-time probability density function
f ðx;tÞ and has been studied extensively for different potentials
(12, 13, 41). Eq. 13 can be derived as the long-time limit of a con-
tinuous time random walk model, in which the local probability to
jump left and right is biased by the external potential UðxÞ
(42, 43).

The fractional Fokker–Planck equation (13) can be rephrased
in terms of the Langevin equations (44–47)

dðxðsÞÞ ¼ K
kBT

FðxðsÞÞdsþ dηðsÞ ðaÞ; dt ¼ dωðsÞ ðbÞ; [15]

where s is an internal time (unitless) and t is the physical
(laboratory) time. In Eq. 15 ηðsÞ is standard Brownian motion;
K > 0 is the diffusivity for the normal diffusion process in internal
time s. Conversely ωðsÞ represents an asymmetric Lévy-stable
process of order α such that the probability density function
of s is (41, 45, 46)
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ptðsÞ ¼
1

α

�
Kα

K

�
1∕α t

s1þ1∕α Lα

��
Kα

K

�
1∕α t

s1∕α

�
: [16]

Lα is a one-sided Lévy-stable probability density function with
Laplace transform expð−λαÞ (41). The representation of the frac-
tional dynamics by means of the coupled Langevin equations (15)
is usually termed subordination (44). With Eq. 16 it is easy to
show (41) that statistical properties of xðtÞ are independent of
the choice of K (one may set K ¼ 1, for example). Equations
of the form (15) are useful simulation tools (46, 47) and were
used to investigate multiple-time probability density functions
(45, 48, 49) and correlation functions (50, 51).

Two-Point Probability Density Functions. The relation between the
solution of the fractional Fokker–Planck equation and its Brow-
nian counterpart via subordination can be used to derive the
m-point probability density functions for a subdiffusion process
(45, 48, 49). In particular, the two-point probability density func-
tion is given by (45)

f ðx2;t2; x1;t1Þ ¼
Z

∞

0

ds1

Z
∞

0

ds2nðs2;t2; s1;t1ÞfMðx2;s2; x1;s1Þ; [17]

where nðs2;t2; s1;t1Þ represents the two-point probability density
function of the inverse Lévy-stable process sðtÞ, and
fMðx2;s2; x1;s1Þ is the two-point probability density function of
the corresponding Markovian process xðsÞ defined in Eq. 15
(a). The Laplace transform of n is given by (45)

nðs2;λ2; s1;λ1Þ ¼
expð−s1Λα K

Kα
Þ

λ1λ2

��
K
Kα

�
δðs2 − s1Þ½λα1 − Λα þ λα2 �

þ
�
K
Kα

�
2

Θðs2 − s1Þλα2 ½Λα − λα2 �e−λ
α
2
ðs2−s1Þ K

Kα

�

þ
expð−s2Λα K

Kα
Þ

λ1λ2

�
K
Kα

�
2

Θðs1 − s2Þ

× λα1 ½Λα − λα1 �e−λ
α
1
ðs1−s2Þ K

Kα ; [18]

where Λ≡ λ1 þ λ2 and Θ is a step function. Here and in the
following, the Laplace transform for the variable pairs t1 ↔ λ1
and t2 ↔ λ2 is denoted by the explicit dependence on the respec-
tive variable.

Knowing that xðsÞ is a Markov process, the two-point probabil-
ity density function fMðx2;s2; x1;s1Þ of the process xðsÞ is obtained
from the well-known property fMðx2;s2; x1;s1Þ ¼ PMðx2;s2jx1;s1Þ
PMðx1;s1jx0;0Þ, where x0 is the initial position of the particle
and PMðx1;s1jx0;0Þ is single-time probability function for the
process xðsÞ found by solving Eq. 15(a). We decompose this
expression in the form

fMðx2;s2; x1;s1Þ ¼ Θðs2 − s1ÞPMðx2;s2 − s1jx1;0ÞPMðx1;s1jx0;0Þ
þ Θðs1 − s2ÞPMðx1;s1 − s2jx2;0ÞPMðx2;s2jx0;0Þ:

[19]

From Eqs. 17–19, we obtain the subdiffusive probability density
function in terms of the Markovian two-point probability density
function PM in Laplace space via

f ðx2;λ2; x1;λ1Þλ1λ2Kα∕K ¼ ½λα1 − Λα þ λα2 � ~PM

�
x1;

K
Kα

Λαjx0;0
�

× δðx2 − x1Þ þ
K
Kα

�
λα2 ½Λα − λα2 �

× ~PM

�
x2;

K
Kα

λα2 jx1;0
�

× ~PM

�
x1;

K
Kα

Λαjx0;0
�
þ λα1 ½Λα − λα1 �

× ~PM

�
x1;

K
Kα

λα1 jx2;0
�

× ~PM

�
x2;

K
Kα

Λαjx0;0
��

: [20]

Here ~PMðx; K
Kα

λαjx0;0Þ denotes the Laplace transform ( KKα
λα ↔ s)

of PMðx;sjx0;0Þ, and similarly for Λα. Eq. 20 is the final result con-
necting the two-point probability density function f in Laplace
space to its Markovian counterpart.

Results
Position Autocorrelation. Eq. 20 allows one to calculate general
two-point correlation functions for subdiffusive systems governed
by the fractional Fokker–Planck equation (13). In particular, the
position-position correlation function is

Cxðλ2;λ1Þ ¼
Z

∞

−∞

Z
∞

−∞
x1x2f ðx2;λ2; x1;λ1Þdx1dx2 [21]

in Laplace space. Laplace inversion (see SI Text) delivers the final
result for the two-time correlation function

Cxðt2;t1Þ ∼ ðhx2iB − hxi2BÞ
Bðt1∕t2;α;1 − αÞ
ΓðαÞΓð1 − αÞ þ hxi2B; [22]

valid for t2 ≥ t1 ≫ ð1∕Kαγ1Þ1∕α, γ1 being the smallest nonzero ei-
genvalue of the Fokker–Planck operator LFP (40), and

Bðz;a;bÞ ¼
Z

z

0

ya−1ð1 − yÞb−1dy [23]

is the incomplete Beta function (52). The symbol h·iB denotes an
average over the Boltzmann distribution (i.e., the stationary mea-
sure μ in our example)

hxniB ¼
Z

∞

−∞
xne−UðxÞ∕kBTdx∕

Z
∞

−∞
e−UðxÞ∕kBTdx: [24]

Fig. 1 shows the sigmoidal behavior of the position auto-
correlation function. It is important to note that 22 implies
that the process is irreversible because in the limit Δ → ∞,
Bðt∕tþ Δ;α;1 − αÞ → 0 and Cxðt2;t1Þ → hxi2B.

The result (22) has some remarkable properties. Thus the
external potential UðxÞ enters only via the prefactor, and only
through the first two moments of the corresponding Boltzmann
distribution. The long-time behavior of Cxðt2;t1Þ is universal and
depends only on the ratio t2∕t1.

We note that beta function behavior for a correlation function
was found previously for a simple two-state renewal model with
power-law sojourn times onboth states (3, 20, 22, 23, 53, 54).While
our process is clearly not a two-state process, the universal beha-
vior of expression 22 is due to the separation between the physical
process in space and the associated temporal process. Such a se-
paration is exactly the idea behind the subordination of time,
Eq. 15(b). The temporal process tðsÞ yields the time evolution gov-
erned by the waiting times between successive jumps. Due to the
assumption of annealed disorder it is independent of the current
particle position. It converges as a function of the number of jumps
(∝s) due to the generalized central limit theorem, corresponding
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to the long-time limit s → ∞ in Eq. 15(b). The limiting behavior of
tðsÞ is therefore a Lévy-stable law that is underlying the subdiffu-
sion dynamics. Conversely, the spatial process explores the exter-
nal potential and is not affected by the disorder if observed as a
function of the internal time s. In fact, as a function of s the process
corresponds to normal diffusion in an external field, and so the
process converges to Boltzmann statistics characterized by the
binding properties of the external potential. We note that the re-
sult (22) for the correlation function mirrors the convergence of
both temporal and spatial processes and is independent of the mi-
croscopic properties of the model [e.g., the shape of UðxÞ]. To ob-
tain the behavior when one of the processes has not converged one
needs to use the full correlation function with a nontrivial time
dependence involving all eigen-values of LFP.

Properties of the Two-Time Position Correlation. The correlation
function (22) displays a number of noteworthy features:

(i) Aging behavior. The correlation function Cxðtþ Δ;tÞ exhibits
aging because its time dependence is of the form Δ∕t. Aging
behavior was indeed observed in many complex systems (3, 16,
55), for instance, in thermoremanent magnetization experiments
(55, 56), in which the measured relaxation of the magnetization
Mðtþ Δ;tÞ is proportional to the spin correlation function,
according to generalized fluctuation-dissipation theorems (3,
54, 57). Accepting our stochastic theory as an approximation
for the spin system behavior we used 22 to fit the thermorema-
nent magnetization data from ref. 55. The result of the fit is
presented in Fig. 1. We observe good agreement between the data
and our beta function results over the entire time window, with a
slight discrepancy at short times. We note that the use of a non-
zero value for the fitting parameter hxi2B in 22 for the zero external
field relaxation of the magnetization is consistent with observed
asymmetric magnetic fluctuations in thermoremanent magnetiza-
tion experiments (58) as opposed to the naively expected zero
average behavior. Fitting with the beta function for the measured
correlation function does not necessarily yield insight into the
physics of the system, but classification of aging with particular
fitting functions might be a profitable step (as the well-known
functions, such as Cole–Cole functions, are useful in the
classification of dielectric relaxation).

(ii) Time-averaged position. We quantify ergodicity, or the depar-
ture from ergodicity, of the system by measuring fluctuations
of the finite-time-averaged position x̄ðtÞ ¼ 1

t ∫
t
0xðt0Þdt0 (note that

both the left- and right-hand side depend implicitly on the initial
position x, which is suppressed in our notation xðtÞ and, hence,
suppressed on the left-hand side as well). Combining Eq. 8
and 22, we see that

h¯̄x2i ¼ lim
t→∞

hx̄ðtÞ2i ¼ ð1 − αÞðhx2iB − hxi2BÞ þ hxi2B; [25]

where we used the relation ∫ 1
0Bðz;α;1 − αÞdz ¼ ð1 − αÞΓðαÞΓ

ð1 − αÞ. This result was previously obtained for a CTRW process
(59). Clearly h¯̄x2i ≠ hxi2B when α < 1; thus we observe weakly
nonergodic behavior. In the limit α ¼ 1 ergodicity is restored.

(iii) Edwards–Anderson parameter. The Edwards–Anderson para-
meter was previously used to quantify the degree of weak ergo-
dicity breaking in the context of spin glasses (3). It is defined as

qEA ¼ lim
Δ→∞

lim
t→∞

COðtþ Δ;tÞ: [26]

In our current framework, for the case of a symmetric potential
the Edwards–Anderson parameter becomes

qEA ¼
� hx2iB; α < 1

0; α ≥ 1
; [27]

reflecting irreversibility of our process that is still nonergodic.
Conversely, interchanging the limits we find that

lim
t→∞

lim
Δ→∞

Cxðtþ Δ;tÞ ¼ 0; [28]

reflecting the aging character of the system. Note that Eq. 27
indicates that qEA is determined by the Boltzmann distribution
and is independent of α in the nonergodic phase.

(iv) Time-averaged mean-squared displacement. From 22 we also
obtain the behavior of the ensemble average of the time-averaged
mean-squared displacement (60, 61). Namely, from a time series
xðt0Þ recorded in single particle tracking experiments one can
define the time-averaged mean-squared displacement

δ2ðΔÞðx;t − ΔÞ ¼ 1

t − Δ

Z
t−Δ

0

½xðt0 þ ΔÞ − xðt0Þ�2dt0; [29]

where t is the overall measurement time, whereas the dependence
on x enters implicitly on the right-hand side through xðtÞ. To
unburden the notation, in the following we drop the arguments
(x, t − Δ) from δ2ðΔÞ. At finite measurement time t even in the
Brownian limit the quantity δ2ðΔÞ is a random quantity depend-
ing on the particular trajectory. Performing an additional ensem-
ble average, for a Brownian system the role of the lag time Δ in
the long measurement time limit is completely interchangeable
with the regular t dependence in the corresponding ensemble-
averaged mean-squared displacement, for example, when
UðxÞ ¼ 0, limt→∞ δ2ðΔÞ ¼ 2KΔ. In the presence of a confining
potential, one would naively expect the mean-squared displace-
ment to saturate, as observed for a Brownian system. However,
evaluating the ensemble average of δ2ðΔÞ,

hδ2ðΔÞi ¼
R
t−Δ
0 ½Cxðt0 þ Δ;t0 þ ΔÞ þ Cxðt0;t0Þ − 2Cxðt0 þ Δ;t0Þ�dt0

t − Δ
;

[30]

we find the a priori surprising result: For regular diffusion in a
binding potential one obtains a saturation for long times, as for

Fig. 1. Position correlation functionCxðt2;t1Þ from22 (solid line) as a function
of the scaled time Δ∕t for α ¼ 0.525, where Δ ¼ jt2 − t1j. The values of the
Boltzmann moments are hx2iB ¼ 0.217 and hxi2B ¼ 0.102. We also show data
(○ symbols) for the magnetization Mðt þ Δ;tÞ from the thermoremanent
magnetization experiment reported in ref. 55 in a Cu0.94Mn0.06 sample, show-
ing aging behavior. The presented data correspond to the longest measured
waiting time, t ¼ 10;000 s.
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anomalous motion in the case of the ensemble average (12, 13). In
contrast, for the time-averagedmean-squared displacement in our
anomalous system from Eq. 30, we find from the beta function ex-
pansion Bðt0∕ðt0þΔÞ;α;1−αÞ

ΓðαÞΓð1−αÞ ∼ 1 − sinðαπÞ
ð1−αÞπ ðΔt Þ1−α the behavior

hδ2ðΔÞi ∼ ðhx2iB − hxi2BÞ
2 sinðαπÞ
ð1 − αÞαπ

�
Δ
t

�
1−α

; [31]

valid in the limit ðΔ∕tÞ ≪ 1 and for Δ ≫ ð1∕Kαγ1Þ1∕α. Instead of
the naively expected saturation, the time-averaged mean-squared
displacement grows as a power with exponent ð1 − αÞ. Only when
the lag time approaches the measurement time t this power-law
growth stops, and the function dips to the ensemble averaged
value. We note that the Δ1−α scaling was recently reported for
the case of a particle in a box (62).

(v) Numerical analysis of position autocorrelation. Fig. 2 shows, over
a large time span, the time-averaged mean-squared displacement
hδ2ðΔÞi of a subdiffusing particle (i) in an harmonic potential and
(ii) in a box with reflecting boundaries. The initial particle posi-
tion was chosen to be at the bottom of the potential and in the
center of the box, respectively. At short lag times Δ we observe
the linear scaling

hδ2ðΔÞi ∼ 2KαΔ
Γð1þ αÞt1−α [32]

with the lag time Δ. In this result only the dependence on the
overall measurement time t bears witness to the fact that the
underlying stochastic process is subdiffusive. Seemingly paradox,
the lag time Δ enters linearly, in contrast to the associated ensem-
ble-averaged mean-squared displacement hðxðtÞÞ2i ∼ 2Kαtα∕
Γð1þ αÞ. However, this is the result of the weak ergodicity break-
ing of the process, as shown in refs. 60 and 61. The free particle
behavior at short Δ is an expected result, which can be obtained
from scaling arguments or explicitly from the full correlation
function: At sufficiently short times the particle does not yet feel

the confinement due to the reflecting boundaries, or it does not
yet experience the restoring force of the potential, respectively.
The hδ2ðΔÞi≃ Δ regime holds for scales of the lag time Δ that
fulfill KαΔα ≪ L2 in the example of the box, where L is the size
of the box. For a general confining potential, the turnover time is
nonuniversal and is dependent on all nonzero eigenvalues γn of
the Fokker–Planck operator LFP (40). Thus, at times Δ ≫
ð1∕Kαγ1Þ1∕α a transition occurs to the hδ2ðΔÞi ∼ Δ1−α regime,
31. We stress again that, in contrast to normal diffusion, no
saturation is found at long lag times, and hδ2ðΔÞi continues to
grow for any Δ < t. Only as Δ approaches to the measurement
time t, we obtain the convergence hδ2ðΔÞi → hx2iB þ Cxð0;0Þ.

In Fig. 3 we show the simulations result for a number of indi-
vidual trajectories in an harmonic binding potential, displaying
significant scatter. This scatter between individual trajectories
is, again, a result of the weak ergodicity breaking of the underlying
stochastic process and resembles qualitatively the behavior
observed in single particle tracking experiments (24–29). The am-
plitude of the scatter can be quantified in terms of the dimension-
less random variable ξ≡ δ2ðΔÞ∕hδ2ðΔÞi, the relative scatter of the
time average with respect to its ensemble mean. Using
arguments similar to ref. 61, it can be shown that the distribution
of ξ is given in terms of a one-sidedLévy-stable law in the form (61)

lim
t→∞

ϕαðξÞ ¼
Γð1þ αÞ1∕α
αξ1þ1∕α Lα

�
Γð1þ αÞ1∕α

ξ1∕α

�
; [33]

where the stable density LαðtÞ is the same as for Eq. 16. Note that
the random variable ξ is in the denominator of Lα, and therefore
the associated width is finite. For instance, for the case α ¼ 1∕2
used in Figs. 2 and 3 we find the Gaussian law limt→∞ ϕ1∕2ðξÞ ¼
ð2∕πÞ expð−ξ2∕2Þ. Finally, in the Brownian limit α ¼ 1, the distri-
bution converges to the sharp behavior ϕ1ðξÞ ¼ δðξ − 1Þ, restoring
ergodicity in the sense that no more scatter occurs. The distribu-
tion of ξ, given by Eq. 33, is the same for both unbounded and
bounded anomalous diffusion. This is simply due to thementioned
fact that temporal and spatial process are uncoupled.

Discussion
Correlation functions are a standard tool to experimentally probe
the temporal evolution of a system. They provide information on
how the present value of a physical observable influences its value

Fig. 3. Single trajectories for the motion in the harmonic binding potential
UðxÞ ¼ x2, for the same parameters as in Fig. 2 (thin lines). The symbols (□)
represent the simulations result for hδ2ðΔÞi. The scatter between individual
trajectories is distinct and resembles qualitatively typical experimental results
(24–29).

Fig. 2. Simulated behavior of the time-averaged mean-squared displace-
ment hδ2ðΔÞi for a continuous time random walk process with waiting time
distribution ψðtÞ ∼ τα∕t1þα, in an harmonic binding potential UðxÞ ¼ x2 (□),
and in a box with reflecting boundary conditions and size 2 (○). The anom-
alous diffusion exponent is α ¼ 1∕2, and the measurement time was chosen
as t ¼ 107 ða:u:Þ. We also chose kBT ¼ 0.1, and K1∕2 ¼ 0.0892. Without fit, the
lines show the analytic results for the transition from the initial linear lag
time dependence ≃Δ1, 32 (−−− and − · −), to the long lag time behavior
≃Δ1−α, 31 (—). In both cases hxiB ¼ 0. At long lag times hδ2ðΔÞi∕hx2iB exhibits
universal behavior, independent of the external field.
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in the future and are therefore important indicators to the specific
process that governs the system’s dynamics. The significance of the
correlation function behavior for the fundamental concepts in
physics is revealed through Khinchin’s theorem, which provides
a condition for a stationary process to be ergodic in terms of
the corresponding correlation function. Herein we proposed a
possible generalization of Khinchin’s theorem for a class of
nonstationary aging process. We provide not only a generalized
condition for ergodicity for such processes in terms of the corre-
sponding aging correlation function but also quantify the devia-
tions from ergodicity. For the broad class of nonstationary
processes described by Eq. 13, we derived analytically the time
dependence of two-point correlation functions for subdiffusing
particles under situations of confinement. In particular we re-
vealed a universal behavior for the two-time position correlation

function involving the incomplete beta function.All features of the
confining potential enter the correlation function solely through
the prefactor in terms of the first and second moments of the
associated Boltzmann distribution. Of course, the expression
for the correlation function in 22 is not restricted to a position cor-
relation function, but can be used to describe a very general class of
quantities, e.g., a potential energy correlation function. The gen-
erality of our results is a direct consequence of the convergence of
the Markovian process xðsÞ in the jump space, and the ubiquitous
role of Lévy statistics due to the generalized central limit theorem.
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