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Abstract – We investigate the coalescence of two DNA bubbles initially located at weak segments
and separated by a more stable barrier region in a designed construct of double-stranded DNA. The
characteristic time for bubble coalescence and the corresponding distribution are derived, as well as
the distribution of coalescence positions along the barrier. Below the melting temperature, we find
a Kramers-type barrier crossing behaviour, while at high temperatures, the bubble corners perform
drift-diffusion towards coalescence. The results are obtained by mapping the bubble dynamics on
the problem of two vicious walkers in opposite potentials.

Copyright c© EPLA, 2007

Introduction. – The Watson-Crick double helix is the
thermodynamically stable state of double-stranded DNA
in a wide range of temperatures and salt conditions [1].
This stability is effected by hydrogen bonds between the
bases in individual base pairs (bps), and the stronger
stacking interactions between nearest-neighbour pairs of
bps. Driven by thermal fluctuations double-stranded
DNA can break apart, to form denaturation bubbles
of flexible single-stranded DNA [2]. Although rare, bp-
opening events expose active groups of DNA bases, that
are otherwise buried within the double helix. They are
crucial for the interaction with proteins and chemicals,
and therefore for the biological function of DNA. Bubble
kinetics has been probed in NMR studies [3], and the
growth and reannealing dynamics of individual bubbles
has been measured in real time in single DNA fluorescence
correlation setups [4].

The delicate sensitivity of bubble dynamics and, there-
fore, bubble nucleation to the local DNA bp sequence [5,6]
suggests a new method to use single molecule tools to

obtain independently DNA stability parameters, as
sketched in fig. 1. A short stretch of DNA, clamped at
both ends, is designed such that two soft zones consisting
of weaker AT-bps are separated by a more stable barrier
region rich in GC-bps. For simplicity, we assume that
both soft zones and barrier are homopolymers with a bp
dissociation free energy ε′ and ε, respectively, and, in
accordance with the experimental findings of reference [4],
we neglect secondary-structure formation in the barrier
zone. At temperatures higher than the melting tempera-
ture Ts of the soft zones but still lower than the melting
temperature Tb of the barrier region, thermal fluctuations
will gradually dissociate the barrier, until the two bubbles
coalesce. We also study the case when the system is
prepared as above and then T suddenly increased such
that T > Tb >Ts so that the system is driven towards
coalescence. In both cases the two boundaries between
bubbles and barrier perform a (biased) random walk
in opposite free energy potentials. The quantities of
interest are the bubble coalescence time and position. It
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Fig. 1: (Colour on-line) Left: schematic of the bubble coalescence setup in a designed DNA construct. It is clamped at both
ends and consists of two outer soft zones (thin red lines) of lengths NL, NR bps with melting temperature Ts and a stronger
N -bps-long barrier zone (thick blue lines) with Tb >Ts. a) All bps closed (T < Ts <Tb). b) Soft zones open by raising the
temperature above Ts. b1–b3) Successive opening of the barrier driven mainly by fluctuations (T < Tb) or drift (T > Tb) until
coalescence. The discrete coordinates X,Y = 0, . . . , N are defined as the positions of the interfaces between the closed and
broken bps. Right: plot of the linear potentials experienced by the respective bubble interfaces in the case T < Tb (f < 0) in
terms of the dimensionless quantities x, y, f (see text).

turns out that this problem can be mapped on a previ-
ously unsolved case of two vicious walkers in opposite
potentials in one dimension and, therefore, is of interest
by itself.

Formulation of the problem. – The statis-
tical weight of the construct before coalescence
ZX,Y =

(

ξeNLβε
′
)

e(X−Y+N)βε
(

ξeNRβε
′
)

at Tb >T >Ts
involves a cooperativity (ring) factor ξ ≈ 10−5 for each
bubble, and a Boltzmann factor for each broken bp with
free energies ε′ > 0 and ε < 0, compare reference [6]1.
Upon coalescence, the boundary free energy correspond-
ing to one factor ξ is released, Zcoal = ξe(NL+NR)βε

′+Nβε,
stabilizing the system against immediate transition back
to a two-bubble state. It should therefore be possible to
experimentally detect the coalescence. In our theoretical
approach, this corresponds to an absorbing boundary for
the random walking interfaces at X = Y .

The dynamics of this, intrinsically discrete, system can
be modelled by methods developed previously, namely,
the stochastic Gillespie scheme [7], which allows one to
obtain single-bubble trajectories and thereby the access
to the noise relevant in single-molecule experiments, and
the master equation approach [6,8,9]. As detailed in refer-
ence [10], the explicit sequence of bps is included into these
approaches. Typical examples of individual trajectories
resulting from the Gillespie scheme are displayed in fig. 2,
where traces of the two interfaces (“forks”) cornering the
barrier region are shown. Bubble coalescence terminates
each pair of trajectories.

Both the Gillespie scheme and the master equation are
based on a specific choice for the rate constants, t(+)−(Q),
of (un)zipping the bp at the position Q=X,Y of one of

1We denote a stable state by a negative free energy.

the zipping forks where double-stranded DNA branches
into two strands of single-stranded DNA. As discussed in
detail in references [6,8–10], we define

t
− = k/2; t+(Q) = ku(Q)s(m)/2,

s(m) = {(m+1)/(m+2)}
c
, (1)

together with the appropriate boundary conditions. Here,
t
− is the position-independent zipping rate k/2 for a bp

at the zipping fork, while the bp-unzipping at location
Q involves the Boltzmann factor u(Q) = exp(βε(Q)) for
disrupting the bp at Q, as well as the factor s(m) that
stems from the entropy loss of forming a closed polymer
ring. The s-factor depends on the size m of the bubble
cornered by the respective bp, and c≈ 1.76 is the critical
exponent. In our illustrations and analytic approach we
use the reflecting boundary conditions at the edges of the
barrier regions, i.e., we assume βε′� 1 so that the soft
zones are always open.

The rates t± define the transfer matrixW, that governs
the random walk of the zipping forks at either end of
the barrier region. The coalescence dynamics is then
quantified by the probability distribution PD(X,Y, t) to
find the left and right zipping forks at positions X and Y ,
as controlled by the master equation ∂PD(X,Y, t)/∂t=
WPD(X,Y, t). Solution of this equation by either method,
as detailed elsewhere [6–8,10], yields the quantities of
interest such as the mean coalescence time or distribution
of the coalescence position.

Continuous description and semi-analytic

solution. – Both the master equation and Gillespie
approaches can be used for arbitrary bp sequences and
their usage is straightforward, however, they both have
their limitations. The Gillespie algorithm performs badly
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Fig. 2: Stochastic trajectories of the random walk of the two fork positions encompassing the double-helical bridge of N = 50bps
between the vicinal bubbles for Ts <T <Tb with u= exp(βε) = 0.98 (left) and T > Tb >Ts, u= 1.10 (right). Note that below the
melting temperature Tb of the barrier zone the trajectories have the tendency to move toward the reflecting boundaries at the
corners of the soft zone and the coalescence takes longer time due to the presence of the potential barrier. On the other hand,
above Tb the trajectories show a tendency to move fast toward the centre of the barrier zone, as expected from the funnelling
nature of the positive force directed toward the middle.

in the case of a relatively strong barrier (βε�−1)
when the coalescence time grows exponentially. This
demands exponentially increasing simulation time. The
master equation is becoming numerically prohibitive with
increasing size of the barrier. On a regular PC the length
of about N ≈ 100 bps is close to the numerical limit of
our master equation approach.

For the designed construct we can find an efficient
semi-analytical solution for its dynamics. Due to the
large length of the soft zones NL,R� 1 we approximate
the bubble entropic factors s(m) = {(m+1)/(m+2)}

c

by 1. Furthermore, for the barrier length N � 50 we can
resort to a continuous description of the fork positions.
The discrete master equation can then be rewritten as a
bivariate Fokker-Planck equation [11,12] for the random
walk of the two bubble-barrier boundaries characterized
by the probability density function (PDF) P (x, y, t) of
finding the boundaries at coordinates x=X/N and y =
Y/N at a given rescaled time t

∂

∂t
P (x, y, t) =

([

∂2

∂x2
+

∂2

∂y2

]

− 2f
∂

∂x
+2f

∂

∂y

)

P (x, y, t),

(2)

with the dimensionless force f =N(u− 1)/(1+u) and
time rescaled by k(1+u)/2N2. Equation (2) is completed
by the initial condition P (x, y, 0) = δ(x−x0)δ(y− y0) and
the reflecting boundary conditions (the bubbles in the
soft zones are assumed to be open at all times)
(∂/∂x− 2f)P (x, y, t)|x=0 = (∂/∂y+2f)P (x, y, t)|y=1 = 0.
Moreover, we impose the absorbing boundary condition
P (x, x, t) = 0. This defines the vicious walker property
[13], terminating the process when the two walkers meet.

The dynamics of any number of vicious walkers
in an arbitrary but common potential was studied

previously [14], obtaining the solution by antisymmetriza-
tion of the single-walker evolutions (Green’s functions).
This method, however, already fails for two walkers in
two different potentials. Of course, eq. (2) can be solved
numerically as a (2+1)-dimensional partial differential
equation, but it is clear that expressing the solution in
terms of single-walker Green’s functions would be very
advantageous. It reduces the dimension of the problem by
1 and even enables us to make exact analytical statements
about some aspects of the solution.

We show that for the particular problem at hand we
can find the solution to eq. (2) by antisymmetrization of
a suitable auxiliary single-walker Green’s function. This is
achieved by the similarity transform of the Fokker-Planck
operator into a Hermitian operator (see ref. [12], chapter 5)
by using

exp(∓f(x−x0))

(

∂2

∂x2
∓ 2f

∂

∂x

)

exp(±f(x−x0))=
∂2

∂x2
−f2,

which turns both Fokker-Planck operators into the
same Hermitian one. Together with the freedom to
choose the same boundary conditions for both walk-
ers2 we end up with identical differential equations
for both walkers and, thus, the antisymmetrization
procedure can be used for the Hermitian version of the
problem. This finally results in

P (x, y, t) = ef(x−y−x0+y0)

×
(

p(x, t|x0)p(y, t|y0)− p(y, t|x0)p(x, t|y0)
)

, (3)

2Each walker can reach only one boundary since the other one

is blocked by the second walker. Therefore, we can choose the

remaining boundary condition at will and, in particular, to be that

of the second walker.
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Fig. 3: Comparison of the results for the bubble coalescence time PDF π(t) obtained from the presented semi-analytical
theory (eqs. (2)–(7)) by numerical inverse Laplace transform, the master equation, and the stochastic simulation (Gillespie),
demonstrating excellent agreement. The values of the parameters are the same as in fig. 2, i.e., u= 0.98 (left) and u= 1.10
(right), and N = 50.

where the auxiliary single-walker Green’s function
p(x, t|x0) satisfies the following 1D equation:

∂p(x, t|x0)

∂t
=

(

∂2

∂x2
− f2
)

p(x, t|x0),

(

∂

∂x
∓ f

)

p(x, t|x0)

∣

∣

∣

∣

x=1/2∓1/2

= 0, (4)

with the initial condition p(x, 0|x0) = δ(x−x0). Equa-
tion (4) is solved by

p(x, z|x0) =

ek|x−x0|+κ2e2k−k|x−x0|+κek(x+x0)+κe2k−k(x+x0)

2k [κ2e2k − 1]
,

(5)

in the Laplace domain defined by g(z) =
∫∞

0
g(t)×

exp(−zt)dt. Here, k≡
√

z+ f2 and κ= (k+ f)/(k− f).
To find the expression for the PDF P (x, y, t) we
need the Laplace inverse of p(x, z). Note that the
latter can be expanded in eigenmodes through p(x, t) =
∑∞
n=0 e

λntϕn(x)ϕ∗n(x0).
It is important to notice at this point that eq. (4) is

not a physically meaningful 1D Fokker-Planck equation
(due to unphysical boundary conditions) and, indeed, it
turns out that for f < 0 one of the λ’s, determined
by the transcendent equation (λ+2f2) sinh

√

λ+ f2+

2f
√

λ+ f2 cosh
√

λ+ f2 = 0, is actually positive, i.e.,
gives a solution exponentially growing in time. This
type of behaviour is absent in the physical quantity
P (x, y, t) due to the antisymmetrization procedure (3),
yet the λ> 0 eigenmode plays an important role in the
Kramers type asymptotics obtained for f �−1. Details
are deferred to a future publication [10].

Results for the coalescence time and position. –

The coalescence time PDF, π(t|x0, y0), can be found using
the conservation of probability

∫ t

0

dt′π(t′)+

∫ 1

0

dy

∫ y

0

dxP (x, y, t) = 1, (6)

where the two terms denote the probabilities that walkers
have met before time t or have not, respectively. Then
it follows from the Fokker-Planck equation (2), after
integration by parts,

π(t) =−

∫ 1

0

dy

∫ y

0

dx
∂P (x, y, t)

∂t

=

∫ 1

0

dx

(

∂

∂y
−

∂

∂x

)

P (x, y, t)

∣

∣

∣

∣

y=x

≡

∫ 1

0

dx"(x, t), (7)

where "(x, t)is the joint PDF for coalescence time and
meeting position of the two walkers. We are interested
in π(t) and its mean value (mean coalescence time)
τ =
∫∞

0
tπ(t) dt together with the PDF of the meeting

position ρ(x) =
∫∞

0
"(x, t) dt. By standard identities of

the Laplace transforms we note that ρ(x) = "(x, z = 0+)
and τ = −dπ(z)/dz|z=0+ . The related analysis becomes
non-trivial as the auxiliary Green’s function p(x, t|x0), as
mentioned above, has a positive eigenvalue in the case
f < 0. Details of the calculations using the theorem of
residues and high-precision numerics will be presented in
ref. [10].

Here, we discuss the final results for the coalescence time
PDF π(t) in fig. 3, and for the mean coalescence time τ
and position PDF ρ(x) in fig. 4. In all cases the initial
condition used is x0 = 0, y0 = 1, i.e., the walkers start out
at the reflecting walls or, in terms of the original model,
the bubbles start from the boundaries of the soft zones.
The coalescence time probability densities graphed in fig. 3
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Fig. 4: Left: PDF ρ(x) of the coalescence position x for various values of the dimensionless force f . Right: mean coalescence
time τ (in dimensionless, i.e., scaled, units) as a function of f . The two analytic asymptotic behaviours for large and small f
are also shown.

for two different values of f (or u) compare the results of
all three mentioned methods (Gillespie, master equation,
and the semi-analytics) and show a sharp initial raise of
rather peaky structures followed by an exponential decay
for long times. The short-time increase stems from the
initial separation of the two forks that first have to go
through several random steps before having the chance to
coalesce while the long time asymptotics is fixed by the
boundary conditions. The agreement between the various
computational approaches is very good. The locations of
the maximum probability peaks correlate well with the
termination points of sample trajectories depicted in fig. 2
for the same parameters.

The results for i) ρ(x) and ii) τ calculated by the semi-
analytical method are shown in fig. 4. i) The curves for the
PDF ρ(x) of the coalescence position exhibit a pronounced
crossover from a relatively sharply peaked form to an
almost flat behaviour. The former occurs for large positive
force f , corresponding to a strong drift toward a potential
well, with negligible influence of the boundary conditions.
In contrast, for large negative f , corresponding to a
high barrier for coalescence, the insensitivity of ρ(x) to
the position x can be explained in terms of a simple
Arrhenius argument: The probability of the walker to
be at a position x is proportional to the Boltzmann
weight, exp(−βφ(x)), where φ(x) =−

∫ x
F (x′)dx′ is the

free energy corresponding to the force F (x) (see fig. 1).
Then, the joint probability to have both walkers meet at
the same position is given by the product exp(−β[φL(x)+
φR(x)])≈ const, as the two walkers are in opposite linear
potentials and the position dependence of the exponent
cancels out. This simple picture necessarily breaks down
close to the boundaries. ii) The f -dependence of the
mean first passage time τ crosses over from the τ � 1/f
behaviour typical for diffusion in a strong positive force
pushing the two walkers together, to the exponential
form τ � exp(2|f |) of the associated Kramers problem.

The former problem was studied in reference [15] by
neglecting the boundaries and switching to the relative
coordinate description which enables one to find the
analytic result τ = 1/(4f). For the Kramers problem (f �
−1) the analytic solution for both ρ(x) = [1− e−2|f |x−
e−2|f |(1−x)]|f |/(|f | − 1) and τ = e2|f |/[16f2(|f | − 1)] can
be found rather easily [10] by the expansion into the lowest
two eigenmodes of p(x, t|x0).

Conclusions. – In the present study we investigate
two-bubble coalescence in a designed DNA construct
consisting of two soft regions separated by a more stable
barrier zone. We present a continuous semi-analytical
theory yielding the coalescence time and position PDF’s
and show that the results agree well with the numer-
ical results obtained with the discrete master equation
and Gillespie stochastic simulation schemes. We note that
for long barriers, whose sequence is arranged as random
energy landscape, the propagation of the zipping forks
may become subdiffusive in time [16] and the associated
first passage time process is generated from the present
results with the help of the subordination formalism [17].
The mathematical analysis, as shown here, reduces to the
previously unaddressed case of two vicious walkers in oppo-
site linear potentials. We demonstrate that its solution
can be constructed by antisymmetrization of appropriate
auxiliary one-variable densities.
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