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From a nanoscience perspective, cellular processes and their reduced in vitro imitations provide
extraordinary examples for highly robust few or single molecule reaction pathways. A prime exam-
ple are biochemical reactions involving DNA molecules, and the coupling of these reactions to
the physical conformations of DNA. In this review, we summarise recent results on the following
phenomena: We investigate the biophysical properties of DNA-looping and the equilibrium config-
urations of DNA-knots, whose relevance to biological processes are increasingly appreciated. We
discuss how random DNA-looping may be related to the efficiency of the target search process
of proteins for their specific binding site on the DNA molecule. And we dwell on the spontaneous
formation of intermittent DNA nanobubbles and their importance for biological processes, such as
transcription initiation. The physical properties of DNA may indeed turn out to be particularly suitable
for the use of DNA in nanosensing applications.
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1. INTRODUCTION

Deoxyribonucleic acid (DNA) is the molecule of life as we
know it.1 It contains all information of an entire organism.2

This information is copied during cell division with an
extremely high fidelity by the replication mechanism.
Despite the rather high chemical and physical stability of
DNA, due to constant action of enzymes and other binding
proteins (mismatches, rupture) as well as potential envi-
ronmentally induced damage (radiation, chemicals), this
low error rate, i.e., the suppression of the liability to muta-
tions, is only possible with the constant action of repair
mechanisms.1–4 Although DNA’s structural and mechani-
cal properties are rather well established for isolated DNA
molecules (starting with Rosalind Franklin’s X-ray diffrac-
tion images),5 the characterisation of DNA in its cellu-
lar environment, and even in vitro during interaction with
binding proteins, is subject of ongoing investigations.

Recent advances in experimental techniques such as
fluorescence methods, atomic force microscopy, or opti-
cal tweezers have leveraged the potential to both probe
and manipulate the equilibrium and out of equilibrium
behaviour of single DNA molecules, making it possible
to explore DNA’s physical and mechanical properties as
well as its interaction with other biopolymers, such as the
DNA–protein interplay during gene regulation or repair
processes. An important ingredient is the coupling to ther-
mal activation due to the highly Brownian environment.
Although mostly performed in vitro, these experiments
provide access to increasingly refined information on the
nature of DNA and its environment-controlled behaviour.

In addition to chromosomal packaging inside the
nucleus of eukaryotic cells and the concentration of DNA
in the membraneless nucleoid region of prokaryotes, the
global structure of the DNA molecule can be affected
by topological entanglements. Thus, by error or design a

1Our DNA world during biotic and prebiotic evolution was supposedly
preceded by an RNA world and, quite likely, by sugarless nucleic acids.
2A small fraction of genetic information is stored on DNA that is kept

at other regions of the cell and not replicated on cell division, such as
mitochondrial or ribosomal DNA.

DNA molecule can attain a knotted or concatenated state,
reducing or inhibiting biologically relevant functions, for
instance, replication or transcription. Such entangled states
can be actively reduced by enzymes of the topoisomerase
family. Their precise action, in particular, how they deter-
mine the presence of an entangled state, is not fully known.
Current studies therefore aim at shedding light on possible
mechanisms, in particular, in view of the importance of
topoisomerase action (or better, its inhibition) in tumour
proliferation. Other applications may be directed towards
the treatment of viral deceases by modifying the packag-
ing of viral DNA to create knots in the virus capsid and
prevent ejection of the DNA into a host, and thereby infec-
tion. DNA knots are also being recognised as a potential
complication in the use of nanochannels for DNA sepa-
ration and sequencing. In such confined geometries DNA
knots are created with appreciable probability, affecting
the reliability of these techniques. Current results on DNA
knot behaviour are summarised in the first part of this
review.

The Watson-Crick double-helix represents the thermo-
dynamically stable state of DNA at moderate salt concen-
trations and below the melting temperature. This stability
is effected by Watson-Crick hydrogen bonding and the
stronger base stacking of neighbouring base-pairs. How-
ever, even at room temperature DNA locally opens up
intermittent flexible single-stranded domains, so-called
DNA-bubbles. Their size typically ranges from a few bro-
ken base-pairs, increasing to some 200 broken base-pairs
closer to the melting temperature. The thermal melting of
DNA has traditionally been used to obtain the sequence-
dependent stability parameters of DNA. More recently, the
role of intermittent bubble domains has been investigated
with respect to the liability of DNA-denaturation induced
by proteins that selectively bind to single-stranded DNA.
It has been speculated that due to the liability to denatura-
tion of the TATA motif bubble formation may add in tran-
scription initiation. The dynamics of single bubbles can be
monitored by fluorescence methods, opening a window to
both study the breathing of DNA experimentally, but also
to obtain high precision DNA stability data. Finally, bubble

J. Comput. Theor. Nanosci. 4, 1–49, 2007 3
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dynamics has been suggested as a useful tool in optical
nanosensing. DNA breathing is the topic of the second part
of this work.

Essentially all the biological functions of DNA rely
on site-specific DNA-binding proteins locating their tar-
gets (cognate sites) on the DNA molecule, and therefore
require searching through megabases of non-target DNA
in a highly efficient manner. For instance, gene regulation
is performed by specific regulatory proteins. On binding
to a promoter area on the DNA, they recruit or inhibit
binding of RNA polymerase and subsequent transcription
of the associated gene. The search for the cognate site
is in fact facilitated by the DNA molecule: in addition
to three-dimensional search it enables the proteins to also
move one-dimensionally along the DNA while being non-
specifically bound. Moreover, at points where the DNA
loops back on itself, this polymeric conformation provides
shortcuts for the proteins in the chemical coordinate along
the DNA, approximately giving rise to search-efficient
Lévy flights. Target search is currently a very active field
of research, and single molecule methods have been shown
to provide essential new information. Moreover, the archi-
tecture of more complex promoters relying on the simul-
taneous presence of several regulatory proteins is being
investigated to create in silico circuits for highly sensi-
tive chemical probes in small volumes. Such nanosens-
ing applications are expected to be of great importance
in microarrays or other nano- and microapplications. The
third part of this review deals with diffusional aspects of
gene regulation.

At the same time DNA’s role in classical polymer
physics is increasingly appreciated. With the possibil-
ity to reproduce DNA with extremely low error rate by
the PCR,3 monodisperse samples can be prepared. While
shorter single-stranded DNA can be used as a model for
flexible polymers, the double strand exhibits a semiflexi-
ble behaviour with a persistence length, that can be easily
probed experimentally. Moreover, DNA is orders of mag-
nitude longer than conventional polymers. Combined with
the potential of single molecule probing, DNA is advanc-
ing as a model polymer.

After an introduction to the properties of DNA we
address these functional properties of DNA from the per-
spective of biological relevance, physical behaviour and
nanotechnological potential. Most emphasis will be put on
the single molecular aspects of DNA. We note that this
is not intended to be an exhaustive review on the physi-
cal properties of DNA. Rather, we present some important
features and their consequences from a personal research
perspective.

3Polymerase Chain Reaction: thermal denaturation of a DNA molecule
into two single strands and subsequent cooling in a solution of sin-
gle nucleotides and invariable primers, produces two new complete
double-stranded DNA molecules. Cycling of this process produces large,
monodisperse quantities of DNA.

PROTEINRNA

DNA

Fig. 1. Central dogma of molecular biology after F. Crick: Potentially,
information flow is completely symmetric between the three levels of
cellular biopolymers (DNA, RNA, proteins). However, the recognised
pathways are only those represented here, where solid lines represent
probable transfers, and dotted lines for (in principle) possible transfers.8

2. PHYSICAL PROPERTIES AND
BIOLOGICAL FUNCTION OF DNA

Biomolecules, that occur naturally in biological systems,
can be grouped into unspecific oligo- and macromolecules
and biopolymers in the stricter sense.1 Unspecific
biomolecules are produced by biological organisms in a
large range of molecular weight and structure, such as
polysaccharides (cellulose, chitin, starch, etc.), higher fatty
acids, actin filaments or microtubules. Also the natural
‘India-rubber’ from the Hevea Brasiliensis tree, histori-
cally important for both industrial purposes and the devel-
opment of polymer physics7 belongs to this group.

Biopolymers in the stricter sense we are going to assume
here comprise the polynucleotides DNA and RNA con-
sisting of the four-letter nucleotide alphabet with A-T
and G-C (A-U and G-C for RNA) base pairs, and the
polypeptidic proteins consisting of 20 different amino
acids, each coded for by 3 bases (codons) in the RNA.1–4

We will come back to proteins later when reviewing
binding protein-DNA interactions. Biopolymers are copied
and/or created according to the information flow sketched
in Figure 1, the so-called central dogma of molecular biol-
ogy, a term originally coined by Frances Crick.9 Accord-
ingly, starting from the genetic code stored in the DNA
(in some cases in RNA) DNA is copied by DNA poly-
merase (replication), and the proteins as the actually task-
performing biopolymers are created via messenger RNA
(created by DNA transcription through RNA polymerase)
and further by translation in ribosomes to proteins.4

DNA is made up of the four bases:1–4�10�11 A(denine),
G(uanine), C(ytosine), and T(hymine) that form the DNA
ladder structure shown in Figure 2. These building-blocks
A, G, C, T base-pair according to the key-lock principle as
A-T and G-C, where the AT bond is weaker than the GC

4Alternatively, the genetic code can be transcribed into transfer and
ribosomal RNA that is not translated into proteins.

4 J. Comput. Theor. Nanosci. 4, 1–49, 2007
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bond in terms of stability. Apart from the Watson-Crick
base-pairing energy, the stability of dsDNA is effected by
the stacking interactions, the specific matching of subse-
quent base-pairs (bp) along the double-strand, i.e., bp–bp
interactions. In standard literature, the stacking interactions
are listed for pairs of bps (e.g., for AT-GC, AT-AT, AT-TA,
etc.), see below.5

Based on this AGCT alphabet, the primary structure
of DNA can be specified. DNA’s six local structural ele-
ments twist, tilt, roll, shift, slide, and rise are effected by
the stacking interactions between vicinal bps. In Figure 3,
we show a map with the structure elements of the entire
E. coli genome, demonstrating the degree of structural
information currently available. These structural elements
define the local geometrical structure of DNA within a
typical correlation (persistence) length6 of about 150 base
pairs corresponding to 50 nm (the bp–bp distance mea-
sures 3.4 Å, reflecting the rather complex chemical struc-
ture of a nucleotide in comparison to the monomer size

5Longer ranging bp–bp interactions are most likely small in comparison.
6The persistence length of a polymer chain defines the characteristic

length scale above which the polymer is susceptible to bending induced
by thermal fluctuations, i.e., it is the length scale above which the
tangent–tangent correlation decays along the chain, see the Appendix.

of man-made polymers such as polyethylene).12–15 On a
larger scale, much longer than the persistence length, DNA
becomes flexible. On this level, tertiary structural ele-
ments come into play. One example is DNA looping,
that is the formation of polymeric lasso loops induced by
chemical bonds between binding proteins attached to the
DNA at specific bps which are remote along the DNA
backbone.1�2�16–20 An extreme limit of tertiary structure is
the packaging of DNA onto histones and further wrapping
into the chromosomes of eukaryotic cells.1�21�22 At the
same time, dsDNA may locally open into floppy ssDNA
bubbles, with a persistence length of a few bases.7 These
fluctuation-induced bubbles increase their statistical weight
at higher temperatures, until the dsDNA fully denatures
(melts). We will come back to DNA denaturation bubbles
below. Depending on the external conditions, DNA occurs
in several configurations. Under physiological conditions,
one is concerned with B-DNA, but there are other states
such as A, B′, Z, ps, triplex DNA, quadruplex DNA, cru-
ciform, and H, reviewed, for instance, in Refs. [12, 13].
DNA occurs naturally in a large range of length scales.
In viruses, DNA is of the order of a few �m long. In
bacteria, it already reaches lengths of several mm, and
in mammalian cells it can reach the order of a few m,
roughly 2 m in a human cell and 35 m in a cell of the
South American lungfish, albeit split up into the individ-
ual chromosomes.3 DNA in bacteria in vivo, or extracted
from bacteria and higher cells for our purposes can there-
fore be viewed a fully flexible polymer with a persis-
tence length of roughly 50 nm, being governed by generic
effects independent of the detailed sequence. On short
scales DNA becomes semiflexible and governed by the
worm-like chain model (Kratky-Porod model);24 on even
shorter scales, local structural elements become important
(in particular, for recognition by binding proteins),1 and
eventually molecular resolution is reached.

Stacking interactions govern the local structure of
dsDNA. Globally, an additional constraint arises due to
the circular nature of the DNA, since it has to satisfy the
conservation law25–27

Lk = Tw+Wr (1)

where Lk stands for the linking number, Tw for the twist,
and Wr for the writhe of the double helix. The linking
number Lk is an integer and formally given by one-half
the number of signed crossings of one DNA strand with
the other in any regular projection of the molecule. Lk is a
topological property, and no deformation of a closed DNA
without breaking and rejoining the DNA strands will alter
it. Tw is equal to the number of times that the two strands
of DNA wind about the curvilinear central axis of the

7In fact, it has been questioned whether there is a meaningful value
of the persistence length of ssDNA at all, due to its significant apparent
sequence dependence.23

J. Comput. Theor. Nanosci. 4, 1–49, 2007 5
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Fig. 4. Right-handed (negative), normal, and left-handed (positive)
superhelix. The DNA of virtually all terrestrial organisms is negatively
supercoiled.

molecule, and Wr is a number whose absolute value equals
roughly the number of times that the DNA axis winds
about itself.8 Whereas Tw is a property of the double-
helical structure of DNA, Wr is a property of the DNA
axis alone. Tw and Wr do not need to be integers and
are not conserved, but coupled through Lk by Eq. (1). A
nicked circular DNA, i.e., when the twist can fully relax,
carries Lk0 =N/h links, where N is the number of bp and
h (h� 10�5 in B-DNA) the number of base pairs per turn.

The degree of supercoiling of DNA can be expressed
in terms of the linking number difference �Lk = Lk −
Lk0. The DNA of virtually all terrestrial organisms is

8For details about the calculation of Tw and Wr for representative mod-
els of DNA, see Ref. [28].

underwound or negatively supercoiled, i.e., �Lk = Lk0 −
Lk < 0 (Figs. 4 and 5).9 Often, the superhelical density
	 = �Lk/Lk0 is used; most supercoiled DNA molecules
isolated from either prokaryotes or eukaryotes have 	 val-
ues between 0.05 and 0.07 (Ref. [29]). Negative supercoil-
ing is regulated in prokaryotes by DNA gyrase; eukaryotes
lack gyrase but maintain negative supercoiling through
winding of DNA around nucleosomes and interactions
with DNA-unwinding proteins. There are two forms of
intracellular supercoiling, the plectonemic form, charac-
teristic of plasmid DNA and accessible, nucleosome-free
regions of chromatin, and the toroidal or solenoidal form,
where supercoiling is attained by DNA wrapped around
histone octamers or prokaryotic non-histone DNA-binding
proteins (Fig. 6). The former is the active form of super-
coiled DNA and is freely accessible to proteins involved in
transcription, replication, recombination, and DNA repair.
The latter is the stored form of supercoiled DNA and is
largely responsible for the extraordinary degree of com-
paction required to condense typical genomes into the
cell’s nucleus.10 Negative supercoiling facilitates the local
unwinding of DNA by providing a ubiquitous source
of free energy that augments the unwinding free energy

9An exception are thermophilic organisms living near undersea geother-
mal vents that have positively supercoiled DNA in order to stabilise the
double helix at extreme temperatures.
10The nucleus of a human cell has a radius of circa 5 �m and stores the

2 m of the human genome.30

6 J. Comput. Theor. Nanosci. 4, 1–49, 2007
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Fig. 5. Electron micrographs of nicked (left) and supercoiled (right)
6996-base pair plasmid DNAs. The supercoiled example is from a pop-
ulation of DNA molecules with an average superhelix density, �	 =
−0�027, close to the value expected in vivo.

Fig. 6. Toroidal (left) and plectonemic (right) forms of supercoiled
DNA.

accompanying the interactions of many proteins with their
cognate DNA sequences. The local unwinding of DNA, in
turn, is an integral part of many biological processes such
as gene regulation and DNA replication (see Section 6).
Therefore, understanding the interplay of supercoiling and
local helical structure is essential to the understanding of
biological mechanisms.15�31–34

Ribonucleic acid (RNA) consists of the same build-
ing blocks as DNA, with the exception that T(hymine) is
replaced by U(racile).11 RNA typically occurs in single-
stranded form. Therefore, its secondary structure is richer,
being characterised by sequences of hairpins: Smaller
regions in which chemically remote sequences of bases
match, pair and form hairpins which are stiff and energy-
dominated, similar to dsDNA. The remaining regions form
entropy-dominated floppy loops, analogous to the ssDNA
bubbles. Additional tertiary structure in RNA comes about
by the formation of so-called pseudoknots, chemical bonds
established between bases sitting on chemically distant
segments of the secondary structure. In RNA-modelling
the incorporation of pseudoknots is a non-trivial prob-
lem, which currently receives considerable interest; see,
for instance, Refs. [11, 35–37].

3. DNA-LOOPING

The formation of DNA loops mediated by proteins bound
at distant sites along a single molecule is an essential

mechanistic aspect of many biological processes including
gene regulation, DNA replication, and recombination (for
reviews, see Refs. [38–40]). In E. coli, DNA looping
represses gene expression at the ara, gal, lac, and deo
operons41–47 and activates transcription from the glnALG
operon.48 The size of DNA loops formed in these sys-
tems varies between approximately 100 and 600 base
pairs. In eukaryotes, a variety of transcription factors
bind to enhancers that are hundreds to several thousand
base pairs away from their promoters and interact with
RNA polymerases directly or through mediators in order
to achieve combinatorial gene regulation.49 DNA loop-
ing is required to juxtapose two recombination sites in
intramolecular site-specific recombination50–52 and is also
employed by a number of restriction endonucleases such
as SfiI and NgoMIV, which recognize and cut two copies
of well-separated cognate sites simultaneously.53–55 Here
we describe a recent statistical-mechanical theory of loop
formation that connects global mechanical and geometric
properties of both DNA and protein and demonstrates the
importance of protein flexibility in loop-mediated protein-
DNA interactions.56�57

3.1. Biological Significance of DNA Looping

The biological importance of DNA loop formation is
underscored by the abundance of architectural proteins
in the cell such as HU, IHF, and HMG, which facili-
tate looping by bending the intervening DNA between
protein-recognition sites.58 Moreover, DNA looping has
been shown to be subject to regulation through the bind-
ing of effector molecules that alter protein conformation
or protein–DNA interactions.59

Two characteristics of DNA looping have been demon-
strated by in vitro and in vivo experiments. One is coopera-
tive binding of a protein to its two cognate sites, which can
be demonstrated by footprinting methods.60 DNA loop-
ing can increase the occupancies of both binding sites;
in particular, it can significantly enhance protein associ-
ation to the lower-affinity site because of the tethering
effect of DNA looping. This is a general mechanism by
which many transcription factors recruit RNA polymerases
in gene regulation. Another hallmark is the helical depen-
dence of loop formation,38�41 which arises because of
DNA’s limited torsional flexibility and the requirement
for correct torsional alignment of the two protein-binding
sites. Although many methods have been developed to
directly observe DNA looping in vitro, such as scanning-
probe48 and electron microscopy,10 and single-molecule
techniques,61 assays based on helical dependence have
been the only way to identify DNA looping in vivo. In
these experiments, the DNA length between two protein
binding sites is varied and the yield of DNA loop forma-
tion is monitored, for example by the repression or acti-
vation of a reporter gene.62 Using this helical-twist assay,
DNA looping in the ara operon was first discovered.41
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Our knowledge about the roles of DNA bending, twist,
and their respective energetics in DNA looping has come
largely from analyses of DNA cyclisation.38�63�64 Circular-
isation efficiencies of DNA fragments, which are quanti-
tatively described by J -factors, oscillate with DNA length
and therefore torsional phase.65�66 The J -factor is defined
as the ratio of the partition function of a circularised
polymer chain to that of an open chain. Since there is a
dimension reduction due to circularisation constraints (two
polymer ends have to meet), the ratio has a unit of concen-
tration, or 1/L3 with L representing length; see Ref. [52]
for details. In the present context, the J -factor is equal to
the free DNA-end concentration whose bimolecular liga-
tion efficiency equals that of the two ends of a cyclising
DNA molecule.63 For short DNA fragments J -factors are
limited by the significant bending and twisting energies
required to form closed circles, whereas for long DNA,
the chain entropy loss during circularisation exceeds the
elastic-energy decrease and reduces the J -factor. Because
of this competition between bending and twisting ener-
getics and entropy, there is an optimal DNA length for
cyclisation.56 Analogous behaviour has been expected for
DNA looping, especially with respect to the helical depen-
dence discussed above.

Quantitative analyses of DNA looping and cyclisation
are challenging problems in statistical mechanics and have
been largely limited to Monte Carlo or Brownian dynamics
simulations.68–72 Analytical solutions are available only for
some ideal and special cases. An important contribution in
this area is the theory of Shimada and Yamakawa,73 which
is based on a homogeneous and continuous elastic rod
model of DNA. This theory has been applied extensively
to DNA cyclisation65�74 and also DNA looping.63�64�75 The
Shimada–Yamakawa theory makes use of a perturbation
approach, in which small configurational fluctuations of
a DNA chain around the most probable configuration are
accounted for in the evaluation of the partition function.

The elastic-equilibrium conformation is obvious for
the homogeneous DNA circle studied by Shimada and
Yamakawa.73 However, the search for the elastic-energy
minimum of homogeneous DNA molecules with com-
plex geometry, such as in DNA looping, supercoiling,
and the case of inhomogeneous DNA sequences con-
taining curvature and nonuniform DNA flexibility, is not
trivial.42�76�77 Recently, a statistical-mechanical theory for
sequence-dependent DNA circles has been developed56

and applied to the problem of DNA cyclisation56 and
DNA looping.57 In this model, the DNA configuration is
described by parameters defined at dinucleotide steps, i.e.,
tilt, roll, and twist, which allows straightforward incorpo-
ration of intrinsic or protein-induced DNA curvature at the
bp level. Following Shimada and Yamakawa’s method, the
theory first determines the mechanical equilibrium config-
uration in small DNA circles (i.e., less than ∼ 1000 bp)
under certain constraints; fluctuations around the equilib-
rium configuration are then taken into account using an

harmonic approximation. The new method is much more
computationally efficient than Monte Carlo simulation, has
comparable accuracy, and has been applied successfully to
analyse experimental results from DNA cyclisation.56

The basis of the extension of the model to DNA
looping57 is to treat the protein subunits as connected
rigid bodies and to allow for a limited number of degrees
of freedom between the subunits. Motions of the sub-
units are assumed to be governed by harmonic poten-
tials and an associated set of force constants, neglecting
the anharmonic terms often required for proteins undergo-
ing large conformational fluctuations among their modular
domains. Indeed, the use of a harmonic approximation is
supported by the success of continuum elastic models that
are based only on shape and mass-distribution information
in descriptions of protein motion.78 Similar to the descrip-
tion used for individual DNA base pairs in the model,
protein geometry and dynamics are described by three
rigid-body rotation angles (tilt, roll, and twist). Therefore,
DNA looping can be viewed as a generalisation of DNA
cyclisation in which the protein component is characterised
by a particular set of local geometric constraints and elas-
tic constants. This treatment not only unifies the theoreti-
cal descriptions of DNA cyclisation and looping, but also
allows consideration of flexibilities at protein–DNA and
protein–protein interfaces and application of the concepts
of linking number and writhe. In previous work, proteins
were considered rigid and their effects on DNA config-
uration were represented by a set of constraints applied
to DNA ends.38�79�80 With the present approach, programs
developed for analysing DNA cyclisation can be used to
analyse DNA looping with only minor modifications.

The new method56�57 is most applicable to the problem
of short DNA loops, in which the free energy of a worm-
like chain is dominated by bending and torsional elasti-
city.56�57 Possible modes of DNA self contact and contacts
between protein and DNA at positions other than the bind-
ing sites are not considered. For large loops contributions
to the free energy from chain entropy and DNA–DNA
contacts can become highly significant. Several alternative
treatments of DNA looping have appeared recently. One of
these addresses the excluded-volume contribution to DNA
looping within large open-circular molecules,20 whereas
two others consider the effect on looping of traction at
the ends of a DNA chain.81�82 None of these treatments
includes helical phasing effects on DNA looping. In con-
trast, a method based on the Kirchhoff elastic-rod model,
which includes the helical-phase dependence, has been
presented.80�83 However, this approach does not include
thermal fluctuations per se and therefore is not directly
applicable to calculations of the J -factor. The compre-
hensive treatment of small DNA loops described in Refs.
[56, 57] is thus far unique to the extent that it accounts for
sequence- and protein-dependent conformational and flexi-
bility parameters, thermal fluctuations, and helical phasing
effects.
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3.2. DNA Loop Model

The protein subunits that mediate loop formation are mod-
elled as two identical and connected rigid bodies, as shown
in Figure 7 (Ref. [57]). There are three additional sets of
rigid-body rotation angles that are defined in addition to
those for dinucleotide steps: two sets for the interfaces
between protein and the last (DP) and first base pairs (PD)
of the DNA and one set for the interface between the two
protein domains (PP), where the symbols in parentheses

Fig. 7. Rigid-body models for studies of protein-mediated DNA loop-
ing. (a) A prototype 137-bp DNA loop generated by interactions with a
pair of rigid, DNA-binding protein subunits is shown. DNA base pairs
are represented by rectangular slabs (red) with axes (blue) that indicate
the orientation of the local Cartesian coordinate frame whose origin lies
at the centre of each base pair. Two sets of coordinate axes (green)
represent the local coordinate frames embedded in the protein subunits
(gold ellipsoids) that mediate DNA looping. The coupling of protein
and DNA geometry is characterised by tilt, roll, and twist values for
the DNA–protein, protein–protein, and protein–DNA interfaces. Three of
these variables are shown here: the DNA–protein roll angle, �DP; the
protein–protein twist angle, PP; and the protein–DNA roll angle, �PD.
(b) Prototype 179-bp loop with protein–protein twist angle, PP, equal to
−60 degrees. The view is from the base of the loop toward the DNA
apex. (c) Loop conformation shown in (b) viewed from the side, perpen-
dicular to the loop dyad axis.

are used to indicate the corresponding angles through
subscripts. The local Cartesian-coordinate frames for pro-
tein subunits are defined such that their origins coincide
with vertices of a circular chain and their z-axes point
toward the next vertex in succession. Thus protein dimen-
sions can be modelled in terms of a non-canonical value
for the helix rise corresponding to particular segments
within a circular polymer chain.

Angles are expressed in degrees, and length in units of
the DNA helical rise, �bp = 3�4 Å. All calculations used
canonical mechanical parameters for duplex DNA: heli-
cal twist 0 = 34�45	, a sequence-independent twist-angle
standard deviation, or twisting flexibility, 	 = 4�388	, and
standard deviations, or bending flexibilities, for all tilt and
roll angles, 	� and 	�, respectively, of 4�678	 (equivalent
to a persistence length of 150 bp). Except for specific cases
where intrinsic DNA bending is considered, the average
values of tilt and roll are taken to be zero.

3.3. Simplified Protein Geometries and Flexibility
Parameters

For DNA loops with either zero or nonzero end-to-end dis-
tances, constraints are directly applied to the DNA ends,
as in the case of DNA cyclisation. We modelled DNA
loops formed during site synapsis using protein-dependent
parameters roll=�DP =�PD = 90	 and twist= DP = PD =
34�45	. The angle was considered an adjustable parame-
ter that we denote the axial angle and, unless specified,
all other protein-related angular parameters were set equal
to 0	. In these cases the DNA ends (the centres of two
protein-binding sites on DNA) are separated by twice the
protein-arm length �p and displaced from one another along
the +x direction, or toward the major groove of DNA.
Projected along the x-axis, the axial angle is the included
angle between the tangents to the DNA at the two protein
binding sites and is altered by varying the twist between
protein subunits (Fig. 7(b, c)). An axial angle equal to 0	

corresponds to antiparallel axes at the ends as shown in
Figure 7(a). The case of a rigid protein assembly is mod-
elled by setting the standard deviations of the DP, PP, and
PD sets of rigid-body rotation angles to 1 ·10−8 deg.

3.4. DNA Loops Having Zero End-to-End Distance
and Antiparallel Helical Axes

DNA loops containing N base pairs in which the two
ends meet in an antiparallel orientation can be empirically
described by the following formula:

Tilt: �i =−Ai cos�180+��

Roll: �i = Ai sin�180+��

Twist: i = 0

(2)

where 0 is the intrinsic DNA twist and � an arbitrary
angle related to the unconstrained torsional degree of
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freedom of DNA. The coefficients Ai are given by

Ai =
1
N
f

(
i

N −1

)
� i = 0� � � � �N −1 (3)

with

f �x�=
{
g�x�� 0 ≤ x ≤ 0�5

g�0�5−x�� 0�5 < x ≤ 1
(4)

where

g�x�=
5∑
i=1

aix
i� 0 ≤ x ≤ 0�5 (5)

The coefficients in Eq. (5) were obtained by fit-
ting the space curve corresponding to the DNA helical
axis that gives the minimum elastic energy conforma-
tion of DNA loops of different sizes and are as follows:
a0 = −335�0142, a1 = 2318�881, a2 = −1299�164, a3 =
−4483�366, a4 = 38169�74, a5 =−54753�5. The error for
end-to-end distances computed using Eq. (2) is less than
2% of DNA length from 50 bp to 100 bp, and less than
0�5% from 100 bp to 500 bp. The torsional phase angle
between two ends is � =−�N −2�−2�. The entire loop

(a)

(b)

Fig. 8. Conformation of an antiparallel, 150-bp DNA loop with zero
end-to-end distance. (a) Computed space-filling model of the loop gener-
ated with 3DNA.86 The ends of the DNA juxtapose exactly with antipar-
allel helical axes and exact torsional phasing. (b) Equilibrium roll and
magnitude of the loop shown in (a). The bending magnitude of each
dinucleotide step is defined as

√
�2
i +�2

i where �i and �i are the tilt and
roll of i-th dinucleotide step, respectively.

lies in a plane, and the angle between the normal vector
of the plane and the x-axis of the external coordinate can
be shown to be � = 180+  − �. The expressions for �
and � suggest that � is related to DNA bending isotropy.
Loop configurations with different � values are related to
each other by globally twisting DNA molecules. Since the
orientation of the first base pair is fixed, this global twist
is equivalent to rotation of the loop plane, which corre-
sponds to the rotational symmetry met in DNA cyclisation
of homogeneous DNA with bending isotropy.56 Therefore,
J -factors for configurations with different � values are
identical.

If DNA looping needs to be torsionally in-phase, only
two degenerate loop configurations are available, break-
ing the rotational symmetry. These loop geometries can
be expressed by Eq. (2) with two different � values: �1 =
−�N−2�/2 and �2 = 180−�N−2�/2, which satisfy the
torsional phase requirement � = 360 ·n, n= 0�±1�±2� � � �
In contrast to DNA cyclisation, no twist change is involved
in forming these ideal DNA loops for any DNA length and
thus the helical dependence vanishes in this case. From
the expression given above for � it is clear that the helical
axes of the two loops are coincident and their directions
are reversed. Figure 8 shows the bending profile of the
loop configuration corresponding to �1 for a 150 bp DNA.
Surprisingly, the maximal J -factor occurs at approximately
the same DNA length, or 460 bp (data not shown), as in
DNA cyclisation.56 This can be partly explained by the
fact that the total bending magnitude of the loop is 290
degrees, close to a full circle, instead of 180 degrees.

3.5. DNA Looping with Finite End-to-End Distance,
Antiparallel Helical Axes, and In-Phase
Torsional Constraint

Separation of the DNA ends breaks the rotational sym-
metry, restoring the dependence on helical twist. Figure
9(a) shows the J -factor as a function of DNA length for
end-to-end distances of 10 bp and 30 bp. The helical
dependence increases with end-to-end separation. Start-
ing from the two loop configurations (corresponding to �1

and �2) with zero end-to-end distance and in-phase tor-
sional alignment as initial configurations, two mechanical
equilibrium configurations are obtained by using the iter-
ative algorithm described in Ref. [56]. The J -factor in
Figure 9(a) is the sum of separate J -factors calculated for
the two configurations. Note that in all cases involving
configurations that differ in linking number, equilibration
between the two forms requires breakage of at least one of
the protein–DNA interfaces. The contributions from each
of these configurations are shown in detail for the case
where the ends are separated by 10 bp. Interestingly, the
length dependence of J computed from the individual con-
figurations are out of phase and have a periodicity of 2
helical turns, which results from the half-twist depend-
ence of the phase angles �1 and �2. However, their sum
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(a)

(b)

(c)

Fig. 9. The DNA-length-dependent J -factor and loop configuration as a
function of end-to-end separation (the J -factor is defined in Section 3.1).
(a) The helical dependence of DNA looping is shown for values of the
end-to-end separation equal to 10 bp and 30 bp. The two configurations
for the 10-bp separation are obtained from corresponding configurations
with zero end-to-end separation by using an iterative algorithm. Therefore
the two configurations are designated by the initial configurations with
phase angles � = −�N − 2�/2 + 0 (0	, dashed line) and � = −�N −
2�/2+180 (180	, solid line) as described in the text. (b) and (c) show
stereo models of the two equilibrium configurations for 210-bp (b) and
215-bp (c) antiparallel DNA loops with end-to-end separation equal to 10
bp. The 210- and 215-bp DNA correspond to an adjacent peak and valley
of the curve in (a), respectively. Conformations shown in blue correspond
to �= 0; those shown in red are for �= 180	. Note that for N -bp DNA,
the chain contour length is equal to �N −1��bp.

displays a periodicity of one helical turn. Figures 9(b) and
(c) show two such configurations for DNA molecules that
are torsionally in-phase (N = 210 bp) or out-of-phase (N =
215 bp).

In the case of cyclisation, the helical-phase dependence
of the J -factor persists at DNA lengths well beyond that

corresponding to the maximum value of J , which lies near
500 bp. This is clearly not the case for DNA looping. In
Figure 9(a), the periodic dependence of J on DNA length
for 10-bp end-to-end separation decays nearly to zero well
before the maximum J value is reached. Although the peri-
odicity of J is not attenuated quite as strongly for 30-bp
end separation, there is less than four-fold variation in
the value of J near 300 bp, as opposed to the more than
ten-fold variation in cyclisation J -factors expected in this
length range. The differences between looping and cycli-
sation are largely due to substantial differences in the rel-
ative contributions of DNA writhe in the two processes, as
discussed below.

3.6. DNA Looping in Synapsis

Intramolecular reactions of most site-specific recombi-
nation systems50–52 and a number of DNA restriction
endonucleases such as SfiI and NgoMIV,53 proceed through
protein-mediated intermediate structures in which a pair
of DNA sites are brought together in space and the inter-
vening DNA is looped out. The intermediate nucleopro-
tein complex involved in site pairing and strand cleavage
(and also exchange, in the case of recombinases) is termed
the synaptic complex. In these systems, two characteristic
geometric parameters are of interest: the average through-
space distance between the sites and the average crossing
angle between the two ends of the loop, which we denote
the axial angle (see Section 3.3). The latter quantity can be
described in terms of the twist angle between the protein
domains, PP (Fig. 7(b)), and we use these terms inter-
changeably.

Figure 10 shows the helical dependence of looping
(Fig. 10(a)) and the elastic-minimum configuration of
DNA loops (Fig. 10(b)) for different values of the axial
angle. The most prominent feature of these results is that
the phase of the helical dependence is shifted as a function
of the axial angle, characterised by a relative global shift
of the curve along the x-axis. This implies that DNA loop-
ing does not always occur most efficiently when two sites
are separated by an integral number of helical turns, as
has been suggested for some simple DNA looping systems
studied previously. The axial angle also globally modu-
lates J -factors, which is apparent from the vertical shift
in the J versus length curve and effects on the amplitude
of the helical dependence. The torsion-angle-independent
value of J , averaged over a full helical turn, decrea-
ses with increasing axial angle, whereas the amplitude of
the helical dependence increases. The above observations
can be qualitatively explained by analogous results from
DNA cyclisation. As in cyclisation, DNA forms loops most
efficiently when the number of helical turns in the loop
is close to an integer value. It is therefore appropriate
to consider this issue in terms of the linking number for
the looped conformation, Lk, which involves contributions
from the geometries of both the protein and DNA.
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Fig. 10. Dependence of the J -factor on axial angle (the J -factor is
defined in Section 3.1, and the axial angle is defined as the average
crossing angle between the two ends of the loop, see Section 3.6). (a)
DNA-length dependence of J for axial angles of 0	, 60	, and 120	 with
the end-to-end separation set equal to 40 bp. Note that the positions of
the extrema shift to the left with increasing values of the axial angle. (b)
Stereo models of minimum elastic-energy conformations of 179-bp loops
colour coded in accord with the corresponding axial-angle values in (a).

We define the loop helical turn Ht� loop as the sum of the
DNA twist and the twist introduced by the protein sub-
units, divided by 360. Therefore, changing the twist angle,
the axial angle will shift the phase of the helical depen-
dence relative to that of the DNA alone. For a loop with
N = 179 bp and PP = 0, the total twist is simply equal to
that for the DNA loop. Because this loop has 17�0 helical
turns, only one loop topoisomer contributes to the J -factor.
The value of J is a local maximum at PP = 0 and, as
shown in Figure 11(a), decreases monotonically for both
PP > 0 and PP < 0. Contributions to J from other topoi-
somers of the 179-bp loop are less than 5 percent over
the range −135	 < PP < +120	. The twist for the planar
equilibrium conformation of a 173-bp loop is 16�5 heli-
cal turns; thus there are two alternative loops that can be
efficiently formed (Fig. 11(a)): either a loop with Ht� loop =
17�0 and PP > 0, or a loop with Ht� loop = 16�0 and PP < 0.
The J value at PP = 0 is a local minimum and there is a
bimodal dependence on axial angle for loops in which the
DNA twist is half-integral. We investigated the phase shift

Fig. 11. J -factor, loop-geometry parameters, and elastic-free energies
as functions of axial angle (compare Figure 10). (a) J -factor values for
loop topoisomers corresponding to 179-bp and 173-bp loops in Figure 10.
The principal contribution to J for N = 179 bp comes from a single loop
topoisomer with Lk= 17. For N = 173 bp, the overall J -factor is the sum
of contributions from two loop topoisomers with Lk values of 16 and
17, generating a bimodal dependence of J on axial angle as described
in the text. (b) Excess helical twist, �Ht , and writhe of the loop formed
by the Lk = 16 topoisomer for N = 173 bp as a function of axial angle.
Excess twist is computed from the expression Ht� loop−16, where Ht� loop is
the loop helical turn value described in the text, and depends linearly on
the axial angle. The writhing number of the loop was calculated using the
method of Vologodskii.69�87 (c) Elastic-free energies of the Lk = 16 loop
topoisomer for N = 173 bp calculated according to Eq. (38) of Zhang and
Crothers.56 The individual contributions of bending and twisting energies
are shown along with their sum.

of the J -factor and found that this quantity is a non-linear
function of the axial angle. From Figure 10(a), the calcu-
lated phase shifts for 60	 and 120	 axial angles relative
to 0	 are approximately 52	 and 103	, respectively. More-
over, the local maxima for the total J curve for N = 173
shown in Figure 11(a) are located at −58�5	 and 63	, posi-
tions that are not in agreement with predicted angle values
based solely on Ht� loop (−166	 and 194	, respectively).

These deviations can be explained by the fact that writhe
makes an important contribution to the overall Lk for the
loop. This aspect of DNA looping is dramatically different
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from that in the cyclisation of small DNA molecules.
The conformations of small DNA circles are close to pla-
nar and the writhe contribution is small relative to DNA
twist.56�71�84�85 In the case of protein-mediated looping,
nonzero values of the axial angle impose an intrinsically
nonplanar conformation on the DNA. The relative contri-
butions of loop writhe and twist for the Lk = 16 topoi-
somer of a 173-bp loop are shown as a function of axial
angle in Figure 11(b).

In Figure 11(c), we plot the axial-angle-dependent val-
ues of the bending and twisting free energies for the Lk =
16 topoisomer and their sum, which is the total elastic-
free energy of the loop. The minimum value of the total
elastic energy occurs at PP = −58�5	, coincident with
the position of the J -factor maximum for this topoiso-
mer (Fig. 11(a)). This mechanical state can be achieved
with very little twist deformation of the loop, but at the
expense of significant bending energy. Further reduction
of the axial angle requires even less twisting energy; how-
ever, the bending energy increases monotonically. In con-
trast, for PP > −58�5	, somewhat less bending energy is
required, but the twisting energy begins to increase sig-
nificantly with increasing axial angle. Since the sense of
the bending deformation for PP > 0 opposes the needed
reduction in loop linking number, the elastic energy cannot
be decreased by increasing the axial angle. The only way
that the loop geometry can compensate for this is through
twist deformation. This asymmetry arises because we are
considering the contribution of only one loop topoisomer
to the elastic free energy.

3.7. Conclusion

The statistical-mechanical theory for DNA looping dis-
cussed above56�57 suggests that the helical dependence of
DNA looping is affected by many factors and leads to
the conclusion that whereas a positive helical-twist assay
can often confirm DNA looping, a negative result can-
not exclude DNA looping. Since it is difficult to explore
the architecture of DNA loops with current experimen-
tal techniques, this theory will be useful for more reli-
ably analysing DNA looping with limited experimental
data. The model has advantages over previous approaches
based exclusively on DNA mechanics, particularly when
protein flexibility is taken into account. In these cases,
entropy effects become important and are responsible for
the observed decay of looping efficiency with DNA length.

4. DNA KNOTS AND THEIR
CONSEQUENCES: ENTROPY AND
TARGETED KNOT REMOVAL

Bacterial DNA occurs largely in circular form. Notably,
instead of a simply connected ring shape (the unknot),
the DNA often exhibits permanently entangled states, such

Fig. 12. Electron microscope image of a DNA trefoil knot. Reprinted
with permission from Ref. [88], S. A. Wassermann et al., Science 229,
171 (1985). © 1985.

as catenated and knotted DNA. An example for a DNA
trefoil knot is shown in Figure 12. Such configurations
have potentially devastating effects on the cell develop-
ment. Conversely, however, knots might have designed
purposes in gene regulation, separating different regions of
the genome, or, alternatively, locking chemically remote
parts of the genome proximate in geometrical space. In
eukaryotic cells additional topological effects occur in the
likely entanglement of individual chromosomes. Here, we
concentrate on the prokaryotic case.

4.1. Physiological Background of Knots

The discovery how one can use molecular biological tools
to create knotted DNA resolved a long-standing argument
against the Watson-Crick double helix picture of DNA,12

namely that the replication of DNA could not work as the
opening up of the double helix would produce a super-
structure such that the two daughter strands could not be
separated. In fact, the topology of both ssDNA and dsDNA
is continuously changed in vivo, and this can readily be
mimicked in vitro, although the activity of enzymes in vivo
is much more restricted than in vitro:89�90 Different con-
centrations of enzymes versus knotted DNA molecules
accessible in vitro, that is, makes it possible to probe
topology-altering effects by enzymes which in vivo do not
contribute to such effects.

Although it would be likely with a probability of
roughly 1/2 that the linear DNA injected by bacteriophage
 into its host E. coli would create a knot before cyclisa-
tion, it turned out to be difficult to detect.12 First studies
therefore concentrated on the fact that under physiological
conditions knots are introduced by enzymes, DNA repli-
cation and recombination, DNA repair, and topoisomeri-
sation, using these enzymes to prove both knotting and
unknotting.88�91–96 DNA-knotting is also prone to occur
behind a stalled replication fork.97�98 Some of the typical
topology-altering reactions undergoing in E. coli are sum-
marised in Figure 13. Knots can efficiently be created from
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Topo IV

(C)

Topo IV

Gyrase

Topo I
Topo IV

Gyrase

Topo IV

(B)

(A)

Fig. 13. Enzymes changing the topology of dsDNA by cutting and past-
ing of one or both strands (example for E. coli ): (A) Torsional stress
resulting from the Lk deficit causes the DNA double helix to writhe
about itself (negative supercoiling). In E. coli , gyrase introduces negative
supercoils into DNA and is countered by topoisomerase I (topo I) and
topo IV, which relax negative supercoils. (B) Topo IV unlinks catenanes
generated by replication or recombination in vivo. (C) Topo IV unknots
DNA in vivo. After Ref. [89].

nicked11 dsDNA under action of topoisomerase I at non-
physiological concentrations.99 Another possibility is by
active packaging of a DNA mutant into phage capsids,100

and then denaturing the capsid proteins. Both methods pro-
duce a distribution of different knot types. They can be
separated by electrophoresis.101

The existence of DNA-knots has far-reaching effects
on physiological processes, and knottedness of DNA has
therefore to be eliminated in order to maintain proper func-
tioning of the cell. Among other possible effects, it is
immediately clear that the presence of a knot in a circular
DNA impedes replication of the DNA, i.e., the full separa-
tion of the two daughter strands.1�12 Moreover, even tran-
scription is impaired.102 The presence of knots inhibits the
assembly of chromatin,103 knotted chromosomes cannot be
separated during mitosis,1 and knots in a chromosome may
serve as topological barriers between different sections of
chromosomes, such that the genomic structural organisa-
tion is altered, and certain sections of the chromosomal
DNA may no longer interact.104 Conversely, it is conceiv-
able that knots, analogously to protein induced DNA loop-
ing, lock remote segments of the genome close together in
geometric space. Finally, knots may lead to double-strand
breaks, as they weaken biopolymers considerably due to

11One of the two strands is cut.

Fig. 14. Topoisomerase II. This enzyme can actively change the topol-
ogy of DNA by cutting the double-strand and passing another segment
of double-stranded DNA through the gap before resealing it. The image
depicts a short stretch of DNA (horizontally at the bulge of the enzyme,
as well as another segment in the lower clamp (perpendicular to the
image) after passage through the gap from the upper clamp. This mecha-
nism makes sure that no additional strand passage through the open gap
can take place.114�115 Figure courtesy James M. Berger, UC Berkeley.

creation of localised sharp bends105–108 as well as macro-
scopic lines and ropes (Ref. [109]).12

Above we said that knots can be introduced, inter alia,
by the different enzymes of the topoisomerase family. To
remove a knot from a dsDNA, it is necessary to cut both
strands, and then pass one segment through the created
gap, before resealing the two open ends. In vivo, this is
usually achieved by topoisomerases II and IV. A recon-
struction of topo II is shown in Figure 14, indicating the
upper clamp holding a segment of the DNA, while the
bulge-clamp introduces the cut through which the upper
segment is passed. In the figure, the segment visible in
the pocket of the lower clamp has already been passed
through the gap. After resealing, topo II detaches. This
process requires energy, provided by ATP. Notably, topo
II is extremely efficient, for circular dsDNA of length
�10 kbp it was found that topo reduced the knotted state
in between 50 and 100-fold, in comparison to a ‘dumb’
enzyme, which would simply pass segments through at
random.110 We note that the step-wise action of topoiso-
merase II was recorded in a single molecule setup using
magnetic tweezers.111�112 Topoisomerases are surveyed in
the review of Ref. [113].

12The weakness of strings at the site of the knot can be experienced
easily by pulling apart a linear nylon string in comparison to a knotted
one.106
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4.2. Classification of Knots

Knottedness can only be defined on a closed (circular)
chain. This is intuitively clear as in an open linear chain
a knot can always be tied, or an existing knot released.
Mathematically, this means that knot invariants are only
well-defined for a closed space-curve. However, a linear
chain whose ends are permanently attached to one, or two
walls, or whose ends are extended towards infinity, can
be considered as (un)knotted in the proper mathematical
sense, i.e., their knottedness cannot change. In a loser
sense, we will also speak of knots on an open piece of
DNA, appealing to intuition.

The classification of knots, or graphs in general, in
terms of invariants can essentially be traced back to Euler,
recalling his graph theoretical elaboration in connection
with the Bridges of Königsberg problem,116 determining
a closed path by crossing each Königsberg bridge exactly
once. However, the first investigations of topological prob-
lems in modern science is most probably due to Kepler,
who studied surface tiling to great detail (therefore the
notion of Kepler tiling in mathematical literature).117 Fur-
ther initial steps were due to Leibniz, Vandermonde, and
Gauss, in whose collection of papers drawings of various
knots were found13 whose linking (‘Umschlingungen’ =
windings) number is indeed a knot invariant.118–120 Gauss’
student, Listing, in fact introduced the term ‘topology’,
and his work on knots may be viewed as the real starting
point of knot theory,121 although his complexions number
was proved by Tait not to be an invariant.

Inspired by Helmholtz’ theory of an ideal fluid and
building on Listing’s early contributions to knot theory,
Scotsmen and chums Maxwell, Tait and Thomson (Lord
Kelvin) started to discuss the possible implications of
knottedness in physics and chemistry, ultimately distilled
into Thomson’s theory of vortex atoms.122�123 Out of this
endeavour emerged Tait’s interest in knots, and he devoted
most of his career on the classification of knots. Numer-
ous charts and still unresolved conjectures on knots docu-
ment his pioneering work.124–127 The studies were carried
on by Kirkman and Little.128–131 A more detailed historical
account of knot theory may be found in the review article
by van de Griend,132 and on the St. Andrews history of
mathematics webpages.14

Planar projections of knots were rendered unique by
Listing’s introduction of the handedness of a crossing, i.e.,
the orientational information assigned to a point where
in the projection two lines intersect. With this informa-
tion, projections are the standard representation for knot
studies. On their basis, the minimum number of crossings
(‘essential crossings’) can be immediately read off as one
of the simplest knot invariants. To arrive at the minimum

13Probably copies from an English original.
14The MacTutor History of Mathematics archive, URL: http://turnbull.

mcs.st-and.ac.uk/∼history/

Fig. 15. The three Reidemeister moves. All topology-preserving moves
of a knot projection can be decomposed into these three fundamental
moves.

number, one makes use of the Reidemeister moves, three
fundamental permitted moves of the lines in a knot pro-
jection, as shown in Figure 15. More complex knot invari-
ants include polynomials of the Alexander, Kauffman and
HOMFLY types (Refs. [118–120]).15 Here, we will only
employ the number of essential crossings as classifica-
tion of knots, in particular, we do not concern ourselves
with the question of degeneracy for a given knot invariant.
However, the bookkeeping of knot types is vital in knot
simulations.

4.3. Long Chains are Almost Always Entangled

During the polymerisation and final cyclisation of a poly-
mer grown in a solvent under freely floating conditions,
a knot is created with probability 1. This Frisch-
Wassermann-Delbrück conjecture134�135 could be mathe-
matically proved for a self-avoiding chain,136�137 compare
also Ref. [138]. This is consistent with numerical findings
that the probability of unknot formation decreases dramat-
ically with chain length.133�139 Indeed, recent simulations
results indicate that the probability of finding the unknot in
such a cyclisised polymer decays exponentially with chain
length:140–143

P�N �∝ exp
(
− N

Nc

)
(6)

15These polynomials all start to be degenerate for higher order knots,
i.e., above a certain knot complexity several knots may correspond to one
given polynomial.118�119 In the case of the simpler knots attained in most
DNA configurations and in knot simulations, the Alexander polynomials
are unique, in contrast to the Gauss or Edwards invariant, compare, e.g.,
Ref. [133].
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However, there exist theoretical arguments and simula-
tions results indicating that the characteristic number of
monomers Nc occurring in this relation may become sur-
prisingly large.144–147 The probability to find a given knot
type � on random circular polymer formation has been
fitted with the functional form147–149

P��N �= a
(
N −N0

)b
exp

(
−N c

d

)
(7)

where a, b, and d are free parameters depending on �, and
c ≈ 0�18. N0 is the minimal number of segments required
to form a knot �, without the closing segment.149 The ten-
dency towards knotting during polymer cyclisation creates
problems in industrial and laboratory processes.

4.4. Entropic Localisation in the Figure-Eight
Slip-Link Structure

To obtain a feeling for how and when entropy leads to
the localisation of a permanently entangled structure, we
consider the simplest polymer object with non-trivial (non-
unknot) geometry, the figure-eight structure (F8) displayed
in Figure 16. In this compound, a pair contact is enforced
by a slip-link, separating off two loops in the circular
polymer, such that none of the loops can fully retract,
and both loops can freely exchange length among each
other. We denote the loop sizes by n and N −n, where N
is the (conserved) total length of the polymer chain. For
such an object, we can actually perform a closed statistical
mechanical analysis based on results from scaling theory
of polymers, and compare the result with Monte Carlo
simulations of the F8.

The statistical quantities that are of particular interest
are the gyration radius, Rg, and the number of degrees
of freedom, %.150 Rg, as defined in Eq. (61), measures
the root mean squared distance of the monomers along
the chain to the gyration centre, and is therefore a good
measure of its extension. It can, for instance, be measured
by light scattering experiment. The degrees of freedom
% count all possible different configurations of the chain.

n

N–n

Fig. 16. Figure-eight structure, in which a slip-link separates two loops
of size n and N −n, such that they can freely exchange length among
each other, but none of the loops can completely retract from the slip-
link. On the right, a schematic drawing of a slip-link, which may be
thought of as a small belt buckle.

For a circular polymer (i.e., a polymer with r�0�= r�N �),
the gyration radius becomes

Rg � AN& (8)

with exponent & = 1/2 for a Gaussian chain, and & =
0�588 in the 3D excluded volume case (& = 3/5 in the
Flory model, and & = 3/4 in 2D). Whereas in 2D this scal-
ing contains truly a ring polymer, in 3D the exponent &
emerges from averaging over all possible topologies, and
necessarily includes knots of all types.150–152 For a circu-
lar chain, the number of degrees of freedom contains the
number of all possible ways to place an N -step walk on
the lattice with connectivity � (e.g., � = 2d on a cubic
lattice in d dimensions), �N , and the entropy loss for
requiring a closed loop, N−d& , involving the same Flory
exponent &. For the Gaussian case, we recognise in this
entropy loss factor the returning probability of the random
walk. In the excluded volume case, N−d& is an analogous
measure.24�150�154 Thus, for a circular chain embedded in
d-dimensional space, the number of degrees of freedom is

%� �NN−d& (9)

Let us evaluate these measures for the F8 from Figure 16.
As a first approximation, consider the F8 as a Gaussian

(phantom) random walk, demonstrating that, like in
the charged knot case,153 entropic effects give rise to
long-range interactions. The two loops correspond to
returning random walks, i.e., the number of degrees of
freedom for the F8 in the phantom chain case becomes
(Refs. [24, 150, 155])16

%F8�PC � �Nn−d/2�N −n�−d/2 (10)

where d is the embedding dimension. We note that normal-
isation of this expression produces the probability density
function for finding the F8 with a given loop size �= na
(L= Na),

pF8�PC���� � �−d/2�L−��−d/2 (11)

where � denotes a normalisation factor. The conversion
from expressing the chain size in terms of the number of
monomers to its actual length is of advantage in what fol-
lows, as it allows to more easily keep track of dimensions.
Here, we use the length unit a, which may be interpreted
as the monomer size (lattice constant), or as the size of a
Kuhn statistical segment.

To classify different grades of localisation, we follow
the convention from Refs. [156, 157]. The average loop

16Here and in the following we consider two configurations of a polymer
chain different if they cannot be matched by translation. In addition, the
origin of a given structure is fixed by a vertex point (see below), i.e.,
a point where several legs of the polymer chain are joint. In the F8-
structure, this vertex naturally coincides with the slip-link. For a simply
connected ring polymer, such a vertex is a two-vertex anywhere along
the chain.

16 J. Comput. Theor. Nanosci. 4, 1–49, 2007
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Fig. 17. Bead-and-tether chain used in Monte Carlo simulation, show-
ing a typical equilibrium configuration for a self-avoiding chain: the
localisation of the smaller loop is distinct. Note that in this 2D simulation
the slip-link is represented by the three tethered black beads.

size ��� determined through ��� = ∫ L−a
a

�p���d� is triv-
ially ��� = L/2 by symmetry of the structure. Here, we
introduce a short-distance cutoff set by the lattice con-
stant a. However, as the probability density function is
strongly peaked at �= 0 and �= L, the two poles caused
by the returning probabilities, and therefore a typical shape
consists of one small (tight) and one large (loose) loop,
compare Figure 17. This can be quantified in terms of the
average size of the smaller loop,

���< ≡ 2
∫ L/2

a
�p���d� (12)

In d = 2, we obtain

���< ∼ L

� log�a/L�� (13)

such that with the logarithmic correction the smaller loop
is only marginally smaller than the big one. In contrast,
one observes weak localisation

���< ∼ a1/2L1/2 (14)

in d = 3, in the sense that the relative size ���</L tends
to zero for large chains. By comparison, for d > 4 one
encounters ���< ∼ a, corresponding to strong localisa-
tion, as the size of the smaller loop does not depend on
L but is set by the short-distance cutoff a. Above four
dimensions, excluded volume effects become negligible,
and therefore both Gaussian and self-avoiding chains are
strongly localised in d ≥ 4.17

To include self-avoiding interactions, we make use
of results for general polymer networks obtained by

17Consideration of higher than the physical 3 space dimensions is often
useful in polymer physics.

Duplantier,151�158 which are summarised in the appendix
at the end of this review. In terms of such networks, our
F8-structure corresponds to the following parameters: the
number � = 2 of polymer segments with lengths s1 = �=
na and s2 = L− � = �N − n�a, forming � = 2 physical
loops, connected by n4 = 1 vertex of order four. By virtue
of Eq. (79), the number of configurations of the F8 with
fixed � follows the scaling form

%F8���� �L�L−��)F8−1�F8

(
�

L−�

)
(15)

with the configuration exponent )F8 = 1 − 2d& + 	4. In
the limit � � L, the contribution of the large loop in
Eq. (15) should not be affected by a small Appendix,
and therefore should exhibit the regular Flory scaling
∼ �L−��−d& .159�160�214 This fixes the scaling behaviour of
the scaling function �F8�x�∼ x)F8−1+d& in this limit (x→ 0
in dimensionless variable x), such that

%F8���� �L�L−��−d&�−c� �� L (16)

where c=−�)F8−1+d&�= d&−	4. Using 	4 =−19/16
and & = 3/4 in d = 2,151�158 we obtain

c = 43/16 = 2�6875� d = 2 (17)

In d = 3, 	4 ≈ −0�48 (Refs. [159–161]) and & ≈ 0�588,
so that

c ≈ 2�24 (18)

In both cases the result c > 2 enforces that the loop of
length � is strongly localised in the sense defined above.
This result is self-consistent with the a priori assumption
� � L. Note that for self-avoiding chains, in d = 2 the
localisation is even stronger than in d = 3, in contrast to
the corresponding trend for ideal chains.

We performed Monte Carlo (MC) simulations of the
2D figure-eight structure, in which the slip-link was repre-
sented by three tethered beads enforcing a sliding pair con-
tact such that the loops cannot fully retract (see Fig. 18).
We used a 2D hard core bead-and-tether chain with 512
monomers, starting off from a symmetric initial condition
with � = L/2. Self-crossings were prevented by keeping
a maximum bead-to-bead distance of 1.38 times the bead
diameter, and a maximum step length of 0.15 times the
bead diameter. As shown in Figure 19, the size distribu-
tion for the small loop can be fitted to a power law with
exponent c = 2�68 in good agreement with Eq. (17).

An experimental study of entropic tightening of a macro-
scopic F8-structure was reported in Ref. [162]. There, a
granular chain consisting of hollow steel spheres connected
by steel rods was once twisted and then put on a vibrat-
ing table. From digital imaging, the distribution of loop
sizes could be determined and compared to a power-law
with index 43/16 as calculated for the 2D excluded volume
chain. The agreement was found to be consistent.162
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Fig. 18. Monte Carlo simulation of an F8-structure in 2D: loop sizes
� and L− � as a function of Monte Carlo steps for a chain with 512
monomers. The symmetry breaking after the symmetric initial condition
is distinct.

4.5. Simulations of Entropic Knots in 2D and 3D

Much of our knowledge about the interaction of knots with
thermal fluctuations is based on simulations of knotted
chains. Before going further into the theoretical modelling
of knotted chains, we report some of the results based
on simulations studies of both Gaussian and self-avoiding
walks.18 Such simulations either start with a given knot
configuration and then perform moves of specific seg-
ments, each time making sure that the topology is pre-
served; or, each new configuration emanates from a new
random walk, whose correct topology may be checked by
calculating the corresponding knot invariant, usually the
Alexander polynomial, and created configurations that do
not match the desired topology are discarded. We note
that it is of lesser significance that knot invariants such as
the Alexander polynomials in fact are no longer unique
for more complex knots, because for typical chain lengths
with the highest probability simpler knots are created, for
which the invariants are unique. For more details we refer
to the works quoted below.

In fact, the fixed topology turns out to have a highly
non-trivial effect on chains without self-excluded volume.
As conjectured in Ref. [163], a Gaussian circular chain,
whose permitted set of configurations is restricted to a
fixed topology, will exhibit self-avoiding behaviour. This
was proved in a numerical analysis in Ref. [152]. The
required number of monomers to reach this self-avoiding
exponent was estimated to be of the order of 500. Keep-
ing this non-trivial scaling of a Gaussian chain at fixed
topology in mind, knot simulations on the basis of phan-
tom Gaussian chains were performed in Ref. [164], always

18Although per se a Gaussian chain cannot have a fixed topology due
to its phantom character, such simulations introduce a fixed topology by
rejecting moves that result in a different knot type.

1 10 100
10–4
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10–2

10–1

10–0

slope = 2.68

Fig. 19. Power-law fit to the probability density function of the smaller
loop. The fit produces a slope of −2.68, in excellent agreement with the
calculated value.

making sure that the configurations taken into the statistics
fulfil the desired knot topology.

The dependence of the gyration radius Rg on the knot
type was investigated for simpler knots in 3D in Ref. [143].
On the basis of the expansion

R2
g � A�

(
1+B�N

−�+C�N
−1 +o�1/N�

)
N 2&� (19)

including a confluent correction143�165�166 in comparison to
the standard expression (8), it was found that the Flory
exponent &� is independent of the knot type � and has the
3D value 0�588. This was interpreted via a localisation of
knots such that the influence of tight knots on Rg is van-
ishingly small. In fact, � is of the order of 0�5 according
to the investigations in Refs. [165–168]. Based on longer
chains in comparison to Ref. [143], the study of Ref. [169]
thus corroborates the independence of &� ≈ 0�588 of the
knot type �. In recent AFM experiments analysing single
DNA knots, the Flory scaling Rg � N& was confirmed for
both simple and complex knots.170

For the number of degrees of freedom %�, it was found
for the form19

%� � A�N
.�−2�N

�

(
1+ B�

N��
+· · ·

)
(20)

with confluent corrections, that while for the unknot with
. ≈ 0�27 expression (20) is consistent with the standard
result (9) (/0�27 − 20/3 ≈ −0�58 ≈ &), for prime knots
.� =.+1, and for composite knots with Nf prime com-
ponents,

.� = .+Nf (21)

This finding is in agreement with the view that each prime
component of a knot � is tightly localised and statistically

19Note that we changed the exponent by 1 in comparison to the original
work, making the counting of non-translatable configurations consistent
with the counting convention specified in footnote (16).
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able to move around one central loop, each prime compo-
nent counting an additional factor N of degrees of free-
dom. The fact that for a chain of finite thickness the size
of the big central loop is in fact diminished by the size of
the tight knot is a confluent effect, such that the confluent
exponent � should be related to the size distribution of
the knot region. Not surprisingly, the connectivity factor
�� ≈ 4�68 was found to be independent of �, assuming
the standard value for a cubic lattice.171 Also the amplitude
A� and the exponent �� of the confluent correction turned
out to be �-independent. We note that a similar analysis
in (pseudo) 2D20 also strongly points towards tight locali-
sation of the knot.172

In contrast to the above results, 3D simulations under-
taken in 173 (also compare Ref. [174]) show the
dependence

Rg � N 3/5C−4/15 (22)

of the gyration radius on the knot type, characterised by
the number C of essential crossings. Rg, that is, decreases
as a power-law with C, where the exponent −4/15 =
1/3− &.173 The functional form (22) was derived from a
Flory-type argument for a polymer construct of C inter-
locked loops of equal length N/C by arguing that each
loop occupies a volume � �N/C�3& , and the volume of
the knot is given by V � C�N/C�3& (i.e., assuming that
due to self-avoiding repulsion the volume of individual
loops adds up to the total volume). Equation (22) then
follows immediately. This model of equal loop sizes is
equivalent to a completely delocalised knot. It may there-
fore be speculated, albeit rather long chain sizes of up to
400 were used, whether the numerical algorithm employed
for the simulations in Ref. [173] causes finite-size effects
that, in turn, prevent a knot localisation. We note that the
Flory-type scaling assumed to derive expression (22) is
consistent with a modelling brought forward in Ref. [175],
in which the knot is quantified by the aspect ratio in a
configuration corresponding to a maximally inflated tube
with the given topology (i.e., a state corresponding to com-
plete delocalisation). In Ref. [173], the temporal relaxation
behaviour of a given knot was also studied. While regu-
lar Rouse behaviour was found for the case of the unknot,
the knotted chains displayed somewhat surprising long
time contributions to the relaxation time spectrum,7�176–178

a phenomenon already pointed out by de Gennes within an
activation argument to create free volume in a tight knot
in order to move along the chain.179 Note that relatively
lose knots in shorter chains do not appear to exhibit such
extremely long relaxation time behaviour.180

Simulation of a 3D knot with varying excluded vol-
ume showed, if only the excluded volume becomes large

20The simulated polymer chain moves in 2D, however, crossings are
permitted at which one chain passes underneath another. In that, the sim-
ulated polymers are in fact equivalent to knot projections with a certain
orientations of individual crossings.

enough, the gyration radius of the knot is independent of
the knot type.181 The picture of tight knots is further cor-
roborated in the study by Katritch et al. using a Gaussian
chain model with fixed topology to demonstrate that the
size distribution of the knot is distinctly peaked at rather
small sizes.148

Apart from determining the statistical quantities Rg and
%� from simulations, there also exist indirect methods for
quantifying the size of the knot region in a knotted poly-
mer. One such method is to confine an open chain contain-
ing a knot between two walls, and measuring the finite size
corrections of the force–extension curve due to the knot
size. This is based on the idea that the gyration radius for
a system depending on more than one length scale (i.e.,
apart from the chain length N ) shows above mentioned
confluent corrections, such that182

Rg = AN&2

(
N0

N
�
N1

N
� � � �

)
� AN&

(
1−BN−�) (23)

when only the largest correction is considered, and in 3D
� ≈ 0�5 is supposed to be universal.165–168 If this lead-
ing correction is due to the argument N0/N in the scaling
function 2, the length scale N0 depends on N through the
scaling N0 ∼ N t with �= 1− t. From Monte Carlo simu-
lations of a bead and tether chain model, it could then be
inferred that the size of the knot scales like182

Nk ∼ N t� t = 0�4±0�1 (24)

This, in turn, enters the force–extension curve f ′ =G�R′�
with the dimensionless force f ′ = fAN&/�kBT � and dis-
tance R′ =R/�AN&� of the walls, in the form with conflu-
ent correction

f ′ �G�R′�
(
1+g�R′�N−�) (25)

From the simulation, t = 0�4 corresponds to the best data
collapsing, assuming the validity of the scaling arguments.
An argument in favour of this approach is the consis-
tency of the exponent t = 0�4 with the inferred � = 0�6,
which is close to the known value. Note that the force-
extension of a chain with a slip-link was discussed in Ref.
[183] and shown that a loop separated off by a slip-link
is confined within a Pincus-de Gennes blob. We also note
that results corresponding to delocalisation in force–size
relations were reported in Refs. [184, 185]. An entropic
scale was conceived in Ref. [186]: Separating two chains
with fixed topology but allowing them to exchange length
(e.g., through a small hole in a wall) would enable one to
infer the localisation behaviour of a knot by comparing the
equilibrium balance of this knot with a slip-link construct
of known degrees of freedom until the average length on
both sides coincides. The preliminary results in Ref. [186]
are shadowed by finite-size effects of the accessible sys-
tem size, as limited by computation power. The analysis
in Ref. [187] of a self-avoiding polygon model uses the
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method of closure of a short fragment of the knot and
subsequent determination of its Alexander polynomial to
obtain the scaling exponent t = 0�75; in a second variant,
the authors find a consistent result by a variant of the knot
scale method. Another recent study uses a more realistic
model for a polymer chain, namely, a simplified model of
polyethylene; with up to 1000 monomers in the simula-
tion, the exponent t ≈ 0�65 is found (and delocalisation is
obtained in the dense phase).188

Thus, there exist simulations results pointing in both
directions, knot localisation and delocalisation. As the lat-
ter may be explained by finite size effects, it seems likely
that (at least simple) knots in 2D and 3D localise in the
sense that the knot region occupies a portion of the chain
that is significantly smaller in comparison to the entire
chain. In particular, this would imply that the average size
of the knot region ��� scales with the chain length Na
with an exponent less than one, such that

lim
N→�

���
Na

= 0 (26)

Below, we show from analytical grounds that such a local-
isation is a natural consequence of interactions of a chain
of fixed topology with fluctuations. We note, however, that
conclusive results for knot localisation may in fact come
from experiments: Manipulation of single chains such as
DNA can be performed for rather long chains, making it
possible to reach beyond the finite-size corrections inher-
ent in, e.g., the force-extension simulations mentioned
above. The aforementioned AFM studies on single DNA
knots indeed reveal knot localisation of flattened knots;170

due to experimental limitations, presently only one DNA
length was investigated, such that the scaling exponent t
currently cannot be obtained.

Before proceeding to these analytical approaches, we
note that there have also been performed simulations
of knotted chains under non-dilute conditions.189�190 In
(pseudo) 2D, these have found delocalisation of the knot,
i.e., limN→����/N = const. We come back to these sim-
ulations below in connection with the modelling of dense
and 6-knots.

4.6. Flattened Knots in Dilute and Dense Phases

Analytically, knots are a hard problem to tackle. Statistical
mechanical treatments of permanently entangled polymers
are so difficult to treat since topological restrictions can-
not be formulated as a Hamiltonian problem but appear
as hard constraints partitioning the phase space (Refs.
[24, 150, 191, 192]).21 A segment of a 3D knot, in other
words, can move without feeling the constraints due to
the non-trivial topology of a knotted state, until it actu-
ally collides with another segment. The accessible phase

21For comparison, self-avoidance in 3D is usually treated as a perturba-
tion, i.e., as a “soft constraint”, in analytical studies.150

space of degrees of freedom is therefore characterised by
inequalities.22

Consequently, only a relatively small range of problems
have been treated analytically, starting with the seminal
papers by Edwards,193�194 in which he considers the classi-
fication of topological constraints in polymer physics. De
Gennes addressed the problem of tight knot motion along
a polymer chain using scaling arguments for the activation
of free length inside the knot region, producing a double-
exponential expression for the corresponding time scale,179

which might explain the extreme long-time contributions
in the relaxation time spectrum of permanently entangled
polymers.7�176–178�195 Some analytical results were obtained
for a pair, or an ‘Olympic’ gel of entangled polymer rings,
see for instance, Refs. [196–200]. In a mean field approach
based on the Kauffman invariant the entropy of knots was
investigated in Refs. [201–203]. Similarly, some statisti-
cal properties of random knot diagrams were investigated
in Refs. [204, 205]. However, some insight can be gained
on the basis of phenomenological models, which we will
come back to below. Here, we continue with an analytical
study of flat knots.

One possibility to treat knotted polymer chains analyt-
ically is to confine the degrees of freedom of the knot
to motion in 2D, only. The knot, that is, is preserved, as
at the crossings the chain is allowed to form an over-/
underpassing, while the rest of the knot is confined to
2D. Such a confinement can in fact be experimentally
realised in various ways. Thus, the chain can be confined
between two close-by glass slabs, as demonstrated in Ref.
[206]; it can be pressed flat on a surface by gravitation or
similar forces, for instance in macroscopic systems;162�207

the chain can be adhesively bound to a membrane and
still reach configurational equilibrium, as experimentally
shown for DNA in Refs. [170, 208]. Or it can be adsorbed
to a mica surface either by APTES coating or by provid-
ing bivalent Mg ions in solution, as shown in Figure 20.
From such flat knots as discussed in the remainder of this
section, we will be able to infer certain generic features
also for 3D knots.

A flat knot therefore corresponds to a polymer network
in 2D, but the orientation of the crossings is preserved,
such that the network graph actually coincides with a typ-
ical knot projection,118–120 as shown in Figure 21 on the
left. This projection of the trefoil, and similar projections
for all knots, displays the knot with the essential crossings.
A flat knot can, in principle acquire an arbitrary number of
crossings by Reidemeister moves; for instance, the bottom
left segment of the flat trefoil can slide under the vicinal
segment, creating a new pair of vertices, and so on. How-
ever, we suppose that such transient additional loops are

22Although a similar statement is true for polymer networks in 3D, the
field theoretical results for their critical exponents are in fact obtained as
averages over all topologies. For instance, the exponent & entering the
gyration radius of a a 3D polymer ring counts all knotted states.151
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Fig. 20. AFM tapping-mode images of flattened (adsorbed) complex
DNA-knots with approximately 30–40 essential crossings. The substrate
surface used is AP-mica (freshly cleaved mica reacted with an amino
terminal silane to make is positively charged). The DNA knots used
are extracted from bacteriophage P4; the DNA is a 11.4 kbp molecule
(with a 1.4 kbp deletion resulting in a final length of 10 kbp) which has
two cohesive ends. They are not covalently closed, thus no supercoiling
is present. The knot adsorbed out of the 3D bulk on to the surface is
strongly trapped, i.e., the knot is ‘projected’ onto the surface without any
equilibration. The knot appears rather delocalised. Courtesy F. Valle and
G. Dietler.170

sufficiently short-lived so that we can neglect them in our
analysis. Then, we can apply results from scaling analysis
of polymer networks of the most general type shown in
Figure 79, see the primer in the Appendix. We note that
from the Monte Carlo simulations we performed it may
be concluded that such additional vertices can in fact be
neglected.

4.6.1. Flat Knots in Dilute Phase

We had previously found that for the F8-structure the prob-
ability density function for the size of each loop is peaked
at �→ 0 and �→ L. From the scaling analysis for self-
avoiding polymer networks, we concluded strong locali-
sation of one subloop. For more complicated structures,
the joint probability to find the individual segments with

s5

s6 s2s1

s3

s4

Fig. 21. Flat trefoil knot with segment labels. On the right, a schematic
representation of a localised flat trefoil with one large segment is shown.

given lengths si is expected to peak at the edges of the
higher-dimensional configuration hyperspace. Some anal-
ysis is necessary to find the characteristic shapes. Let us
consider here the simplest non-trivial knot, the (flat) trefoil
knot 31 shown in Figure 21. Each of the three crossings
is replaced with a vertex with four outgoing legs, and the
resulting network is assumed to separate into a large loop
and a multiply connected region which includes the ver-
tices. Let � = ∑5

i=1 si be the total length of all segments
contained in the multiply connected knot region. Accord-
ingly, the length of the large loop is s6 = L−�.

In the limit �� L, the number of configurations of this
network can be derived in a similar way as in the scaling
approach followed for the F8. This procedure determines
the concrete behaviour of the scaling form

%III � �L�III

(
L−�� ��

s1

�
�
s2

�
�
s3

�
�
s4

�

)
(27)

including the scaling function � that depends on alto-
gether six arguments. The index III is chosen according to
Figure 22, where the flat trefoil configuration in the dense
phase appears at position III of the scheme (explained
below). After some manipulations, the number of degrees
of freedom yields in the form156

%III���L�∼ �L�L−��−d&�−c (28)

with the scaling exponent

c =−�)III −1+d&�−m� m= 4 (29)

Here, m = 4 corresponds to the number of independent
integrations over the segments si (i= 1� � � � �4) of the knot
region, as we only retain the cumulative size � =∑5

i=1 si
of the knot region. Putting numerical values, we find c =
65/16, i.e., strong localisation.

However, some care is necessary in performing these
integrations, since the scaling function �III may exhibit
non-integrable singularities if one or more of the argu-
ments si/� tend to 0. The geometries corresponding to
these limits (edges of the configuration hyperspace) rep-
resent contractions of the original trefoil network �III in
the sense that the length of one or more of the segments
si is of the order of the short-distance cutoff a. If such a
short segment connects different vertices, they cannot be
resolved on larger length scales, but appear as a single,
new vertex. Thus, each contraction corresponds to a dif-
ferent network �, which may contain a vertex with up to
eight outgoing legs. For the flat trefoil knot, there exist
six different contractions, as grouped in Figure 22 around
the original flat trefoil at position III. As an example, in
the top row of Figure 22 contraction VI follows from the
original trefoil III if the uppermost segment becomes very
small, and similarly the network VII emanates from con-
traction VI if one of the four symmetric segments becomes
very small. For each of these networks, one can calculate
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Dilute

Dense

Θ–point

c 2.6875 3.375 4.0625 5.5 6.1875 9.0625

21.8751.3750.750.125c

2.524 3.8572.0951.5711.1430.714c

VIIVIVIVIIIIII

Fig. 22. Hierarchy of the flat trefoil knot 31. Upper row: dilute phase. Middle row: dense phase. Bottom row: 6-phase. To the left of each row,
the trefoil projection is shown. It splits up into the hierarchies of configurations, with exponents c below each contraction. The small protruding legs
represent the big central loop, compare, for instance, Figure 21 on the right with position III of the top row. See text for details.

the corresponding exponent c in a similar way as above,
leading to the general expression

c = 2+∑
N≥4

nN

{
N

2
�d&−1�+ ��	N �−d&�

}
(30)

The 	N are given in Eq. (80). In Figure 22, the various
contractions are arranged in increasing exponent c.

Our scaling analysis relies on an expansion in a/�� 1,
and the values of c determine a sequence of contractions
according to higher orders in a/�: The smallest value of c
corresponds to the most likely contraction, while the oth-
ers represent corrections to this leading scaling behaviour,
and are thus less and less probable (see Fig. 22). To low-
est order, the trefoil behaves like a large ring polymer at
whose fringe the point-like knot region is located. At the
next level of resolution, it appears contracted to the figure-
eight shape �I. For more accurate data, the higher order
shapes II to VII may be found with decreasing probability.
Interestingly, the original uncontracted trefoil configura-
tion ranks third in the hierarchy of shapes.

These predictions were checked by MC simulations
with the same conditions as described above, to pre-
vent intersection. The flat trefoil knot was prepared
from a symmetric, harmonic 3D representation with 512
monomers, which was collapsed and then kept on a hard
wall by the “gravitational” field V = −kBTh/h

∗ perpen-
dicular to the wall, where h is the height of a monomer,
and h∗ was set to 0.3 times the bead diameter. Configura-
tions corresponding to contraction I are then selected by
requiring that besides a large loop, they contain only one
segment larger than a preset cutoff length (taken to be 5

monomers), and similarly for contraction II. The size dis-
tributions for such contractions, as well as for all possible
knot shapes are shown in Figure 23. The tails of the dis-
tributions are indeed consistent with the predicted power
laws, although the data (especially for contraction II) is
too noisy for a definitive statement.

Our scaling results pertain to all flat prime knots. In
particular, the dominating contribution for any prime knot
corresponds to the figure-eight contraction �I, as Eq. (30)
predicts a larger value of the scaling exponent c for any

10 100
10–4

10–3

10–2

10–1
fig.8 slip-link
contraction I
trefoil knot
contraction II
slope = 2.7
slope = 3.4

Fig. 23. Power law tails in probability density functions for the size
� of tight segments: As defined in the figure, we show results for the
smaller loop in a figure-eight structure, the overall size of the trefoil knot,
as well as the two leading contractions of the latter.
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Fig. 24. Typical configurations of 256-mer chains for the trefoil 31, the
prime knot 819, and the composite knot 31#31 consisting of two trefoils,
in d = 2. The initial conditions were symmetric in all cases.

network � other than �I. Accordingly, Figure 24 demon-
strates the tightness of the prime knot 819. Composite knots,
however, can maximise the number of configurations by
splitting into their prime factors as indicated in Figure 24
for 31#31. Each prime factor is tight and located at the
fringe of one large loop, and accounts for an additional
factor of L for the number of configurations as compared
to a ring of length L without a knot. Indeed, this gain
in entropy leads to the tightness of knots. Flat knots can
experimentally be produced by ‘projecting’ a dilute 3D
knot from the bulk onto a mica surface, on which the knot

Fig. 25. Flat knot imaged by AFM, similar to the one shown in
Figure 20. However, this knot is rather simple (most likely a trefoil) and
was allowed to relax while attaching to freshly cleaved mica in pres-
ence of bivalent Mg counterions. Courtesy E. Ercolini, J. Adamczik, and
G. Dietler. Note the close resemblance to the trefoil configuration shown
in Figure 24.

is adsorbed. Variation of the adsorption conditions deter-
mines whether the knot is going to be strongly trapped
on the surface such that, once captured on the surface,
it is completely immobilised (coating of the mica surface
with positively charged APTES polymers); or whether the
adsorption is weaker such that the knot can (partially)
equilibrate while being confined to 2D, i.e., equilibrate as
a flat knot (Mg2+ ions in solution mediating adsorption
to the negative mica surface). Figure 20 shows a strongly
trapped complex knot, whereas Figure 25 depicts a weakly
adsorbed simple knot, compare Ref. [170] for details.

4.6.2. Flat Knots Under 6 and Dense Conditions

In many situations, polymer chains are not dilute. Poly-
mer melts, gels, or rubbers exhibit fairly high densi-
ties of chains, and the behaviour of an individual chain
in such systems is significantly different compared to
the dilute phase.150�176�195 Similar considerations apply to
biomolecules: in bacteria, the gyration radius of the almost
freely floating ring DNA may sometimes be larger than
the cell radius itself. Moreover, under certain conditions,
there is a non-negligible osmotic pressure due to vicinal
layers of protein molecules, which tends to confine the
DNA.209–211 In protein folding studies, globular proteins in
their native state are often modelled as compact polymers
on a lattice (see Ref. [212] for a recent review).

A polymer is considered dense if, on a lattice, the
fraction f of occupied sites has a finite value f > 0.
This can be obtained by considering a single polymer of
total length L inside a box of volume V and taking the
limit L→�, V →� in such a way that f =L/V remains
finite.213–215 Alternatively, dense polymers can be obtained
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in an infinite volume through the action of an attractive
force between monomers. Then, for temperatures T below
the collapse (Theta) temperature 6, the polymers collapse
to a dense phase, with a density f > 0, which is a func-
tion of T .214�216–218 For a dense polymer in d dimensions,
the exponent &, defined by the radius of gyration Rg ∼ L& ,
becomes & = 1/d. The limit f = 1 is realised in Hamil-
tonian paths, where a random walk visits every site of
a given lattice exactly once.219�220 Dense polymers may
be related to 2D vesicles and lattice animals (branched
polymers).221–224

As studied in Ref. [225], the value of the exponent c
for the 2D dense F8 is (compare to the appendix)

c =−)F8 = 11/8 = 1�375 (31)

implying that the smaller loop is weakly localised. This
means that the probability for the size of each loop is
peaked at �= 0 and, by symmetry, at �= L. An analogous
reasoning for the 2D F8 at the 6 point gives

c = 11/7 = 1�571 (32)

In both cases the smaller loop is weakly localised in the
sense that �l�</L → 0. Figure 26 shows the symmetric
initial and a typical equilibrium configuration for periodic
boundary conditions obtained from Monte Carlo (MC)
simulations, see Ref. [225] for details. In Figure 26, the
lines represent the bonds (tethers) between the monomers
(beads, not shown here). The three black dots mark the
locations of the tethered beads forming the slip-link in
2D. The initial symmetric configuration soon gives way
to a configuration with � � L on approaching equilib-
rium. Figure 27 shows the development of this symmetry
breaking as a function of the number of MC steps. We
note, however, that the fluctuations of the loop sizes in the
“stationary” regime appear to be larger in comparison to
the dilute case studied in Ref. [157], compare Figure 18.
We checked that for densities (area coverage) above 40%
the scaling behaviour becomes independent of the density.

Fig. 26. Symmetric (�= L/2 = 128) initial configuration of a 2D dense
F8 (left) and equilibrium configuration (right) with periodic boundary
conditions. The two different grey values correspond to the two subloops
created by the slip-link. The slip-link itself is represented by the three
(tethered) black dots.

1 10 100 1000
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slope = –1.375

Fig. 27. The loop size probability distribution p��� at 9 = 55% area
coverage, for the F8 with 512 (top) and 1024 (bottom) monomers. The
power law with with the predicted exponent c = 1�375 in Eq. (31) is
indicated by the dotted line.

(The above simulation results correspond to a density of
55%.) The size distribution data is well fitted to a power
law (for over 1.5 decades with 1024 monomers), and the
corresponding exponent with 512 and 1024 monomers
in Figure 27 is in good agreement with the predicted
value (31).

For our MC analysis, we again used a hard core bead-
and-tether chain, in which self-crossings were prevented
by keeping a maximum bead-to-bead distance of 1.38
times the bead diameter, and a maximum step length of
0.15 times the bead diameter. To create the dense F8 ini-
tial condition, a free F8 is squeezed into a quadratic box
with hard walls. This is achieved by starting off from the
free F8, surrounding it by a box, and turning on a force
directed towards one of the edges. Then, the opposite edge
is moved towards the centre of the box, and so on. During
these steps, the slip-link is locked, i.e., the chain cannot
slide through it, and the two loops are of equal length
during the entire preparation. Finally, when the envisaged
density is reached, the hard walls are replaced by periodic
boundary conditions, and the slip-link is unlocked. After
each step, the system is allowed to relax for times larger
than the localisation times occurring at the main stage of
the run.

A similar analysis as for the dense/6-F8 structure and
the dilute flat trefoil above, reveals the number of degrees
of freedom for the flat dense trefoil in the form225

%3���L�∼ %0�L��
−c (33)

with c = −)3 −m, where )3 = −33/8 from Eq. (82) in
the appendix (� = 4, n4 = 3) and m = 4 is the num-
ber of independent integrations over chain segments.
Thus, c = 1/8 < 1 which implies that the dense 2D trefoil
is delocalised. As above, we have to consider the various
possible contractions of the flat knot. For dense polymers,
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the present scaling results show that both the original tre-
foil shape (c = 1/8 < 1, see above) and position II (c =
3/4 < 1) are in fact delocalised and represent equally the
leading scaling order (cf. top part of Fig. 22). The F8 is
only found at the third position and is weakly localised
(c = 11/8 > 1). In an MC simulation of the dense 2D
trefoil, we predict that one mainly observes delocalised
shapes corresponding to the original trefoil and position II
in Figure 22, and further, with decreasing probability, the
weakly localised F8 and the other shapes of the hierarchy
(top part) in Figure 22.

These predictions are consistent with the numerical sim-
ulations of Ref. [189], who observe that the mean value
of the second largest segment of the simulated 2D dense
trefoil configurations grows linearly with L, and conjec-
ture the same behaviour also for the other segments, corre-
sponding to the delocalisation of the trefoil obtained above.

An analogous reasoning can be applied to the 2D trefoil
in the 6 phase. We find that in this case that the leading
shape is again the original (uncontracted) trefoil, with c =
5/7 < 1. This implies that the 2D trefoil is delocalised
also at the 6 point. All other shapes are at least weakly
localised, and subdominant to the leading scaling order
represented by the original trefoil. The resulting hierarchy
of shapes is shown in Figure 22 (bottom part).

4.7. 3D Knots Defy Complete Analytical Treatment

As already mentioned, 3D knots correspond to a prob-
lem involving hard constraints that defy a closed ana-
lytical treatment. It may be possible, however, that by a
suitable mapping to, for instance, a field theory, an analyt-
ical description may be found. This may in fact be con-
nected to the study of knots in diagrammatic solutions in
high energy physics.226 There exists a fundamental rela-
tion between knots and gauge theory as knot projections
and Feynman graphs share the same basic ingredients cor-
responding to a Hopf algebra.119 However, up to now no
such mapping has been found, and a theoretical description
of 3D knots based on first principles is presently beyond
hope. To obtain some insight into the statistical mechani-
cal behaviour of knotted chains, one therefore has to resort
to simulations studies or experiments. In addition, a few
phenomenological models for both the equilibrium and
dynamical behaviour of knots have been suggested such
as in Refs. [145, 173, 175, 180, 184, 185, 227, 228].

When discussing numerical knot studies, we already
mentioned the Flory-type model brought leading to
Eq. (22).173�174 One may argue that the differences in the
knot size for the different knot types corresponding to the
same C may be included in the prefactor, that is indepen-
dent of the chain length N . Obviously, this model of equal
loop sizes is equivalent to a completely delocalised knot.
This statement is in fact equivalent to another Flory-type
approach to knotted polymers reported in Refs. [175]. In
this model, the knot is thought of as an inflatable tube: for

a very thin tube diameter, the tube is equivalent to the orig-
inal knot conformation; inflating the tube more and more
will increasingly smoothen out the shape until a maximally
inflated state is reached. The knot is then characterised by
the aspect ratio

p = L

D
therefore 1 ≤ p ≤ N (34)

between length L and maximum tube diameter D. It
appears that p is a (weak) knot invariant, and can be
used to characterise the gyration radius of the knot. It is
clear that, by construction, the aspect ratio described a
totally delocalised knot, and indeed it turns out that in
good solvent, the gyration radius shows the dependence
Rg �AN 3/51/5p−4/15, where  is the (dimensionless) devi-
ation from the 6 temperature.175 Obviously, the aspect
ratio appears to be proportional to the number of essential
crossings in comparison to expression (22). We note that
similar considerations are employed in Ref. [228], includ-
ing a comparison to the entropy of a tight knot, finding
comparable entropic likelihood. The modelling based on
the aspect ratio p is further refined in Ref. [145].

Knot localisation is a subtle interplay between the
degrees of freedom of one big loop, and the internal
degrees of freedom of the various segments in the knot
region. Under localisation, the number of degrees of
freedom

%� �NN 1−d& (35)

includes an additional factor N from the knot region encir-
cling the big loop. For flat knots, the competition between
the single big loop and the knot region is indeed won
by the big loop. In the case of 3D knots, this balance is
presently not resolved for knots of all complexity. Proba-
bly only detailed simulations studies of higher order knots
will make it possible to decide for the various models
of 3D knots. Major contributions are also expected from
single molecule experiments, for instance, from force–
extension measurements along the lines of the simula-
tions study in Ref. [182], the advantage of experiments
being the fact that it should be possible to go towards
rather high chain lengths that are inaccessible in simula-
tions. To overcome similar difficulties in the context of the
entropic elasticity for rubber networks, Ball, Doi, Edwards,
and coworkers replaced permanent entanglements by slip-
links.229–232 Gaussian networks containing slip-links have
been successful in the prediction of important physical
quantities of rubber networks,176 and they have been used
to study a small number of entangled chains.233 In a sim-
ilar fashion, one may investigate the statistical behaviour
of single polymer chains in which a fixed topology is cre-
ated by a number of slip-links. Such ‘paraknots’ can be
studied analytically using the Duplantier scaling results.157

As mentioned previously, knowledge of the statistical
behaviour of paraknots can be used to create a knot scale
for calibrating the degrees of freedom of real knots, and
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therefore also important to understand or design indirect
experiments on knot entropy, such as by force-extension
measurements.183 Paraknots may also be useful in the
design of entropy-based functional molecules.234�235

5. DNA BREATHING: LOCAL
DENATURATION ZONES AND
BIOLOGICAL IMPLICATIONS

“A most remarkable physical feature of the DNA helix, and
one that is crucial to its functions in replication and tran-
scription, is the ease with which its component chains can
come apart and rejoin. Many techniques have been used
to measure this melting and reannealing behaviour. Never-
theless, important questions remain about the kinetics and
thermodynamics of denaturation and renaturation and how
these processes are influenced by other molecules in the
test tube and cell.”3 This remarkable quotation, despite 30
years old, still summarises the challenge of understanding
local and global denaturation of DNA, in particular, its
dynamics. In this section, we report recent findings on the
spontaneous formation of intermittent denaturation zones
within an intact DNA double helix. Such denaturation bub-
bles fluctuate in size by (random) motion of the zipper
forks relative to each other. The opening and subsequent
closing of DNA bubbles is often called DNA breathing.

5.1. Physiological Background of DNA Denaturation

The Watson-Crick double-helix is the thermodynami-
cally stable configuration of a DNA molecule under
physiological conditions (normal salt and room/body
temperature). This stability is effected (a) by Watson-Crick
H-bonding, that is essential for the specificity of base-
pairing, i.e., for the key-lock principle according to which
the nucleotide Adenine exclusively binds to Thymine, and
Guanine only to Cytosine. Base-pairing therefore guar-
antees the high level of fidelity during replication and
transcription. (b) The second contribution to DNA-helix
stability comes from base-stacking between neighbour-
ing base-pairs: through hydrophobic interactions between
the planar aromatic bases, that overlap geometrically and
electronically, the base-pair stacking stabilises the helical
structure against the repulsive electrostatic force between
the negatively charged phosphate groups located at the
outside of the DNA double-strand. While hydrogen bonds
contribute only little to the helix stability, the major sup-
port comes from base-stacking.3�237

The quoted ease with which its component chains can
come apart and rejoin, without damaging the chemical
structure of the two single-strands, is crucial to many
physiological processes such as replication via the pro-
teins DNA helicase and polymerase, and transcription
through RNA polymerase. During these processes, the pro-
teins unzip a certain region of the double-strand, to obt-
ain access to the genetic information stored in the bases in
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Fig. 28. Fraction �h of double-helical domains within the DNA as a
function of temperature. Schematic representation of �h�T �, showing the
increased formation of bubbles and unzipping from the ends, until full
denaturation has been reached.

the core of the double-helix.3�6�236 This unzipping corre-
sponds to breaking the hydrogen bonds between the base-
pairs. Classically, the so-called melting and reannealing
behaviour of DNA has been studied in solution in vitro
by increasing the temperature, or by titration with acid
or alkali. During thermal melting (see the schematic in
Fig. 28), the stability of the DNA duplex is related to
the content of triple-hydrogen-bonded G-C base-pairs: the
larger the fraction of G-C pairs, the higher the required
melting temperature or pH value. Thus, under thermal
melting, dsDNA starts to unwind in regions rich in A-T
base-pairs, and then proceeds to regions of progressively
higher G-C content.3�237 Conversely, molten, complemen-
tary chains of single-stranded DNA (ssDNA) begin to reas-
sociate and eventually reform the original double-helix
under incubation at roughly 25	 below the melting temper-
ature Tm.3 The relative amount of molten DNA in a solu-
tion can be measured by UV spectroscopy, revealing large
changes in absorption in the presence of perturbed base-
stacking.238 Careful melting studies allow one to obtain
accurate values for the stacking energies of the vari-
ous combinations of neighbouring base-pairs, a basis for
detailed thermodynamic modelling of DNA-melting and
DNA-structure per se.239�240 In fact, thermal melting data
have been successfully used to identify coding sequences
of the genome due to the different G-C content.241–243

Complementary to thermal or pH induced denaturation,
dsDNA can be driven toward denaturation mechanically,
by applying a tensional stress along the DNA in an opti-
cal tweezer trap.244 As shown in Figure 29, the force per
extension increases in worm-like chain fashion, until a pla-
teau at approximately 65 pN is reached. This plateau is
sometimes interpreted as new DNA configuration, the S
form.245 By a series of experiments, it appears more likely
that the plateau corresponds to the mechanical denaturation
transition.246 To first order, the effect of the longitudinal
pulling translates into an external torque �, whose effect
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Fig. 29. Overstretching of double-stranded DNA. The black curve
shows the typical force-extension behaviour of DNA following the rapid
worm-like chain increase until at around 65 pN a plateau is reached.
Crossing of the plateau corresponds to progressive mechanical denatura-
tion. See text for details. Figure courtesy Mark C. Williams.

is a decrease in the free energy for melting a bp:

�GF = �GF=0 −��0 (36)

where �0 = 2</10�35 is the twist angle per bp of the dou-
ble helix.247

An important application of thermal DNA melting is
the Polymerase Chain Reaction (PCR). In PCR, dsDNA is
melted at elevated temperatures into two strands of ssDNA.
By lowering the temperature in a solution of invariable
primers and single nucleotides, each ssDNA is completed
to dsDNA by the key-lock principle of base-pairing.248�249

By many such cycles, of the order of 109 copies of the
original DNA can be produced within the range of hours.23

Again, the error rate due to the underlying biochemistry
can be considered negligible for most purposes. In partic-
ular, from the viewpoint of polymer physics/chemistry, the
obtained sample is monodisperse and free of parasitic reac-
tions, creating (almost) ideal samples for physical studies,
in particular, as any designed sequence of bases can be
custom-made in modern molecular biology labs.2

While the double-helix is the thermodynamically sta-
ble configuration of the DNA molecule below Tm
(at non-denaturing pH), even at physiological condi-
tions there exist local denaturation zones, so-called
DNA-bubbles, predominantly in A-T-rich regions of the
genome.238�266 Driven by ambient thermal fluctuations, a
DNA-bubble is a dynamical entity whose size varies by

23Most proteins denature at temperatures between 40 to 60 	C, includ-
ing polymerases. In early PCR protocols, after each heating step new
polymerase had to be washed into the reaction chamber. Modern proto-
cols make use of heat-resistant polymerases that survive the temperatures
necessary in melting. Such heat-resistant proteins occur, for instance, in
bacteria dwelling near undersea thermal vents.

thermally activated zipping and unzipping of successive
base-pairs at the two forks where the ssDNA-bubble is
bordered by the dsDNA-helix. This incessant zipping and
unzipping leads to a random walk in the bubble-size coor-
dinate, and to a finite lifetime of DNA-bubbles under
non-melting conditions, as eventually the bubble closes
due to the energetic preference for the closed state.238�266

DNA-breathing typically opens up a few bps.250�251 It has
been demonstrated recently that by fluorescence corre-
lation methods the fluctuations of DNA-bubbles can be
explored on the single molecule level, revealing a multi-
state kinetics that corresponds to the picture of successive
zipping and unzipping of single base-pairs.24 At room tem-
perature, the characteristic closing time of an unbounded
base-pair was found to be in the range 10 to 100 �sec cor-
responding to an overall bubble lifetime in the range of a
few msec.253 The multistate nature of the DNA-breathing
was confirmed by a UV-light absorption study.254 The
zipping dynamics of DNA is also investigated by NMR
methods,255–257 revealing considerably shorter time scales
than the fluorescence experiments. An interesting finding
from NMR studies is the dramatically different denatura-
tion dynamics in B′ DNA, where more than three AT bps
occur in a row.258 It is conceivable that fluorescence corre-
lation and NMR probe different levels of the denaturation
dynamics. Our analysis of the single DNA fluorescence
data reported below demonstrates that, albeit the much
longer time scale, the dependence of the measured autocor-
relation function on the stacking along the sequence is very
sensitive, and agrees well with the quantitative behaviour
predicted from the stability data.

The presence of fluctuating DNA-bubbles is essential to
the understanding of the binding of single-stranded DNA
binding proteins (SSBs) that selectively bind to ssDNA,
and that play important roles in replication, recombination,
and repair of DNA.4 One of the key tasks of SSBs is to
prevent the formation of secondary structure in ssDNA.1�2

From the thermodynamical point of view one would there-
fore expect SSBs to be of an effectively helix-destabilising
nature, and thus to lower Tm.259 However, it was found that
neither the gp32 protein from the T4 phage nor E. coli
SSBs do.259–261 An explanation to this apparent paradox
was suggested to consist in a kinetic block, i.e., a kinetic
regulation such that the rate constant for the binding of
SSBs is smaller than the one for bubble closing.261�262

This hypothesis could recently be verified in extensive sin-
gle molecule setups using mechanical overstretching of
dsDNA by optical tweezers in the presence of T4 gene 32
protein,263–265 as detailed below.

5.2. The Poland-Scheraga Model of DNA Melting

The most widely used approach to DNA melting
in bioinformatics is the statistical, Ising model-like

24Essentially, the zipper model advocated by Kittel.252
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Fig. 30. Probability of having 0, 1, or 2 bubbles as a function of u for
a DNA region of chain length 400 bps. The cooperativity parameter was
	0 = 10−3 and the loop correction exponent c = 1�76 (see text).

Poland-Scheraga model (sometimes also referred to as
Bragg-Zimm model) and its variations;266�267 see also Refs.
[159, 160, 268, 269]. It defines the partition function � of
a DNA molecule in a grand canonical picture with arbi-
trary many bubbles. For simplicity, we will restrict the
following discussion to a single bubble. Below the melting
temperature Tm, the one bubble picture is a good approx-
imation: due to the high energy cost of bubble initiation,
the distance between bubbles on a DNA molecule is large,
and bubbles behave statistically independently. In typical
experimental setups for measuring the bubble dynamics
(see below), the used DNA construct is actually designed
to host an individual bubble. For a homopolymer stretch
of double-stranded DNA with 400 bps, Figure 30 shows
the probabilities to find zero, one or, or two bubbles as
a function of the Boltzmann factor u = exp��G/RT � for
denaturation of a single bp.25 Even at the denaturation
transition �G= 0, it is quite unlikely to find two bubbles
simultaneously.

The free energy �G to break an individual bp are con-
structed as follows. We mention two different approaches.
Common for both is the Poland-Scheraga construction of
the partition function. We start with the case that a lin-
ear DNA molecule denatures from one of its ends. The
corresponding partition function is266�238

�end�m�=
m∏
x=1

e�Gx�x+1/RT (37)

where m is the number of broken bps, and �Gx�x+1

is the stacking free energy for disruption of the bp at

25In biochemistry, energies are usually measured in calories per mol.
Instead of the Boltzmann factor ? = 1/kBT commonly used in physics
and engineering, it is therefore convenient to replace the Boltzmann con-
stant kB by the gas constant R = kBNA, where NA is the Avrogadro-
Loschmidt number.

position x measured from the end of the DNA. The nota-
tion explicitly refers to the stacking between the bp at x
and x+ 1. The first closed bp is located at x = m+ 1.
For a homonucleotide, �Gx�x+1 = �G, while for a given
sequence of bps, there come into play the different stack-
ing energies for the possible combinations of pairs of bps
in sequence26 The stacking energies �Gx�x+1 have the fol-
lowing contributions.

The more traditional way to determine the stacking
interactions is by fit of bulk melting curves of DNA con-
structs containing exclusively pairs of the specific bp–bp
combination such as (AT/TA)n (see, e.g., Refs. [271, 237]
and references therein). The free energy used in this auto-
mated fit procedure using the MELTSIM algorithm,239

�GMix
x�x+1 = �HST

x�x+1 −T�Sx�x+1 (38)

combines the stacking enthalpy difference �HST
x�x+1 for

both hydrogen bond and actual stacking energies, and the
entropy difference �Sx�x+1 chosen to explicitly depend on
the nature of the broken bp. A recent alternative to deter-
mine the stability parameters of DNA was developed in the
group of Frank-Kamenetskii, leading to the free energy251

�G
Sep
x�x+1 = �GST

x�x+1 +�GHB
x (39)

where the Gibbs free energies �GST
x�x+1 and �GHB

x measure
the stacking of bps x and x+1 and the hydrogen bonding
of bp x including the entropy release on disruption. Note
that �GHB

x is chosen such that it only depends on the bro-
ken bp and has two values for AT and GC bps, irrespective
of the orientation (3′ or 5′). The stacking free energies
�GST were determined from denaturation at a DNA nick
and show a pronounced asymmetry between AT/TA and
TA/AT bonds.251 For an end-denaturing DNA both descrip-
tions are equivalent (though somewhat different when one
puts numbers), as the breaking of each bp involves the dis-
ruption of one hydrogen bonds of bp x and one stacking
with its neighbour.

The difference between the two approaches becomes
apparent when we consider the initiation of a bubble, i.e.,
a denatured coil enclosed by intact double-helix. Now, the
partition function for a bubble with left fork position at xL
and consisting of m broken bps,

�mid�xL�m�=AB�m�
xL+m∏
x=xL

e�Gx�x+1/RT (40)

differs from (37) in three respects:
(i) While the bubble consists of m molten bps, m+ 1
stacking interactions need to be broken to create two
boundaries between intact double-strand and the single-
strand in the bubble; the extra stacking interaction is effec-
tively incorporated into A.

26i.e., an AT bp followed by another AT as different from an AT followed
by a TA, etc.
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(ii) The polymeric nature of the flexible single-stranded
bubbles involves the entropy loss factor B�m� = 1/�m+
D�c with critical exponent c and the parameter D to take
care of finite size effects27 (Refs. [239, 268, 270]);
(iii) the factor A: In the standard notation, A ≡ 	0 =
exp�−Fs/RT �� 10−4 −10−5,238�239�266�272 while according
to Ref. [251], A= � � 10−3 is called the ring factor.

Interestingly, the cooperativity parameter 	0 is of the order
of what corresponds to the singular unbalanced stacking
enthalpy for breaking the first bp to initiate the bubble. The
new stability data lead to a more pronounced asymmetry
in opening probabilities between different bp–bp combi-
nations. The analysis in Refs. [273, 274] demonstrates that
the parameters from Ref. [251] appear to support better
the biological relevance of the TATA motif28 in natural
sequences, that is, show a more pronounced simultaneous
opening probability for the TATA motif.

As demonstrated for the autocorrelation function mea-
suring the breathing dynamics in Figure 32, the descrip-
tion in terms of the partition function � based on the
stability parameters from Ref. [251] reproduces the exper-
imental data well. The analysis in Refs. [273, 274] also
indicates that the accuracy of the model predictions for the
bubble dynamics is rather sensitive to the parameters. It
is therefore conceivable that improved fluorescence mea-
surement of the bubble dynamics may be employed to
obtain accurate DNA, stability parameters, complementing
the more traditional melting, NMR, and gel electrophore-
sis bulk methods. It should be noted that the dynamics is
strongly influenced by local deviations from the B config-
uration of the DNA double helix. Thus, in local stretches
of more than three AT bps in sequence, the B’ struc-
ture is assumed, leading to pronouncedly different zipping
dynamics.258

Two major questions remain in the thermodynamic for-
mulation of DNA denaturation and its dynamics. Namely,
the exact origin of the bubble initiation factor 	0 (or,
alternatively, the ring factor � from Ref. [251]), and a
method to properly calibrate the zipping rate k. The fac-
tor 	0 is related to the entropic imbalance on opening
the first bp of a bubble: While this requires the breaking
of two stacking interactions, only one bp has access to
an increased amount of degrees of freedom. Still, these
degrees of freedom must be influenced by the fact that the
single open bp is coupled to two zipper forks. Currently,
	0 remains a fit parameter. The exact value of the zip-
ping rate k remains open. While NMR experiments indi-
cate much faster rates in the nanosecond range (� 108

sec−1), the fluorescence correlation measurements produce
values in the microsecond range (� 104–105 sec−1). This

27Usually, D = 1 is chosen.

28The four bp
·TATA·
·ATAT· sequence is one of the typical codes marking

where RNA polymerase starts the transcription process.1�2

large discrepancy may be based on the fact that both meth-
ods have different sensitivity to the amplitude of intra-bp
separation. Currently, k is taken as a fit parameter. In the
analysis in Refs. [273, 274], we use the stacking parame-
ters from Ref. [251] including the value of the ring factor
�, so that k (a shift along the logarithmic abscissa) is the
only adjustable parameter.

It has been under debate what exact value should be
taken for the critical exponent c entering in the entropy
loss factor for a denaturation bubble. This is connected to
the fact that c > 2 would imply a first order denaturation
transition on melting, while 1 < c < 2 would stand for a
second order transition.221�268 Speculations about a possi-
ble first order transition are connected to the rather distinct
spikes in the differential melting curves (Ref. [238]).29

Theoretical polymer physics approaches to explain a c > 2
are either based on the inclusion of polymeric self-
avoidance interactions of the bubble with the remainder
of the chain;159 or built on a directed polymer model.275

Despite the elegance of both approaches, it is an open
question how truly they represent the detailed denatura-
tion behaviour of real DNA.276�277 Applying the MELTSIM
algorithm to typical sequences, it was found that there
is a connection between the fit result for the cooperativ-
ity parameter 	0, whose value is reduced from ≈ 10−5 to
≈ 10−3 by assuming c = 2�12 instead of 1�76.240 Below
the melting transition, the typical bubble size is only a
few bps, and in that regime the polymeric treatment of
the loop entropy loss is of approximative nature. Indeed,
in the analysis of Ref. [251] no entropy loss due to
polymer ring formation was included. For the breathing
dynamics, we include c, to cover higher temperatures with
somewhat larger bubbles, but find no significant change
in the behaviour between c < 2 and c > 2, as long as
the exponent is sufficiently close to 2. We therefore use
the value c = 1�76, that is consistent with the traditional
data fits employed in the determination of the stacking
parameters.

5.3. Fluctuation Dynamics of DNA Bubbles:
DNA Breathing

Below the melting temperature Tm, DNA bubbles are
intermittent, i.e., they form spontaneously due to ther-
mal fluctuations, and after some time close again. DNA-
breathing can be thought of as a biased random walk
in the phase space spanned by the bubble size m and
its position denoted, e.g., by the left zipper fork posi-
tion xL.273�274 The bubble creation can be viewed as a
nucleation process,278 whereas the bubble lifetime corre-
sponds to the survival time of the first passage problem
of relaxing to the m = 0 state after a random walk in

29Due to the rather small DNA samples used in melting experiments
(5000 bp and less),238 claims about the order of the underlying thermo-
dynamical phase transition should be considered with some care.
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Fig. 31. Clamped DNA domain with internal bps x= 1 to M , statistical
weights uhb�x�, ust�x�, and tag position xT. The DNA sequence enters
through the statistical weights ust�x� and uhb�x� for disrupting stacking
and hydrogen bonds respectively. The bubble breathing process consists
of the initiation of a bubble and the subsequent motion of the forks at
positions xŁ and xR. See Ref. [274] for details.

the m> 0 halfspace.279–281�273�274 Bubble breathing on the
single DNA-bubble level was measured by fluorescence
correlation spectroscopy in Ref. [253]. This technique
employs a designed stretch of DNA, in which weaker AT
bps form the bubble domain, that is clamped by stronger
GC bonds. In the bubble domain, a fluorophore-quencher
pair is attached. Once the bubble is created, fluorophore
and quencher are separated, and fluorescence occurs. A
schematic of this setup is shown in Figure 31.

The zipper forks move stepwise xL/R → xL/R± 1 with
rates t±L/R�xL/R�m�. We define for bubble size decrease

t+L �xL�m�= t−R�xL�m�= k/2 �m≥ 2� (41)

for the two forks.30 The rate k characterises a single bp
zipping. Its independence of x corresponds to the view
that bp closure requires the diffusional encounter of the
two bases and bond formation; as sterically AT and GC
bps are very similar, k should not significantly vary with
bp stacking. The rate k is the only adjustable parameter
of our model, and has to be determined from experi-
ment or future MD simulations. The factor 1/2 is intro-
duced for consistency.273�274�280–282 Bubble size increase is
controlled by

t−L �xL�m� = kust�xL�uhb�xL�s�m�/2�

t+R�xL�m� = kust�xR+1�uhb�xR�s�m�/2 (42)

for m≥ 1, where s�m�= D�1+m�/�2+m�Ec. Finally, bub-
ble initiation and annihilation from and to the zero-bubble
ground state, m= 0 ↔ 1 occur with rates

t+G�xL� = k� ′s�0�ust�xL+1�uhb�xL+1�ust�xL+2�

t−G�xL� = k (43)

The rates t fulfil detailed balance conditions. The annihi-
lation rate t−G�xL� is twice the zipping rate of a single fork,

30Due to intrachain coupling (e.g., Rouse), larger bubbles may involve
an additional ‘hook factor’ m−�.280

since the last open bp can close either from the left or
right. Due to the clamping, xL ≥ 0 and xR ≤M+1, ensured
by reflecting conditions t−L �0�m� = t+R�xL�M − xL� = 0.
The rates t together with the boundary conditions fully
determine the bubble dynamics.

In the FCS experiment fluorescence occurs if the bps
in a �-neighbourhood of the fluorophore position xT are
open.253 Measured fluorescence time series thus corre-
spond to the stochastic variable I�t�, that takes the value
1 if at least all bps in /xT −��xT +�0 are open, else it is
0. The time averaged ( · ) fluorescence autocorrelation

At�xT � t�= I�t�I�0�− I�t�
2

(44)

for the sequence AT9 from Ref. [253] are rescaled in
Figure 32.

We note that an alternative method to obtain precise
DNA stability data may be provided by a DNA construct
with two AT-rich zones between which a shorter GC-rich
bridge is located. The first passage problem correspond-
ing to bubble merging at temperatures between the melt-
ing temperatures of the AT and GC zones was recently
calculated,283 and provides the framework for modified
fluorescence correlation setups similar to the one from
Ref. [253].

5.4. Probabilistic Modelling—The
Master Equation (ME)

DNA breathing is described by the probability distribution
P�xL�m� t� to find a bubble of size m located at xL whose
time evolution follows the ME273�274�280–282

G

Gt
P�xL�m� t�=	P�xL�m� t� (45)

The transfer matrix 	 incorporates the rates t.
Detailed balance guarantees equilibration toward
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Fig. 32. Time-dependence of the autocorrelation function At�xT � t� for
the sequence AT9 measured in the FCS setup of Ref. [253] at 100 mM
NaCl. The full lines show the result from the master equation, based on
the DNA stability parameters from Krueger et al.251 The inset shows the
broadening of the relaxation time spectrum with increasing temperature.
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limt→� P�xL�m� t� = ��xL�m�/�, with � = ∑
xL�m

Z�xL�m�.
284 The ME and the explicit construction of 	

are discussed at length in Refs. [274, 280]. Eigenmode
analysis and matrix diagonalisation produces all quantities
of interest such as the ensemble averaged autocorrelation
function

A�xT � t�= �I�t�I�0��− ��I��2 (46)

�I�t�I�0�� is proportional to the survival density that the
bp is open at t and that it was open initially.273�274

In Figure 32 the blue curve shows the predicted
behaviour of A�xT � t�, calculated for T = 49 	C with the
parameters from Ref. [251]. As in the experiment we
assumed that fluorophore and quencher attach to bps xT
and xT + 1, that both are required open to produce a flu-
orescence signal. From the scaling plot, we calibrate the
zipping rate as k= 7�1×104/s, in good agreement with the
findings from Ref. [253]. The calculated behaviour repro-
duces the data within the error bars, while the model pre-
diction at T = 35 	C shows more pronounced deviation.
Potential causes are destabilising effects of the fluorophore
and quencher, and additional modes that broaden the decay
of the autocorrelation. The latter is underlined by the fact
that for lower temperatures the relaxation time distribution
f ��, defined by A�xT � t�=

∫
exp�−t/�f ��d , becomes

narrower (Fig. 32(inset)). Deviations may also be asso-
ciated with the correction for diffusional motion of the
DNA construct, measured without quencher and neglecting
contributions from internal dynamics.285 Indeed, the black
curve shown in Figure 32 was obtained by a 3% reduction
of the diffusion time;31 see details in Ref. [274].

A remark on a prominent alternative approach to DNA
breathing appears in order. This is the Peyrard Bishop
Dauxois (PBD) model286�287 based on the set of Langevin
equations288

m
d2yn
dt2

= −dV �yn�

dyn
− dW�yn+1� yn�

dyn
− dW�yn� yn−1�

dyn

−m)
dyn
dt

= �n�t� (47)

Here, V �yn� = Dn/exp�−anyn�− 102 is a Morse poten-
tial for the hydrogen bonding, Dn and an assuming two
different values for AT and GC bps; W�y� y′� = k

2 /1 +
9 expD−?�y + y′�E0�y − y′�2 is a nonlinear potential to
include bp–bp stacking interactions between adjacent bps
y and y′. The parameters k, 9, ?, ), and m are invariant of
the sequence. Usually, the stochastic equations (47) is inte-
grated numerically.288 Due to its formulation in terms of a
set of Langevin equations, the DPB model is very appeal-
ing, and it is a useful model to study some generic features
of DNA denaturation. The disadvantage of the current for-
mulation of the DBP model is the fact that it does not

31For diffusion time D = 150 �s measured for an RNA construct of
comparable length in Ref. [285].

include enough parameters to account for the known inde-
pendent stability constants of double stranded DNA
(in fact, only two parameters are allowed to vary with
the sequence, in contrast to the 12 independent parame-
ters needed to fully describe the bp stacking and hydrogen
bonding).251 Moreover, there appear to be certain ambi-
guities in the proper formulation of boundary conditions
in the stochastic integration,290 and also with respect to
the interpretation of the biological relevance and com-
putational limitations of the PBD model.291 The master
equation and Gillespie approach brought forth in Refs.
[273, 274, 280–282] bridges the gap between the thermo-
dynamic data for the bp stacking and hydrogen bond-
ing obtained by various experimental methods, and the
dynamical nature of DNA breathing. It is hoped that both
dynamic models will synergetically be developed further
and eventually lead to a better understanding of DNA
denaturation fluctuations.

5.5. Stochastic Modelling—The Gillespie Algorithm

Despite its mathematically simple form, the master equa-
tion (45) needs to be solved numerically by inverting
the transfer matrix.274�280 Moreover, it produces ensemble-
averaged information. Given the access to single molecule
data, it is of relevance to obtain a model for the fully
stochastic time evolution of a single DNA-bubble, provid-
ing a description for pre-noise-averaged quantities such as
the step-wise (un)zipping. With this scope, we introduced
a stochastic simulation scheme for the (un)zipping dynam-
ics, using the Gillespie algorithm to update the state of the
system by determining (i) the random time between indi-
vidual (un)zipping events, and (ii) which reaction direc-
tion (zipping, ←, or unzipping, →) will occur.292 This
scheme is efficient computationally, easy to implement,
and amenable to generalisation.

To define the model, we denote a bubble state of m
broken bps by the occupation numbers bm = 1 and bm′ = 0
(m′ �= m). The stochastic simulation then corresponds to
the nearest-neighbour jump process

b0 � b1 � · · ·� bm � · · ·� bM−1 � bM (48)

with reflecting boundary conditions at b0 and bM . Each
jump away from state bm occurs after a random time  , and
in random direction to either bm−1 or bm+1, governed by the
reaction probability density function32 (Refs. [293, 294])

P����= t��m�e−�t
+�m�+t−�m�� (49)

where � ∈ D+�−E denotes the unzipping (+) or zipping
(−) of a bp, and the jump rates t±�m� are defined below.

32The original expression for the reaction probability density function,
P����= bmt��m� exp�−∑m�� bmt��m��, that is relevant for consider-
ation of multi-bubble states, simplifies here due to the particular choice
of the bm.
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Fig. 33. Time series of single bubble-breathing dynamics for 	0 = 10−3, M = 20, and (a) u= 0�6 and (b) u= 0�9. The lower panel shows a zoom-in
of how single bubbles of size m�t� open up and close.

From the joint probability density function (49), the wait-
ing time probability density function that a jump away
from bm occurs is given by ��� =∑

� P����, i.e., it is
Poissonian. The probability that the bubble size does not
change in the time interval /0� t0 is given by ��t� = 1−∫ t

0 ���d . The fork position xL (and thereby the sequence
of bps) is straightforwardly incorporated.273�274

We start the simulations from the completely zipped
state, b0 = 1 at t= 0, and measure the bubble size at time t
in terms of m�t�=∑M

m=0 mbm�t�. The time series of m�t�
for a single stochastic realization is shown in Figure 33.
It is distinct that the bubble events are very sharp (note
the time windows of the zoom-ins), and most of the time
the zero-bubble state b0 prevails due to 	0 � 1. Moreover,
raising the temperature increases the bubble size and life-
time, as it should. By construction of the simulation pro-
cedure, it is guaranteed that an occupation number bm = 1
(m �= 0) corresponds to exactly one bubble.

In a careful analysis, it was shown that the stochastic
simulation method provides accurate information of the
statistical quantities of the bubble, such as opening prob-
ability and autocorrelation function.292 It can therefore be
used to obtain the same information as the master equation
with the advantage of also giving access to the noise in

the system. With the Gillespie technique, we also obtained
the data points in the graphs in this section.

5.6. Bacteriophage T7 Promoter Sequence Analysis

An example from the analysis of the promoter sequence

1 20
| |

5' –aTGACCAGTTGAAGGACTGGAAGTAATACGACTC

AGTATAGGGACAATGCTTAAGGTCGCTCTCTAGGAg–3'
| | |
38 41 68 (50)

of bacteriophage T7 is shown in Figure 34.273 It depicts
the time series of I�t� for the tag positions xT = 38 at
the beginning of TATA, and xT = 41 at the first GC bp
after TATA. It is distinct how frequent bubble events are in
TATA in comparison to the vicinal GC-rich domain (note
that AT/TA bps are particularly weak).251 This is quanti-
fied by the waiting time density ���, whose characteristic
time scale is more than an order of magnitude longer for
the xT = 41 position. In contrast, we observe almost iden-
tical behaviour for the bubble survival density ���. Due
to the proximity of xT = 41 to TATA, the typical bub-
ble sizes for both tag positions are similar, and therefore
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Fig. 34. Time series I�t� for the T7 promoter, with xT = 38, 41. Middle:
Waiting time (���) and bubble survival time (J��) densities. Bottom:
Mean bubble survival time, �= 2.

the relaxation time. However, as shown in Figure 34 bot-
tom, the variation of the mean lifetime obtained from the
master equation is quite small (within a factor 2) for the
entire sequence. The latter graph also shows the insignifi-
cant variation according to the earlier stability parameters
by Blake et al.239

The results summarised in Figure 34 and further stud-
ies in Refs. [273, 274] may indicate that it is not solely
the increased opening probability at the TATA motif, as
studied in Ref. [295]. Given the rather short bubble open-
ing times of order of a few k−1, it might be sufficient to
induce binding of transcription enzymes (or other single
stranded DNA binding proteins) if only bubble events are
repeated often enough. In the present example, the wait-
ing time between individual bubble events is increased by
a factor of 25 inside the TATA motif. Guided by such
results, detailed future studies combining optical tweezers
overstretching and monitoring transcription initiation may
be a step toward better understanding of this important
biochemical process.

We note that the influence of noise (e.g., due to repeti-
tion of single molecule experiments) on the bubble dynam-
ics can also be studied in the weak noise limit by a WKB
method.296 This model provides information, for instance,
about the time it takes a DNA to denature under temper-
atures above Tm (mathematically corresponding to a finite
time singularity). Bubble breathing can be mapped on the
Coulomb problem of the Schrödinger equation, and the
corresponding phase transition studied.297

5.7. Interaction of DNA Bubbles with Selectively
Single-Strand Binding Proteins

Let us now come back to the destabilising effect of
single-stranded DNA binding proteins (SSBs) mentioned
in Section 5.1. In a homopolymer approach, this was stud-
ied in a master equation approach in Refs. [280, 281]. The
quantity of interest is the joint probability P�m�n� t� to

have a bubble consisting of m broken bps, and n SSBs
bound to the two arches of the bubble. In addition to the
rates t± for bubble increase and decrease, the rates r± for
SSB binding and unbinding are necessary to define the
breathing dynamics in the presence of SSBs. On the sta-
tistical level, the effect of the SSBs becomes coupled to
the motion of the zipper forks. Thus, the rate for bubble
size decrease is proportional to the probability that no SSB
is located right next to the corresponding zipper fork; and
the rate for SSB binding is proportional to the probabil-
ity that there is sufficient unoccupied space on the bubble.
Binding is allowed to be asymmetric, and is related to a
parking lot problem in the following sense. The number  
of bps occupied by a bound SSB is usually (considerably)
larger than one. In order to be able to bind in between
two already bound SSBs, the distance between these two
SSBs must be larger than  . The larger  the less effi-
cient the SSB-binding becomes, similar to parking large
cars on a parking lot desgined for small vehicles. Apart
from the binding size  of the SSBs, two additional physi-
cal parameters come into play: the unbinding rate q of the
SSBs, and their binding strength L = c0K

eq consisting of
the volume concentration c0 of SSBs and the equilibrium
binding constant Keq = v0 exp�?�ESSB��, with the typical
SSB volume and binding energy ESSB.

The coupled dynamics of SSB-binding and bubble
breathing is discussed in Refs. [280, 281]; similar effects
in end-denaturing DNA was studied in Ref. [298] in detail.
Here, we report the behaviour of the effective free energy
landscape in the limit of fast SSB-binding in the sense that
the dimensionless parameter ) ≡ q/k of SSB-unbinding
and bubble zipping rates is large, )� 1. This limit allows
one to average out the SSB-dynamics and to calculate
an effective free energy, in which the bubble dynamics
with the slow variable m runs off. The result for two dif-
ferent binding strengths L is shown in Figure 35, along
with the free energies corresponding to keeping n fixed.
It is distinct that while for lower L the presence of SSBs
diminishes the slope of the effective free energy, for larger
L the slope actually becomes negative. In the first case,
that is, the bubble opening is more likely, but still glob-
ally unfavourable. In the latter case, the presence of SSBs
indeed leads to full denaturation. One observes distinct
finite size effects due to  > 1: only when the bubble
reaches a minimal size m ≥  , SSB-binding may occur,
a second SSB is allowed to bind to the same arch only
once m≥ 2 , etc. This effect also produces the nucleation
barrier for full denaturation in the lower plot of Figure 35.
Similar finite size effects were investigated for biopolymer
translocation in Refs. [299, 300]. We note that the transi-
tion to denaturation could also be achieved by reaching a
smaller positive slope of the effective free energy in the
presence of SSBs, and additional titration or change of the
effective temperature through actual temperature change
or mechanical stretching as performed in the experiments
reported in Refs. [263–265].
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Fig. 35. Effective free energy in the limit )� 1 (—), and ‘free energy’
for various fixed n (u = 0�6, M = 40, c = 1�76,  = 5). Top: L = 0�5;
bottom: stronger binding, L= 1�5.

6. ROLE OF DNA CONFORMATIONS IN
GENE REGULATION

Our current understanding of gene regulation to large
extent is based on the experiments by André Lwoff at
Institut Pasteur more than 50 years ago.301 Lwoff and his
collaborators discovered that while a strain of E. coli,
a common intestinal bacterium, divided regularly when
undisturbed, an unexpected phenomenon occurred when
the strain was exposed to UV light: the bacteria stop grow-
ing and after some 90 minutes they burst (lyse), releasing
a load of viruses. These viruses then invade new E. coli.33

Some of the newly infected bacteria immediately lyse
again, while the rest divides normally—while carrying the
virus in them. This dormant state (lysogeny) of the bac-
terium can then be driven toward lysis by renewed UV
exposure.

33Often these viruses are called phages or bacteriophages—bacteria
eaters.

Fig. 36. Gene regulation, here the example of the (divergent) bacterio-
phage  switch after infection of E. coli . This figure was modified by the
author from the corresponding figure of Ref. [16], M. Ptashne, A Genetic
Switch: Phage Lambda and Higher Organisms, 2nd edition © Blackwell
Science, Malden, MA and Cell Press, Cambridge, MA, with permission.

The UV exposure-induced transition from lysogeny to
lysis occurs as sketched in Figure 36. On infection, the
bacteriophage  injects its DNA into E. coli . In the lyso-
genic pathway, the viral DNA is integrated into the host
DNA. During lysogeny, repressor dimers bind to certain
operator sites on the  part of the DNA, recruiting RNA
polymerase to bind to the overlapping promoter region(s)
and blocking of the vicinal promoter for the divergent cro
gene. RNA polymerase then transcribes the cI gene to
the left of the operator, leading to the expression of new
repressor molecules. UV light, however, leads to cleavage
of the repressor dimers.34 Now the basal transcription of
the gene cro, opposite to the cI gene with respect to the
operator region, leads to the expression of the Cro protein.
Cro bound to the operator then recruits RNA polymerase
to the operator, stabilising the Cro production and block-
ing cI. Simultaneously, a whole sequence of genes is being
expressed, and the virus reproduces itself inside E. coli
until lysis occurs. UV light flips the switch from tran-
scription of the gene cI maintaining the dormant lysogenic
pathway, inducing lysis that is fostered by transcription of
the cro gene.16�302

The activity of a gene can be monitored even on the sin-
gle genome level, by combining the targeted gene gI with
the gene leading to synthesis of GFP, the green fluorescent
protein, i.e., when gI is transcribed, then so is the gene for
GFP. Occurrence of fluorescence then reports transcription
of gI. Connected to questions such as the stability of a

34By activation of RecA proteins.
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genetic pathway is the search process of a specific gene by
regulatory proteins, that is, how dynamically the binding
protein actually locates the operator on the genome. We
address these points in what follows.

6.1. Physiological Background of Gene Regulation
and Expression

The  switch from Figure 36 is an example of a relatively
simple mechanism. Even simpler is the well-studied Lac
repressor. There, the lacZ gene is expressed by recruitment
through the CAP protein when E. coli is starved of glu-
cose and exposed to lactose. This enables E. coli to digest
lactose. In absence of lactose, lacZ is blocked by the rep
protein. In general, the expression of a certain gene is just
one element in a cascade of simultaneous and/or hierarchi-
cal control units, such as in the developmental regulatory
network of the sea urchin embryo.303 The basic physiolog-
ical background is common to all of them:

Genes are the blueprints of proteins. They control phys-
iological processes but also developmental pathways: from
a fertilised egg cell, eventually all cell types (skin, hair,
liver, brain, etc. cells) of a human body emerge, or a skin
cell changes colour on sunlight exposure. A gene is but
a stretch of a DNA molecule, typically comprising some
200–1000 base pairs. Roughly speaking, a gene is on when
it is being transcribed by RNA polymerase, otherwise it
is off. RNA polymerase binds at the promoter region con-
sisting of some 60 base pairs close to the beginning of the
gene. It then converts the A, T, G, C code of the gene into a
complementary messenger RNA (from which, in turn, the
protein is produced during translation). The stop of tran-
scription is triggered by a certain sequence at the end of
the gene. Depending on specific conditions of the recruit-
ment by regulatory proteins, RNA polymerase binding to
the promoter of a certain gene is either blocked (the gene is
off), facilitated (high binding affinity of RNA polymerase
due to the (simultaneous) presence of certain protein(s)),
or basal (in absence of any bound regulatory protein, RNA
polymerase can still have a minor affinity to the promoter
and then autonomously start transcription). The transcrip-
tion mechanism is part and parcel of the central dogma of
molecular biology summarised in Figure 1.

Molecular switches such as the  switch are surpris-
ingly stable against noise, despite the fact that there are
only about 100 repressor dimers in the entire bacteria
cell.304 Thus, apart from external induction, lysis occurs
by spontaneous induction due to absence of CI from the
operators.305�306 Such noise-induced errors are estimated
to occur once in 107 cell generations.307�308 The stabil-
ity of the  switch against noise was analysed in terms
of a Wentzell-Freidlin approach309 and by a simulation
analysis.310 The latter confirmed that the currently known
molecular mechanisms used in modelling the  switch
appear sufficient. While the classical Shea-Ackers model
based on a statistical mechanical approach311 is well

Fig. 37. Activity of the two  promoters as function of repressor con-
centration for vanishing Cro concentration. The full line corresponds to
wild type data, whereas the dashed lines correspond to "mutations". The
thin vertical line corresponds to lysogenic CI concentration. See Ref.
[313] for details.

established and studied numerically,312 it relies on the
knowledge of 13 fundamental Gibbs free binding ener-
gies composed to 40 different binding states of regulatory
proteins and RNA polymerase at the two promoters of  .
Simulation of the complete  regulatory system proved the
understanding of the mechanisms of the switch.312 Two
more recent studies show that the  switch remains sta-
ble even when each of the fundamental Gibbs free ener-
gies is varied within its (appreciable) experimental error.
Moreover, effects of potential mutations resulting in more
significant changes of the binding energies were studied,
and it was shown that certain mutations can even be com-
pensated by parallel mutations influencing other binding
energies (suppressors).313�314 A typical result is shown in
Figure 37.

6.2. Binding Proteins: Specific and Nonspecific
Binding Modes

Given their very specific function, DNA-binding pro-
teins must recognise a specific (cognate) sequence of
nucleotides along the genome. In fact, without opening the
double helix, the outside of the DNA can be read by pro-
teins, as the edge of each base pair is exposed at the sur-
face. These patterns are unique only in the major groove
of the DNA, this being the reason why gene regulatory
proteins generally bind to the major groove. Apart from
single base pair pattern recognition, the protein binding is
sensitive to the special surface features of a certain DNA
region. This local structure of DNA needs to be comple-
mentary to the protein structure. Typical structure patterns
(motifs) include helix-turn-helix, zinc fingers, leucine zip-
per, and helix-loop-helix motifs.1 In bacteria, typical DNA-
binding proteins cover some 20 base pairs or less. For inst-
ance, the lac repressor has a cognate sequence of 21 base
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pairs, the CAP protein 16, and the  repressor cI 17 base
pairs.1 Although the interaction with a single nucleotide
within such a DNA–protein bond is relatively weak, the
sum of all matching nucleotides reaches appreciable val-
ues for the overall binding enthalpy, see below. Moreover,
regulatory proteins bound simultaneously can significantly
enhance the stability of their individual bonds.

A simple model for the binding interaction goes back
to the work of Berg and von Hippel.315�317 Accordinly, the
binding free energy is comprised of two contributions:
(i) the (average) non-specific binding free energy due to
electrostatic interaction with the DNA; and
(ii) additional binding free energy if the sequence of the
binding site is sufficiently close to the best (perfectly
matching) sequence.

The transition to the non-specific binding is supposed to
occur via a conformational change of the regulatory pro-
tein from one that allows more hydrogen bond-formation
to another that permits closer contact between the positive
charges of the binding protein to the negatively charged
DNA backbone.316 This is supported by more recent struc-
tural studies: While in the non-specific binding mode the
Lac repressor is bound to DNA in a rather loose and fuzzy
way,318 it appears much more ordered in the specific mode.
In fact, in the latter the protein induces a bend in the
DNA.319 In case (ii), the additional binding free energy
can, to good approximation, be considered independent
and additive. Reference [320] provides a review of these
issues, and derives the following result. Accordingly, to
satisfy both the thermodynamic and kinetic constraints of
the DNA–binding protein interaction, each additional base
mismatch in comparison to the best sequence amounts
to the loss of roughly 2kBT , and the optimal value for
the transition between best specific binding to the cognate
site and non-specific binding is shown to be some 16kBT
below the energy of the best binding. This value is quite
close to the ≈ 14kBT found for the difference between
specific and nonspecific binding in Refs. [321, 322].

The fact that regulatory proteins bind with varying affin-
ity is an important ingredient in gene regulation: Not all
promoters should have the same activity, because some
proteins are required by the cell at much higher levels than
others. Thus, one given regulatory protein, that controls
the recruitment to the promoters of several genes, can act
with different strength depending on the degree of match-
ing with the local sequence.

Non-specific binding can become quite appreciable. It
was discovered in Ref. [323] that in the case of the Lac
repressor less than 10% of the proteins were unbound. In
a more recent study using in vivo data of the  switch, it
was found that in a lysogen nearly 90% of the repressor
protein cI is non-specifically bound. This implies that only
10–20 free cI dimers exist in the E. coli cell at any time,
pointing at the important role of non-specific binding in
the search process of the cognate site addressed in the fol-
lowing subsection. Under different conditions, both cI and

Cro are always non-specifically bound by more than 50%.
The corresponding non-specific binding energies were esti-
mated as 7kBT .321�322

We note that in contrast to regulatory proteins, restric-
tion enzymes have an approximate all-or-nothing matching
condition: If a defined sequence matches the restriction
enzyme, it will cut, otherwise not. Even a single mis-
match reduces the action of the restriction enzyme by
orders of magnitude. This distinction from regulatory pro-
tein makes sense as restriction enzymes are survival mech-
anisms and should not just cut the cell’s own DNA.324

This does not mean that restriction enzymes do not bind
non-specifically—in fact, this is an important ingredient
of their search process in total analogy to regulatory pro-
teins. However, their sole active role occurs on complete
matching.

6.3. The Search Process for the Specific Target
Sequence

To find their specific (cognate) binding site along
the genome, DNA-binding proteins such as restriction
enzymes or transcription factors have to search megabases
along the DNA molecule. The high accuracy of gene
expression control by binding proteins such as in the  -
switch requires a fast search and recognition of the target
sequence by the proteins. A simple 3-dimensional (3D)
search of the target sequence by the proteins is not suf-
ficient to explain experimentally measured target search
rates. It has been suggested relatively early325�326 that addi-
tional search mechanisms such as 1D sliding along the
genome are needed to account for the actual efficiency of
the search process. In their pioneering work, Berg, von
Hippel and coworkers established a statistical model for
target search comprising the four fundamental steps, as
shown in Figure 38:
(i) 3D macrohops during which the protein fully detaches
from the genome until after a volume excursion it rebinds

kon

Bulk
excursion

DL

Sliding

Intersegmental
transfer

j(t)

koff
nbulk

Target
finding

DB

O

Fig. 38. Schematic of the search mechanisms in Eq. (52).

36 J. Comput. Theor. Nanosci. 4, 1–49, 2007



R
E
V
IE
W

Metzler et al. Single DNA Conformations and Biological Function

to the DNA (as a good approximation, the landing site on
the DNA after a macrohop can be assumed to be equidis-
tributed and uncorrelated);
(ii) microhops during which the protein detaches from the
DNA but always stays very close to it (i.e., the microhop
takes place within a cylinder whose radius corresponds
to the escape distance of the protein from the DNA, see
Ref. [315]);
(iii) 1D sliding along the genome (while preserving a cer-
tain bonding to the DNA due to nonspecific binding); and
(iv) intersegmental jumps.

The latter are mediated by DNA-loops bringing two chem-
ically remote segments of the DNA close in Euclidean
space, see, for instance, Ref. [20] and references therein.
A protein like Lac repressor, which can establish bonds to
two different stretches of dsDNA simultaneously, can then
jump from one to the neighbouring segment.35 This pro-
cess might lead to a paradoxical diffusion behaviour.327�328

However, if the conformational changes in the DNA are
not too slow, both the bulk mediated macrohops and the
intersegmental transfer lead to fast mixing of the enzymes’
positions along the chain (as it was shown for the related
problem in Ref. [329]), and on the mean-field level can be
described by a desorption followed by the absorption at a
random place.

Recently, there has been renewed interest in the tar-
geting problem, both theoretically (see, for instance,
Refs. [320, 330–332]) and experimentally (e.g., Refs.
[333, 334]), including single molecule studies.264�265�335

Despite the extensive knowledge of specific binding rates
and both specific and non-specific binding free energies,
the precise relative contributions of the different search
mechanisms (and, to some extent, also the stringent cri-
teria to define these four elementary interactions) are not
fully resolved. Moreover, it has been suggested that under
tight(er) binding conditions, the sliding of the protein
becomes subdiffusive due to the local structure landscape
of a heteropolymer DNA.336 This complication, however,
is expected to be relaxed in a more loosely bound search
mode of the searching protein.330 We here adopt the lat-
ter view of normal diffusion, which is corroborated by the
experimental study in the next subsection.

6.4. A Unique Situation: Pure One-Dimensional
Search of SSB Mutants

In previous studies, the 1D sliding problem had always
been considered as a problem of 3D diffusion which is
enhanced by 1D diffusion. Thus, workers such as Berg,
Winter, and von Hippel315 assumed that proteins non-
specifically bound would on average unbind before finding
their specific binding sites. This results in an enhancement
of specific binding rates that is proportional to the 1D

35Possibly, also other binding proteins are able to perform intersegmental
jumps.

sliding rate, but the overall specific binding rate depends
linearly on protein concentration. These studies neglect
the possibility that the protein finds its specific site before
unbinding. Given the experimental conditions under which
transcription factor binding has been previously studied,
this approximation is appropriate. However, as demon-
strated in Ref. [337], this mechanism, in which the unbind-
ing rate is much lower than the specific binding rate,
occurs for the 1D search of DNA by the single-stranded
DNA binding protein T4 gene 32 protein (gp32). This fast
1D search rate is essential for gp32 to be able to quickly
find specific locations on DNA molecules that are under-
going replication, and which have large sections of single-
stranded DNA exposed for gp32 binding. The resulting
nonlinear concentration dependence of gp32 binding will
likely have significant effects on gp32’s ability to find
its replication sites as well as its ability to recruit other
proteins during replication. If these nonlinear effects also
occur for TFs, this characteristic will strongly affect regu-
latory processes governed by protein binding.

Results from the single DNA overstretching experi-
ment are shown in Figure 39 along with the results from
the theoretical and simulations analysis from Ref. [337].
The scaling of search rate as function of concentration is
described by the relation

ka =D1dn
2
0 (51)

obtained for the pure 1D search of random walkers of line
density n2

0 searching along the DNA. For low concentra-
tions, the McGhee and von Hippel isotherm338 predicts a
linear relation between n0 and the volume concentration
C; thus, ka ∝C2. The experimental evidence for the purely
linear search process, as shown in Figure 39 for 100 mM
salt, was found for a large range of salt concentrations,
see Refs. [265, 337] for details. The case of high line den-
sity of proteins was discussed in Ref. [339].
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Fig. 39. Dimensional binding rate ka in 1/s as function of protein con-
centration C in M, for parameters corresponding to 100 mM salt. The
fitted 1D diffusion constant for sliding along the dsDNA is D1d = 3�3 ·
10−9 cm2/sec, located nicely within the experimental value 10−8 · · ·10−9

cm2/sec.263
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6.5. Lévy Flights and Target Search

We now address the general search process with inter-
change of 1D and 3D diffusion, and intersegmental jumps.
To this end, we first quickly review the definition of Lévy
flights.340–344

Lévy flights (LFs) are random walks whose jump
lengths x are distributed like  �x� � �x�−1−. with expo-
nent 0 < . < 2.154 Their probability density to be at posi-
tion x at time t has the characteristic function P�q� t� ≡∫�
−� e

iqxP�x� t�dx = exp�−DL�q�.t�, a consequence of the
generalised central limit theorem;346�347 in that sense, LFs
are a natural extension of normal Gaussian diffusion
(. = 2). LFs occur in a wide range of systems;342 in
particular, they represent an optimal search mechanism
in contrast to locally oversampling Gaussian search.345

Dynamically, LFs can be described by a space-fractional
diffusion equation GP/Gt = DLG

.P�x� t�/G�x�., a con-
venient basis to introduce additional terms, as shown
below. DL is a diffusion constant of dimension cm./sec,
and the fractional derivative is defined via its Fourier
transform, 
 DG.P�x� t�/G�x�.E = −�q�.P�q� t�.342–344 LFs
exhibit superdiffusion in the sense that ��x�P�2/P � DLt

2/.

(0 < P < .),342 spreading faster than the linearly growing
mean squared displacement of standard diffusion (.= 2).
A prime example of an LF is linear particle diffusion to
next neighbour sites on a fast folding (‘annealed’) polymer
that permits intersegmental jumps at chain contact points
(see Fig. 38) caused by polymer looping.327�328 In fact,
the contour length �x� stored in a loop between such con-
tact points is distributed in 3D like  �x�� �x�−1−., where
.= 1/2 for Gaussian chains (� solvent), and .≈ 1�2 for
self-avoiding walk chains (good solvent).158

In our description of the target search process, we
use the density per length n�x� t� of proteins on the DNA
as the relevant dynamical quantity (x is the distance along
the DNA contour). Apart from intersegmental transfer, we
include 1D sliding along the DNA with diffusion constant
DB, protein dissociation with rate koff and (re)adsorbtion
with rate kon from a bath of proteins of concentration
nbulk. The dynamics of n�x� t� is thus governed by the
equation348

G

Gt
n�x� t� =

(
DB

G2

Gx2
+DL

G.

G�x�. −koff

)
n�x� t�

+konnbulk − j�t���x� (52)

Here, j�t� is the flux into the target located at x = 0.
We determine the flux j�t� by assuming that the target is
perfectly absorbing: n�0� t�= 0.350 Be initially the system
at equilibrium, except that the target is unoccupied; then,
the initial protein density is n0 = n�x�0�= konnbulk/koff .

36

The total number of particles that have arrived at the target

36Note that the dimension of the on and off rates differ; while /koff 0 =
sec−1, we chose /kon0= cm2/sec.
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Fig. 40. Optimal choice of off rate koff as function of the LF diffusion
constant, from numerical evaluation of the model in Ref. [348]. The circle
on the abscissa marks where kopt

off becomes 0 in the case . < 1/2.

up to time t is J �t� = ∫ t

0 dt
′j�t′�. We derive explicit ana-

lytic expressions for J �t� in different limiting regimes, and
study the general case numerically. We use J �t� to obtain
the mean first arrival time T to the target; in particular, to
find the value of koff that minimises T .

The various regimes of target search embodied in
Eq. (52) are discussed in detail in Refs. [348, 349]. The
main result for the efficiency of the related search process
is summarised in Figure 40, i.e., which protein unbinding
rate koff optimises the mean search time T . Three regimes
can be distinguished:
(i) Without Lévy flights, we obtain kopt

off = k′on: the proteins
should spend equal amounts of time in bulk and on the
DNA. This corresponds to the result obtained for single
protein searching on a long DNA.330�331

(ii) For . > 1, i.e., when DNA is in the self-avoiding
regime, we find

k
opt
off ∼ �.−1�k′on (53)

The optimal off rate shrinks linearly with decreasing ..
(iii) For . < 1, i.e., when DNA leaves the self-avoiding
phase (e.g., by lowering the temperature or introduc-
ing attractive interactions) the value of k

opt
off approaches

zero as the frequency of intersegmental jumps (∝ DL)
increases: The Lévy flight mechanism becomes so effi-
cient that bulk excursions become irrelevant. At .= 1/2,
the case of the ideal Gaussian chain, we observe a
qualitative change: When . < 1/2, the rate k

opt
off reaches

zero for finite values of the rate for intersegmental
jumps.

Note that when .< 1, the spread of the Lévy flight (�t1/.)
grows faster than the number of sites visited (�t), render-
ing the mixing effect of bulk excursions insignificant. A
scaling argument to understand the crossover at . = 1/2
relates the probability density of first arrival with the width
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(�t1/.) of the Green’s function of a Lévy flight pfa � t−1/..
We see that the associated mean arrival time becomes finite
for 0 < . < 1/2, even for the infinite chain limit consid-
ered here.

We remark that this model is valid for an annealed DNA
only. This means that the chain can equilibrate (at least,
locally) on the typical time scale between intersegmental
jumps. Even though real DNA in solution might not be
fully annealed, features of this analysis will reflect on the
target search. A more detailed study of different regimes
of DNA is under way.

6.6. Viruses—Extreme Nanomechanics

Viruses have played an important role in the discov-
ery of the mechanisms underlying gene regulation, see,
for instance, Ref. [301]. From a nanoscience perspective,
viruses are of interest on their own part. During the assem-
bly of many viruses, the viral DNA of several �m length
is packaged into the capsid, the protein container mak-
ing up most of the virus, by a motor protein. This motor
packages the DNA by exerting forces of up to 60 pN
or more, causing pressures building up in the capsid of
the order of 6 MPa.351�352 The size of the capsid spans
few tens of �m, and is therefore comparable to the per-
sistence length of DNA.351�353–356 Therefore, fluctuation-
based undulations are suppressed, and the chain can be
approximately thought of as being wound up helically like
thread on a bobbin, or like a ball of yarn. Ultimately, a rel-
atively highly ordered 3D configuration of the DNA inside
the capsid is achieved, which under certain conditions may
even lead to local crystallisation of the DNA.353�354�356–360

It is generally argued that this ordered arrangement helps
to avoid the creation of entanglements or even knots of the
wound-up DNA, thus enabling easy ejection, i.e., release
of the DNA once the phage docks to a new host cell;
this ejection is not assisted by the packaging motor, but it
can be facilitated by host cellular DNA polymerase, which
starts to transcribe the DNA and thereby pulls it out of
the capsid.1�2�100�358 Details on the packaging energetics
can be found in Ref. [357], and the works cited therein.
Model calculations for the entropy loss, binding and twist
energy, and electrostatic forces that need to be overcome
on packaging reveal, that at higher packaging ratios the
packaging force almost exclusively comes from the elec-
trostatic repulsion.

7. FUNCTIONAL MOLECULES AND
NANOSENSING

Complex molecules can be endowed with the distinct
feature that they contain subunits which are linked to
each other mechanically rather than chemically.361 The
investigation of the structure and properties of such inter-
locked topological molecules is subject of the grow-
ing field of chemical topology;134 while speculations about

the possibility of catenanes37 (Olympic rings) date back
to the early 20th century lectures of Willstätter, the
actual synthesis of catenanes and rotaxanes38 succeeded in
1958.361 Modern organic chemistry has seen the develop-
ment of refined synthesis methods to generate topological
molecules.

7.1. Functional Molecules

In parallel to the miniaturisation in electronics362 and the
possibility of manipulating single (bio)molecules,363 supra-
molecular chemistry which makes use of chemical topol-
ogy properties is coming of age.364�365 Thus, rotaxane-type
molecules are believed to be the building blocks for
certain nanoscale machines and motors,366 so-called her-
maphrodite molecules have been shown to perform lin-
ear relative motion (“contraction and stretching”),367 and
pirouetting molecules have been synthesised.368 Moreover,
topological molecules are thought to become components
for molecular electronics switching devices in memory and
computing applications.369�370 These molecular machines
are usually of lower molecular weight, and their behaviour
is essentially energy-dominated in the sense that their
conformations and dynamical properties are governed by
external and thermal activation in an energy landscape.
The understanding of the physical properties and the the-
oretical modelling of such designer molecules and their
natural biological counterparts has increasingly gained
momentum, and the stage is already set for the next gen-
eration of applications.362–376

In Ref. [234] we introduced some basic concepts for
functional molecules whose driving force is entropic rather
than energetic, see also the more recent publications
in chemistry journals.377�378 Entropy-functional molecules
will be of higher molecular weight (hundred monomers
or above) in order to provide sufficient degrees of free-
dom such that entropic effects can determine the behaviour
of the molecule. The potential for such entropy-driven
functional molecules can be anticipated from the classical
Gibbs Free energy


 = U −TS (54)

in functional molecules, 
 is minimised mainly by vari-
ation of the internal energy U representing the shape of
the energy landscape of the functional unit. New types of
molecules were proposed for which 
 is minimised by
variations of the entropy S, while the energies and chemi-
cal bondings are left unchanged.234 The entropy-functional
units of such molecules can be specifically controlled by
external parameters like temperature, light flashes, or other
electromagnetic fields.364�365 We note that DNA is already
being studied as a macromolecular prototype building
block for molecular machines.373

37catena (lat.), the chain.
38rota (lat.), the wheel; axis (lat.), the axle.
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3 2

1

Fig. 41. Molecular muscle consisting of two interlocked rings 1 and 2
with attached rod-like molecules. Within this structure, sliding rings, 3,
can be placed, which, if activated, tend to contract the muscle by entropic
forces.

A typical example is the molecule shown in Figure 41.
According to the arrangement of the sliding rings 1 and 2,
this compound exhibits the unique feature of a molecule
that it can slide laterally. Suggested as precursors of
molecular muscles,367 this compound could be propelled
with internal entropy-motors, which entropically adjust
the elongation of the muscle. In the configuration shown
in Figure 41, the sliding ring 3 creates, if activated, an
entropic force which tends to contract the “muscle”; at T =
300 K and on a typical scale x= 10 nm, the entropic force
kBT /x is of the order of pN, and thus comparable to the
force created in biological muscle cells.379 Molecular mus-
cles of such a make can be viewed as the nano-counterpart
of macroscopic muscle models proposed by de Gennes,380

in which the contraction is based on the entropy differ-
ence between the isotropic and nematic phases in liquid
crystalline elastomer films.381

Similarly, one might speculate whether the DNA helix-
coil transition266 in multiplication setups could be facili-
tated in the presence of pre-ring molecules which in vitro
attach to an opened loop of the double strand and close,
creating an entropy pressure which tends to open up the
vicinal parts of the DNA which are still in the helix state.
Finally, considering molecular motors, it would be inter-
esting to design an externally controllable, purely entropy-
driven rotating nanomotor.

Numerous additional nanoapplications of biopolymers
appear in current literature. An interesting example is
the nanomotor created by a DNA ring in a periodi-
cally driven external field, for instance, a focused light
beam inducing localised temperature variations.382�383 The
speeds possibly attained by such a device are of the order
of those reached by biological organisms. Such a nanoro-
tor could be used to stir smallest volumes in higher viscous
environments.

7.2. Nanosensing

The advances in minituarization of reactors and devices
also brings along the need of probes, by which smallest
volumes can be tested. For instance, microarrays used in
genomics require sensors to detect the presence of cer-
tain proteins (often at small concentrations) in a microdish,
without disturbing the environment in the small volume
too much. Similarly, single molecule experiments require
specific local detection possibilities.

x = xT

Fig. 42. Molecular beacon based on local DNA denaturation. The green
blobs may represent single-stranded DNA binding proteins, or more
specifically binding proteins binding or other molecule to a custom
designed DNA sequence along the denaturation fork. Bound proteins sta-
bilize the denatured fork and change the spectrum of the beacon.

A fine example for a potential nanosensore is the blink-
ing behaviour of a fluorophore-quencher pair mounted on
the denaturation wedge as shown in Figure 42. This setup,
similar to the ones described in Refs. [253, 285] works as
follows. As long as the dsDNA is intact, fluorophore and
quencher are in close proximity. Once they come apart
from one another when the denaturation wedge opens up,
the incident laser light causes fluorescence of the dye. The
on/off blinking of this “molecular beacon” can be moni-
tored in the focus of a confocal microscope, or, depending
on the intensity of the emitted light, by a digital cam-
era. The blinking renders immediate information about the
state of the base-pair, that is tagged by the dye-quencher
pair. Fluorescence, that is, indicates that the base-pair is
currently broken. It is therefore advantageous to define the
random variable I�t� with the property

I�t�=
{

0 if base-pair at x = xT is closed

1 if base-pair at x = xT is open
(55)

and in experiments one typically measures the correspond-
ing blinking autocorrelation function

A�t�= �I�t�I�0��−�I�eq2 (56)

where �I�eq is the (ensemble) equilibrium value, or its
spectral decomposition

A�t�=
∫ �

0
f �� exp

(
− t



)
d (57)

40 J. Comput. Theor. Nanosci. 4, 1–49, 2007



R
E
V
IE
W

Metzler et al. Single DNA Conformations and Biological Function

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ (in units of k–1)0

f (
τ)

 =
 (

T
p)

2 
δ 

(τ
–τ

p)

no SSBs

κ = 3

κ = 1

κ = 0.5

κ = 0.1

10–2 10–1 100 101 102 103
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t (in units ofk–1)

A
 (

t)

no SSBs

κ = 3

κ = 1

κ = 0.5

κ = 0.1

γ = 2

Fig. 43. Spectral response of the denaturation beacon in the presence
of single-stranded DNA binding proteins. Top: Relaxation time spectrum,
bottom: blinking autocorrelation function.

where
f ��= ∑

p �=0

T 2
p ��− p� (58)

is called the relaxation time spectrum.
Figure 43 shows an example for the achievable

sensitivity of such nanobeacons, in an example where the
denaturation wedge is in solution together with a cer-
tain concentration (proportional to L, compare Section 4.7)
of selectively single-stranded DNA binding proteins, as
discussed previously. It is distinct how both measur-
able signals, A�t� and f �� change with varying SSB-
concentration.

8. SUMMARY

Biopolymers such as DNA, RNA, and proteins are indis-
pensable for their specificity and robustness in all forms
of life. Given their detailed physical properties such as
DNA’s persistence length of some 50 nm or its local denat-
uration in nano-bubbles already at room temperature, and
biochemically relevant interfaces such as 10–20 base-pairs,

they deeply stretch into the nanoscience domain. This
statement is twofold in the following sense. Firstly, nan-
otechniques such as atomic force microscopes become
important tools to manipulate and probe biomolecules and
their interaction even on the single molecule level. Sec-
ondly, biomolecules are entering the stage as nanotools
such as nanosensors, functional molecules, or highly sen-
sitive force transducers.

The possibility to perform controlled experiments on
biomolecules, for instance, to measure the force–extension
curves of single biopolymers, also opens up novel possibil-
ities to test new physical theories. The foremost examples
may be the exploration of persistence lengths and other
polymer physics properties, and the statistical mechanical
concepts relevant for small system sizes. The latter are
known under the keyword of the Jarzynski relation con-
necting the non-equilibrium work performed on a physical
system with the difference in the thermodynamic (i.e., equi-
librium) potential between initial and final states.384�385

However, there exist by now several similar theories
addressing different physical quantities, such as the concept
of entropy production along a single particle trajectory.386

This review summaries fundamental physical proper-
ties of DNA, and their relevance for both biological pro-
cesses and technological applications. The extensive list
of references will be useful for further studies on spe-
cific topics covered herein. We are confident that the role
of biomolecules in technology, not at least for biomedi-
cal applications, will experience a dramatic increase dur-
ing the coming years and will enable us to extend current
physical understanding of fundamental processes.
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APPENDIX

A Polymer Primer

In this section, we introduce some basic concepts from
polymer physics. Starting from the random walk model,
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we define the fundamental measures of a polymer chain,
before introducing excluded volume. For more details, we
refer to the monographs.24�150�195�387

The simplest polymer model is due to Orr.388 It models
the polymer chain a a random walk on a periodic lattice
with lattice spacing a. Then, each monomer of index i is
characterised by a position vector Ri with i= 0�1� � � � �N .
The distance between monomers i and i+1 is called ai+1 =
Ri+1−Ri. Consequently, the end-to-end vector of the poly-
mer is

r =∑
i

ai (59)

Different ai have completely independent orientations,
such that we immediately obtain the average (�·� over dif-
ferent configurations) squared end-to-end distance

R2
0 = �r2� =∑

i� j

�ai ·aj� =
∑
i

�a2
i � = Na2 (60)

R0 � N 1/2a is a measure for the size of the random walk.
An alternative measure of the size of a polymer chain is
provided by its radius of gyration Rg, which may be mea-
sured by light scattering experiments. It is defined by

R2
g =

1
1+N

N∑
i=0

��Ri−RG�
2� (61)

and measures the average squared distance to the centre of
gravity,

RG = 1
1+N

N∑
i=0

Ri (62)

Expression (61) can be rewritten as

R2
g = �1+N�−2

N−1∑
i=0

N∑
j=i+1

��Ri−Rj �
2� (63)

With Rj −Ri =
∑j

n=i+1 an, one can easily show that R2
g =

a2N�N + 2�//6�N + 1�0. For large N , that is, Rg � a2

6 N ,
and therefore:

Rg ∼ R0 ∼ aN 1/2 (64)

On a cubic lattice in d dimensions, each step can go in
2d directions, and for a general lattice, each vector ai will
have � possible directions. The number of distinct walks
with N steps is therefore �N . Denote �N �r� the number
of distinct walks with end-to-end vector r, the probability
density function for a given r is

p�r�= �N �r�∑
r�N �r�

(65)

For large N , due to the independence of individual ai, this
probability density function will acquire a Gaussian shape,

p�r�=
(

d

2<Na2

)d/2

exp
(
− dr2

2Na2

)
(66)

where the normalisation is such that �r2� =Na2. From this
expression, we can deduce that the number of degrees of
freedom of a closed random walk chain is proportional to
N−d/2, the entropy loss suffered by a chain subject to the
constraint r = 0. On a general lattice,

%� �NN−d/2 (67)

with the connectivity constant �, a measure for in how
many different directions the next bond vector can point
(� = 2d in a cubic lattice). At fixed end-to-end distance,
the entropy of the random walk becomes S�r� = S0 −
dr2/�2Na2� where S0 absorbs all constants. For the free
energy 
 �r�= E−kBTS�r� we therefore obtain


 �r�= 
0 +
dkBTr

2

2R2
0

(68)

i.e., the random walk likes to coil, the restoring force
−T
 �r� being linear in r. This is often called the entropic
spring character of a Gaussian polymer. Note that the
‘spring constant’ increases with temperature (‘entropy
elasticity’).

In this random walk model of a polymer chain, it is
straightforward to define the persistence length of the
chain. By this we mean that successive vectors ai are not
independent, but tend to be parallel. Over long distance,
this correlation is lost, and the chain behaves like a random
walk. Due to the quantum chemistry of the monomers,
an adjacent pair of vectors ai, ai+1 includes preferred
angles, for carbon chains leading to the trans/gauche con-
figurations. This feature is captured schematically in the
freely rotating chain as depicted in Figure 44. Follow-
ing Ref. [195], we can obtain the correlation �an · am� as

θ

an–2

an–1

an

Fig. 44. Freely jointed chain, in which successive bond vectors include
an angle �.
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follows. If we fix all vectors am� � � � �an−1, then the aver-
age �an�am�am+1�����an−1 fixed = an−1 cos�. Multiplication by
am produces

�am ·an�am�����an−1 fixed = am ·an−1 cos� (69)

Averaging over the am� � � � �an−1 leads to the recursion rela-
tion �am ·an� = �am ·an−1� cos�. With the initial condition
�a2� = a2, we find

�am ·an� = a2 cos�n−m� � (70)

Thus, if � = 0, we obtain a rigid rod behaviour, while for
� �= 0, there occurs an exponential decay of the correlation
between any two bond vectors an and am. This defines a
length scale

�p ≡
a

log cos�
(71)

the ‘persistence length’ of the chain. It diverges for �→ 0,
while for �= 90	, it vanishes, corresponding to the random
walk model discusses above (‘freely jointed chain’). As

�∑
k=−�

�an+k ·an�= a2

(
1+2

�∑
k=1

cosk �
)
= a2 1+ cos�

1− cos�
(72)

we find R2
0 = a2N�1+ cos��/�1− cos��, i.e., statistically,

the freely jointed chain behaves the same as the random
walk chain, but with a rescaled monomer length. The sta-
tistical unit in a polymer chain is often taken to be the
Kuhn length �K = 2�p.

Above chain models are often referred to as being phan-
tom, i.e., the chain can freely cross itself. A physical
polymer possesses an excluded volume and behaves like
a so-called self-avoiding chain. Mathematically, this can
be modelled by self-avoiding walks. To include the major
effects, it is sufficient to follow a simple argument due to
Flory. Consider a chain with unknown radius R and inter-
nal monomer concentration cint � N/Rd. Assuming that
the self-avoiding character is due to monomer-monomer
interactions, the repulsive energy is proportional to the
squared concentration, i.e.,


rep =
1
2
Tv�T �c2 (73)

with the excluded volume parameter v�T � (v�T � ≡ �1−
2U�ad in Flory’s notation, where the � condition U = 1/2
corresponds to ideal chain behaviour). To obtain the total
averaged repulsive energy 
rep�tot, we need to average over
c2. In a mean field approach, we take �c2� −→ �c�2 ∼ c2

int.
We therefore obtain


rep�tot � Tv�T �c2
intR

d = Tv�T �
N 2

Rd
(74)

favouring large values of R. This ‘swelling’ competes with
the entropic elasticity contribution 
el � TR2/�Na2�. The
total free energy becomes




T
� v�T �

N 2

Rd
+ R2

Na2
(75)

Fig. 45. Polymer network � with vertices (•) of different order N ,
where N self-avoiding walks are joined (n1 = 5, n3 = 4, n4 = 3, n5 = 1).

with a minimum at Rd+2
F = v�T �a2N 3, so that the Flory

radius scales like

RF ∼ AN&� therefore & = 3
2+d

(76)

The values of the exponent &�d= 2�= 3/4 and &�d= 3�=
3/5 are extremely close to the best known values 0�75 and
0�588.39

Polymer Networks

A linear excluded volume polymer chain has the size

R2
g � AN 2& (77)

with &= 0�75 in d= 2, and &= 0�588 in d= 3. Its number
of degrees of freedom is given in terms of the configura-
tion exponent ) such that

%� �NN)−1 (78)

where ) = 1�33 in d = 2 and ) = 1�16 in d = 3.
Remarkably, similar critical exponents can be obtained

for a general polymer network of the type shown in
Figure 45, as originally derived by Duplantier,151�158 com-
pare also Refs. [161, 389]: In a network � consisting of
� chain segments of lengths s1� � � � � s� and total length
L=∑�

i=1 si, the number of configurations %� scales as

%��s1� � � � � s� �= �Ls
)�−1
� ��

(
s1

s�
� � � � �

s�−1

s�

)
(79)

where �� is a scaling function, and � is the effective con-
nectivity constant for self-avoiding walks. The exponent
)� is given by )� = 1−d&�+∑

N≥1 nN	N , where & is the
swelling exponent, � is the number of independent loops,
nN is the number of vertices with N outgoing legs, and
	N is an exponent associated with such a vertex. In d= 2,
this exponent is given by Refs. [151, 158]

	N = �2−N��9N +2�
64

(80)

39An interesting discussion about the flaws underlying this reasoning can
be found in Ref. [150].
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In the dense phase in 2D,213�214�216–218�390 and at the 6
transition,391 analogous results can be obtained.

First, consider the dense phase in 2D. If all segments
have equal length s and L=� s, the configuration number
%� of such a network scales as Refs. [213, 214]40

%��s�∼ %0�L�s
)� (81)

where %0�L� is the configuration number of a simple
ring of length L. For dense polymers, and in contrast
to the dilute phase or at the 6 point, %0�L� (and thus
%�) depends on the boundary conditions and even on the
shape of the system.214�216–218�390 For example, for periodic
boundary conditions (which we focus on in this study)
corresponding to a 2D torus, one finds %0�L� ∼ �LLV−1

with a connectivity constant � and V = 1.214 However, the
network exponent

)� = 1−�+∑
N≥1

nN	N (82)

is universal and depends only on the topology of the
network by the number � of independent loops, and
by the number nN of vertices of order N with vertex
exponents 	N = �4 − N 2�/32.213�214 For a linear chain,
the corresponding exponent )lin = 19/16 has been veri-
fied by numerical simulations.214�392 For a network made
up of different segment lengths DsiE of total length
L = ∑�

i=1 si, Eq. (81) generalises to (cf. Section 4 in
Ref. [214])

%��s1� � � � � s� �∼ %0�L�s
)�
� ��

(
s1

s�
� � � � �

s�−1

s�

)
(83)

which involves the scaling function ��.
For polymers in an infinite volume and endowed with

an attractive interaction between neighbouring monomers,
a different scaling behaviour emerges if the system is not
below but right at the 6 point.214 In this case the number
of configurations of a general network � is given by

�%��s1� � � � � s� �∼ �L s
)̄�−1
�

���

(
s1

s�
� � � � �

s�−1

s�

)
(84)

with the network exponent

)̄� = 1−d&�+∑
N≥1

nN 	̄N (85)

Overlined symbols refer to polymers at the 6 point. In
d = 2, & = 4/7 and 	̄N = �2−N��2N +1�/42.214

40Note that due to the factor %0�L� the exponent of s is )� , and not
)� − 1 like in the expressions used in the dilute phase158 or at the 6

point, for which %0�L�∼ L−d& . However, for 2D dense polymers one has
d& = 1, so that both definitions of )� are equivalent, cf. Section 3 in
Ref. [214].
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