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We study the dynamics of denaturation bubbles in double-stranded DNA on the basis of the Poland-Scheraga
model. We show that long time distributions for the survival of DNA bubbles and the size autocorrelation
function can be derived from an asymptotic weak noise approach. In particular, below the melting temperature
the bubble closure corresponds to a noisy finite time singularity. We demonstrate that the associated Fokker-
Planck equation is equivalent to a quantum Coulomb problem. Below the melting temperature, the bubble
lifetime is associated with the continuum of scattering states of the repulsive Coulomb potential; at the melting
temperature, the Coulomb potential vanishes and the underlying first exit dynamics exhibits a long time power
law tail; above the melting temperature, corresponding to an attractive Coulomb potential, the long time
dynamics is controlled by the lowest bound state. Correlations and finite size effects are discussed.
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I. INTRODUCTION

Under physiological conditions the Watson-Crick double
helix of DNA constitutes the equilibrium structure, its stabil-
ity ensured by hydrogen bonding of paired bases and base
stacking between nearest neighbor pairs of base pairs �1,2�.
Base pairing by hydrogen bonding connects bases from op-
posite strands �transversal interaction� while base stacking is
along bases of the same strand �longitudinal interaction�. By
variation of the temperature or pH value double-stranded
DNA progressively denatures, yielding regions of single-
stranded DNA, until the double strand is fully molten. This is
the helix-coil transition taking place at a melting temperature
Tm defined as the temperature at which half of the DNA
molecule has undergone denaturation �3�.

However, already at room temperature thermal fluctua-
tions cause rare opening events of small denaturation zones
in the double helix �4�. These DNA bubbles consist of flex-
ible single-stranded DNA, and their size fluctuates in size by
stepwise zipping and unzipping of the base pairs at the two
zipper forks where the bubble connects to the intact double
strand. Below the melting temperature Tm, once formed, a
bubble is an intermittent feature and will eventually zip close
again. The multistate DNA breathing can be monitored in
real time on the single DNA level �5�. Biologically, the ex-
istence of intermittent �though infrequent� bubble domains is
important, as the opening of the Watson-Crick base pairs by
breaking of the hydrogen bonds between complementary
bases disrupts the helical stack. The flipping out of the or-
dered stack of the unpaired bases allows the binding of spe-
cific chemicals or proteins that otherwise would not be able
to access the reactive sites of the bases �3,4,6,7�.

The size of the bubble domains varies from a few broken
base pairs well below Tm up to some 200 closer to Tm. Above
Tm, individual bubbles continuously increase in size and
merge with vicinal bubbles until complete denaturation �3�.
Assuming that the bubble breathing dynamics takes place on
a slower time scale than the equilibration of the DNA single-
strand constituting the bubbles, DNA breathing can be inter-
preted as a random walk in the one-dimensional �1D� coor-
dinate x, the number of denatured base pairs. The above
assumption is corroborated by time scales inferred from ex-
periments on DNA constructs. According to Ref. �5�, bubble
�un�zipping occurs on time scales of tens of microseconds,
much slower than the relaxation of Rouse modes of the flex-
ible bubbles.

DNA breathing has been investigated in the Dauxois-
Peyrard-Bishop model �8,9�, which describes the motion of
coupled oscillators representing the base pairs. On the basis
of the Poland-Scheraga model, DNA breathing has been
studied in terms of continuous Fokker-Planck approaches
�10,11� and in terms of the discrete master equation and the
stochastic Gillespie scheme �12–17�. The coalescence of two
bubble domains was analyzed in Ref. �18�.

In what follows we study the Langevin and Fokker-
Planck nonequilibrium extension of the Poland-Scheraga
model in terms of both a general weak noise approach ac-
cessing the long time behavior �see, e.g., Refs. �19,20�� and a
mapping to a quantum Coulomb problem �21�. This allows
us to investigate in more detail the finite time singularity
underlying the breathing dynamics, as well as the survival of
individual bubbles. The paper is organized in the following
manner. In Secs. II and III, we introduce and discuss the
model, and in Sec. IV we apply the weak noise approach and
extract long time results and study the stability of the solu-
tions. In Sec. V we map the problem to a quantum Coulomb
problem and derive the long time scaling of the bubble sur-
vival. Finally, in Sec. VI we discuss the results and draw our
conclusions in Sec. VII.
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II. FREE ENERGY FOR DNA BREATHING

In the Poland-Scheraga free energy approach, bubbles are
introduced as free energy changes to the double-helical
ground state, such that the disruption of each additional base
pair of a bubbles are required to cross an energetic barrier
that is rewarded by an entropy gain. While the persistence
length of double-stranded DNA is rather large �of the order
of 50 nm� and it is assumed to have no configurational en-
tropy, the single-stranded bubbles are flexible and therefore
behave like a polymer ring. The Poland-Scheraga partition
factor for a single bubble in a homopolymer is of the form

Z�m� = �0um�1 + m�−c, �2.1�

where m counts the �discrete� number of broken base pairs
and u=exp�−���, with �=1 / �kT�, is the Boltzmann factor
for breaking the stacking interactions when disrupting an ad-
ditional base pair. The cooperativity factor �0=exp�−��0�
quantifies the so-called boundary energy �0 for initiating a
bubble. �0 is of the order of 8000 cal/mol, corresponding to
approximately 13kT at 37 °C �6,23,24,26�. Occasionally,
somewhat smaller values for �0 are assumed, down to ap-
proximately 8kT. Bubbles below the melting point of DNA
are therefore rare events. Typical equilibrium melting tem-
peratures of DNA for standard salt conditions are in the
range Tm�70–100 °C, depending on the relative content of
weaker AT and stronger GC Watson-Crick base pairs. Thus,
double-stranded DNA denatures at much higher temperatures
as many proteins. Note that the melting temperature of DNA
can also be increased by change of the natural winding, as
opening of the double strand in ring DNA is coupled with the
creation of superstructure; this is the case, for instance, in
underwater bacteria living in hot vents; compare Ref. �22�,
and references therein.

Due to the large value of �0, below the melting tempera-
ture to good approximation individual bubbles are statisti-
cally independent, and therefore a one-bubble picture is ap-
propriate. Having experimental setups in mind as realized in
Ref. �5�, where special DNA constructs are designed such
that they have only one potential bubble domain, we also
consider a one-bubble picture at and above Tm. Our results
are meant to apply to such typical single-molecule setups. In
comparison to the rather high energy barrier �0, according to
which the opening of a bubble corresponds to a nucleation
process, to break the stacking of a single pair of base pairs
requires much less thermal activation, ranging from
�=−0.1 to +3.9kT for TA/AT and GC/CG pairs of base pairs
at 37 °C, respectively; here, the positive sign refers to a
thermodynamically stable state. These comparatively low
values for the stacking free energy of base pairs stems from
the fact that stacking enthalpy cost and entropy release on
base pair disruption almost cancel. Finally, the term
�1+m�−c measures the entropy loss on formation of a closed
polymer ring with respect to a linear chain of equal length.
The offset by 1 is often taken into account to represent the
short persistence length of single-stranded DNA. For the
critical exponent c, one typically uses the value 1.76 of a
Flory chain in three dimensions �6,14,23–26�, while a

slightly larger value �c=2.12� was suggested based on differ-
ent polymer models �27–32�. Here, we disregard the offset
and consider the pure power law form m−c.

The following discussion is based on the continuum limit
of the above picture, measuring the “number” of broken base
pairs with the continuous variable x. The Poland-Scheraga
free energy for a single bubble then has the form �3,11�

F = �0 + �x + ckT ln x , �2.2�

where x�0 is the bubble size as measured in units of base
pairs. Treating the bubble size x as a continuum variable, we
impose an absorbing wall at x=0, the zero-size bubble. The
completely closed bubble state is stabilized by the size of the
cooperativity factor �0, and bubbles therefore become rare
events. Expression �2.2� corresponds to a logarithmic sink in
F at x=0. The free energy density ��T� has a temperature
dependence, which we write as

��T� = �1�Tm − T�/Tm, �2.3�

where Tm is the melting temperature.
From Eq. �2.2� it follows that a characteristic bubble size

is set by x1=ckT / ���. For large bubble sizes x�x1 the linear
term dominates and the free energy grows like F��0+�x.
For small bubbles x�x1 �or close to Tm, where ��T��0� the
free energy is characterized by the logarithmic sink, but has
strictly speaking a minimum at F=�0 for zero bubble size.
We distinguish two temperature ranges.

�i� For ��0, i.e., T�Tm, the free energy has a maximum
Fmax=�0+ckT�ln x1−1� at x=x1. The free energy profile
thus defines a Kramers escape problem in the sense that an
initial bubble can grow in size corresponding to the complete
denaturation of the double-stranded DNA. The escape prob-
ability Pesc	exp�−
F /kT�, where the free energy barrier is

F=ckT�ln x1−1�, i.e.,

Pesc 	 � ckT

��� 	
−c

. �2.4�

�ii� For ��0, i.e., T�Tm, the free energy increases
monotonically from F=�0 at x=0 and the finite size bubbles
are stable. The change of sign of � at T=Tm thus defines the
bubble melting.

For ��0, i.e., T�Tm, the free energy has a maximum
and decreases for large bubble size; as a result, the bubbles
expand and the double-stranded DNA denatures—that is,
melts. In Fig. 1 we have depicted the free energy profile as a
function of bubble size for ��0, T�Tm, and for ��0, T
�Tm.

III. LANGEVIN EQUATION DESCRIPTION

In this section we investigate the stochastic description of
DNA breathing in terms of a Langevin equation. In the limits
of large and small bubbles, exact results for the dynamics are
presented. We also introduce the deterministic Fokker-Planck
equation corresponding to the Langevin equation in the gen-
eral case.

The stochastic bubble dynamics in the free energy land-
scape F�x� is described by the overdamped Langevin equa-
tion
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dx

dt
= − D

dF
dx

+ � �3.1�

for the bubble size x. The dynamics is driven by thermal
noise �, which is characterized by the correlation function


��t���t��� = 2DkT ��t − t�� . �3.2�

The kinetic coefficient D of dimension �kT�−1s−1 sets the
inverse time scale of the dynamics. Inserting the free energy
�2.2� into Eq. �3.1� we have in particular

dx

dt
= 2 −

1

x
+ � , �3.3�

where we have found it convenient to introduce the inverse
time scales 1 and 2,

1 = DckT , �3.4a�

2 = − D� = D�1�T − Tm�/Tm. �3.4b�

Note that the characteristic bubble size x1=ckT / ��� is given
by

x1 =
ckT

�
=

1

�2�
�3.5�

and thus emerges from the time scale competition between
the i, from a dynamic point of view. At room temperature,
a random sequence has a stacking free energy ��2kT, while
a sequence containing only GC base-pairs has ��4kT �15�.
Thus, the characteristic bubble size can assume values as low
as x1�1 /2, . . . ,1. Conversely, rewriting the characteristic
bubble size to show the explicit temperature dependence of
the stacking free energy �, x1=ckTm / ��1�1−Tm /T��, tem-
peratures close to the melting temperature Tm will lead to
large values: x1�1. Bubble sizes of 100–200 broken base-
pairs are supposed to occur close to the melting transition
�3�.

In the limits of large and small bubble sizes, the Langevin
equation �3.1� allows the following exact solutions.

�i� For large bubble size x�x1 we can ignore the loop
closure or entropic contribution ckT /x and we obtain the
Langevin equation

dx

dt
= 2 + � , �3.6�

describing a 1D random walk with an overall drift velocity
2. This is a well-known case, and the probability density
function to find a bubble of size x at time t for natural bound-
ary conditions �P��x�→� , t�=0� is given by the shifted
Gaussian �33�

P�x,t� =
1

�4�DkTt
exp−

�x − x0 − 2t�2

4DkTt
� , �3.7�

where x0 is the initial �large� bubble size. It follows that the
mean bubble size scales linearly with time, 
x�=x0+2t. Be-
low Tm �2�0� the bubble size shrinks toward bubble clo-
sure; above Tm �2�0� the bubble size grows, leading to
denaturation. The mean square bubble size fluctuations

�
x�2�=2DkTt increase linearly in time, a typical character-
istic of a random walk.

Taking into account the absorbing state condition
P�x=0, t�=0 for zero bubble size by forming the linear com-
bination �method of images�, we obtain for the distribution
�34�

Pabs =
1

�4�DkTt
�exp�−

�x − x0 − 2t�2

4DkTt
�

− exp�−
x02

DkT
�exp�−

�x + x0 − 2t�2

4DkTt
�	 �3.8�

and infer, using the definition �34�

W�t� = − �
0

�

dx
�Pabs

�t
, �3.9�

the first passage time density

c/l�l
x

x

a)

b)

~�x

T<Tm
�> 0

T>Tm
�<0

bubbles
shrink

bubbles grow
denaturation

-�0

-�0

FIG. 1. We depict the free energy profile F−�0 below and
above the melting temperature Tm as a function of bubble size. In
�a� we show F−�0 for ��0, i.e., T�Tm; in �b� we show F−�0 for
��0, i.e., T�Tm. For large bubble sizes, x�x1 the free energy
behaves approximately linearly as a function of bubble size. For
small bubble sizes the free energy has a logarithmic sink corre-
sponding to the absorbing state at x=0 �arbitrary units�. Above
melting, there exists a nucleation barrier that needs to be crossed
before the bubble is allowed to grow toward full denaturation. In
both cases, the comparatively high initiation barrier �0 has to be
overcome to seed the bubble.

DYNAMICS OF DNA BREATHING: WEAK NOISE … PHYSICAL REVIEW E 76, 061915 �2007�

061915-3



W�t� =
x0

�4�DkTt3
exp�−

�x0 + 2t�2

4DkTt
	 , �3.10�

with the typical Sparre-Andersen asymptotics

W�t� �
x0

�4�DkT
t−3/2, �3.11�

analogous to the results in Ref. �11�.
�ii� For small bubble size x�x1 the nonlinear entropic

term dominates and the bubble dynamics is governed by the
nonlinear Langevin equation

dx

dt
= −

1

x
+ � . �3.12�

For vanishing noise Eq. �3.12� has the solution x
= �21�1/2�t0− t�1/2 with t0=x0 /21 in terms of the initial
bubble size x0 and thus exhibits a finite time singularity for
x=0, i.e., a zero bubble size or bubble closure at time t0. In
Fig. 2 we have depicted the finite time singularity solution
for vanishing noise together with the noisy case.

In the presence of thermal noise Eq. �3.12� admits an
exact solution; see, e.g., Ref. �36�. The probability distribu-
tion, subject to the absorbing state condition P�0, t�=0, has
the form

P�x,t� =
x1/2DkT+1/2

x0
1/DkT−1/2

e−�x2+x0
2�/4DkTt

2DkTt
I1/2+1/2DkT� xx0

2DkTt
	 .

�3.13�

Here I� is the Bessel function of imaginary argument, I��z�
= �−i��J��iz� �37�. Correspondingly, we find the first passage
time distribution

W�t� =
4DkTx0

1+1/DkT

��1/2 − 1/2DkT�
exp�−

x0
2

4DkTt
	

��4DkTt�−3/2−1/2DkT, �3.14�

with the long time tail

W�t� �
x0

1+1/DkTt−3/2−c/2

��1/2 − 1/2DkT��4DkT�1/2+1/2DkT , �3.15�

where we substituted back for 1: For small bubble sizes,
the exponent c due to the polymeric interactions changes the
first passage statistics. As already noted in Ref. �21�, this
modified exponent for c�1 gives rise to a finite mean first
passage time �0

�tW�t�dt, in contrast to the first passage time
distribution �3.10�.

In the general case for bubbles of all sizes the fluctuations
of double-stranded DNA is described by Eq. �3.3�. The asso-
ciated Fokker-Planck equation for the distribution P�x , t� has
the form �compare also Refs. �11,21,29��

�P

�t
=

�

�x
�− 2 +

1

x
	P + DkT

�2P

�x2 �3.16�

and provides the complete description of the single-bubble
dynamics in double-stranded homopolymer DNA in the con-
tinuum limit of the Poland-Scheraga model. For large bubble
sizes where the entropic term 1 /x can be neglected the
solution of Eq. �3.16� is given by Eqs. �3.7� and �3.8�. Con-
versely, for small bubble sizes, where the entropic term 1 /x
dominates, or for all bubble sizes precisely at the transition
temperature 2=0 �T=Tm�, the solution of Eq. �3.16� is
given by the noisy finite time singularity solution in Eqs.
�3.13� and �3.14�.

IV. WEAK NOISE ANALYSIS

In this section we explore an alternative approach to in-
vestigate the dynamics defined by the stochastic Langevin
Eq. �3.1�—namely, the weak noise analysis. This technique
is often used to study Fokker-Planck-type models through
mapping onto a set of Hamiltonian canonical equations �35�.
By help of this technique we discuss the dynamics of bubble
breathing in terms of phase space portraits. Moreover, we
derive the weak noise analog of the finite time singularity for
closing bubbles.

In the weak noise limit DkT→0 we can apply a well-
established canonical scheme to investigate the Fokker-
Planck equation �3.16�; see, for instance, Refs. �19,20�. In-
troducing the WKB ansatz

t

t0

t0

x

t

a)

b)

x

x0

x0

FIG. 2. In �a� we show the time evolution of a small bubble of
size x in the absence of thermal noise. For x=0 corresponding to
bubble closure we encounter a finite time singularity at t0

=x0 /21. In �b� we depict the noisy case. Here the first passage
time is a statistical event characterized by W�t� �arbitrary units�.
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P�x,t� 	 exp�−
S�x,t�
2DkT

	 , �4.1�

the weight �or action� S�x , t� satisfies the Hamilton-Jacobi
equation

�S

�t
+ H = 0, �4.2�

with Hamiltonian

H =
1

2
p2 − p�− 2 +

1

x
	 . �4.3�

From this scheme, the equations of motion take the form

dx

dt
= �2 −

1

x
	 + p , �4.4�

dp

dt
= −

1

x2 p . �4.5�

They determine orbits in a canonical phase space spanned by
the bubble size x and the momentum p. Comparing the equa-
tion of motion �4.4� with the Langevin equation �3.3� we
observe that the thermal noise � is replaced by the momen-
tum p=�S /�x.

The action S associated with an orbit from x0 to x during
time t is given by

S�x,t� = �
x0,0

x,t

dt p
dx

dt
− Ht �4.6�

or, by insertion of Eq. �4.4�,

S�x,t� =
1

2
�

x0,0

x,t

dt p2. �4.7�

A. Large bubbles

For large bubbles, i.e., x�x1=1 / �2�, we can ignore the
loop closure contribution characterized by 1, and we obtain
the Hamiltonian

H =
1

2
p2 + 2p , �4.8�

as well as the linear equations of motion

dx

dt
= 2 + p , �4.9�

dp

dt
= 0. �4.10�

The solution is given by p= p0, x=x0+ �p0+2�t describing
an orbit from �x0 , p0� to �x , p0� in time t. Isolating
p0= �x−x0−2� / t and inserting into Eq. �4.7� we obtain the
action

S�x,t� =
1

2

�x − x0 − 2t�2

t
�4.11�

and, inserted into Eq. �4.1�, the biased random walk distri-
bution �3.7�. In Fig. 3 we have depicted the phase space for
1=0, i.e., in the large bubble random walk case. The orbits
are confined to the constant energy surfaces. We note in par-
ticular that the infinite time orbit lies on the p=−2 mani-
fold. We note, moreover, that in the large bubble case the
weak noise case fortuitously yields the exact result for the
distribution P.

B. Small bubbles at and below Tm

For small bubbles, i.e., x�x1=1 / �2�, the loop closure
contribution dominates and we obtain the Hamiltonian

H =
1

2
p2 −

p1

x
�4.12�

and the equations of motion

dx

dt
= −

1

x
+ p , �4.13�

dp

dt
= −

1

x2 p , �4.14�

determining orbits in �x , p� phase space. Eliminating p the
bubble size is governed by the second-order equation

d2x

dt2 = −
dV

dx
, �4.15�

V = −
1

2

2x2 , �4.16�

describing the “fall to the center” �x=0� of a bubble of size
x, i.e., the absorbing state corresponding to bubble closure.

The long time stochastic dynamics is here governed by
the structure of the zero-energy manifolds and fixed points.
From Eq. �4.12� it follows that the zero-energy manifold has
two branches: �i� p=0, corresponding to the noiseless tran-
sient behavior showing a finite time singularity as depicted in
Fig. 2, and �ii� p=21 /x associated with the noisy behavior.
In Fig. 4 we have depicted the phase space structure.

0

p

-2 2

2

I

II

x
H=0

H=0

x0 xt=
�

�

-

FIG. 3. We show the phase space structure in the case 1=0,
i.e., for random walk with constant drift. We show the zero-energy
manifolds for p=0 and p=−22 and a negative-energy orbit from
x0 to x in time t �arbitrary units�.
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In the long time limit the orbit from x0 to x passes close to
the zero-energy manifold p=21 /x. Inserted into the equa-
tion of motion �4.13� we have

dx

dt
=

1

x
, �4.17�

with long time solution

x�t� � �21t�1/2. �4.18�

We notice that the motion on the noisy manifold, p=21 /x,
is time reversed of the motion on the noiseless manifold, p
=0. Next inserting the zero-energy manifold condition p
=21 /x into Eq. �4.7� we obtain

S = 21
2� dt�1

x
	2

�4.19�

and, inserting the solution into Eq. �4.18�, the action

S�x,t� = 21 ln x�t� , �4.20�

yielding according to Eq. �4.1� the long time distribution

P�x,t� 	 x�1t�−1/2DkT. �4.21�

We have incorporated the absorbing state condition P=0 for
x=0; as discussed in Ref. �36�, this condition follows from
carrying the WKB weak noise approximation to next
asymptotic order. For the first-passage time density of loop
closure we obtain correspondingly

W�t� 	 t−c/2 �4.22�

using 1=DckT. We note that the power law dependence in
Eqs. �4.21� and �4.22� is in accordance with Eqs. �3.13� and
�3.14� for DkT→0. The asymptotic behavior of the first pas-
sage time density for bubble annihilation for low noise is
therefore fully given by the entropy loss of the polymeric
bubble, as characterized by the critical exponent c.

The weak noise analysis dissects the dynamic behavior of
denaturation bubbles into contributions from thermal noise
and other mechanisms. In Eq. �4.22� this is the critical expo-
nent c.

V. CASE OF ARBITRARY NOISE STRENGTH

In the previous section we inferred weak noise-long time
expressions for the distribution P on the basis of a canonical
phase space approach, while in Sec. III we obtained solutions
of the underlying Langevin equations in the limits of large
and small bubble sizes, x�x1 and x�x1, respectively. Here
we address the Fokker-Planck equation �3.16� in the general
case of arbitrary bubble size. The trick is to map the Fokker-
Planck equation to the corresponding imaginary time
Schrödinger equation of the Coulomb problem. This allows
us to obtain general results for the probability density func-
tion P�x , t� and the corresponding first passage time of the
bubble survival. While we repeat briefly the results from Ref.
�21�, we include additional details in the derivations, as well
as report previously unpublished exact solutions in Sec. V B.

For the purpose of our discussion it is useful to introduce
the parameters

� = c/2, �5.1a�

� =
�1

2k
� 1

Tm
−

1

T
	 . �5.1b�

Measuring time in units of �s the Fokker-Planck equation
�3.16� takes on the reduced form

�P

�t
=

�

�x
��

x
− �	P +

1

2

�2P

�x2 . �5.2�

Note that ��1 and, close to the physiological temperature
Tr, ��2�T /Tm−1�.

A. Connection to the quantum Coulomb problem

By means of the substitution P=e�xx−�P̃, P̃ satisfies the
equation �21�

−
� P̃

�t
= −

1

2

�2P̃

�x2 + ���� + 1�
2x2 −

��

x
+

�2

2
	P̃ , �5.3�

which can be identified as an imaginary time Schrödinger
equation for a particle with unit mass in the potential

V�x� =
��� + 1�

2x2 −
��

x
+

�2

2
, �5.4�

i.e., subject to the centrifugal barrier ���+1� /x2 for an or-
bital state with angular momentum � and a Coulomb poten-
tial −�� /x. In Fig. 5 we have depicted the potential V
−�2 /2 in the two cases.

In terms of the Hamiltonian

H = −
1

2

d2

dx2 +
��� + 1�

2x2 −
��

x
+

�2

2
, �5.5�

the eigenvalue associated with Eq. �5.3� problem has the
form

H�n = En�n. �5.6�

Expressed in terms of the eigenfunctions the transition prob-
ability P�x ,x0 , t� then becomes

x

p

t

p=2Ω1/x, H=0

x0 x p=0, H=0

I

II

FIG. 4. We show the phase space structure in the case 2=0
�T=Tm�, i.e., for the small bubble dynamics governed by the en-
tropic contribution. We show the zero-energy manifolds p=0 and
p=21 /x and a negative-energy orbit from x0 to x in time t �arbi-
trary units�.
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P�x,x0,t� = e��x−x0�� x0

x
	�

�
n

e−Ent�n�x��n�x0� . �5.7�

Here, the completeness of �n ensures the initial condition
P�x ,x0 ,0�=��x−x0�. Moreover, in order to account for the
absorbing boundary condition for vanishing bubble size we
choose �n�0�=0. We also note that for a finite strand of
length L, i.e., a maximum bubble size of L, we have in ad-
dition the absorbing condition �n�L�=0 for complete dena-
turation. Expression �5.7� is the basis for our discussion of
DNA breathing, relating the dynamics to the spectrum of
eigenstates, i.e., the bound and scattering states of the corre-
sponding Coulomb problem �38�.

The transition probability P�x ,x0 , t� for the occurrence of
a DNA bubble of size x at time t is controlled by the Cou-
lomb spectrum. Below the melting temperature Tm for �
	 �T /Tm−1��0, the Coulomb problem is repulsive and the
states form a continuum, corresponding to a random walk in
bubble size terminating in bubble closure �x=0�. At the melt-
ing temperature Tm for �=0, the Coulomb potential is absent
and the continuum of states is governed by the centrifugal
barrier alone, including the limiting case of a regular random
walk. This situation corresponds to the vanishing of the con-
tribution ��Tm�=0 in terms of the Poland-Scheraga free en-
ergy for base stacking, such that only the contribution from
the loop entropy loss factor ckT ln x remains. The latter cor-

responds to the centrifugal barrier in the language of the
mapping to the quantum Coulomb problem. Above the melt-
ing temperature for ��0, the Coulomb potential is attractive
and can trap an infinity of bound states; at long times, it
follows from Eq. �5.7� that the lowest bound state in the
spectrum dominates the bubble dynamics, corresponding to
complete denaturation of the DNA chain.

Mathematically, we model the bubble dynamics with ab-
sorbing boundary conditions at zero bubble size x=0 and, for
a finite chain of length L, at x=L. When the bubble vanishes
or complete denaturation is reached, that is, the dynamics
stops. Physically, this stems from the observation that on
complete annihilation �closure� of the bubble, the large
bubble initiation barrier prevents immediate reopening of the
bubble. Similarly, a completely denatured DNA needs to re-
establish bonds between bases, a comparatively slow
diffusion-reaction process.

1. Long times for T�Tm

At long times and fixed x and x0, it follows from Eq. �5.7�
that the transition probability is controlled by the bottom of
the energy spectrum. Below and at Tm the spectrum is con-
tinuous with lower bound �2 /2. Setting Ek=�2 /2+k2 /2 in
terms of the wave number k and noting from the eigenvalue
problem in Eqs. �5.5� and �5.6� that �k�x���kx�1+� for small
kx we find

P�x,x0,t� 	 exp�− ����x − x0��� x0

x
	�

�exp�−
�2t

2
	�

0

�

dk e−k2t/2�k2xx0�1+�.

�5.8�

By a simple scaling argument we then obtain the long time
expression for the probability distribution

P�x,x0,t� 	 xx0
1+2�e−����x−x0�e−�2t/2t−3/2−�. �5.9�

The lifetime of a bubble of initial size x0 created at time t
=0 follows from Eq. �5.9� by calculating the first passing
time density W�t� in Eq. �3.9�. Using the Fokker-Planck
equation �5.2� we also have more conveniently

W�t� =
1

2
 �P

�x
+ �2�

x
− 2�	P�

x=0
, �5.10�

and we obtain at long times

W�t� 	 �1 + 2��x0
1+2�e���x0e−�2t/2t−3/2−�. �5.11�

In Fig. 6 we have depicted the bubble lifetime distribution
W�t� below Tm for �=−1 /2.

2. At the transition T=Tm „�=0…

At the transition temperature T=Tm for �=0 the Coulomb
term is absent and we have a free particle subject to the
centrifugal barrier ���+1� /2x2. In this case the eigenfunc-
tions are given by the Bessel function �37�

�k�x� = �kx�1/2J1/2+��kx� , �5.12a�

x

a)

b)

continuum states

�<0
T<Tm

�>0
T>Tm

continuum states

bound state

x

V-�
2
----2

V-�
2
----2

FIG. 5. Schematic of the potential V�x�−�2 /2. �a� T�Tm: the
potential is repulsive, yielding a continuous spectrum. The bubble
fluctuations correspond to a biased Brownian walk process in
bubble size x before collapse at x=0. �b� T�Tm. The potential is
attractive and can trap a series of bound states. At long times the
lowest bound state indicated in the figure controls the behavior. The
bubbles increase in size eventually leading to complete
denaturation.
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Ek =
k2

2
, �5.12b�

where orthogonality and completeness follow from the
Fourier-Bessel integral �37�

f�x� = �
0

�

kJ��kx�dk�
0

�

yJ��ky�f�y�dy . �5.13�

By insertion into Eq. �5.7� we obtain the distribution

P�x,x0,t� =
x0

1/2+�

x�−1/2�
0

�

dk e−k2t/2kJ1/2+��kx�J1/2+��kx0�

or, by means of the identity �37�

�
0

�

e−tx2
Jp�ax�Jp�bx�x dx =

1

2t
e−�a2+b2�/4tIp�ab

2t
	 ,

�5.14�

the explicit expression

P�x,x0,t� = � x0

x
	�

�xx0�1/2t−1e−�x2+x0
2�/2tI1/2+��xx0/t� .

�5.15�

Here, I��z� is the Bessel function of imaginary argument
�37�. From Eq. �5.15� we also infer, using Eq. �5.10�, the first
passage time distribution

W�t� =
2x0

1+2�

��1/2 + ��
e−x0

2/2t�2t�−3/2−�, �5.16�

in accordance with Eq. �5.11�, for �=0. In Fig. 7 we show
the first passage time distribution �5.16� for two different
critical exponents c. Note that the power law exponent
−3 /2−�=−3 /2−c /2 is identical to the result reported in
Ref. �29�. In particular, we observe that the mean bubble
lifetime becomes finite due to the correction by the critical
exponent c�1.

3. Long times for T�Tm

Above the transition temperature for ��0 the Coulomb
potential −�� /x is attractive and can trap a series of bound
states. In the long time limit the lowest bound state controls
the behavior of P. According to Eqs. �5.5� and �5.6� the
lowest bound state �1 with eigenvalue E1��2 /2 must sat-
isfy the eigenvalue equation

−
1

2

d2�1

dx2 +
��� + 1�

2x2 −
��

x
+

�2

2
��1 = E1�1.

�5.17�

For x→� we have −�1 /2��1�= �E1−�2 /2��1 and �1 must
fall off exponentially, �1�exp�−�x�, �= �2E1−�2�1/2. For
x→0 we have −�1 /2��1�+ ����+1� /2x2��1�0 and we in-
fer �1�x1+�. Consequently, searching for a nodeless bound
state of the form �1�x1+� exp�−�x� we readily obtain the
normalized lowest level

�1�x� = Ax1+�e−��x/�1+��, �5.18a�

A2 =
�2��/�� + 1��2�+3

��2� + 3�
, �5.18b�

with corresponding eigenvalue

E1 =
�2

2
�1 − ��/�� + 1��2� . �5.19�

The maximum of the bound state is located at ��+1�2 /��
�1 / �T−Tm� and thus recedes to infinity as we approach the
melting temperature. From Eq. �5.7� we thus obtain after
some reduction

P�x,x0,t� = A2xx0
1+2�e��/�1+����x−x0�1+2���e−�2�1+2��t/2�1 + ��2

.

�5.20�

Above Tm the bubble size, on average, increases in time until
full denaturation is reached. In terms of the free energy plot
in Fig. 1�b� this corresponds to a Kramers escape across the
�soft� potential barrier �corresponding to a nucleation pro-
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FIG. 6. Bubble lifetime distribution W�t� from Eq. �5.11�, with
�=−1 /2, x0=5, and c=1.76 �solid line� and 2.12 �dashed line�. The
initial power law behavior with slopes −2.38 and −2.56 is indicated
by the straight lines. Inset: log versus linear scale, emphasizing the
exponential decay for long times.
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FIG. 7. Bubble lifetime distribution W�t� from Eq. �5.16� for
T=Tm, x0=5, as well as c=1.76 �solid line� and c=2.12 �dashed
line�. Inset: log-log plot of the power law behavior at long t, with
slopes −2.38 and −2.56, as indicated by the straight lines.
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cess�. This implies that the transition probability P�x ,x0 , t�
from an initial bubble size x0 to a final bubble size x must
vanish in the limit of large t. According to Eq. �5.20�
P�x ,x0 , t� decays exponentially,

P�x,x0,t� 	 e−t/�, �5.21�

with a time constant given by

� =
2�1 + ��2

�1 + 2���2 	 �T − Tm�−2. �5.22�

B. Exact results

The eigenvalue problem given by Eqs. �5.5� and �5.6�,

−
1

2

d2�

dx2 +
��� + 1�

2x2 −
��

x
+

�2

2
�� = E� , �5.23�

has the same form as the differential equation satisfied by the
Whittaker function w �39�,

−
d2w

dx2 + �1

4
−

�

z
−

1/4 − m2

z2 	w = 0, �5.24�

with the identifications z=2�x, �=�� /�, m=1 /2+�, and
E=�2 /2−�2 /2. Incorporating the absorbing state condition
��0�=0 and using an integral representation for the Whit-
taker function w �39� we obtain the solution

��x� 	 �2�x�1+�e−�x�
0

�

e−2�xtt��1−�/���1 + t���1+�/��dt .

�5.25�

In the bound state case for ��0 the parameter ��0 and the
bound state spectrum is obtained by terminating the power
series expansion of Eq. �5.25� �39�,

��x� 	 �2�x�1+�e−�x�„1 + ��1 − �/��, 2�1 + ��; 2�x… ,

�5.26�

with the polynomial

���,�;z� = 1 +
�

�

z

1!
+

��� + 1�
��� + 1�

z2

2!
+

��� + 1��� + 2�
��� + 1��� + 2�

z3

3!

+ ¯ . �5.27�

Simple algebra then yields the spectrum

� = �
�

� + n
, n = 1,2, . . . , �5.28�

and associated eigenfunctions

� 	 x1+�e−�x � �polynomial� , �5.29�

the lowest state and eigenfunctions given by Eqs. �5.18a� and
�5.19�.

VI. DISCUSSION

In typical experiments measuring fluorescence correla-
tions of a tagged base pair bubble breathing can be measured
on the level of a single DNA molecule �5,40�. The correla-
tion function C�t� is proportional to the integrated survival
probability, i.e.,

C�t� 	 �
0

L

P�x,x0,t�dx , �6.1�

where L is the chain length. From the definition of the first
passage time distribution in Eq. �3.9� we also have

C(�)

Lorentzian

Power law tail

�

~

FIG. 8. The structure function C̃���. For �����2 the structure
function has a Lorentzian line shape; for �����2, it exhibits power
law tails.

constant

C/L

L

(1+µ)/�

exponential

FIG. 9. We depict C /L as a function of L. For L� �1+�� /� the
correlations depends linearly on L; for L� �1+�� /�, the correla-
tions increase exponentially as a function of L.
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FIG. 10. �Color online�. Drift-diffusion model and experimental
data from Ref. �5� compared to the � model for various parameters.
The curve for �=0 and �=1 /�2 exactly matches the long time
behavior from Ref. �5�.
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C�t� = 1 − �
0

t

W�t��dt�. �6.2�

A. Below Tm for ��0

Below the melting temperature Tm�0 we obtain from Eq.
�5.11�

C�t� = 1 − x0
1+2�e���x0�

0

t

e−�2t�/2�t��−3/2−�dt� �6.3�

or, in terms of the incomplete gamma function ��� ,x�
=�0

xe−tt�−1dt �37�,

C�t� = 1 − x0
1+2�e���x0��2/2�1/2+���− 1/2 − �,�2t/2� .

�6.4�

Using ��� ,x�=����−x�−1e−x for x→� we have for large t

C�t� = const + x0
1+2��−2e���x0t−3/2−�e−�2t/2. �6.5�

We note that the basic time scale of the correlations is set by
�−2	 �Tm−T�−2. As we approach Tm the time scale diverges
like �Tm−T�−2.

For t��−2 the correlations show a power law behavior

C�t� � t−3/2−�, �6.6�

with scaling exponent −3 /2−�=−3 /2−c /2. Here 3/2 origi-
nates from an unbiased bubble size random walk whereas the
contribution �=c /2 is associated with the entropy loss of a
closed polymer loop.

At long times t��−2 the correlations fall off exponen-
tially:

C�t� � e−�2t/2. �6.7�

The size of the time window showing power law behavior
increases as Tm is approached. This corresponds to the criti-
cal slowing down on denaturation, as already observed in
Ref. �14� numerically and in Ref. �17� in the absence of the
critical exponent c due to polymeric interactions.

In frequency space the structure function is given by

C̃��� =� ei�tC�t�dt . �6.8�

By means of a simple scaling argument we infer that C̃���
has a Lorentzian line shape for �����2 crossing over to
power law tails for �����2:

C̃��� � x0
1+2�e���x0

1

�2 + ��2/2�2 for ��� � �2, �6.9a�

C̃��� � x0
1+2�e���x0

1

�2 ���1/2+� for ��� � �2. �6.9b�

In Fig. 8 we have depicted the structure function C̃���.

B. At Tm for �=0

At the transition temperature Tm the exact expression for
the first passage time distribution is given by Eq. �5.16�.
Using Eq. �6.2� for C�t� we then obtain

C�t� = 1 −
��1/2 + �,x0

2/2t�
��1/2 + ��

, �6.10�

where ��� ,x�=�x
�e−tt�−1dt is the incomplete gamma

function �37�.
At short times we have

C�t� = 1 −
�x0

2/2��−1/2

��1/2 + ��
t1/2−�e−x0

2/2t, �6.11�

whereas for t→�

C�t� =
2�x0

2�1/2+�

�1 + 2����1/2 + ��
t−1/2−�. �6.12�

The correlation function thus exhibits a power law behavior
with scaling exponent −1 /2−�=−1 /2−c /2, as obtained
from a different argument in Ref. �29�. Correspondingly, the

structure function C̃��� has the form

C̃��� 	 x0
1+2�����−1/2. �6.13�

C. Above Tm for ��0

Above Tm ���0� the DNA chain eventually fully dena-
tures and the correlations diverge in the thermodynamic
limit. We can, however, at long times estimate the size de-
pendence for a chain of length L. From the general expres-
sion �5.7� we find

C�t� � e−�x0x0
��

n

e−Ent�n�x0��
0

L

e�xx−��n�x�dx .

�6.14�

At long times the lowest bound state dominates the expres-
sion. Inserting �1 and E1 from Eqs. �5.18a�, �5.18b�, and
�5.19� and performing the integration over x we obtain

C�t� 	 A2e−�x0�2�+1�/��+1�e−�2���+1/2�/�� + 1�2�tx0
1+2��1 + ���−2

��1 + �L�/�1 + �� − 1�e�L/�1+��� . �6.15�

The correlations decay exponentially with time constant
��−2��+1�2 / �2�+1�. In frequency space the structure
function has a Lorentzian line shape of width ��2�2�+1�
/��+1�2, and for the size dependence one obtains

C�t� � �Le�L/�1+��, for �L/�1 + �� � 1,

L�/�1 + �� , for �L/�1 + �� � 1.
� �6.16�

Note that close to Tm the correlation function C�t�	L. In Fig.
9 we depict in a plot of C /L vs L the size dependence of the
correlation function.

D. Comparison to experimental data

Below the melting temperature Tm, DNA breathing can be
monitored on the single DNA level by fluorescence correla-
tion spectroscopy �5,14,15�. In the FCS experiment from
Ref. �5�, a DNA construct of the form
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F

5� � T

GGCGCCCATATATATATATATATATATGCGC T

CCGCGGGTATATATATATATATATATACGCG T

3� � T

Q

�6.17�

was employed. Here, a bubble domain consisting of weaker
AT base pairs are clamped by stronger GC base pairs. On the
right, a short loop consisting of four T nucleotides is intro-
duced. The fluorophore �F� and quencher �Q� are attached to
T nucleotides as shown. With the highest probability, a
bubble will form in the AT-bubble domain. As the bubbles
consist of flexible single-strand, in an open bubble the fluo-
rophore and quencher move away from each other, and fluo-
rescence occurs. Once in the focal volume of the FCS setup,
bubble opening and closing correspond to blinking events in
the signal, whose correlation function �corrected for the dif-
fusion in and out of the focal volume� is shown in Fig. 10.
Three different bubble domains with changing sequence
were used to check that potential secondary structure forma-
tion does not influence the breathing dynamics, confirming
the picture of base pair-after-base pair zipping and unzip-
ping. The figure shows examples from all three constructs,
underlining the data collapse already observed in Ref. �5�.

The theoretical lines shown in Fig. 10 correspond to the
biased diffusion model introduced in the original article �5�.
While the full solution of this diffusion model fits the data
well over the entire window, the long time expansion dem-
onstrates the rather weak convergence of the expansion. In
Fig. 10 we also included our asymptotic solution �6.4� for the
autocorrelation function for various parameters. Good agree-
ment with the data is observed.

VII. SUMMARY AND CONCLUSION

In this paper we have analyzed the breathing dynamics of
thermally induced denaturation bubbles forming spontane-
ously in double-stranded DNA. We have shown that the
Fokker-Planck equation can be analyzed from two points of
view: �i� In the weak noise or low temperature limit a ca-
nonical phase space approach interprets the stochastic dy-
namics in terms of a deterministic “classical” picture and
gives by simple estimates access to the long time dynamics.
In particular, we deduce that the dynamics at the transition
temperature is characterized by power law behavior with
scaling exponent depending on the entropic term. �ii� In the
general case we show that the Fokker-Planck equation can be
mapped onto the imaginary time Schrödinger equation for a
particle in a Coulomb potential. The low temperature region
below the transition temperature then corresponds to the con-
tinuum states of a repulsive Coulomb potential, whereas the

region above Tm is controlled by the lowest bound state in an
attractive Coulomb potential. The mapping, moreover, al-
lows us to calculate the distribution of bubble lifetimes and
the associated correlation functions, below, at, and above the
melting temperature of the DNA helix-coil transition. Fi-
nally, at the melting transition, the DNA bubble-breathing
was revealed to correspond to a one-dimensional finite time
singularity.

The analysis reveals nontrivial scaling of the first passage
time density quantifying the survival of a bubble after its
original nucleation. The associated critical exponent depends
on the parameter �=c /2 stemming from the entropy loss
factor of the flexible bubble. The first passage time distribu-
tion and correlations depend on the difference T /Tm−1, and
therefore explicitly on the melting temperature Tm �and thus
the relative content of AT or GC base pairs�. We also ob-
tained the critical dependence of the characteristic time
scales of bubble survival and correlations on the difference
T−Tm. The finite size dependence of the correlation function
was recovered, as well.

The mapping of the of DNA-breathing onto the quantum
Coulomb problem provides a different way to investigate its
physical properties, in particular, in the range above the melt-
ing transition, T�Tm. The detailed study of the DNA bubble
breathing problem is of particular interest as the bubble dy-
namics provides a test case for approaches in small scale
statistical mechanical systems where the fluctuations of DNA
bubbles are accessible on the single-molecule level in real
time.

Here we were concerned with the generic aspects of
bubble breathing. In order to describe bubbles with hetero-
geneous sequences or block DNA with a sequence of ho-
mopolymer zones discrete models based on the master equa-
tion or the stochastic Gillespie algorithm have to be used;
see, for instance, Refs. �12,14,15,18�.
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