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Master equation approach to DNA breathing in heteropolymer DNA
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After crossing an initial barrier to break the first base-pair (bp) in double-stranded DNA, the disruption of
further bps is characterized by free energies up to a few kz7. Thermal motion within the DNA double strand
therefore causes the opening of intermittent single-stranded denaturation zones, the DNA bubbles. The unzip-
ping and zipping dynamics of bps at the two zipper forks of a bubble, where the single strand of the denatured
zone joins the still intact double strand, can be monitored by single molecule fluorescence or NMR methods.
We here establish a dynamic description of this DNA breathing in a heteropolymer DNA with given sequence
in terms of a master equation that governs the time evolution of the joint probability distribution for the bubble
size and position along the sequence. The transfer coefficients are based on the Poland-Scheraga free energy
model. We derive the autocorrelation function for the bubble dynamics and the associated relaxation time
spectrum. In particular, we show how one can obtain the probability densities of individual bubble lifetimes
and of the waiting times between successive bubble events from the master equation. A comparison to results

of a stochastic Gillespie simulation shows excellent agreement.
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I. INTRODUCTION

DNA is made up of the four bases A (denine), C (ytosine),
G (uanine) and T (hymine), that form the Watson-Crick base
pairs (bps) AT and GC according to the key-lock principle.
Under normal temperatures and salt conditions, DNA as-
sumes the double-helical B configuration. The double helix
is the thermodynamically stable state of DNA in a wide
range of temperature and salt conditions [1,2]. Measured
through changes of UV absorption and small-angle neutron
scattering in DNA solutions, a gradual denaturation of the
DNA double strand is observed by increasing the tempera-
ture, or by titration with acid or alkali. During melting, the
stability of the DNA duplex is related to the content of GC
base pairs: the larger the fraction of GC bps, the higher the
required melting temperature or pH value. Thus under melt-
ing, double-stranded DNA starts to unwind in regions rich in
AT bps, and then proceeds to regions of progressively higher
GC content [1,2]. The single-stranded domains formed dur-
ing the melting of the double strand are called DNA bubbles.
Their size increases from a few broken base pairs to a few
hundred open bps just below the melting temperature 7,
Eventually, a transition occurs to full denaturation at 7,,, and
the two DNA single strands are completely separated [1-4].
Cycling of DNA melting and subsequent recombination of
the denatured single strand in a solution containing single
bases is used to produce large numbers of copies of the origi-
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nal DNA sequence in the polymerase chain reaction (PCR)
[5]. Apart from denaturation by melting or titration, indi-
vidual DNA molecules can be mechanically denatured by
use of optical traps: Attaching each end of a single, linear
stretch of DNA to small dielectric beads, a longitudinal ten-
sion along the double-strand can be induced by pulling on
the beads, until around 65 pN when a force plateau is
reached. This plateau corresponds to the denaturation transi-
tion [6,7]. Together with DNA superstructure and DNA
knots, DNA bubbles are currently receiving high interest as
examples of the relevance of local and global DNA confor-
mations to the function of DNA [8,9].

DNA stability is effected by the combination of the free
energies €, for breaking a Watson-Crick hydrogen bond be-
tween complementary AT and GC bases in a single bp (trans-
versal interactions), and the ten independent (longitudinal)
stacking free energies €, for disrupting the interactions be-
tween a nearest neighbor pair of bps. At 100 mM NaCl con-
centration and 7=37 °C the hydrogen bonding amounts to
€= 1.0kgT for a single AT and 0.2kzT for a GC bond [10].
The weakest (strongest) stacking energies were found to be
the TA/AT (GC/CG) pair with free energies e,=—0.9kzT
(—=4.1kgT) [11]. Note that negative values for the free ener-
gies denote stable states. Thus the overall free energy cost of
breaking a GC bp, that is paired with an intact CG bp down-
stream of the DNA sequence and whose nearest neighbor bp
upstream is already denatured, is —3.9kT. In contrast, break-
ing an AT bp next to a TA is marginally unstable with a free
energy release on bp disruption of 0.1kzT. The relatively
small free energies €, for base stacking stem from the fact
that relatively large amounts of binding enthalpy (of the or-
der of 12kzT at 37 °C) on the one hand, and entropy release
on breaking the stacking interactions and Watson-Crick
bonds on the other hand, almost cancel.

This cancellation effect does not hold for the breaking of
the first bp that acts as a seed for a new bubble. Roughly
speaking, the bubble initiation is characterized by the break-
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ing of two stacking interactions when the first bp is dis-
rupted; the accompanying enthalpy cost cannot be balanced
by the entropy gain of the two, still strongly confined, liber-
ated bases. Thus the creation of two boundaries between the
intact double-helix and the bubble nucleus is associated with
an activation cost of some 7 to 12 kzT, corresponding to the
Boltzmann weight o,=1073---107 [3,4,12,13]. Note that
this cooperativity parameter oy, is related to the ring-factor &
used in [11,14], see below. The high bubble initiation barrier
guarantees the stability of DNA at physiological conditions.
It also makes sure that, below T,,, individual bubbles are
well-separated from each other along the sequence and can
be considered to be statistically independent.

Already at room temperature, DNA bubbles form sponta-
neously due to thermal unzipping of bps. Due to the rela-
tively high free energy barrier represented by the cooperat-
ivity factor oy, such bubble events are rare. However, once
this barrier is overcome, the unzipping of further bps occurs
at relatively low free energy costs (see above discussion).
DNA bubbles have thus been successfully observed by NMR
techniques [15] and, more recently, by single molecule fluo-
rescence correlation methods revealing a bubble lifetime of
up to a few ms, and pronouncedly multistate kinetics [16].
The latter characterizes the stepwise unzipping and zipping
of bps. The accompanying stepwise motion of the two zipper
forks (where the still intact double strand meets the two
single strands of the denaturation domain) of a DNA bubble
corresponds to a random walk along the bp sequence. Below
T,,, this random walk is biased toward bubble closure.

At this point, a remark on the relevance of DNA breathing
for the biological function of DNA is in order. In the intact
double-helix, the nucleobases are shielded from damage to
preserve the genetic code. This, however, also means that the
reactive groups of the nucleobases are buried inside the
double helix. The interaction with specific chemicals, bind-
ing proteins, or enzymes with DNA requires the accessibility
of the reactive groups of the bases. This access is provided
by the formation of DNA bubbles. Thus, albeit infrequent,
the formation of intermittent DNA bubbles via DNA breath-
ing is crucial for the function of DNA. Apart from the bind-
ing of passive (no energy consumption from, e.g., ATP hy-
drolysis) chemicals or binding proteins, even the initiation of
transcription through polymerase has been implicated to be
facilitated by DNA bubbles [17,18]. When selectively single-
stranded DNA binding proteins (SSBs) attempt to attach to
fluctuating DNA bubbles, a competition occurs between the
time scales characterizing protein (un)binding and bubble
(un)zipping. For biological systems, the SSB binding is ki-
netically suppressed by the comparatively fast bubble dy-
namics, while for certain SSB mutants the protein binding
lowers the mechanical melting force, and may lead to full
SSB-binding-induced DNA denaturation [19-23].

A considerable amount of work has been dedicated to the
equilibrium and dynamical modeling of DNA denaturation.
The stacking and hydrogen bonding free energies are used to
construct the partition function of the statistical mechanical
Poland-Scheraga model [3,11]. Interpreting DNA breathing
as a random walk process in the Poland-Scheraga free energy
landscape, DNA bubble dynamics has been modeled in terms
of a Fokker-Planck equation approach [24]. By mapping this
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continuum approach onto the imaginary time Schrodinger
equation of the quantum Coulomb problem, the dynamic ex-
ponents of the bubble lifetime distribution and correlation
function were derived recently [25], generalizing previous
results from Ref. [26]. The coalescence time distribution of
two bubbles on a DNA construct was obtained in a vicious
walker model [27]. A master equation approach mirroring the
discrete nature of the bp structure developed in Refs. [22,23]
was generalized to an arbitrary sequence of bps in Refs.
[18,28]. This latter model was demonstrated to reproduce
well the autocorrelation function measured in the above
mentioned single molecule fluorescence experiments [16]. A
stochastic simulation scheme corresponding to the master
equation approach was developed in Ref. [29]. The influence
of a Gaussian random energy landscape on bubble localiza-
tion and dynamics was studied in Ref. [30]. Apart from ap-
proaches based on the Poland-Scheraga model, DNA breath-
ing has been investigated on the bases of the more
microscopically oriented Peyrard-Bishop model [31,32].

In this paper we investigate a (2+ 1)-variable master equa-
tion that governs the time evolution of the probability distri-
bution P(x; ,m,?) to find a bubble consisting of m broken bps
with left and right fork positions x; and xzp=x;+m+1 along
the sequence. With this approach an arbitrary DNA sequence
can be analyzed and its breathing behavior predicted. We
discuss the exact form of the transfer matrix containing the
rate coefficients for all permitted jumps and derive the
bubble autocorrelation function with associated relaxation
time spectrum. To be able to connect to the time series ob-
tained from the complementary stochastic simulation, we de-
rive the probability densities for the bubble lifetime and the
waiting times between successive bubble events. Finally, we
show that in the homopolymer limit, analytical results can be
obtained.

II. ONE-BUBBLE PARTITION FUNCTION
AND TRANSFER COEFFICIENTS

Below the melting temperature 7,,, a single bubble can be
considered to be statistically independent due to the high
nucleation barrier for initiating a bubble quantified by oy
<1 [23], such that opening and merging of multiple bubbles
are rare, and a one-bubble picture is appropriate. In the par-
ticular case of the bubble constructs used in the fluorescence
correlation experiments of Ref. [16], the sequence is de-
signed such that there is a single bubble domain. Referring to
these constructs, we consider a segment of double-stranded
DNA with M internal bps. These bps are clamped at both
ends such that the bps x=0 and x=M+1 are always closed
(Fig. 1). The sequence of bps determines the Boltzmann
weights uy,(x) =exp{e,(x)/ (kgT)} for Watson-Crick hydro-
gen bonding at position x, and the Boltzmann factor ugy(x)
=exp{ey(x)/(kgT)} for pure bp-bp stacking between bps
x—1 and x, respectively. In the bubble domain, the left and
right zipper fork positions x; and xi denoting the right- and
leftmost closed bp of the bubble are stochastic quantities,
whose random motion underlies the bubble dynamics.

Instead of using the fork positions x; and xg, we prefer to
work with the left fork position x; and the bubble size m
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FIG. 1. (Color online) Clamped DNA domain with internal bps
x=1 to M, statistical weights u;,(x), ug(x), and tag position x7. The
DNA sequence enters through the statistical weights ug(x) and
upp(x) for disrupting stacking and hydrogen bonds, respectively.
The bubble breathing process consists of the initiation of a bubble
and the subsequent motion of the forks at positions x; and xp, see
also Fig. 2.

=xgp—x;— 1. For these variables, the partition function of the
bubble becomes
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for m=1. At m=0, we define Z(m=0)=1. In relation (1),
instead of the usual cooperativity parameter o, we use the
factor £ =2¢¢ related to the ring factor £~ 1073 introduced in
Ref. [11]. For a homopolymer, this £ is related to oy, by o
=¢exp{ey/(kgT)} [11]. The denominator in Eq. (1) repre-
sents the entropy loss on formation of a closed polymer loop,
where the offset by one accounts for finite size effects
[12,33]. The associated critical exponent is ¢=1.76 [34]. For
a given bubble size, the partition (1) counts m contributions
from broken hydrogen bonds and m+ 1 from disrupted stack-
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ing interactions. The partition (1) defines the equilibrium
probability

Z(x;,m)
T 2

0)+ 2 2 Z(XL’m)

m=1 x;=0

P(xy,m) =

for finding a bubble of size m at location x;.

The zipping and unzipping of individual bps was found to
occur on time scales of the order of tens of us [16]. In
comparison, the polymeric degrees of freedom of a bubble
equilibrate much faster, and therefore the positions x; and xp
of the two zipper forks (or, equivalently, x; and the bubble
size m=xg—x;—1) are the slow variables of the system. We
use them as dynamic variables to characterize the bubble
dynamics. The faster polymeric degrees of freedom of the
relatively small bubble enter effectively through the partition
(1). Moreover, it was shown that the time scale of bp zipping
and unzipping follows an Arrhenius behavior [16], corre-
sponding to a barrier crossing picture of the zipper motion. It
therefore seems reasonable to assume that the bubble is close
to equilibrium. Under this assumption, the partition (1) de-
fines the transition probabilities between different states.
These conditions allow us to introduce the master equation
(9) with its transfer matrix ¥V below. To introduce the under-
lying time scales, we first define the transfer coefficients.

The allowed transitions with the associated transfer (rate)
coefficients are sketched in Fig. 2. The left zipper fork is
characterized by the rate t;(x;,m) corresponding to the pro-
cess x;—x;+1 of bubble size decrease, and t,(x;,m) for
x;—x;—1 (bubble size increase). Similarly, we introduce
tz(x;,m) for xz—xz+1 (bubble size increase) and ty(x;,m)
for xg—xp—1 (decrease). These rates are valid for transi-
tions between states with m = 1. Bubble opening (initiation)
m=0—m=1 is quantified by t;(x;), and bubble closing (an-

bubble
size

m
FIG. 2. Possible bubble (un)zipping transi-
tions: for m=2, the four transfer rates t;(x;,n)
completely determine the transitions out of this
mtl state; the coefficients t;/(x;¥1,m+1) and
tz(x,,m ¥ 1) specify the possible jumps info this
state. Jumps between state m=1 and ground state
Z m=0 are described by t7(x;) and t;(xz).
m=1
m=0
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FIG. 3. Schematic representation of the (x;,m)-lattice on which
the DNA-bubble jump process takes place, with the permitted tran-
sitions; compare to Figs. 1 and 2. The boundary conditions Eq. (3)
are also indicated. For m=1 jumps are determined by the rates t7 4.
A jump between the ground state m=0 and one of the m=1 states
occurs with rates t¢. Note that the ground state m=0 is unique; from
the ground state, a bubble can be initiated at any point in the row
m=1, with the appropriate weight tj;(x;). Note that all allowed
jumps correspond to a change in bubble size m, i.e., there are no
allowed “horizontal” transitions in the (x;,m)-lattice.

nihilation) by m=1—0 by t;(x;). Note that by our defini-
tions t;(x;) and t;(x;) actually correspond to bubble
opening/closing at x=x;+1. Clamping requires that x;=0
and xg<=M+1, corresponding to the reflecting boundary
conditions [35]

t;(x, =0,m) =tp(x;,m=M —x;) =0. (3)

In Fig. 3 we sketch schematically the allowed transitions in
the m-x; plane.

In order to define the various transfer rates t, we first
impose the detailed balance conditions (compare [36,37])

tz(xL_ l,m + 1) Peq('xL7m)
- = , (4a)
t; (xz,m) Peg(x, = 1,m+1)
fiopm 1) Pofsim) "
th(xz,m) Peg(xp,m+1)
t-'(—;(XL) _ Peq(xL’ l) (40)

t&(-xL) - Peq(o) ’

that ensure relaxation toward the equilibrium distribution
P(x;,m), see Eq. (2). The detailed balance conditions do
not uniquely define the transfer rates t, leaving a certain free-
dom of choice [37]. We use the following conventions.
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To define the zipping rate, we assume that it is indepen-
dent of the position x along the DNA sequence. The picture
behind is that the closure of the bp is dominated by the
requirement that the two bases diffuse in real space until
mutual encounter and eventual bond formation. As sterically
AT and GC bps are very similar, the zipping rate should not
significantly vary with the individual nature of the involved
bps, and we choose the constant rate k/2, see below. The rate
constant k is the only adjustable parameter of our model and
has to be independently determined from experiment or more
fundamental models. Our choice for the zipping rate is not
unique. Instead, an x-dependence of k could easily be intro-
duced by selecting different powers of the statistical weights
entering the rate coefficients for zipping and unzipping, such
that they still fulfill detailed balance, compare Ref. [37]. Ac-
cording to this, a decrease in bubble size due to zipping of
the bp closest to either the left or the right zipper fork is
therefore ruled by

4 )= )= 5. ®)
respectively. Note that the factor 1/2 is introduced for con-
sistency with previous approaches [22,23]. Note also that for
simplicity we do not introduce the hook exponent discussed
in previous studies [18,23,28]. This exponent should be im-
portant for large bubbles, when during the zipping process
not only the bp at the zipper fork is moved, but also part of
the vicinal single strand dragged or pushed along [23,28,38].

According to the detailed balance condition and Eq. (5),
increase in bubble size is controlled by

) = Sty e ) om), (62)
. k
tr(x,.m) = Eust(xR + Dupy(xg)s(m), (6b)
for m=1, where
o).

For m=1 we thus take the bubble increase rate coefficients
proportional to the first power of the Arrhenius factor
ugup,=exp{(ey,+ €/ [kzT1} times the loop correction s(m).
We stress that Egs. (6a) and (6b) are dictated by the detailed
balance condition, once the convention (5) is established. As
noted, detailed balance would still be fulfilled, for instance,
if only a fractional power a? of the Arrhenius factor a ap-
peared in the opening rates if complemented by the respec-
tive power a?"! in the closing rates.
Finally, we define

r&(xL) = k&' s(0)ug(xp + Dy (xp + Dug oy +2), (8a)

t&(XL) =k (Sb)

for bubble initiation and annihilation from and to the zero-
bubble state m=0, with the bubble initiation factor &’ in the
expression for tj,. As bubble initiation involves breaking of
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two stacking interactions at consecutive bps, we have the
factor ug(x; +1)ugy(x;+2) in expression (8a). The last open
bp can zip close from either side, so the bubble closing rate
t;(x;) makes up twice the zipping rate of a single fork.

The rates t together with the boundary conditions fully
determine the bubble dynamics. In the next section, we es-
tablish the master equation for the time evolution of the dis-
tribution P(m,x;,t) and derive the associated quantities.

III. MASTER EQUATION FOR DNA BREATHING

The joint probability distribution P(1)
=P(x;,m,t;x;,m’,0) measures the likelihood that at time ¢
the system is in state {x;,m} and that at =0 it was in state
{x;,m’}. Its time evolution is controlled by the master equa-
tion

iP(z) =WP(1). 9)
ot

The explicit form of the transfer matrix WV is discussed in
detail in Sec. IV. Here, we concentrate on how to derive the
quantities relevant for the description of DNA-breathing ex-
periments. In that course we introduce the eigenmode ansatz
[36,37]

P(t) = 2 Cpr exp(_ npt)’ (10)
P

where the coefficients ¢, are fixed by the initial condition.
Combining Egs. (10) and (9), the eigenvalue equation

WQp=_7]pr (11)

yields, compare Ref. [37] and below for more details. The
eigenvalues 7, and eigenvectors O, allow one to compute
any quantity of interest. In fact, the autocorrelation function
for bubble breathing and the corresponding relaxation time
distribution are quite straightforward to obtain, see Sec.
IIT A. Below, in Sec. III B, we discuss the more subtle point
how the probability densities for the bubble lifetime and the
interbubble event waiting time can be derived.

A. Blinking autocorrelation function of a tagged bp
Motivated by the fluorescence correlation setup in Ref.
[16] we are interested in the state of a tagged bp at x=x7, see
Fig. 1. In the experiment fluorescence occurs if the bps in a
A-neighborhood of the fluorophore position x; are open [16].
Measured fluorescence blinking time series thus correspond
to the stochastic variable I(z), defined by
1, if at least all bps in [x;— A,x;+ A] open
1(r) = .
0, otherwise.
(12)
The stochastic variable is therefore /=1 if the system is in
the region
RI{O $XL$)CT—A— l,xT—xL+A =ms M—XL}
(13)

of the phase space spanned by x; and m. Conversely, /=0
corresponds to the complement set RO.
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The equilibrium autocorrelation function of fluorescence
blinking is defined by

Alxy,1) = I010) = (1)), (14)
where the angles (-) denote an ensemble average over the

equilibrium distribution P.,. A(x7,?) quantifies the relaxation
dynamics of the tagged bp. This is evident from the identity

1o
ID10) =2 2 Ip(Lt:1',0)" = p(1,1;1,0),  (15)
=0 ;'
where p(1,¢;1,0) is the survival probability that /(r)=1 and
that 7(0)=1. From the definition of the two regions R1 and
RO it follows that p(1,7;1,0) yields from summation of
P(x;,m,t;x;,m’,0) solely over region R1:

p(L1:1,00= X

’
X[, Mm,Xp,m "eR1

P(x;,m,t;x;,m',0).  (16)

Together with Eq. (15), combined with the eigenmode de-
composition (10), and under the assumption that initially the
system is at equilibrium, we obtain

P(x;,m,0;x;,m’,0) = 6mm,5XLX£Peq(xL,m), (17)

such that we can rewrite the autocorrelation function (14) in
the form

AGxpt) = 2 [T, (xp) P exp(=t/7,). (18)
p#0

Here, we use the relaxation times T,,:l/n,,, and abbreviate

x—A-1 M-x,

Tp(-xT) = 2 2 Qp(-stm) . (19)

x=0 m=x;—x;+A

In all illustrations, we plot the normalized form of the auto-
correlation function, A(xz,)/A(xr,0)=A(xr, 1))/ Z[T,(xp) -
The autocorrelation function A(x;,7) can be rewritten as
the integral A(xy,t)=[d7exp(~t/7)f(x;,7) defining the
weighted spectral density (relaxation time spectrum)

fgm) = 2 [T, o7 17,). (20)

p#0

This quantity indicates how many different exponential
modes contribute to the autocorrelation function. If f(x;, 7) is
very narrow, the process is approximately exponential,
whereas a broad relaxation time spectrum indicates that
many different modes play together. While close to T, the
relaxation time spectrum becomes dominated by the longest
relaxation mode, at lower T the spectrum is typically broad
[23].

B. Survival and waiting time densities of a tagged bp

The autocorrelation function A(xz,7) is an equilibrium av-
erage measure for a single bubble. It does not contain any
information on the distribution of the lifetimes of individual
bubbles or the waiting time elapsing between annihilation of
one bubble and initiation of the next. This information is
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provided by the survival time and waiting time densities ¢(z)
and i(r) derived here.

Survival time and waiting time densities correspond to a
first passage problem to, respectively, start from an initial
state with I(0)=1 or 1(0)=0, and transit to a state I(f)=0 or
I(r)=1 after time . To obtain these quantities from the master
equation framework, one needs to solve the reduced eigen-
value problem [37]

Wép == ﬁpép (21)

for coordinates belonging to R1 and RO. Details are collected
in Sec. IV. The reduced eigenvalue Ansdirze (21) for R1 and
RO possess only positive eigenvalues, 77,>0 for all p. This
reflects the fact that there exist transitions from one region to
the other, such that probability “leaks out.” In terms of the

reduced eigenvalues 7, and eigenvectors Q, the survival and
waiting time densities become

W)= 2 7,E, exp(= ), (22a)
pelR0

B(t)= > 5,8, exp(= 1) (22b)
pelRl

with the coefficients
7]p|: 2 Qp(xbm):r
¢, = WL . (22¢)
: 2 ﬁp[szm Qp(-vam)]z
p

The sums over m,x; are restricted to regions R1 and RO for
the survival and waiting time densities, respectively. Both
survival and waiting time probability densities are normal-
ized, [(t)dt=1 and [¢(1)dt=1, since X,c,=1.

We point out that a nontrivial problem connected to ob-
taining the appropriate expressions for ¢(r) and ¢(z) is how
to choose the right initial distribution of states (there are
many states corresponding to a bubble being just open/
closed). We chose an initial distribution determined by the
distribution of stationary flux into the regions R1 and RO.
This choice guarantees that (for long times) the ratio of the
time spent in the /=1 state versus the time spent in the
I=0 state is given by the equilibrium results as required by
ergodicity, see Sec. IV for details.

In the Appendix we briefly discuss how stochastic mod-
eling can be used to obtain single bubble time series, from
which all quantities such as the fluorescence blinking auto-
correlation function, as well as the survival and waiting time
densities, can be distilled. Both approaches converge nicely
[18,28].

IV. MASTER EQUATION: THE DETAILS

In this section we show the explicit form for the master
equation with its transfer matrix ¥V and go into details of
how to solve it numerically. We also present details of the
formalism to derive the waiting and survival densities #(z)

and ¢(1).
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m=M 5=S
m=2 | s=M+1 || s=M+2 || s=2M-1 |
m=1 | s=1 || s=2 Jeee| s=M-1 |[ s=M |
X =0 X =1 X;=M-2 X =M~1
s=0

FIG. 4. Enumeration scheme for the numerical analysis: The
two-dimensional grid points (x;,m) are replaced by a one-
dimensional running variable s. See text for details.

A. The VW-matrix

In order to present an explicit expression for the
W-matrix in Egs. (9) and (11) it is convenient to replace the
two-dimensional grid points (x;,m) by a one-dimensional
coordinate s counting all lattice points, compare [23]. We
choose the enumeration illustrated in Fig. 4.

From this figure we notice that me[0,M] and x;
€ [0,M-m]. We label the ground state m=0 by s=0. For
m=1 an arbitrary s-point can be obtained from a specific
(x,m) according to

(m—1)(m—-2)

s= 5|l =(m-1)M - 5

+x.+1. (23)

From this relation we notice that the maximum s value is

S =max{s} = @, (24)
i.e., the size of the relevant VW-matrix (see below) scales as
M?. Expression (23) allows us to change the dependence of
the transfer coefficients to the s-variable, t7(x;,m)
—t7x(s), using the explicit expressions (5), (6a), and (6b)
for the transfer coefficients, together with the boundary con-
ditions in Egs. (3). Also t5(x;,m)—1(s), following Egs.
(8a) and (8b). From Eq. (23) and Fig. 4 we notice that

m+l _  _|m
S|XL—1_ s|xL+M—m, forx;=1 and msM-1,

s;"L;l, s|)’Z’L—(M—m+1), form=2,

S|m—1= s|m (M—m+2),

. =
M 2 form=2,

s|;”L+] = sl +M-m+1, forx,<M-(m+1) and
m<M-1. (25)
We can then write Eq. (11) explicitly as
> W(s.5)Q,(s") = = 7,0,(s), (26)
where the matrix elements are

W(s,s+ M -m)=t;(s+M-m), forsNx,=1andm>1,
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W(s,s=[M-m+1])=t;(s—=[M-m+1]), forsNm=2,

W(s,s —[M —m+2])=th(s—[M-m+2]), forsNm=2,

W(s,s+M—m+1)=ty(s+ M —m+1),for sNx; <M —(m

+1), andlsmsM-1,

W(s,s) == [t;(s) + t;(s) + ti(s) + tx(s)], for sm=2.

(27)

We have introduced the notation sMN with the meaning “s is
to be taken for x; and m fulfilling ....” The positive terms
above correspond to jumps fo the state {x;,m}, while the
negative terms correspond to jumps from the state {x;,m},
see Figs. 2 and 3. The probability for a bubble of size m
=1 is altered by exchange with the m=2 state, or the m=0
ground state:

W(0,x,+ 1) =t5(xy), forsNm=1,

W(s,s) = —[to(x) +(s) +tg(s)], for sNm=1. (28)

Finally, for the ground state population, we find

W(0,x; +1)=15(x;), forx,<M-1,

M-1

W(0,0) =~ X 15(x,), (29)

x;=0

i.e., the m=0 state can change by jumping to this state from
m=1 (first term) or by jumping out of the m=0 state (second
term). There are M possible jumps out from or to the ground
state, corresponding to bubble opening or closing at any of
the M internal bps. The remaining matrix elements are equal
to zero. The problem at hand is that of determining the ei-
genvalues and eigenvectors of the (S+1) X (S+1)-matrix W
above. In terms of the running variable s, see Eq. (23), and
the W-matrix defined in Eqgs. (27)—(29) the detailed balance
conditions (4) can be written as

W(s,5")Peg(s") = W(s'",5) Pey(s). (30)
The eigenvectors are orthonormal in the sense [37]

5 %00) _

= gy o o

Convenient checks of the results of a numerical solution of
the master equation then include: (i) there should be one zero
eigenvalue 7,=0, the corresponding eigenvector is the equi-
librium distribution, i.e., Qy(s)=P%(s); (ii) the remaining ei-
genvalues should be real and negative (so that 7,>0 for p
=1); and (iii) the eigenvectors should satisfy the orthonor-
mality relation, Eq. (31). Instead of working with the asym-
metric matrix W(s,s’), for numerical purposes it is some-
times preferable to use the symmetric matrix W(s,s’)
=Z(s)""?W(s,s") Z(s") 2, see Refs. [37,39] for details. In-
deed, the MATLAB code we used to numerically solve the
master equation is based on the V-matrix.
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FIG. 5. Schematic of the (x;,m)-points, region R1 (RO), for
which the stochastic variable takes the value /=1 (I=0). The
boundary points regions R1’ and RO’ are also indicated. The illus-
tration is for the case M=5 and x;=3, with A=0.

B. Survival and waiting time densities

In this section we derive the expression for the waiting
and survival time densities given in Egs. (22). Denote by
p(t|sinic ) the first passage time density starting from some
initial position s;,; € R1’ or RO’, see Fig. 5. The survival
time density () and waiting time density #(¢) are then
given by Esimtp(t|smh )f(siniv)» Where f(s;n;) is the distribution
of initial points in the region R1’ [for ¢(z)] or RO’ [for ¢(r)].
Following standard arguments (see, e.g., [40]) we can write
the expression for p(|s;y;, ), and therefore #(¢) and ¢(z), for
which we find

W= 2 7,e, exp(= 7,0, (322)
peR0O
B(1)= 2 7,e, exp(= ), (32b)
peRl
where
g = s Qg(sinit)f(sinit)z Qp(s). (33)
Sinit Peq(sinit) K

Here, s € RO(s € R1) for yd7) [¢(1)], and 7, and Qp(s) are
determined through the eigenvalue equation (21), which ex-
plicitly becomes in s-space [37]

EN W(S’QQ[)(S:) == ’ﬁpép(s)’ (34)

where 5,5 € R1 when calculating the survival time density,
and s,5 € RO for the waiting time density.

The problem is now reduced to obtaining the distribution
of initial points f(s;,;;) such that agreement with the Gillespie
time series (see the Appendix) is obtained for long times. We
define the rate coefficients for jumps from the points in the
boundary region R1’ to RO’ (see Figs. 3 and 5): #;_o(Sini)
:tz,t,}, or t, where s;;; € R1'. Similarly, for jumps from the
points in the boundary region RO’ to R1’ (s, € RO’) we
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define 7o_,(s;n) =17, 7%, OF t.. From the detailed balance con-
dition we have that

tl—»O(S)Peq(S) = tOHl(S,)Peq(S,)v (35)

where s and s’ are points in region R1’ and RO’ which are
connected by the transfer matrix. For the survival time den-
sity we then choose the distribution of initial points propor-
tional to the stationary influx from region RO’. Furthermore,
using the detailed balance condition and normalizing we
have for the initial distribution in the /=1 state

t1—0(Sinie) Peg(Sinit)

S(sini) = . (36)
2t o(Sin) P eq(Sinit)
Sinit
Similarly for the initial distribution in the /=0 state:
Flsp) = to_ 1 (Sinit) Peq(Sinit) , (37)
2 t0—> 1 (sinit)Peq(sinit)

which, together with Egs. (32a), (32b), and (33), determine
(1) and @(r). We proceed to show the choices above for
S(sini) Which satisfy ergodicity requirements.

Ergodicity requires that the ratio of times spent in the /
=1 and /=0 state equals

D Pey(s)
seRl1

Rpy= . (38)
TS Pl

seRO

From Eq. (32b) we have that the mean survival time can be
written according to

Tsury = f td’(t)dt: 2 (’7]]))_15[)’ (39)

0 P

and identically for the mean waiting time ;. We proceed
by noticing that the eigenvalue equation (34) can be written
as

2 OV(5,5) = W™(5,9)0,(3) = = 7,0,(5),  (40)

where
Vvabs(s’g = t]—»O(s)‘ss,Eﬁs,smil’ (41)

with s;,i € R17, and Well(s,5) satisty S )V*(s,5)=0. Sum-
ming Eq. (34) over s and using the above identity we obtain

2 0,(5) = 2 7, i o(5ini) @l Sini) (42)

Sinit

which is a useful connection between quantities in the bulk
(s € R1) and at the boundary s;,; € R1’. Applying this rela-
tion to the expressions for the survival time, Egs. (33), (36),
and (39), and, we find
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2 2 2 0,(5)0,(3)
p s 5

Taury = . (43)
2 tlﬁO(sinit)Peq(sinit)
Sinit
Finally, from the completeness relation [37]
0,90,
> =d,x (44)
we see that
2 Pey(s)
seR1
Toury = . (45)
E tlﬂO(s)Peq(sinit)
Sinit
In a similar fashion
2 Peys)
seR0O
Twait = > (46)
2ty ()P eq(Sinit)
Sinit

which, via the detailed balance condition (35), shows that
Tourv/ 7-Wait=Req~

With the completeness relation (44) and Eq. (42) we find
from Egs. (33), (36), and (37), that ¢, can be written

ﬁp[E Qm]z
g = : i
> ﬁp{z ép(s>J2
p s

(47)

which is the form given in Eq. (22¢).

C. Application to a viral promoter sequence

We show in Fig. 6 the time series obtained from a sto-
chastic simulation (see the Appendix for a short introduction,
and refer to Ref. [29] for details) for two different tag posi-
tions in the T7 bacteriovirus promoter sequence

1 20
! |
57-aTGACCAGTTGAAGGACTGGAAGTAATACGACTC

AGTATAGGGACAATGCTTAAGGTCGCTCTCTAGGAE-3”
Lo |
41 68 (48)

0

3

s

whose TATA motif is underlined [41]. A promoter is a se-
quence (often containing the so-called TATA motif) placed at
the start of a gene, to which RNA polymerase is then re-
cruited to initiate transcription [5]. Motives such as TATA are
believed to assist polymerase during the transcription initia-
tion [17,18]. Figure 6 shows the signal I(r) at 37 °C
for the tag positions x;=38 in the core of TATA, and x;
=41 at the second GC bp after TATA. Bubble events occur
much more frequently in TATA (the TA/AT stacking interac-
tion is particularly weak [11]). This is quantified by the den-
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I(t)

X-|—=41
(1), x7=38 y(T), x7=38
o{x), x7=41 x w(r xp=41
ME x;=38 —— ME x;=38 ———
ME x1=41 B ME xq=41 ——
101 k T 10° 8
o) e ™™
102 | %

I

FIG. 6. (Color online) Top: Fluorescence time
series I(¢) for the T7 promoter sequence, with tag
positions x7=41 (first panel) and x;=38 (second
panel), and A=0. Bottom: Waiting time [¢(7)]
and fluorescence survival time [@(7)] densities,
in units of k. The data points are results from the
Gillespie algorithm, while the lines represent the
numeric results obtained from the master equa-
tion (ME). All results are for 7=37 °C and

103 b tge=1.32k" 46=1.00 104 K" g ': 100 mM NaCl with DNA parameters from [11].
4¢=1.07 K e 149=2.53 10°K’ o
10—4 I 1 1 1 1 3
0 2 4 6y [1/k]8 0 500000 t[1/K] 10

sity of waiting times #(7) spent in the /=0 state, whose
characteristic time scale 7' = [§d77¢(7) is more than an order
of magnitude longer than at x;=41. In contrast, we observe
similar behavior for the density of opening times ¢(7) for
x7=38 and 41. The solid lines are the results from the master
equation, see Sec. III B, showing excellent agreement with
the Gillespie results. Notice that whereas ¢(r) is character-
ized by a single exponential, ¢(¢) shows a crossover between
different regimes. For long times both (7) and ¢(7) decay
exponentially as it should for a finite DNA stretch. This
analysis shows that our derivation of the waiting time and
survival time densities from the master equation is fully con-
sistent with the result sampled from the time series of the
Gillespie scheme.

V. REDUCED ONE-VARIABLE SCHEME
FOR A HOMOPOLYMER

After addressing the derivation of the probability densities
(1) and (), and the details concerning the transfer matrix
W, we show how the master equation formalism reduces
when a homopolymer sequence is considered, that is, a se-
quence with only one type of bps such as (AT)y. Homopoly-
mers can be realized experimentally. In the case that they are
clamped, possible secondary structure formation does not ap-
pear to occur within the time scale which the bubbles remain
open [16], and our formalism remains valid. In the case of
long homopolymers, imperfect matching conditions apply,
and additional degrees of freedom emerge [3]. Although this
can be straightforwardly included in the formalism, we do
not consider this case here.

In the homopolymer case, it is possible to obtain analyti-
cal results. To that end we note that for a homopolymer, all
bps have the same statistical weights ugy(x) and u;(x). For-
mally, we therefore use u=uguy, for disruption of additional
bps after bubble initiation. Due to this choice, we need to
utilize the initiation factor oy, instead of the ring factor &, as
o, takes care of the fact that upon initiation two stacking
bonds are broken [11,12,42]. If we furthermore assume that
we are below the melting temperature u<<1, have a long

DNA region M>1, and consider bubbles far from the
clamping, end effects are much less pronounced. It then fol-

lows that P(xL,m,t;xi,m’)zﬁ(m,t;m’), and the master
equation reduces to

gtﬁ(m,t) —F(m— 1)Pn—1.0) + F(m+ 1) P(m + 1.1)

— [T (m) + T (m)1P(m,1), (49)

with the shorthand notation P(m,?)=P(m,t;m'). The for-
ward transfer coefficients in this limit are given by

t(m=0) =koyus(0),

~+(m)|m>1 = kus(m), (50)

where we have incorporated the fact that a bubble size in-
crease can occur by the opening of a bp at either the left or
the right fork. For the backward transfer coefficients, we find

tF(m)=k. (51)

The eigenvalue equation corresponding to Eq. (49) has the
comparatively simple structure

t(m - l)ép(m -D+tTm+ I)Qp(m +1) - [F(m)
+T(m)]10,(m) = - 7,0,(m), (52)

with eigenvalues 7, and eigenvectors Q,,(m) (p
=0,1,...,M). The equation above is identical to the one in
Refs. [23,28], and thus our generalized formalism is consis-
tent with previous homopolymer models [23,28]. We note
that the equilibrium distribution becomes

- Z(m)
Pey(m) = ——, (53)

> Z(m)

m=0

where Z(m)=oy(1+m)~u™ with Z(0)=1, see Egs. (1) and
(2).
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The autocorrelation function is, as before, simply propor-
tional to the joint probability of having m=1 at time ¢ and
m=1 at initial time 7=0. Proceeding as previously, and as-
suming that initially the system 1is at equilibrium,

P(m,0;m’,0)= 5mm,ﬁeq(m), we have

A1) ={I(0I10)) - (D)= 2 (Tp)zeXp(— %) (54)

p#0 T
where szﬁﬁml:lép(m). Here, we introduced the relaxation
times FpE 1/ 17[,. As before, we write the correlation function

according to A=/ drexp(-t/ T)f(r), with the relaxation
time spectrum

(=2 (T,)*8(r-7,). (55)

p#0

In Fig. 7, we compare the approximate result for A(xr,?)
in the reduced one-variable homopolymer approach obtained
by numerical solution of Egs. (52) and using Eq. (54), with
the general result from the master equation in Sec. III. We
also show the corresponding weighted spectral densities
given by Eq. (55). We note that the approximate expression
works well only for the case of internal tagging and tempera-
tures below the melting temperature (and for a sufficiently
long DNA region); for a short DNA sequence, close-to-end-
tagging or high temperatures (i.e., large bubbles) end effects,
which are not included in the approximate model above, are
significant.

In the analysis of Refs. [18,28] it was found that close to
the melting transition at 7,,, the mean correlation function
takes its maximum (critical slowing down). In order to get an
understanding of this behavior we here analytically obtain
the largest relaxation time from the homopolymer model
above. From Ref. [22] we have that the eigenvalues, see Eq.
(52), are for ¢=0

7, =k(u+1-2u"?cos w,), (56)

where w, (0<w,<) is obtained from the transcendental
equation

g(w,) =sin[(M + 1)w,] - dsin[Mw,] =0 (57)
with 8=(1-0g)u'?. For u—1 and o,— 0 we get

g(w,) =sin[(M + 1)w,] - sin[Mw),]

1
:2sin2ﬁcos{(M+—)wp] (58)
2 2
so that we have
(p—112)m
= 59
= M1 (59)

which together with Eq. (56) give the eigenvalues. The
smallest eigenvalue (largest relaxation time) is obtained for
p=1, ie., %=2k{1-cos(w/[2M+1])}=k=m*/(2M+1)? for
M>1, and therefore the largest relaxation time becomes

PHYSICAL REVIEW E 75, 021908 (2007)

1 eM+1)?
== —k".
1 ~ 2

m

We notice that the longest relaxation time scales as ~M? at
melting, in agreement with the findings in [26]. Figure 8
demonstrates the good agreement of the homopolymer result
(Tmax» 1D in the figure) with the maxima of the correlation
time that coincide with the melting concentration.

(60)

VI. CONCLUSIONS

In this study we considered the bubble breathing dynam-
ics in a heteropolymer DNA region characterized by statisti-
cal weights ugy(x) for disrupting a stacking interaction be-
tween neighboring bps, and the weight u,,,(x) for breaking a
Watson-Crick hydrogen bond (x labels different bps), as well
the bubble initiation parameter (the ring-factor) oy (£). For
that purpose, we introduced a (2+ 1)-variable master equa-
tion governing the time evolution of the probability distribu-
tion to find a bubble of size m with left fork position x; at
time 7, as well as a complementary Gillespie scheme. For the
master equation, we present explicit forms for the transfer
matrix W, using a counting variable s instead of the left
zipper fork position x; and the bubble size m. We develop a
formalism to derive the distribution of bubble lifetimes and
the waiting times between subsequent bubble events. The
time averages from the stochastic simulation agree well with
the ensemble properties derived from the ME. We calculate
the spectrum of relaxation times, and in particular the experi-
mentally measurable autocorrelation function of a tagged bp
is obtained. For the case of a long homopolymer DNA region
with internal tagging and below the melting temperature the
position of the bubble becomes irrelevant, and the master
equation reduces to previous (1+1)-variable approaches in
terms of the bubble size. We note that all parameters in our
model are known from recent equilibrium measurements
available for a wide range of temperatures and NaCl concen-
trations, except for the rate constant k for zipping that is the
only free fit parameter. A better understanding of the zipping
rate k remains an open question, requiring a detailed micro-
scopic modeling of DNA breathing. It is expected that dy-
namic single molecule experiments of DNA bubble dynam-
ics will provide significant new quantitative information on
the DNA breathing, to aid in this development.
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APPENDIX: GILLESPIE APPROACH

In this section we briefly review the Gillespie algorithm.
Together with the explicit expressions for the transfer coef-
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FIG. 7. (Color online) Autocorrelation A(r) and spectral density f(7) for a tagged bp in a homopolymer region: u=uyuy. Top: Close-
to-end-tagging far from 7, (x;=2, u=0.6). Middle: Center-tagging far from 7,, (x;=20, u=0.6). Bottom: Center-tagging close to 7, (xr
=20, u=0.9). In the A(¢) plots the full lines (blue online) are the exact result. The dashed (green online) curves are approximated from Egs.
(52) and (54). In the spectral density plot the data were collected into ten bins. The light (green online) bars are the approximate one-variable
results, Eq. (55), and the dark (blue online) bars are the exact result. The length of the DNA segment was M=40. The approximate

expression only works well for internal tagging and below 7.

ficients introduced in the previous section it is used to gen-
erate stochastic time series of bubble breathing. In particular
we show how the motion of a tagged bp is obtained.

To denote a bubble state of m broken bps at position x;
we define the occupation number b(x;,m) for each lattice
point in Fig. 3 with the properties b(x;,m)=1 if the particu-
lar state {x, ,m} is occupied, and b(x;,m)=0 for unoccupied

states. For the completely zipped state m=0 there is no de-
pendence on x;, and we introduce the occupation number
b(0). The stochastic DNA breathing then corresponds to the
nearest neighbor jump processes in the triangular lattice in
Fig. 3. Each jump away from the state {x; ,m} [i.e., from the
state with b(x;,m)=1] occurs at a random time 7 and in a
random “direction” to one of the nearest neighbors; it is gov-
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5 tion for various temperatures 7T for the AT9 con-
107! struct of Ref. [16], showing a critical slowing
down at the melting concentration (compare
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erned by the reaction probability density function [43,44]

-7 t*:(xbm)), (A1)

v

P(r,pu,v) = t‘V’“(xL,m)exp<

which for a given state (x,,m) defines after what waiting
time 7 the next step occurs and in what “direction,”
ve{G,L,R}, uwe{+/-}. A simulation run produces a time
series of occupied states {x;,m} and how long time 7=7;
(j=1,...,N, where N is the number of steps in the simula-
tion) this particular state is occupied. This waiting time 7
according to Eq. (A1) follows a Poisson distribution [45].

1. Tagged bp survival and waiting time densities

The stochastic variable I(¢) is then obtained by summing
the Gillespie occupation number b(x;,m) [b(x;,m) takes
only values 0 or 1] over region R1, i.e.,

1= > blx,m).

xp,meR1

(A2)

From the sampled time series for I(r) one can, for instance,
calculate the waiting time distribution ¢(7) of time spent in
the I=0 state, as well as the survival time distribution ¢(7) of
times in the I=1 state. Explicit examples for ¢(7) and ¢(7)
are shown in Sec. IV.

The probability that the tagged bp is open becomes
N

1
Pgl(t)) = t_z Ti(t),

N j=1

(A3)
where tj:E;:,:l 7. For long times the explicit construction of
the Gillespie scheme together with the detailed balance con-
ditions guarantee that P(z;) tends to the equilibrium prob-
ability, i.e., that PG(tj—><>G):E,CL,,,1E p1P(x; ,m), where
P(x;,m) is given in Eq. (2).

2. Tagged base-pair autocorrelation function
The autocorrelation function for a tagged bp is obtained
through
T

A t) = 1(0100) - [1()]* = % f I(t+1")I(t")dt’

0
1 (7 2
- (—J I(t’)dt’> ,
TJy
where the overbar indicates a time average. For long times,
by ergodicity A,(xy,f) converges to the ensemble average,
Eq. (14), from the master equation. The function A, (xy,?)

corresponds to the blinking autocorrelation function obtained
in the FCS experiment from Ref. [16].

(Ad)

[1] A. Kornberg, DNA Synthesis (W. H. Freeman, San Francisco,
CA, 1974).

[2] C. R. Cantor and P. R. Schimmel, Biophysical Chemistry, Part
3 (W. H. Freeman, New York, 1980).

[3] D. Poland and H. A. Scheraga, Theory of Helix-Coil Transi-
tions in Biopolymers (Academic Press, New York, 1970).

[4] R. M. Wartell and A. S. Benight, Phys. Rep. 126, 67 (1985).

[5] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P.
Walter, Molecular Biology of the Cell (Garland, New York,

021

2002).

[6] S. B. Smith, Y. J. Cui, and C. Bustamante, Science 271, 795
(1996).

[7] I. Rouzina and V. A. Bloomfield, Biophys. J. 80, 882 (2001);
80, 894 (2001).

[8] R. Metzler, T. Ambjornsson, A. Hanke, Y. Zhang, and S. Lev-
ene, e-print physics/0609139, J. Comput. Theor. Nanosci. 4, 1
(2007);

[9] M. D. Frank-Kamenetskii, Unraveling DNA: The Most Impor-

908-12



MASTER EQUATION APPROACH TO DNA BREATHING IN...

tant Molecule of Life (Perseus, Cambridge, MA, 1997).

[10] Note that for 7=37 °C we used that 1kzT=0.62 kcal/mol.
Also note that writing Boltzmann factors for the free energies
as exp(BAG), with B=1/(kgT), a positive AG denotes an un-
stable bond.

[11] A. Krueger, E. Protozanova, and M. D. Frank-Kamenetskii,
Biophys. J. 90, 3091 (2006).

[12] R. D. Blake, J. W. Bizzaro, J. D. Blake, G. R. Day, S. G.
Delcourt, J. Knowles, K. A. Marx, and J. SantalLucia, Jr., Bio-
informatics 15, 370 (1999).

[13] R. Blossey and E. Carlon, Phys. Rev. E 68, 061911 (2003).

[14] E. Protozanova, P. Yakovchuk, and M. D. Frank-Kamenetskii,
J. Mol. Biol. 342, 775 (2004).

[15] M. Guéron, M. Kochoyan, and J.-L. Leroy, Nature (London)
328, 89 (1987).

[16] G. Altan-Bonnet, A. Libchaber, and O. Krichevsky, Phys. Rev.
Lett. 90, 138101 (2003).

[17] C. H. Choi, G. Kalosakas, K. @. Ramsussen, M. Hiromura, A.
R. Bishop, and A. Usheva, Nucleic Acids Res. 32, 1584
(2004); G. Kalosakas, K. @. Ramsussen, A. R. Bishop, C. H.
Choi, and A. Usheva, Europhys. Lett. 68, 127 (2004).

[18] T. Ambjornsson, S. K. Banik, O. Krichevsky, and R. Metzler
e-print g-bio.BM/0611090 (unpublished).

[19] K. Pant, R. L. Karpel, and M. C. Williams, J. Mol. Biol. 327,
571 (2003).

[20] K. Pant, R. L. Karpel, I. Rouzina, and M. C. Williams, J. Mol.
Biol. 336, 851 (2004).

[21] R. L. Karpel, IUBMB Life 53, 161 (2002).

[22] T. Ambjornsson and R. Metzler, Phys. Rev. E 72, 030901(R)
(2005).

[23] T. Ambjornsson and R. Metzler, J. Phys.: Condens. Matter 17,
S1841 (2005).

[24] A. Hanke and R. Metzler, J. Phys. A 36, L.473 (2003).

[25] H. C. Fogedby and R. Metzler, Phys. Rev. Lett. 98, 070601
(2007).

[26] D. J. Bicout and E. Kats, Phys. Rev. E 70, 010902(R) (2004).

PHYSICAL REVIEW E 75, 021908 (2007)

[27] e-print cond-mat/0610752, T. Novotny, J. N. Pedersen, M. S.
Hansen, T. Ambjornsson, and R. Metzler, Europhys. Lett. (to
be published).

[28] T. Ambjoérnsson, S. K. Banik, O. Krichevsky, and R. Metzler,
Phys. Rev. Lett. 97, 128105 (2006).

[29] S. K. Banik, T. Ambjornsson, and R. Metzler, Europhys. Lett.
71, 852 (2005).

[30] T. Hwa, E. Marinari, K. Sneppen, and L. H. Tang, Proc. Natl.
Acad. Sci. U.S.A. 100, 4411 (2003).

[31] M. Peyrard and A. R. Bishop, Phys. Rev. Lett. 62, 2755
(1989); T. Dauxois, M. Peyrard, and A. R. Bishop, Phys. Rev.
E 47, R44 (1993); 47, 684 (1993).

[32] A. Campa and A. Giansanti, Phys. Rev. E 58, 3585 (1998).

[33] M. Fixman and J. J. Freire, Biopolymers 16, 2693 (1977).

[34] See C. Richard and A. J. Guttmann, J. Stat. Phys. 115, 925
(2004), and references therein.

[35] Also, tj(x;=—1,m)=0 and tg(x;,m=M-x;+1)=0 for m
=2,...,M+1 for completeness.

[36] H. Risken, The Fokker-Planck Equation (Springer-Verlag, Ber-
lin, 1989).

[37] N. G. van Kampen, Stochastic Processes in Physics and
Chemistry, 2nd Ed. (North-Holland, Amsterdam, 1992).

[38] E. A. Di Marzio, C. M. Guttman, and J. D. Hoffman, Faraday
Discuss. R. Soc. Chem. 68, 210 (1979).

[39] C. W. Gardiner, Handbook of Stochastic Methods for Physics,
Chemistry and the Natural Sciences (Springer, Berlin, 1989).

[40] T. Ambjornsson, M. A. Lombholt, and R. Metzler, J. Phys.:
Condens. Matter 17, S3945 (2005).

[41] G. Kalosakas, K. @. Rasmussen, A. R. Bishop, C. H. Choi, and
A. Usheva, Europhys. Lett. 68, 127 (2004).

[42] J. SantalLucia, Jr., Proc. Natl. Acad. Sci. U.S.A. 95, 1460
(1998).

[43] D. T. Gillespie, J. Comput. Phys. 22, 403 (1976).

[44] D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).

[45] D. R. Cox, Renewal Theory (Wiley, New York, 1962).

021908-13



