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ABSTRACT While the statistical mechanical description of DNA has a long tradition, renewed interest in DNA melting from a
physics perspective is nourished by measurements of the fluctuation dynamics of local denaturation bubbles by single molecule
spectroscopy. The dynamical opening of DNA bubbles (DNA breathing) is supposedly crucial for biological functioning during, for
instance, transcription initiation and DNA’s interaction with selectively single-stranded DNA binding proteins. Motivated by this, we
consider the bubble breathing dynamics in a heteropolymer DNA based on a (211)-variable master equation and complementary
stochastic Gillespie simulations, providing the bubble size and the position of the bubble along the sequence as a function of time.
We utilize new experimental data that independently obtain stacking and hydrogen bonding contributions to DNA stability. We
calculate the spectrum of relaxation times and the experimentally measurable autocorrelation function of a fluorophore-quencher
tagged basepair, and demonstrate good agreement with fluorescence correlation experiments. A significant dependence of
opening probability and waiting time between bubble events on the local DNA sequence is revealed and quantified for a promoter
sequence of the T7 phage. The strong dependence on sequence, temperature and salt concentration for the breathing dynamics of
DNA found here points at a good potential for nanosensing applications by utilizing short fluorophore-quencher dressed DNA
constructs.

INTRODUCTION

Textbook pictures of double-stranded DNA molecules may

lead one to believe that the Watson-Crick double-helix rep-

resents a static geometry. As a matter of fact, even at room

temperature DNA opens up intermittent flexible single-

stranded domains, so-called DNA-bubbles. Their size typ-

ically ranges from a few broken basepairs (bps), increasing to

some 200 broken bps closer to the melting temperature Tm

(1–4). The stability of DNA is characterized by the two free

energies ehb for breaking the Watson-Crick hydrogen bonds

between complementary AT and GC bps, and the 10

independent stacking free energies est for disrupting the inter-

actions between neighboring bps; at 100 mM NaCl concen-

tration and temperature 37�C, it was found that ehb¼ 1.0 kBT
for a single AT and 0.2 kBT for a single GC-bond (at T ¼
37�C, kBT ¼ 0.62 kcal/mol). Under the same conditions the

weakest (strongest) stacking interaction was found to be the

TA/AT (GC/CG) with free energies est ¼ �0.9 kBT (–4.1

kBT) (5). In addition, the initiation of a bubble in an un-

perturbed DNA molecule, creating two interfaces between

single-stranded bubble and vicinal double-helix at the zipper

forks, is associated with an activation factor s0 ’ 10�3

. . . 10�5 (2,3,6,7) related to the ring-factor j used in

Protozanova et al. (5) and Krueger et al. (8) and below.

That is, despite the rather low free energy for breaking the

bps, the high bubble nucleation barrier guarantees that below

Tm bubbles are rare and well separated, particularly under phys-

iological conditions. However, once a bubble opens, since

typical free energies are of the order kBT localized denatur-

ation zones can open up, predominantly in AT-rich regions

(1–3). These DNA-bubbles fluctuate in size (i.e., DNA-

breathing). It has been demonstrated recently by fluorescence

correlation methods that DNA-breathing can be probed on the

single molecule level, revealing a multistate kinetics of step-

wise (un)zipping of bps with a bubble lifetime ranging up to a

few milliseconds (9).

Theoretically, based on the statistical mechanical Poland-

Scheraga model (2), DNA-breathing has been described in

homopolymer DNA in terms of a continuous Fokker-Planck

equation (10), and through a stochastic Gillespie scheme

(11). A discrete master equation (ME) approach was de-

veloped in Ambjörnsson and Metzler (12,13), including the

coupled (un)binding dynamics of selectively single-stranded

DNA binding proteins. Continuous and discrete approaches

are compared and studied in Bicout and Kats (14). Hetero-

polymer DNA-breathing was considered in a reduced one-

variable approach using a random energy model (15).

Here, we develop a full (211)-variable approach to

breathing in heteropolymer DNA that allows us to study the

sequence dependence of the dynamics, through the initiation

and the stochastic motion of the two forks of an open DNA

bubble. Two approaches are used: the stochastic motion is

obtained by generating stochastic (Gillespie) time series from

which equilibrium distribution as well as autocorrelation

functions are obtained. We also use the corresponding master

equation to calculate the complementary ensemble-averages;

excellent agreement is found between time-averages and
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ensemble-averages. Novelties in our study include: 1), we study

the full dynamics (211 variable problem) of a heteropolymer

region of arbitrary (not just random) sequence; 2), we com-

pare our results to the fluorescence correlation spectroscopy

(FCS) experiments in Altan-Bonnet et al. (9) using the di-

rectly measured DNA parameters in Krueger et al. (8) (see

below); and 3), recently, for the first time, the (two) hydrogen

bond energies, and (ten) stacking interactions characterizing

DNA stability within the Poland-Scheraga model were sepa-

rately determined (5,8); these stability parameters are utilized

in our study. Among the consequences of these new results

compared to previously used parameters (6) are the more

pronounced sequence dependence and the fact that Watson-

Crick and stacking interactions can be completely separated

as required when studying internal bubble dynamics (a bub-

ble involving m broken Watson-Crick bonds and m11 broken

stacking interactions).

Based on this new approach, we study the question of

transcription initiation at the TATA motif of the biological

sequence in the bacteriophage T7 promoter sequence. Using

the newly obtained stacking parameters from Krueger et al.

(8), we demonstrate the delicate dependence of both the equi-

librium opening probability as well as the breathing dynam-

ics on the sequence dependence of the stacking. While in our

model the opening times of bubbles only marginally depend

on their position along the sequence, the recurrence fre-

quency of bubble events is much more sensitive to the

position. The latter might therefore be a clue toward the

understanding of transcription initiation.

This article is organized as follows: In General Model and

Transfer Rates, we describe the DNA bubble dynamics in

terms of the relevant transfer coefficients. In Dynamic Ap-

proaches to DNA Breathing, Gillespie Approach, a stochas-

tic scheme based on these transfer coefficients in terms of the

Gillespie algorithm is introduced. In Dynamic Approaches

to DNA Breathing, Tagged BP Survival and Waiting Time

Densities, a complementary master equation scheme is de-

scribed. In Results, we apply our two complementary for-

malisms to 1), the experimental constructs in Altan-Bonnet

et al. (9); 2), The T7 phage promoter sequence; and 3), we

show a strong dependence on sequence, temperature, and salt

concentration and demonstrate the good potential for nano-

sensing applications.

Technical details necessary for the introduction of our

model appear in a separate publication (16).

GENERAL MODEL AND TRANSFER RATES

With typical experimental setups (9) in mind, we consider a

segment of double-stranded DNA with M internal bps that

are clamped at both ends, i.e., the bps x ¼ 0 and x ¼ M 1 1

are always closed (Fig. 1). The heteropolymer character of

the problem enters via the position-dependence of the sta-

tistical weights uhb(x) ¼ exp fehb(x)/(kBT)g for breaking the

hydrogen bonds of the bp at position x, and ust(x) ¼ exp

fest(x)/(kBT)g for disrupting the stacking interactions be-

tween bps x – 1 and x; est(x) and ehb(x) are the corresponding

free energies, which in general have energetic as well as

entropic contributions. Due to the high free energy barrier for

bubble initiation (j� 1, see below), opening and merging of

multiple bubbles are rare events, such that a one-bubble

description is appropriate (13). The positions xL and xR of the

zipper forks correspond, respectively, to the right- and left-

most closed bp of the bubble; these are stochastic variables

whose time evolution characterizes the bubble dynamics.

Note that writing the Boltzmann factors for the free energies

as exp fDG/(kBT)g, a positive DG denotes an unstable bond.

In terms of xL and bubble size m ¼ xR – xL – 1, the bubble

partition factor is (m $ 1)

ZðxL;mÞ ¼
j9

ð1 1 mÞc
YxL1m

x¼xL11

uhbðxÞ
YxL1m11

x¼xL11

ust ðxÞ; (1)

completed by Zðm ¼ 0Þ ¼ 1. Here, j9 ¼ 2cj, where j �
10�3 is the ring factor for bubble initiation from Krueger

et al. (8). For a homopolymer j is related to the cooperativity

parameter s0� 10�5 (2,6) by s0¼ j exp fest/(kBT)g (8). For

the entropy loss on forming a closed polymer loop we assign

the factor (1 1 m)�c (6,17) and take c ¼ 1.76 for the critical

exponent (18). Note that a bubble with m open bps needs

breaking of m hydrogen bonds and m11 stacking interac-

tions (see Eq. 1). The equilibrium probability for finding a

bubble with a given xL and m is

P
eqðxL;mÞ ¼

ZðxL;mÞ
Zð0Þ1 +

M

m¼1
+

M�m

xL¼0
ZðxL;mÞ

: (2)

Below we impose the detailed balance condition when

introducing the rates to guarantee that Peq(xL, m) is indeed

reached for long times.

Let us proceed by introducing the transfer (rate) coeffi-

cients for the bubble dynamics. For the left zipper fork we

FIGURE 1 Clamped DNA domain with internal bps x ¼ 1 to M, and tag

position xT. The DNA sequence enters through the statistical weights ust(x)

and uhb(x) for disrupting stacking and hydrogen bonds respectively. The

bubble breathing process consists of the initiation of a bubble and the sub-

sequent motion of the forks at positions xL and xR.
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define t1L ðxL, m) as the transfer coefficient for the process

xL / xL 1 1, corresponding to bubble size decrease, and

t�L ðxL, m) as the transfer coefficient for xL / xL � 1 (bubble

size increase). For the right zipper fork we similarly introduce

t1R ðxL, m) for xR/xR11 (bubble size increase) and t�R ðxL, m)

for xR / xR � 1 (bubble size decrease). In addition for the

transition m¼ 0 / m¼ 1, i.e., for the initial bubble opening

process occurring at position xL, we introduce t1G ðxL), and for

the bubble closing process m ¼ 1 / m ¼ 0 we employ

t�GðxL). Note that t1G ðxL) and t�GðxL) correspond to closing or

opening of the bubble at position x ¼ xL 1 1. Due to the

clamping we require that xL $ 0 and xR # M 1 1, and we

therefore introduce reflecting conditions

t
�
L ðxL ¼ 0;mÞ ¼ t

1

R ðxL;m ¼ M � xLÞ ¼ 0 (3)

(also, t1L ðxL ¼ �1, m) ¼ 0 and t�R ðxL, m ¼ M – xL 1 1) ¼ 0

for m ¼ 2, . . . , M 1 1 for completeness).

Let us consider explicit forms for the transfer coefficients.

For bubble size decrease we take

t 1

L ðxL;mÞjm$2 ¼ t�R ðxL;mÞjm$2 ¼ KðmÞ=2 (4)

for the left fork and right forks, respectively. We above

defined the m-dependent rate coefficient

KðmÞ ¼ km
�m
: (5)

As in previous studies, this expression imposes the hook

exponent m, related to the fact that during the zipping pro-

cess not only the bp at the zipper fork is moved, but also part

of the vicinal single-strand is dragged or pushed along (13,

19,20). One would expect that the hook exponent is only

relevant for larger bubbles, and we put m ¼ 0 in the

remainder of this work, mainly focusing on T well below Tm,

where the bubbles sizes are small. The rate k characterizes a

single bp zipping. Its independence of x corresponds to the

view that bp closure requires the diffusional encounter of the

two bases and subsequent bond formation; as sterically AT

and GC bps are very similar, k should not significantly vary

with bp stacking. The value k is the only adjustable pa-

rameter of our model, and has to be determined from exper-

iment or future MD simulations. The factor 1/2 is introduced

for consistency with previous approaches (12,13). We note

that, in principle, an x-dependence of k can easily be intro-

duced in our approach by choosing different powers of the

statistical weights entering the rate coefficients such that they

still fulfill detailed balance.

Bubble size increase is controlled by

t
�
L ðxL;mÞ ¼ Kðm 1 1ÞustðxLÞuhbðxLÞsðmÞ=2;

t
1

R ðxL;mÞ ¼ Kðm 1 1ÞustðxR 1 1ÞuhbðxRÞsðmÞ=2; (6)

for m $ 1, where

sðmÞ ¼ fð1 1 mÞ=ð2 1 mÞgc
: (7)

For m $ 1 we thus take the rate coefficients for bubble

increase proportional to the Arrhenius factor ustuhb ¼ exp

f(ehb 1 est)/(kBT)g multiplied by the loop correction s(m).

Note that an unzipping event on average involves the motion

of one more open basepair compared to a zipping event, and

the transfer coefficients above are therefore proportional to

Kðm11Þ. Finally, bubble initiation and annihilation from

and to the zero-bubble ground state, m ¼ 0 4 1, occur with

rates

t
1

G ðxLÞ ¼ kj9sð0ÞustðxL 1 1ÞuhbðxL 1 1ÞustðxL 1 2Þ
t
�
GðxLÞ ¼ k (8)

with the bubble initiation factor j9 included in the expres-

sion for t1G . Note that t1G , in contrast to the opening rates for

m $ 1, is proportional to an Arrhenius-factor involving two

units of stacking free energy. The annihilation rate t�GðxL) is

twice the zipping rate of a single fork, since the last open bp

can close from either the left or right. The t-rates, together

with the boundary conditions, fully determine the bubble dy-

namics.

We see that the rates t6L , t6R , and t6G are chosen such that

they fulfill the detailed balance conditions:

t
1

L ðxL � 1;m 1 1ÞPeqðxL � 1;m 1 1Þ ¼ t
�
L ðxL;mÞPeqðxL;mÞ;

t
�
R ðxL;m 1 1ÞPeqðxL;m 1 1Þ ¼ t

1

R ðxL;mÞPeqðxL;mÞ;
t

1

G ðxLÞPeqð0Þ ¼ t
�
GðxLÞPeqðxL; 1Þ:

(9)

These conditions guarantee relaxation toward the equilibrium

distribution Peq(xL, m) (see Eq. 2). In the next two sections we

use the above explicit expressions for the transfer coefficients

and describe the DNA breathing dynamics pursuing two com-

plementary approaches: the stochastic Gillespie scheme (Dy-

namic Approaches to DNA Breathing, Gillespie Approach)

and the master equation (Dynamic Approaches to DNA Breath-

ing, Tagged BP Survival and Waiting Time Densities).

DYNAMIC APPROACHES TO DNA-BREATHING

Gillespie approach

In this section we use the Gillespie algorithm together with

the explicit expressions for the transfer coefficients intro-

duced in the previous section to generate a sequence-specific

stochastic time series of breathing bubbles. In particular, we

show how the motion of a tagged bp is obtained.

To denote a bubble state of m broken bps at position xL we

define the occupation number b(xL, m) with the properties

b(xL, m) ¼ 1 if the particular state fxL, mg is occupied and

b(xL, m) ¼ 0 for unoccupied states. For the completely

zipped state m ¼ 0 there is no dependence on xL, and we

introduce the occupation number b(0). The stochastic DNA

breathing then corresponds to the nearest-neighbor jump pro-

cesses in the lattice of permitted states (16). In the Gillespie

scheme, each jump away from the state fxL, mg (i.e., from

the state with b(xL, m)¼ 1) occurs at a random time t, and in

a random direction to one of the nearest-neighbor states. This
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stochastic process is governed by the reaction probability

density function (11,21,22)

Pðt;m; nÞ ¼ t
m

n
ðxL;mÞexp �t +

m;n

t
m

n
ðxL;mÞ

 !
: (10)

More explicitly, for a given state (xL, m) the joint probabil-

ity density (10) defines after what waiting time t after the

previous random step the next step occurs, and in which

reaction pathway, n 2 fG, L, Rg, m 2 f6g. In the present

case, n and m denote x-dependent zipping or unzipping of a

bp at the left or right zipper fork. A simulation run produces a

time series of occupied states fxL, mg and how long a time

t ¼ tj (j ¼ 1, . . . , N, where N is the number of steps in the

simulation) this particular state is occupied. This waiting

time t, in particular, according to Eq. 10 follows a Poisson

distribution (23). Note that the waiting times governed

by Eq. 10 vary widely, as the reaction rates occur in the

exponential (in particular, the bubble initiation with the

j-factor has a long characteristic timescale). The fact that

the Gillespie scheme uses the weighted reaction timescale

instead of fixed simulation time steps makes this algorithm

very efficient.

Tagged bp survival and waiting time densities

Motivated by the experimental setup in Altan-Bonnet et al.

(9) we study the motion of a tagged bp at x ¼ xT (see Fig. 1).

In the fluorescence correlation experiment, fluorescence

occurs if the bps in a D-neighborhood of the fluorophore

position xT are open (9). Measured fluorescence time series

thus correspond to the stochastic variable I(t), with the

properties I(t) ¼ 1 if at least all bps in (xT – D, xT 1 D) are

open, and I(t) ¼ 0 otherwise. Thus, if I ¼ 1, we are in the

phase space region defined by

R1 : f0 # xL # xT � D� 1; xT � xL 1 D # m # M � xLg:
(11)

Conversely, I ¼ 0 corresponds to the complement R0 of

R1. The stochastic variable I(t) is then obtained by summing

the Gillespie occupation number b(xL, m) (b(xL, m) takes

only values 0 or 1) over region R1, i.e.,

IðtÞ ¼ +
xL ;m2R1

bðxL;mÞ: (12)

From the time series for I(t) one can, for instance, calculate

the waiting time distribution c(t) of times spent in the I ¼ 0

state, as well as the survival time distribution f(t) of times in

the I ¼ 1 state. Explicit examples for c(t) and f(t) are

shown in Results.

The probability that the tagged bp is open becomes

PGðtjÞ ¼
1

tN

+
N

j¼1
tjIðtjÞ; (13)

where tj ¼ +j

j9¼1
tj9. For long times the explicit construction

of the Gillespie scheme together with the detailed balance

conditions guarantee that PG(tj) tends to the equilib-

rium probability, i.e., that PGðtj/NÞ ¼ +
xL;m2R1

PeqðxL;mÞ,
where Peq(xL, m) is given in Eq. 2.

Tagged basepair autocorrelation function

The autocorrelation function for a tagged bp is obtained

through

AtðxT; tÞ ¼ IðtÞIð0Þ � ðIðtÞÞ2

¼ 1

T

Z T

0

Iðt 1 t9ÞIðt9Þdt9� 1

T

Z T

0

Iðt9Þdt9

� �2

;

(14)

which for long sampling times T converges to the ensemble

average, Eq. 18, from the master equation (introduced in the

next section). The function At(xT, t) corresponds to the

quantity obtained in the fluorescence correlation experiment

of Altan-Bonnet et al. (9).

Master equation formulation

Complementary to the stochastic simulations of DNA-

breathing detailed in the preceding section we here introduce

a master equation (ME) for the joint probability distribution

P(t)¼ P(xL, m, t;x9L, m9, 0) that at time t the system is in state

fxL, mg and that it was in state fx9L, m9g at t ¼ 0. The ME,

which is equivalent (in the sense that it produces the same

averaged quantities) to the Gillespie scheme, can be formally

written as

@

@t
PðtÞ ¼ W PðtÞ; (15)

where the explicit form of the matrixW is given in terms of

the rate coefficients from the previous section in Ambjörnsson

et al. (16). A standard approach to the master equation is the

spectral decomposition (24,25)

PðtÞ ¼ +
p

cpQpexpð�hptÞ: (16)

The coefficients cp are obtained from the initial condi-

tion. Inserting Eq. 16 into Eq. 15 produces the eigenvalue

equation

WQp ¼ �hpQp: (17)

From the eigenvalues hp and eigenvectors Qp of Eq. 17, any

quantity of interest can be constructed.

Dynamic quantities for a tagged bp

The waiting time density c(t) and the survival time density

f(t), as obtained in a Gillespie scheme, correspond to the

first passage problem to start from an initial state with I ¼ 1

(I¼ 0) and passing to I¼ 0 (I¼ 1). It is discussed in detail in

Ambjörnsson et al. (16) how these quantities can be obtained

from the ME, Eq. 15.
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The equilibrium autocorrelation function

AðxT; tÞ ¼ ÆIðtÞIð0Þæ� ðÆIæÞ2 (18)

is a measure for the relaxation dynamics of the tagged bp.

This can be seen from the identity

ÆIðtÞIð0Þæ ¼ +
1

I¼0

+
1

I9¼0

IrðI; t; I9; 0ÞI9 ¼ rð1; t; 1; 0Þ; (19)

where r(1, t;1, 0) is the survival probability density that

I(t)¼ 1 and that I(0)¼ 1 initially. Using the fact that r(1, t;1,

0) is obtained by summing P(xL, m, t;x9L, m9, 0) exclusively

over region R1, we obtain

rð1; t; 1; 0Þ ¼ +
xL ;m;x9L ;m92R1

PðxL;m; t; x9L;m9; 0Þ: (20)

Combining this result with Eq. 19, the spectral decomposi-

tion (16), and assuming that we initially are at equilibrium,

PðxL;m; 0; x9L;m9; 0Þ ¼ dmm9dxLx9L PeqðxL;mÞ, the autocorre-

lation function (Eq. 18) can be rewritten as

AðxT; tÞ ¼ +
p 6¼0

½TpðxTÞ�2expð�t=tpÞ; (21)

with relaxation times tp ¼ 1/hp, and where

TpðxTÞ ¼ +
xT�D�1

xL¼0

+
M�xL

m¼xT�xL1D

QpðxL;mÞ: (22)

For long times, i.e., when the time average is long enough,

A(xT, t) agrees with At(xT, t) given in Eq. 14 as will be illus-

trated in the next section. We can rewrite the correlation func-

tion according to the spectral decomposition

AðxT; tÞ ¼
Z

dtexpð�t=tÞf ðxT; tÞ; (23)

where we introduced the weighted spectral density

f ðxT; tÞ ¼ +
p 6¼0

½TpðxTÞ�2dðt � tpÞ: (24)

This relaxation time spectrum directly provides the spectral

content of the relaxation behavior of the DNA-bubble, and

sometimes a better (but equivalent) visualization of the sys-

tem than the autocorrelation function.

RESULTS

In this section we apply our two complementary formalisms

to study the behavior of 1), the designed DNA constructs

used in the experiments of Altan-Bonnet et al. (9); and 2), the

T7 phage promoter sequence.

Comparison to experimental results

In Fig. 2 the autocorrelation functions At(xT, t) for the

sequence AT9 from Altan-Bonnet et al. (9) are shown for

various temperatures T. The data were scaled by k such that

the curves coincide where A(t) ¼ 1/2. The strong scatter at

short times is mainly ascribed to quantum transitions in the

fluorophore (9,26). The lower graph shows the temperature

dependence of the characteristic zipping time, 1/k. Individ-

ual autocorrelations for three temperatures are compared in

Fig. 3.

In the combined autocorrelation plot, Fig. 2, the black line

shows the predicted behavior of A(xT, t), calculated by

numerical solution of the eigenvalue Eq. 17 by help of Eq.

21. Stability parameters from Krueger et al. (8) for T ¼ 49�C

and 100 mM NaCl concentration were used. As in the

experiment we assumed that fluorophore and quencher

attach to bps xT ¼ 17 and xT 1 1, and that both are required

open to produce a fluorescence signal (the outermost GC-

pairs in the sequence given in Fig. 2 were taken as clamped,

FIGURE 2 (Top) Autocorrelation function At(xT, t) at various tempera-

tures T measured for the sequence AT9 from Altan-Bonnet et al. (9) at 100

mM NaCl. The sequence is indicated in the figure, where the four lower-case

t characters symbolize a small bulge loop. The full lines show the results

from the master equation based on the DNA parameters from Krueger et al.

(8). (Inset) Relaxation time spectrum f(t) ¼ f(xT, t), showing broadening

with increasing temperature. (Bottom) Characteristic zipping time 1/k as a

function of temperature in an Arrhenius plot. The line shows a least-squares

fit to an Arrhenius law t } exp(A/T) with A ¼ 2.6 3 103 K.
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i.e., labeled as x ¼ 0 and x ¼ M 1 1). From the scaling plot,

we calibrate the zipping rate as k ¼ 7.1 3 104/s for T ¼ 49�
in good agreement with the findings from Altan-Bonnet et al.

(9). The calculated behavior reproduces the data within the

error bars. The green curve corresponds to the ME result for

T ¼ 33�C, showing more pronounced deviations from

experimental data. Notice that for lower temperatures the

relaxation time distribution f(xT, t) becomes narrower (Fig. 2

inset). Thus, our model predicts that the dynamics for smaller

temperatures involve fewer modes, which is in contrast to the

experimental data that have also a broad, multimodal be-

havior for low temperatures.

The individual behavior of the autocorrelation is dissected

in Fig. 3 for three temperatures spanning the full T-range

probed in the fluorescence experiments. Note the good

quality of the match between experimental data and model

prediction for the highest temperature (49�C). This temper-

ature is already close to the denaturation temperature of the

bubble domain of the AT9 construct (the contribution of the

longest relaxation time in the rather broad spectrum of

relaxation times is considerably larger than the three previous

ones). The tendency of overestimation of the slope in the

autocorrelation function by our model at lower temperatures

is obvious for curves at 22�C and 33�C, while the experi-

mental slope remains almost constant over this T-range.

We expect three effects to contribute to the deviations by

broadening the relaxation time spectrum, i.e., lowering the

free energy of the system:

1. In the present fluorescence correlation spectroscopy

experiments, two contributions superimpose to produce

the fluorescence signal (26): The diffusional motion of

the molecule carrying the fluorophore in and out of the

confocal volume, and the actual breathing dynamics.

Without the breathing, the autocorrelation function takes

the form A(t) ; 1/(1 1 t/tD) (for a narrow beam waist),

where tD ¼ w2/(4D) � 150 ms, with w being the linear

size of the beam waist and D is the diffusion constant of

the construct. In Altan-Bonnet et al. (9) the pure diffusive

contribution was eliminated by performing a separate ex-

periments with the quencher being removed (measuring

the solely diffusive contribution), and dividing out this

result from the signal. However, as the quencher is re-

moved the diffusion constant of the construct is slightly

changed. To roughly account for this fact, the blue curve

shown in Fig. 2 was obtained by a 3% reduction of the

diffusion time tD. Note that the agreement of the blue line

with the data is excellent. This underlines the sensitivity of

the DNA-breathing single molecule data, pointing toward

potential dynamic methods to calibrate both k and DG.

2. It is very likely that the presence of the fluorophore and

quencher molecules destabilizes the DNA—despite the

short stalk through which fluorophore and quencher are

attached—by altering the Watson-Crick and stacking inter-

actions. The resulting decrease of the stacking free energy

therefore is expected to effect a lower free stacking energy

in comparison to the undressed DNA, for which the sta-

bility data are measured and which are used in our model.

3. Finally, our present model does not take into account the

entropic contributions due to the degrees of freedom of

the fluorophore/quencher pair, i.e., the fact that for bigger

bubbles the fluorophore/quencher pair has more freedom

to diffuse around and rotate. To approximately account

for this we would change the partition from ZðxL;mÞ to

VFQðxL;mÞZðxL;mÞ, where VFQ(xL, m) is the number of

configurations for the fluorophore/quencher pair for a

given bubble size and position. To demonstrate this ef-

fect, assume for simplicity that each bps that opens up pro-

vides one unit of entropy, DSFQ, so that VFQ ¼ emDSFQ=kB ,

i.e., effectively we increase the statistical weight u ac-

cording to u/ueDSFQ=kB , leading to a shift in the melting

curve toward lower temperatures (as seen in experiments,

compare also Fig. 4). In reality, however, we would

expect a more intricate m-dependence of the complexions

VFQ; for instance, it may be so that as the first bps close

the tag-position opens up, a relatively large amount of

fluorophore/quencher entropy is released, while further

opening of bps contributes less.

We stress once more that all three effects will broaden the

relaxation time spectrum. Further control experiments will

be needed to obtain more precise information on the effects

caused by the presence of the fluorophore and quencher

molecules.

The activation plot in Fig. 2 was obtained from the

construction of the scaling plot for the blinking autocorre-

lation function by the relative shift of the individual curves

along the logarithmic time axis. The corresponding error bars

were estimated from the width of the collapsed data at the

FIGURE 3 Individual autocorrelation functions At(xT, t) for three differ-

ent temperatures (22�C, 33�C, 49�C) spanning the T-range probed in the

fluorescence experiment. While for the highest temperature, the match

between data and theory is very good, deviations occur at lower temper-

atures. Reasons for these deviations are discussed in the text. Note that the

data for 33�C are shifted vertically by 0.2, and those for 22�C by 0.4.
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midpoint (At(xT, t) ¼ 1/2) as 20% of the absolute value. The

real experimental error is likely to be higher. However, it is

difficult to estimate. The activation plot indicates an Arrhenius-

type behavior, which is probably due to an energetic barrier

crossing when the bp-bond establishes.

We point out that we here only considered the AT9 se-

quence from Altan-Bonnet et al. (9), and not the other to

constructs A18 and M18. The latter two constructs have four

or more consecutive AT-bps, and it is known that such

sequences assume the B9-conformation rather than the usual

B-structure (27) for which the parameters of Krueger et al.

(8) apply. In B9 DNA, the breathing dynamics is significantly

altered (27). Fitting our model to the A18 and M18 con-

structs, we found indeed that these sequences showed more

pronounced deviations from our model.

In Fig. 4, the top panel shows the mean correlation time

tcorr [
RN

0
tf ðxT; tÞdt ¼

RN
0

AðxT; tÞdt (see Eqs. 21 and 24),

for the three constructs of Altan-Bonnet et al. (9); these

constructs all consist of 18 consecutive AT-bps with end-

clamps consisting of GC-pairs. The bottom panel depicts the

probability Peq(xT) that the bps at xT and xT 1 1 are open,

i.e., the probability to get a fluorescence signal. We notice

that tcorr has pronounced maxima at the melting transition

(the point where Peq ¼ 1/2 in the bottom panel). This critical

slowing down at the melting is indeed a characteristic

signature of a phase transition (compare (14)). Notice that the

experimental results (dashed lines) for Peq(xT) deviate from

the one predicted here, indicating that the fluorophore-

quencher pair indeed has a destabilizing effect on the DNA

helix. Also note the different melting behaviors of the three

constructs despite identical AT and GC contents predicted

here as well as by experiments; this illustrates the importance

of stacking interactions. Also notice that there is nice

agreement between our theoretical results and experiments

concerning the relative ordering of the melting tempera-

tures: AT9 melts first, and A18 last. The horizontal line (tmax

1D) in the top panel represents the longest relaxation time

(2M 1 1)2/p2k�1 obtained from the homopolymer model of

Ambjörnsson and Metzler (12,13) in the limit u / 1, s0 / 0

and c ¼ 0 (for M ¼ 27, length of the three constructs), thus

giving a scaling consistent with the first exit of unbiased

diffusion; see Ambjörnsson et al. (16).

Bacteriophage T7

By master equation and stochastic simulation we investigate

the promoter sequence of the T7 phage (a bacteriovirus).

A promoter is a sequence (often containing the 4-bp-long

TATA motif) marking the start of a gene, to which RNA

polymerase is recruited and where transcription then initi-

ates. Previous studies (28,29) based on the Dauxois-Peyrard-

Bishop model found that the TATA motif is characterized by

a particularly low stability and therefore proneness to bubble

formation, although the statistical relevance of those data

were under discussion (30–34). We here revisit the problem

of the stability and dynamics of the TATA motif using the

necessary full set of stacking interactions. The T7 promoter

sequence we investigate is shown in Scheme 1; its TATA

motif is marked gray (28,29). Fig. 5 shows the time series of

I(t) at 37�C for the tag positions xT ¼ 38 in the core of

TATA, and xT ¼ 41 at the second GC bp after TATA.

Bubble events occur much more frequently in TATA (the

TA/AT stacking interaction is particularly weak (8)). This is

quantified by the density of waiting times c(t) spent in the

I(t) ¼ 0 state, whose characteristic timescale t9 ¼
RN

0

dt̃t̃cðt̃Þ is more than an order-of-magnitude longer than at

xT ¼ 41. In contrast, we observe similar behavior for the

density of opening times f(t) for xT ¼ 38 and 41, where the

characteristic time is t ¼
RN

0
dt̃t̃fðt̃Þ. The solid lines are

the results from the ME (see Eq. 15) showing excellent

agreement with the Gillespie results. Notice that whereas

c(t) is characterized by a single exponential, f(t) shows a

crossover between different regimes. For long times both

c(t) and f(t) decay exponentially as they should for a finite

DNA stretch. As shown in the bottom for the parameters

from Krueger et al. (8), the variation of the mean correlation

time tcorr ¼
R

AðxT; tÞdt obtained from the ME is small for

the entire sequence, consistent with the low sensitivity to the

FIGURE 4 (Top) Mean correlation time versus temperature for the three

constructs in Altan-Bonnet et al. (9). The thick curves are for the mean cor-

relation time tcorr, whereas the thin curves are the longest relaxation time t1.

(Bottom) Melting curves. The thin curves are experimental results. For the

theoretical curves, we used parameters from Krueger et al. (8) for 100 mM

NaCl concentration.

SCHEME 1
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sequence of f(t). However, note the even smaller variation

predicted for the parameters of Blake et al. (6), indicating

that the stability parameters of Krueger et al. (8) are more

sequence-sensitive compared to previously used values (6).

We speculate that the recurrence frequency of bubble events

may be a clue in the understanding of transcription initiation:

If the protein, which is supposed to bind to the specific site,

senses a time-averaged energy landscape, the significantly

more frequent bubble events at TATA may trigger its bind-

ing and thus trigger transcription initiation.

Fig. 6 shows the equilibrium probability that the bps (xT –

D, xT 1 D) are open, as necessary for fluorescence to occur.

We plot data obtained from the 0th mode (an ME eigenvalue

problem always has one zero eigenvalue, the corresponding

eigenvalue is the equilibrium probability (24)) of the ME

together with the time average from the stochastic simulation

(GA), finding excellent agreement. Whereas for D¼ 0 several

segments show increased tendency to denaturation, for the

case D¼ 2, one major peak is observed; the data from Krueger

et al. (8) coincide precisely with TATA. For comparison, the

equilibrium probability obtained using DNA stability data

from Blake et al. (6) have their maximum peak upstream.

Analysis for various D-values indicate best discrimination of

the TATA sequence being open for D ¼ 2. Biologically, this

finding is significant, as it corresponds to the probability for

simultaneous opening of the whole TATA motif. For future

FCS or energy transfer experiments investigating the relevance

of denaturation-induced facilitation of transcription initiation,

it therefore appears important to optimize the D-dependence

for best resolution, e.g., by adjusting the linker lengths of

fluorophore and quencher. In principle, this could be experi-

mentally achieved as (assuming a circular bubble of five

open bps with bp-bp distance 3.4 Å) the distance between

fluorophore and quencher on bubble opening increases by

6–7 Å, the same magnitude as the Förster transfer radius.

In Fig. 6 we compare the opening probabilities to the

values for a random sequence, for which we chose the free

energies such that the content of AT and GC bps is 50:50.

Then, we define

ehb;random ¼ ehb;AT=2 1 ehb;GC=2; (25)

for the hydrogen bonding, and

est;random ¼
1

16
ðest;AT=TA 1 est;TA=AT 1 2est;AT=AT

1 est;GC=CG 1 est;CG=GC 1 2est;GC=GC 1 2est;GA=CT

1 2est;CA=GT 1 2est;AG=TC 1 2est;AC=TGÞ
(26)

for the stacking free energies. The numerical values are

ehb, random ¼ 0.4 kcal/mol and est, random ¼ �1.6 kcal/mol at

T ¼ 37�C and 100 mM NaCl. Inserting both into the ex-

pressions for the partition factor (1) and the rates t, the dashed

lines in Fig. 6 are obtained. Thus, the peaks in the opening

probabilities are distinctly significant.

To illustrate the breathing dynamics of the T7 sequence

using experimentally measurable quantities, Fig. 7 shows the

autocorrelation functions for four different tag positions xT

(same parameters as above) within the promoter region. Both

the Gillespie approach as well as the ME were used and

compared; excellent agreement between them are found. The

autocorrelation function for the tagged bp decays faster if

positioned in a GC-rich region than in an AT-rich region.

Comparing with Fig. 2 it should be possible to resolve the

different decay times of the autocorrelation function exper-

imentally.

FIGURE 6 Probability to have at least the bps (xT – D, xT 1 D) open (as

assumed to be necessary for fluorescence to occur) for different tag posi-

tions xT, and for D¼ 0 and 2. The results from master equation and Gillespie

algorithm show excellent agreement. Same parameters as in Fig. 5.

FIGURE 5 (Top) Fluorescence time series I(t) for the T7 promoter

sequence, with tag position xT¼ 38 (solid lines) and xT¼ 41 (dashed lines).

(Middle) Waiting time (c(t)) and fluorescence survival time (f(t)) densities,

in units of k. The data points (solid lines) are results from the Gillespie

algorithm (master equation). (Bottom) Mean correlation time for D ¼ 0. All

results are for T ¼ 37�C and 100 mM NaCl with DNA parameters from

Krueger et al. (8).
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Nanosensing applications

In Krueger et al. (8), the DNA Watson-Crick and stacking

parameters were obtained for different NaCl concentrations,

allowing us to study the effect of salt concentration on

the breathing dynamics and equilibrium properties of DNA.

Fig. 8 shows the dependence of the mean correlation time

tcorr and the equilibrium opening probability Peq(xT) for the

AT9 sequence on salt concentration C and temperature T,

using the same tagging position as in Comparison to Experi-

mental Results. We point out that the mean correlation time

is directly accessible in experiments. Note the logarithmic

axis. The triangles denote the melting concentration of infinitely

long random AT and GC stretches, respectively (from (8)).

The maxima of the tcorr curves signify the critical slowing

down of the autocorrelation at the phase transition as before;

note that the maxima coincide with the melting concentra-

tions in the bottom panel. The thick line (tmax 2D) corre-

sponds to the longest relaxation time obtained numerically

from the ME; it agrees well with tcorr close to the maximum

(equivalently for the other T), indicating that at melting there

is a single (slow) relevant relaxation mode. The horizontal

line (tmax 1D) represents the analytically obtained longest

relaxation time (2M 1 1)2/p2k�1 for a homopolymer model,

compare Ambjörnsson et al. (16).

The predicted variation with C and T shown in Fig. 8 is

significant. Thus, different solvent conditions such as tem-

perature or salt alter the opening probability of the DNA

construct, and therefore the blinking activity. For a fixed salt

concentration, for instance, a higher temperature would there-

fore lead to more frequent, and longer blinking events, such

that one could measure the effect by both recording indi-

vidual blinking events and integrating the blinking signals.

As shown in our analysis, the stability parameters are suf-

ficiently sensitive to externally detect changes of these pa-

rameters. Note that a DNA construct of 30 bps roughly

corresponds to a length of 10 nm. Such nanoprobes would

easily fit into nanochannels, small lipid vesicles, or micro-

dishes in gene arrays. We therefore propose to investigate in

more detail the suitability of DNA-breathing constructs as

nanosensors (35,36).

CONCLUSIONS

In this study we considered the bubble breathing dynamics in

a heteropolymer DNA-region characterized by statistical

weights ust(x) for disrupting a stacking interaction between

neighboring bps, and the weight uhb(x) for breaking a

Watson-Crick hydrogen bond (x labels different bps), as well

the bubble initiation parameter (the ring-factor) j. For that

purpose, we introduced a (211)-variable ME governing the

time evolution of the probability distribution to find a bubble

of size m with left fork position xL at time t, as well as a

complementary Gillespie scheme. The time averages from

the stochastic simulation agree well with the ensemble prop-

erties derived from the master equation. We calculate the

spectrum of relaxation times, and in particular the experi-

mentally measurable autocorrelation function of a tagged bp

is obtained. All parameters in our model are known from

recent equilibrium measurements available for arbitrary tem-

perature and NaCl concentration, except for the rate constant

k for (un)zipping that is the only free fit parameter. We note

that the value for the zipping rate obtained from the

fluorescence correlation studies is significantly lower than

from NMR experiments (37). The difference may stem from

the higher temperatures and longer AT sequences probed in

the fluorescence experiments. However, a perturbing effect

FIGURE 7 Autocorrelation function A(xT, t) for a tagged bp for the T7

sequence. The lines are master equation results whereas the data points

represent results from the Gillespie scheme. Note that the autocorrelation

function is sensitive to the DNA sequence as well as the tagging position.

Same parameters as in Fig. 5.

FIGURE 8 (Top) Mean correlation time versus NaCl concentration for

various temperatures T for the AT9 construct, showing a critical slowing-

down at the melting concentration (compare lower panel). The triangles

denote the melting concentration for infinitely long random AT and GC

stretches. (Bottom) Opening probability for D ¼ 0.
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of the fluorophore-quencher pair in the FCS approach cannot

be excluded. For a better understanding of k, a more detailed

microscopic modeling and additional experimental study are

needed.

We applied recent DNA stability data from Protozanova

et al. (5) and Krueger et al. (8) based on separation of hy-

drogen bond and stacking energies. A distinct feature of

these parameters is the low stacking in a TA/AT pair of bps,

translating into a pronounced instability of the TATA motif,

as shown for the T7 promoter sequence. We demonstrated

that the probability of simultaneous opening of a stretch of

the size of 4–5 bps well discriminates the TATA motif from

the other positions along the promoter sequence, reflecting

its biological relevance. This demonstrates that single DNA

fluorescence spectroscopy experiments can likely be used to

investigate in more detail the role of the interplay between

TATA-breathing, TATA-box binding proteins, and tran-

scription initiation. Regarding the mechanism how TATA

may guide this initiation we speculate that it is not primarily

the bubble lifetime (much shorter than the timescale of typ-

ical conformational changes of proteins) but the recurrence

frequency of bubble events that triggers the protein binding.

We note that there exists also a Langevin equation approach

to DNA-breathing, the Dauxois-Peyrard-Bishop model (38,

39), with seven free parameters. Values of these parameters

were assigned by comparison to experimental melting curves

for three different short DNA sequences obtained for rather

specific solvent conditions in Campa and Giansanti (40). In

particular, stacking interactions were taken to be independent

of bp sequence (40). In view of the direct measurement of the

stacking free energy in Krueger et al. (8) under various

conditions, it would be desirable to modify the DPB model to

accommodate for the full set of new stability parameters.

We expect this study to encourage further-going investi-

gations on the theoretical understanding of DNA-breathing

and the experimental possibilities to obtain detailed sequence

and stability information of DNA and its interactions with

binding proteins from DNA-breathing dynamics. We fur-

thermore point out the possibility to use the results of this

study for designing a small fluorophore/quencher-dressed

DNA construct for nanosensing applications in nanochan-

nels, vesicles, or microdishes.
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