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ABSTRACT At low to moderate ambient salt concentrations, DNA-binding proteins bind relatively tightly to DNA, and only very
rarely detach. Intersegmental transfer due to DNA-looping can be excluded by applying an external pulling force to the DNA
molecule. Under such conditions, we explore the targeting dynamics of N proteins sliding diffusively along DNA in search of their
specific target sequence. At lower densities of binding proteins, we find a reduction of the characteristic search time proportional to
N�2, with corrections at higher concentrations. Rates for detachment and attachment of binding proteins are incorporated in the
model. Our findings are in agreement with recent single molecule studies in the presence of bacteriophage T4 gene 32 protein for
which the unbinding rate is much lower than the specific binding rate.

INTRODUCTION

Many cellular processes involving DNA require a search for

binding sites at particular locations on DNA molecules. For

example, gene expression, i.e., the reading out of the genetic

code and its conversion into either messenger-RNA and

subsequent translation into proteins, or into transfer- and

ribosomal-RNA that is not translated into proteins, is con-

trolled by a large number of different, rather specific regu-

latory proteins—so-called transcription factors (TFs). On

binding to a specific site (operator) on the genome, they

either activate (recruitment) or repress the transcription of the

associated gene by RNA polymerase (1,2). Apart from bind-

ing to the specific target site, with a lower binding affinity

TFs can also attach to nonspecific regions on the genome, the

nonspecific binding (3). Both specific and nonspecific bind-

ing make sure that a non-negligible portion of TFs is bound

on the genome. In fact, it has been found that the majority of

molecules of a certain TF can be bound nonspecifically, such

as more than 90% of the l-repressor CI under unperturbed

lysogenic conditions in vivo (4,5).

The high accuracy of gene expression control by TFs

such as in the famed genetic switch of the bacteriophage

l-Escherichia coli system (2,6–8) requires a fast search and

recognition of the target sequence by the TFs. A simple three-

dimensional search of the target sequence by the TFs is not

sufficient to explain experimentally measured target search

rates. It has been suggested relatively early (9,10) that ad-

ditional search mechanisms such as one-dimensional sliding

along the genome are needed to account for the actual ef-

ficiency of the search process. In their pioneering work, Berg,

von Hippel, and co-workers (11,12) established a statistical

model for target search comprising the four fundamental

steps, as shown in Fig. 1:

1. Three-dimensional macrohops during which the TF fully

detaches from the genome, until after a volume excursion

it rebinds to the DNA (as a good approximation, the

landing site on the DNA after a macrohop can be as-

sumed to be equidistributed).

2. Microhops during which the TF detaches from the DNA

but always stays very close to it (i.e., the microhop takes

place within a cylinder whose radius corresponds to the

escape distance of the TF from the DNA; see Ref. 11).

3. One-dimensional sliding along the genome (while pre-

serving a certain bonding to the genome).

4. Intersegmental jumps.

The latter are mediated by DNA-loops bringing two

chemically remote segments of the DNA close in Euclidean

space (see Ref. 13 and references therein). A TF like Lac

repressor, which can establish bonds to two different stretches

of dsDNA simultaneously, can then jump from one to the

neighboring segment. This process might lead to a paradox-

ical diffusion behavior (14). However, if the conformational

changes in the DNA are not too slow, both the bulk-mediated

macrohops and the intersegmental transfer lead to fast mix-

ing of the enzymes’ positions along the chain, as it was

shown for the related problem in Ref. (15), and on the mean-

field level can be described by a desorption followed by the

absorption at a random place.

Recently, there has been renewed interest in the targeting

problem, both theoretically (16–19) and experimentally

(e.g., 20,21), including single molecule studies (22–24).

Despite the extensive knowledge of specific binding rates

and both specific and nonspecific binding free energies, the

precise relative contributions of the different search mech-

anisms (and, to some extent, the stringent criteria to define

these four elementary interactions) are not fully resolved.

Moreover, it has been suggested that under tight(er) binding

conditions, the sliding of the protein becomes subdiffusive

due to the local structure landscape of a heteropolymer DNA

(25). This complication, however, is expected to be relaxed

in a more loosely bound search mode of the TF (19). We here
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adopt the latter view of normal diffusion, which we then

compare with the experiments reported by Pant et al. (22,23).

In previous studies, the one-dimensional sliding problem

has always been considered as a problem of three-dimensional

diffusion which is enhanced by one-dimensional diffusion.

Thus, workers such as Berg, Winter, and von Hippel (11)

assumed that proteins nonspecifically bound would, on

average, unbind before finding their specific binding sites.

This results in an enhancement of specific binding rates that is

proportional to the one-dimensional sliding rate, but the

overall specific binding rate depends linearly on protein

concentration. These studies neglect the possibility that the

protein finds its specific site before unbinding. Given the

experimental conditions under which TF binding has been

previously studied, this approximation is appropriate. How-

ever, as we will show below, this mechanism, in which the

unbinding rate is much lower than the specific binding rate,

occurs for the one-dimensional search of DNA by the single-

stranded DNA binding protein T4 gene 32 protein (gp32).

This fast one-dimensional search rate is essential for gp32 to

be able to quickly find specific locations on DNA molecules

that are undergoing replication, and which have large sections

of single-stranded DNA exposed for gp32 binding. The

resulting nonlinear concentration dependence of gp32

binding will likely have significant effects on gp32’s ability

to find its replication sites as well as its ability to recruit other

proteins during replication. If these nonlinear effects also

occur for TFs, this characteristic will strongly affect

regulatory processes governed by protein binding.

Because this case has not been previously systematically

investigated, in what follows, we concentrate on the sliding

mechanism, which can experimentally be singled out by

lowering the salt concentration in solution, leading to higher

binding affinity to the DNA due to lack of counterions

(22,23). Contributions from looping can be suppressed by use

of rather short DNA segments, or by holding theDNA slightly

stretched as, for instance, is done in optical tweezers ex-

periments. Under such conditions, the typical time it takes for

a TF of a certain species to locate its target sequence will

decrease with the number N of nonspecifically bound mole-

cules. We show by scaling arguments and analytic derivation

that at relatively low concentrations of TFs, the characteristic

targeting time decreases like N�2 in agreement with recent

single molecule experiments, and obvious corrections occur

at higher concentrations. We stop to mention that, surpris-

ingly, such a detailed theoretical study on the influence of the

number N on the search time to our knowledge has not been

carried out, particularly for the case of pure one-dimensional

sliding.

EXPERIMENTAL EVIDENCE

The concentration of nonspecifically bound proteins onDNA,

n0, is determined by the concentration of protein in solution.

At low concentrations, n0 ¼ KnsmC, where C is the con-

centration in solution, m is the size of the protein in units of

nucleotides, andKns is the nonspecific binding constant of the

protein to the DNA lattice. In pure three-dimensional

diffusion, the rate of finding a specific site (specific binding

rate) is directly proportional to C, whereas in pure one-

dimensional diffusion, the rate of specific binding is pro-

portional to C2. Therefore, the concentration-dependence of

specific binding can be used to determine the mechanism

(three-dimensional or one-dimensional) by which a protein

finds its specific binding sites. Recently, Pant et al. (22,23)

showed that the rate at which T4 gene 32 protein finds its

specific single-stranded binding sites is proportional to C2. In

that experiment, optical tweezers were used to stretch single

DNAmolecules in the presence of protein, as sketched in Fig.

2. Pant et al. showed that the dependence of the DNAmelting

force on pulling rate could be used to directly determine the

rate at which individual gp32molecules bind at the ends of the

DNA molecule. A truncated form of gp32, denoted *I, was

found to exhibit binding rates that exceeded the three-

dimensional diffusion limit. This result suggests that the

protein is initially bound nonspecifically to the double-

stranded DNA lattice. After the DNA is stretched, the ends of

the molecule fluctuate open, creating new binding sites on

single-stranded DNA, to which the protein binds specifically

and cooperatively. The rate of specific binding appeared to

depend on the square of the protein concentration.

To test this mechanism further, we have here obtained

measurements of the *I specific binding rate, ka, as a function
of protein concentration under a variety of solution conditions.

According to the calculations below, if the one-dimensional

diffusion mechanism dominates the specific binding process,

ka should have aC
2 dependence. Fig. 3 shows log(ka) (decadic

logarithm, log ¼ log10) as a function of log(C) for salt

concentrations ranging from 75 mM NaCl to 200 mM NaCl.

Within experimental error, the slope is equal to two for

this entire range of salt concentrations. These experimental

FIGURE 1 Classical Berg/von Hippel model of target search.
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results were obtained on DNA molecules that were

approximately 50,000 basepairs (bp) in length. The binding

site size for *I is known to be about 7 bp. In addition, under

these conditions, the fractional binding of the proteins to the

DNA lattice is less than 0.1, so this corresponds to the dilute

case discussed below, and size exclusion is not expected to be

important. Below, we discuss the general case in which we

can have both one-dimensional and three-dimensional

diffusion, depending on the on- and off-rates of the protein

under specific conditions. However, the results of Fig. 3 show

that it is possible to experimentally obtain conditions under

which the off-rate is very low, leading to a C2-dependence of

the specific binding rates. In the case of gp32, those conditions

are obtained under physiological salt concentrations.

SCALING

The mechanism revealed in the previous section is based on

the creation of new specific binding sites at the boundary

between single-stranded and double-stranded DNA, due to

mechanical unzipping of the DNA at some time t¼ 0. Due to

random search of the SSBs already bound on the DNA, the

specific binding site is subsequently filled after the char-

acteristic time T, which depends on the number N of bound

proteins. In turn, N is proportional to the volume concen-

tration C of proteins under the experimental conditions stud-

ied in the previous section.

Let us at first consider the simplest case when the N iden-

tical proteins are constantly attached to the DNA of length

L¼Mb, and we choose the basepair-to-basepair distance b�
3.5 Å as unit of length. A single TF occupies some 10–20

basepairs (single-stranded DNA binding proteins are typi-

cally somewhat smaller, such as 7 bp for gp32), and we

denote the corresponding length by l ¼ mb. This picture

corresponds to the situation observed for gp32 searching

a single DNA molecule, but it likely also applies to double-

stranded DNA binding TFs under certain conditions.

To cross a distance L by bias-free diffusion, a particle on

average consumes a time T ’ L2/D1d where D1d is the cor-

responding diffusion coefficient for one-dimensional sliding

motion on the DNA, and the symbol ’ indicates that we

neglect constant prefactors. If we deal with N identical

particles, on average each of them has a free diffusion length

of L/N, so that the characteristic search time of any one TF to

find the target sequence scales like

TdilðNÞ ’
L
2

D1dN
2 ¼

1

�DD1dn
2

0

; (1)

where n0 ¼ N/M is the number concentration of the TFs on

the DNA, and �DD1d ¼ D1d=b
2. The index is meant to indicate

that this result can only hold for the dilute case, in which the

length occupied by the TFs is much smaller than the length

FIGURE 2 Optical tweezers setup

(30). Single l-DNA molecules are

attached at the 39 ends of each strand

to two polystyrene beads. One bead is

held by a glass micropipette by suction,

whereas the other bead is held in an

optical trap, formed by two counter-

propagating laser beams focused to

a common point. Force-extension

curves were obtained by moving the

micropipette and measuring the result-

ing force on the bead via the displace-

ment relative to the focus of the optical

trap. From the force-extension data, the

binding rates displayed in Fig. 3 could

be determined as described in Pant et al.

(22,23). (Inset) Melting of the double-

strand by gp32 or *I occurs from the

pre-existing boundaries at the ends of

the molecule.

FIGURE 3 Measured rate of binding of the T4 gene 32 protein truncate *I

as a function of protein concentrations in 75 mM salt (solid square), 100 mM

salt (solid triangle), 150 mM salt (open square), and 200 mM salt (open

triangle). The fitted lines have slopes of 1.74 6 0.35, 1.85 6 0.24, 2.08 6

0.39, and 1.95 6 0.17, respectively. The data obtained at 100 mM salt are

fitted by the theoretical model in Fig. 5.
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of the DNA, Nl � L. In what follows we show that the

prefactor in Eq. 1 becomes p/2 for the one-sided situation,

and p/8 for the two-sided situation in the case of a ring DNA.

In Fig. 4 we display results for T(n0) of a simulation of

particles diffusing on a discrete lattice for various n0 under
excluded volume conditions, i.e., a given lattice site can be

occupied by, at most, one particle. The inverse square-

dependence of T(n0) as predicted by Eq. 1 is nicely fulfilled.

Our simulation corresponds to a random walk picture in

which a particle makes, on the average, one attempted step to

the right or to the left per unit time. If the corresponding site

is occupied, the step is not performed. We note that taking

the step length to be a unit length of the problem leads to

the value of the diffusion coefficient of a single particle
�DD1d ¼ 1=2, so that if the continuous approximation works

correctly, the product T̃ ¼ Tlinen
2
0 would be constant and

equal to p (compare Eq. 16). The results show that the

theoretical approximation leading to the 1/N2 behavior re-

mains reasonable even at rather high concentrations, at

which the interparticle distance is of the order of the step

lengths. In the following section, we employ a continuum

approximation to analytically derive the N�2 scaling.

For direct comparison with the experimental data, Fig. 5

shows an alternative way to present the numerical data from

Fig. 4, in dimensional form of the rate ka in units of 1/s versus
the volume protein concentration C in units of M. For the

conversion, we use the relation n0 ¼ KnsmC, with the non-

specific binding constant Kns ¼ 2.53 105 M�1, and the SSB

binding size m ¼ 7 in units of nucleotides (22,23). By log-

arithmic least-squares fit to the shown data measured at 100

mM salt, we obtain for the diffusion constant D1d of one-

dimensional sliding along the dsDNA the value D1d ¼ 3.33

10�9cm2/s, which is nicely within the experimental value

10�8. . .10�9cm2/s for this salt concentration reported in Pant

et al. (22,23). This corroborates the validity of our rather

simple analytical model for the target search of the *I truncate.

Note that the experimental situation with two target sites at

either end of theDNAmolecule corresponds to Eq. 22 derived

below.

Expressed in terms of the dimensionless occupation ratio

f ¼ Nl/L ¼ Nm/M ¼ mn0, the diluteness condition becomes

f � 1. Although the dilute case may correspond to realistic

situations (such as the case of the *I mutant at the salt con-

centrations we measured) as prepared in the in vitro ex-

periments, nonspecific binding at high concentrations of TFs

may well cause situations that can no longer be considered

dilute, in the sense that a considerable part of the DNA is

occupied by the TFs, which to no extent can be considered as

pointlike. The only difference between this case and the

previous one is to not consider the full lengths of the DNA,

but only the reduced lengths, corresponding to the overall

space that TFs have for their motion. This length is Lred ¼
L � Nl ¼ (M � Nm)b, so that we obtain

TðNÞ ’ ðL� NlÞ2

D1dN
2 ¼ TdilðNÞð1� f Þ2; (2)

where n0 is the initial concentration of the TFs. In Fig. 6, we

compare the dilute case with the excluded volume expression

in Eq. 2.

CONTINUUM APPROXIMATION

In this section, we use a continuum approach to verify the

scaling result TðNÞ ’ L2= D1dN
2ð Þ, but also allow for ex-

plicit adsorption and desorption effects with constant rates k0

FIGURE 4 Mean first passage time T(n0) of target search on a large, one-

sided system (one target located at x ¼ 0), as a function of the density n0 of

excluding walkers that cannot occupy the same lattice site. The maximum

density is n0 ¼ 30%. The dashed line corresponds to the exact result

Tðn0Þ ¼ p=n20, for dimensionless diffusion coefficient �DD1d ¼ 1=2, from Eq.

16 obtained in the continuum approximation. We see a slight deviation for

larger densities. Each data point corresponds to 105 runs, except for 103

realizations for the lowest density. Note the comparatively small error bars.

FIGURE 5 Dimensional binding rate ka in 1/s as function of protein

concentration C in M, converted from Fig. 4 for parameters corresponding to

100 mM salt. The fitted one-dimensional diffusion constant for sliding along

the dsDNA is D1d ¼ 3.3 � 10�9cm2/s, located nicely within the experimental

value 10�8. . .10�9 cm2/s (see Refs. 22,23).
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and k1, respectively. Although these latter effects apparently

do not come into play for the experimental results reported in

Experimental Evidence, above, we include them for

completeness: adsorption and desorption are expected to be

relevant to the search dynamics of other binding proteins

such as transcription factors or other SSBs. We also note that

although some of the results below are known per se for the

case of one-particle diffusion or for phantom particles

(26,27), in the present case they are based on a mapping of

the case of impenetrable particles, a problem that, to our

knowledge, has not been studied so far. In that sense, our

analysis is new, and provides a detailed tool for the inter-

pretation of experiments on protein motion coupled to DNA

molecules.

The continuous approximation corresponds to concentra-

tions much smaller than unity (i.e., f� 1), and to rather large

systems consisting of many searching proteins (N � 1).

In other words, we consider large, dilute systems in the sense

that the diffusion time through the whole system, T1 ’ L2/
D1d, is much larger than the typical first passage time cor-

responding to the characteristic target search time, being of

the order of T ’ 1/( f 2D1d). Finite size effects can be in-

corporated into the model. However, this is beyond the scope

of the present work, and we refer to a forthcoming study

(I. M. Sokolov, R. Metzler, K. Pant, and M. C. Williams,

unpublished). According to these results, the diluteness con-

dition should hold for most in vitro experiments involving

only a small number of different species of binding proteins,

at concentrations that are not significantly higher than in vivo.

Let us first consider a one-sided problem (one target site at

x ¼ 0 of a semi-infinite DNA). The time evolution of the

number concentration n(x, t) (of dimension 1/cm, in contrast

to the dimensionless quantity n0; n can be made dimension-

less by n(x, t) ¼ n/b) at position x at time t on a semi-infinite

interval is given by the equation

@n

@t
¼ D1d

@
2

@x2
n � k1n1 k0: (3)

Apart from diffusion, in this equation we take into account

adsorption (with rate k0) and desorption (with rate k1) of the
TFs, which, apart from real physical absorption/desorption

processes, might mimic other nonlocal processes such as

macrohops and intersegmental transfer in a mean field sense.

Following Smoluchowski’s approach to diffusion-controlled

reactions, we represent the target site by an absorbing

boundary condition at x ¼ 0; i.e., when a diffusing particle

hits this site, it will be removed. The possibility of double

occupation of sites is disregarded, as it represents a higher

order effect proportional to f 2. Moreover, the fact that par-

ticles are impenetrable to each other does not change the be-

havior at low concentrations, since, neglecting the excluded

volume on encounter of two particles, it does not matter

whether the right particle always stays to the right of the

other particle (impenetrable particles), or they change roles

and the right particle becomes the left one (phantom par-

ticles), as long as the particles are indistinguishable, in con-

trast to the case of distinguishable particles (addressed in

I. M. Sokolov, R. Metzler, K. Pant, and M. C. Williams,

unpublished).

Finding the target corresponds to the event when the first

particle hits the target site. Mathematically, this is equivalent

to the first passage time of a particle from a site x. 0 to x¼ 0,

given by the particle flux into the reaction center, j(t) ¼
D1d @n/@xjx¼0. The survival probability S(t) of the target site
(i.e., the probability of not yet having been hit by a TF) is

consequently given by the first-order kinetic equation

d

dt
SðtÞ ¼ �jðtÞ SðtÞ; (4)

whose formal solution reads

SðtÞ ¼ exp �
Z t

0

jðt9Þdt9
� �

: (5)

In what follows we use the notation JðtÞ ¼
R t
0
jðt9Þdt9. The

first passage time density is then given by

cðtÞ ¼ �d

dt
SðtÞ ¼ jðtÞexpð�JðtÞÞ: (6)

In our one-sided problem, the mean first passage time be-

comes T ¼
RN
0

t cðtÞdt ¼ �
RN
0

t ½d SðtÞ=dt�dt, i.e.,

T ¼
Z N

0

Sðt9Þdt9: (7)

To obtain an explicit expression for S(t), we solve the

reaction-diffusion Eq. 3 by Laplace transformation techni-

ques. With the initial condition n(x, 0)¼ n0Q(x), whereQ(x)
is the Heaviside jump function, we obtain for all x. 0 for the

Laplace transform ñ(x,u),

uñ � n0 ¼ D1d

@
2

@x
2ñ1

k0
u
� k1ñ; (8)

FIGURE 6 Behavior of themeanfirst passage timeT(N) as a function of the

numberN of TFs attached to aDNAof length 1000b according toEq. 2, for the

dilute case (solid line), TF-size l¼ b (long-dashed line) and l¼ 10b (short-

dashed line). Excluded volume effects reduce the target search time T(N).
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i.e., a linear inhomogeneous differential equation of the form

ñ$� Lñ1B ¼ 0 (9)

withL¼ (k11 u)/D1d. 0 and B¼ (k0/u1 n0)/D1d. 0. The

boundary conditions we impose are of the absorbing

Dirichlet type n(0, u) ¼ 0 at the target site placed at the

origin, and the natural boundary condition n(x, u) , N for

x / N. The corresponding solution reads

ñðx; uÞ ¼ k0 1 un0

uðk1 1 uÞ 1� e
�x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk11uÞ=D1d

p� �
: (10)

From this expression, we find for the flux j(t) in Laplace

space

j̃ðuÞ ¼ D1d

@ñðx; uÞ
@x

����
x¼0

¼
ffiffiffiffiffiffiffi
D1d

p k0 1 un0

u
ffiffiffiffiffiffiffiffiffiffiffiffi
k1 1 u

p ; (11)

an expression whose inverse Laplace transform can be cal-

culated explicitly, yielding

jðtÞ ¼
ffiffiffiffiffiffiffi
D1d

p k0ffiffiffiffi
k1

p erf
ffiffiffiffiffiffi
k1t

p
1 n0

e
�k1tffiffiffiffiffi
pt

p
� �

: (12)

The survival probability of the target site is then given by

S(t) ¼ exp(�J(t)) with

JðtÞ ¼
ffiffiffiffiffiffiffi
D1d

p k0
k1

t
ffiffiffiffi
k1

p
erf

ffiffiffiffiffiffi
k1t

p
� erf

ffiffiffiffiffiffi
k1t

p

2
ffiffiffiffi
k1

p 1

ffiffi
t

pffiffiffiffi
p

p e
�k1t

� ��

1 n0

erf
ffiffiffiffiffiffi
k1t

pffiffiffiffi
k1

p
�
: (13)

Without adsorption and desorption (i.e., k0 ¼ k1 ¼ 0), we

obtain the survival probability

SðtÞ ¼ exp �2n0

ffiffiffiffiffiffiffiffi
D1dt

p

r !
(14)

and first passage time density

cðtÞ ¼ n0

ffiffiffiffiffiffiffi
D1d

pffiffiffiffiffi
pt

p exp �2n0

ffiffiffiffiffiffiffiffi
D1dt

p

r !
: (15)

We thus find for the mean first passage time T ¼RN
0

SðtÞdt the simple form

Tline ¼
p

2

1

n
2

0D1d

¼ p

2

1

n
2

0
�DD1d

; (16)

showing the typical n�2
0 dependence on the initial concen-

tration.

The first passage time distribution for the general case

with nonvanishing rates k0 and k1 becomes

SðtÞ ¼ exp �
ffiffiffiffiffiffiffi
D1d

p
ðk0k1t � k0=21 n0k1Þ

erf
ffiffiffiffiffiffi
k1t

p

k
3=2

1

"

�k0
k1

ffiffiffiffiffiffiffiffi
D1dt

p ffiffiffiffi
p

p expð�k1tÞ
�
: (17)

In the case of no adsorption k0 ¼ 0 but nonvanishing

desorption k1 6¼ 0 that corresponds to a situation with van-

ishing concentration of TFs in the free volume, the function

JðtÞ ¼
ffiffiffiffiffiffiffi
D1d

p
n0

erf
ffiffiffiffiffiffi
k1t

p

k
1=2

1

(18)

is bounded from above, by n0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1d=k1

p
, and the survival

probability S(t) never reaches zero (all particles desorb with

a nonzero probability without ever reaching the target site

x ¼ 0), and the probability density c(t) is a nonproper one,

corresponding to a diverging mean first passage time. In all

other cases c(t) is a proper probability density, and the mean

target search time T is finite.

Performing an expansion in powers of t (the correspond-

ing series contains only the half-integer powers), we find for

the function J(t) in the general case with finite k0, k1,

JðtÞ ¼
ffiffiffiffiffiffiffi
D1d

p

r
2n0t

1=2
1

2

3
k1 2

k0
k1

� n0

� �
t
3=2

�

1
1

15
k
2

1 �4
k0
k1
1 3n0

� �
t
5=2

1 . . .

�
; (19)

so that the ith term of the expansion has a structure

ki�1
1 ðaik0=k1 1 bin0Þtð2i�1Þ=2. Thus, in essence, this expan-

sion corresponds to an expansion in powers of k1. Note that
k0/k1 ¼ ns is a steady-state concentration of proteins in the

absence of the absorbing target site. As long as both k0 and k1
are small, the overall behavior given by Eq. 16 is preserved,

provided the initial concentration n0 is not too small. In the

case without desorption (k1 / 0) we get

SðtÞ ¼ exp �2n0

ffiffiffiffiffiffiffiffi
D1dt

p

r
� 4

3

ffiffiffiffiffiffiffi
D1d

p

r
k0t

3=2

 !
: (20)

This equation is important when finite-size effects are

considered (I. M. Sokolov, R. Metzler, K. Pant, and M. C.

Williams, unpublished).

The two-sided problem (a ring geometry with a perimeter

that is much larger than the typical interparticle distance)

corresponds to the situation where two competing processes

occur, i.e., the survival probability of having an empty target

site changes in time through the influx of TFs from both sides.

This practically corresponds to using twice the probability

current j in Eq. 4 due to symmetry, and therefore to

SðtÞ ¼ expð�2JðtÞÞ; (21)

with J(t) given by Eq. 13. The corresponding mean first

passage time for the case k0 ¼ k1 ¼ 0 is then given by

Tring ¼
p

8

1

n
2

0D1d

¼ p

8

1

n
2

0
�DD1d

; (22)

that is, by a factor of 4 smaller than in the one-sided case.

This result (Eq. 22) is also confirmed by numerical

simulations. We note that the reduction by a factor 4 can
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be easily understood by mapping the circle with one ab-

sorbing site onto a line with both ends as absorbing boun-

daries. It then corresponds to two one-sided geometries as

considered above, but with an effective length of L/2. With

n0 ¼ N/L, this reproduces the factor 4.

DISCUSSION AND CONCLUSIONS

The problem of target search of the specific binding site on

a genome by a TF is a complex stochastic process including

three-dimensional volume exchange (macrohops); local

detachment, displacement, and reattachment (microhops);

intersegmental jumps mediated by DNA-looping; and one-

dimensional sliding along the genome. The relative impor-

tance of the various contributions to the targeting problem is

determined by the corresponding rates (binding, unbinding)

and diffusivities. At normal salt conditions, the combination

of sliding and volume exchange in the classical Berg-von

Hippel model reduces the characteristic time of the targeting

process considerably, thereby guaranteeing the surprisingly

efficient control of gene expression.

To investigate the individual processes in more detail,

variation of salt conditions (low salt will highly favor

binding to the DNA) or volume diffusivity (e.g., by adding

sugar to the solution to decrease the mobility) will bias the

relative contributions and make it possible, for instance, to

observe an almost exclusive combination of sliding and

intersegmental jumps. Moreover, by suppressing DNA-

looping (e.g., by stretching the DNA using optical tweezers),

as we have shown here, it is possible to solely investigate

sliding. We have demonstrated that for *I, a truncate of T4

gene 32 protein, the one-dimensional sliding mechanism

determines the observed protein binding rate under a wide

variety of solution conditions, including under physiological

salt concentrations. In principle, it should be possible to

experimentally reach a situation with pure sliding at very low

salt concentrations for double-stranded DNA binding TFs as

well. Given these perspectives, we provide here the frame-

work for studying the dependence of the characteristic target

search time on the number of proteins N, or, by knowledge of
the Gibbs free energy for nonspecific binding, the concen-

tration C of proteins in the solution. We distinguish some of

the standard geometries used in the in vitro setups. In par-

ticular, we demonstrated by comparison of experimental and

simulations data and analytical results that this approach is

quantitative.

Finally, a few words concerning potential anomalous

transport features are in order. As mentioned in the Intro-

duction, there exist possible scenarios that, due to the

heteropolymer character of DNA, the sliding motion of TFs

can become subdiffusive (25), i.e., the mean-squared dis-

placement of the diffusing TF grows sublinearly in time:

Æ(Dx(t))2æ ’ Dat
a, with 0 , a , 1 and the anomalous

diffusion constant with dimension [Da] ¼ cm2/sa (28–31).

This corresponds to an infinite system producing a waiting

time density of the inverse power-law form c(t) ’ ta/t11a,

and, according to Slutsky and Mirny (19), can be overcome

by a semidetached sliding mode of TFs. For the system

we had in mind in this study, we thus assumed a normal-

diffusive sliding. Moreover, the typical length covered by

a single TF before one of the N TFs hit the target sequence, is

relatively short, and the heteropolymer character of the DNA

is not expected to produce fully pronounced subdiffusion. It

has to be seen whether subdiffusion can be observed for

sliding TFs, an interesting question that may be approached

by single DNA imaging methods. Conversely, one expects

the occurrence of Lévy flights in chemical coordinates due to

DNA-looping. The typical distance covered by a sliding TF

is expected to scale like p(l) ’ l�c, where c , 3, such that,

statistically, the mean-squared displacement diverges (com-

pare the discussions in Refs. 13–15). This phenomenon,

which is expected to contribute to the overall target search,

will be discussed elsewhere.
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