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We study the size fluctuations of a local denaturation zone in a DNA molecule in the presence of proteins
that selectively bind to single-stranded DNA, based on a �2+1�-dimensional master equation. By tuning the
physical parameters we can drive the system from undisturbed bubble fluctuations to full, binding-protein-
induced denaturation. We determine the effective free-energy landscape of the DNA bubble and explore its
relaxation modes.
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Under physiological conditions the Watson-Crick double
helix is the thermodynamically stable configuration of a
DNA molecule. This stability is effected by the specific
Watson-Crick H bonding, whose key-lock principle guaran-
tees a high level of fidelity during replication and transcrip-
tion; and by the stronger base stacking between neighboring
base pairs causing hydrophobic interactions between the pla-
nar aromatic bases �1,2�.

The initial breaking of the stacking interactions in an un-
perturbed DNA molecule is associated with an activation
barrier �0�10−5,...,−3 �4–6�. Once this barrier is overcome,
the free energy of breaking an additional base pair is of the
order of 1 to 2kBT �3,4�, effecting local, single-stranded
DNA denaturation zones of a few tens of broken base pairs
�7�. By thermal activation, these DNA bubbles fluctuate in
size by a zipper motion at the two forks where the bubble
meets the intact double strand �8�. By fluorescence correla-
tion methods this DNA breathing can be explored on the
single molecule level, revealing multistate �un�zipping kinet-
ics with a typical single �un�zipping step time scale around
50 �s and a typical bubble lifetime of the order of 1 ms �9�.

A long-standing puzzle had been why the presence of se-
lectively single-stranded DNA binding proteins �SSBs� does
not lead to full DNA denaturation, as SSB binding is ther-
modynamically favorable �10�. Detailed single-molecule op-
tical tweezers studies, by overstretching of the DNA mol-
ecule to bring the effective temperature close to the melting
temperature Tm in the presence of bacteriophage T4 gene 32
SSBs, showed quantitatively �11� that there exists a kinetic
block for SSB binding �12�: Below Tm the bubble lifetime is
shorter than the typical SSB binding time, counteracting he-
lix destabilization.

In this paper, we develop a dynamical model to quantify
the coupled dynamics between a fluctuating DNA bubble and
SSBs that attempt to bind to it, in terms of the system pa-
rameters �temperature, external force, SSB binding rate and
strength, SSB size�. We demonstrate that the presence of
SSBs leads to enhanced bubble lifetime. Effectively, the
bubble free energy is lowered, and even SSB-induced dena-
turation can occur.

The system we have in mind �Fig. 1� resembles the DNA
construct from Ref. �9�, in which a homopolymer bubble
region is clamped at both ends. The one-bubble approxima-
tion used here is generally valid below Tm due to �0�1.
Figure 1 also illustrates that the typical binding size � of an
SSB ��10 bases�, is of the same order as the bubble size. It
is therefore necessary to consider the statistical weight from
SSBs explicitly, instead of defining an effective chemical
potential �14�.

To quantify the system, we define the probability distri-
bution P�m ,n , t� to find a bubble of size m, with n bound
SSBs at time t. Its time evolution is governed by the
�2+1�-dimensional master equation

�P�m,n,t�/�t

= t+�m − 1,n�P�m − 1,n,t� + t−�m + 1,n�P�m + 1,n,t�

− �t+�m,n� + t−�m,n��P�m,n,t�

+ r+�m,n − 1�P�m,n − 1,t� + r−�m,n + 1�P�m,n + 1,t�

− �r+�m,n� + r−�m,n��P�m,n,t� , �1�

owing to the discrete nature of the problem. In Eq. �1�, the
transfer rates t± describe changes in the bubbles size m, and
r± changes in the number n of bound SSBs. The boundary
conditions for the r± are reflecting at n=0 and
nmax=2�m /��, the maximum number of SSBs that can bind
to a bubble of m denatured base pairs. Similarly, we impose
a reflecting boundary condition at m=0 and m=M, the maxi-
mum bubble size. Moreover, we have to consider that a
bubble cannot zip close if its size is a multiple of the SSB
size, m=k� �k�N� and the number of bound SSBs is nmax or
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FIG. 1. Clamped DNA bubble in a region of size M, immersed
in a bath of SSBs. SSBs do not bind across zippers.
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nmax−1, i.e., at least one of the arches of the bubble is fully
occupied. To define the transfer rates based on the statistical
weight Z�m ,n� to find a state �m ,n�, we assume detailed
balance �15,16�:

t+�m − 1,n�Z�m − 1,n� = t−�m,n�Z�m,n� , �2�

r+�m,n − 1�Z�m,n − 1� = r−�m,n�Z�m,n� . �3�

The statistical weight Z�m ,n�=Z��m�ZSSB�m ,n� has two
contributions. The bubble part according to the Poland-
Scheraga model for DNA melting is �17,18�

Z��m� = �0um�1 + m�−c, m � 1, �4�

with the bubble initiation factor �0, the weight u=e−�E for
breaking a base pair, and the loop closure factor �1+m�−c for
creating a polymer loop of size m, with the offset by 1 due to
persistence length corrections �4,19�. We choose typical val-
ues, �0=10−3 and c=1.76 �18,20�. Eq. �4� is completed by
Z��0�=1. In comparison to the continuum description of
DNA breathing in absence of SSBs by a Fokker-Planck
equation involving the gradient of the free energy �21�, we
note that the discrete approach �1� explicitly includes the
constant activation barrier �0 �cf. Fig. 2�.

The contribution from the SSBs has the form �14,15�

ZSSB�m,n� = �n	�m,n� , �5�

with the binding strength �=c0Keq, involving the SSB
concentration c0 and equilibrium binding constant
Keq=v0 exp���ESSB��, where v0 is the typical SSB volume
and ESSB its binding energy. The weight 	�m ,n� counts all
possible ways of putting n SSBs onto the two arches of the
bubble, including potential gaps between SSBs due to the
fact that their size � is larger than a base. Explicitly,

	�m,n� = �
n�=0

n


�m,n��
�m,n − n�� , �6�

with n , �n−n���nmax/2, and the combinatorial term


�m,n� = �m − �� − 1�n
n

	 . �7�

By detailed balance and taking the rate t+ for breaking a base
pair to be proportional to the activation factor u �including
loop closure effects�, and assuming that the rate r− for SSB
unbinding is proportional to the number n of bound SSBs,
we arrive at the expression for the transfer coefficients, i.e.,
the rates for the bubble size increase or decrease

t−�m,n� = k	�m − 1,n�/	�m,n� , �8a�

t+�m,n� = ku��1 + m�/�2 + m��c, m � 1, �8b�

with the bubble initiation rate t+�0,0�=2−ck�0u, and

r−�m,n� = n�k , �9a�

r+�m,n� = �k��n + 1�	�m,n + 1�/	�m,n� , �9b�

for the SSB number transfer rates �22�. Here, we introduced
the dimensionless ratio �
q /k of the SSB unbinding rate q
and the base pair zipping rate k.

To solve the master equation �1�, we introduce an eigen-
mode expansion of the form

P�m,n,t� = �
p

cpQp�m,n�exp�− t/p� , �10�

in which the coefficients cp of a given eigenmode p are de-
termined via the initial conditions. The corresponding eigen-
value equation for the bubble size-SSB number eigenfuction
Qp determines the mode relaxation times p, and can be
solved numerically, or, in some limits, analytically �15�.
From the bubble-size autocorrelation function

A�t� = �m�t�m�0�� = �
p�0

Ape−t/p, �11�

a typical quantity determined in experiment, we obtain the
relaxation time spectrum p� with the corresponding ampli-
tudes Ap= ��m,nmQp�m ,n��2. The slowest mode relax=1 de-
termines the characteristic equilibration time �23�. These
measures can be used to quantify the bubble-SSB system for
different cases:

�i� In absence of SSBs, Eq. �1� reduces to a
�1+1�-dimensional master equation. If we neglect the loop
closure factor, we can obtain an analytic result using or-
thogonal polynomials, from which we infer the inequalities
for the eigenvalues p �15�

k−1�1 + u1/2�−2 � M � ¯ � 1 � k−1�1 − u1/2�−2, �12�

The equal signs hold in the limit M→�. The characteristic
relaxation time relax tends to very large values �and diverges
for M→�� in the limit u→1, i.e., on approaching Tm.
In Fig. 3, we plot the corresponding relaxation time
spectrum for three temperatures. Well below Tm, we see the
multistate relaxation observed experimentally �9�. For tem-
peratures closer to Tm, the slowest eigenmode becomes in-
creasingly dominant �� two-state behavior�. To estimate the
rate constant k for zipping we find from Fig. 3 that at

FIG. 2. Bubble free energy in absence of SSBs as function of
bubble size m �solid line: c=1.76; dashed line: c=0�. We chose
�0=10−3.
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u=0.6relax�20/k; comparing to the experimental result
relax�1 ms, we consistently extract k�50 �s.

�ii� The fast binding limit corresponds to ��1, i.e., SSB
�un�binding being much faster than the bubble zipping. By
adiabatic elimination �16�, the master equation �1� reduces to
an equation in the bubble size m as in case �i� but where
the bubble free-energy landscape �F=−ln Zad, with
Zad=�nZ�m ,n�, is dressed by the ongoing SSB �un�binding.
This effective free energy is lowered in comparison to case
�i�, as demonstrated in Fig. 4 for two cases: �a� the effective

free energy is reduced, but the overall slope still positive; �b�
the SSB dynamics causes a negative slope of the effective
free energy, ultimately leading to complete denaturation of
unclamped DNA.

We note a characteristic feature of the effective energy in
Fig. 4, namely, the finite size effects due to the SSB size �:
the bubble has to open up to a minimum size m=�, before it
is able to accommodate the first SSB, etc. This also effects a
nucleation barrier for SSB-assisted DNA denaturation even
in the case of negative slope of the dressed free energy for
larger m. Numerically, we determine the critical binding
strength �crit�1 for the parameters of Fig. 4, at which the
effective �F�m� is almost flat. Fast binding is, e.g., realized
for gp32p mutants at elevated effective temperature �11�.

�iii� General case. If SSB �un�binding is not sufficiently
fast but occurs within the typical bubble relaxation time in
absence of SSBs, the full master equation �1� needs to be
solved. By tuning the relative SSB unbinding rate � and SSB
binding strength �, we can move from the situation with
practically no binding to the fast binding case. In Fig. 5, we
illustrate this behavior via the characteristic relaxation time
relax.

Experimentally, u and � are changed by variation of tem-
perature and concentration of SSBs in solution, respectively.

To �un�zip close �open� a base pair, the two single strands
making up the bubble have to be pulled closer towards
�pushed away from� the zipper fork. This additional effect
may be included using similar arguments as in Ref. �24�. The
adjustment of pulling �pushing� propagates along the contour
of the chain until a bend �inflexion� is reached, a distance
that scales as the gyration radius, i.e., �m�. Having in mind
Rouse-type dynamics, this would slow down the �un�zipping
rates by a factor m−� �15�. The relevance of this effect for the
rather small bubble sizes well below Tm is not obvious, and
has to be based on more accurate experimental or numerical
data.

At temperatures well below Tm, our description will be
valid for unclamped DNA homopolymers due to �0�1. Ex-
plicit boundary and heteropolymer structure effects can be
included by introducing the bubble position as an additional
variable in the master equation �1� �25�. Our description will
also hold under moderate chain tension, e.g., in combination

FIG. 3. Relaxation time spectrum for �0=10−3 and M =40. For
u=0.999, the longest relaxation time dominates.

FIG. 4. Effective free energy in the limit ��1 �—�, and free
energy for various fixed n �u=0.6, M =40, c=1.76, �=5�. Top:
�=0.5; bottom: stronger binding, �=1.5.

FIG. 5. Longest relaxation time as function of u, for �=0.5,
�0=10−3, M =20, �=5.
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with optical tweezers setups. The pulling force f then gives
rise to blobs of size �=kBT / f in which the DNA is undis-
turbed �26�. Conversely, in the case of strong pulling twist is
progressively taken out of the DNA molecule, corresponding
to a torque T and the twist energy �0T, where
�0=2� /10.35 denotes the twist angle per base. The statistical
weight is modified according to u→u exp���0T� �13�.

Our �2+1�-dimensional master equation approach pro-
vides a quantitative framework for the coupled dynamics of
the size fluctuations of DNA denaturation bubbles and the
binding of SSBs. It explains the different regimes, from free
bubble breathing to SSB-induced denaturation, that corre-
spond to experimentally accessible in vitro as well as in vivo
situations. In particular, we expect that this scheme is useful
to the design of future experiments, and to estimate in vivo

conditions based on the SSB binding strength �, the base
stacking factor u, and the ratio � of SSB unbinding and base
pair zipping rates.

Given the rather general formulation in terms of a master
equation for the probability distribution P�m ,n , t�, our ap-
proach may be useful to various other systems where par-
ticles bind to a substrate whose binding surface fluctuates in
time �wetting, oxidation, or binding of biomolecules to mem-
branes�; in particular, in the presence of finite size effects. In
addition, the coupled DNA bubble-SSB binding dynamics
studied here is a generic example of how a stochastic process
�partially� can rectify another one.

We are happy to thank Richard Karpel, Oleg Krichevsky,
and Mark Williams for helpful discussions.
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