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Abstract
We investigate the translocation of a stiff polymer through a nanopore in a membrane, in the
presence of binding particles (chaperones) that bind reversibly to the polymer on both sides of
the membrane. A bound chaperone covers one (univalent binding) or many (multivalent
binding) binding sites. Assuming that the diffusion of the chaperones is fast compared to the
rate of translocation we describe the process by a one-dimensional master equation. We
expand previous models by a detailed study of the effective force in the master equation, which
is obtained by the appropriate statistical mechanical average over the chaperone states. The
dependence of the force on the degree of valency (the number of binding sites occupied by a
chaperone) is studied in detail. We obtain finite size corrections (to the thermodynamical
expression for the force), which, for univalent binding, can be expressed analytically. We
finally investigate the mean velocity for translocation as a function of chaperone binding
strength and size. For both univalent and multivalent binding simple results are obtained for
the case of a sufficiently long translocating polymer.

1. Introduction

The problem of polymer translocation, i.e., the transport of an
oligomer or polymer (e.g., DNA, RNA or proteins) through
a nanopore in a membrane, is a process of fundamental
importance in biology and biotechnology. Relevant biological
examples of this type of process include: translocation of
proteins through the endoplasmatic reticulum, translocation of
RNA through the nucleus pore membrane, the viral injection
of DNA into a host and DNA plasmid transport from cell
to cell through cell walls [1]. Additionally, biotechnological
applications connected to membrane pore passaging, such as
rapid reading of DNA base sequences [2, 3], analyte detection
[4] and nanosensor applications, have been suggested. In
medicine, controlled drug delivery is an ultimate goal, a crucial
element of which is the passage through cell and/or nuclei
membranes.

On the theoretical side there exist a number of
investigations [5–18], whose common approach to the
translocation problem is to employ a one-dimensional
description of the process using the penetration length into
the pore as a slow variable (‘reaction coordinate’); each
translocation step is assumed to be sufficiently slow so that
the polymer has time to relax to local equilibrium during the

step (the instantaneous relaxation approximation [19]). The
dynamics is then Markovian and can be described by a
one-dimensional Smoluchowski (Fokker–Planck) or master
equation [11] in terms of the slow variable (however, as
pointed out in [9], this approach breaks down for very
long polymers)1. The force appearing in the Smoluchowski
equation in general has entropic (chain confinement in the pore
reduces accessible degrees of freedom [12]) as well as external
(electric field, chaperone binding etc) contributions. Different
theoretical studies have focused on different experimentally
measurable entities: the mean translocation time is the most
studied quantity [5, 9]. More detailed studies investigated
the probability density of translocation times [6, 11]. Also
the flux (number of polymers passing through the pore per
unit time) has been theoretically investigated [12]. As pointed
out already there exist certain scenarios according to which
the translocation dynamics becomes subdiffusive [9, 21].
However, in the present work we concentrate on a system
whose dynamics is Markovian.

Two important driving forces for translocation, both
in vivo and in experimental assays, are (i) an electric field

1 For very long polymers, the process becomes subdiffusive, and the Fokker–
Planck equation may be replaced by its fractional analogue [20].
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across the membrane and (ii) binding particles (chaperones).
In this study, the focus is on the latter mechanism which
appears to be particularly common for protein translocation
[10, 13, 14, 22–24], but also of relevance for DNA transport
through membranes [25, 26]. In the careful investigation
by Simon et al (see [22]) it was suggested that the
translocation of proteins is a simple thermal ratchet process,
i.e., the role of the chaperones is simply to prevent the
backward diffusion through the pore, thereby speeding up
translocation. In other studies the effect of the chaperones
is modelled by using an effective force originating from
the chemical potential difference due to the chaperones on
the two sides of the membrane [5–8, 17]. More recently
[10], the coupled translocation–chaperone dynamics was
investigated by Brownian molecular dynamics simulation,
initiating more detailed studies of the chaperone-assisted
translocation process. Although the studies above provide
insights into the role of the chaperones in the translocation
process, there is still no unified understanding.

In the present work, we perform a detailed theoretical
investigation of the chaperone-assisted translocation. The
main contributions are (i) our result for the finite size correction
to the force; (ii) that we include the possible occurrence of
chaperones on both sides of the pore and (iii) that we consider
also chaperones which are larger than the size of a binding site.
The paper is organized as follows: in section 2, we estimate the
different relevant timescales of the problem, and in particular
we distinguish between reversible and irreversible binding to
the polymer. We also provide a general framework in terms
of a master equation, which allows a theoretical description
of the translocation dynamics. In section 3, we calculate
the force on a stiff polymer in the reversible binding regime
by the appropriate statistical mechanical average over the
chaperone states. The polymer is divided into M equidistant
binding sites to which the chaperones can bind, and we
distinguish between the cases when a bound chaperone covers
one (univalent binding) or several binding sites (multivalent
binding). For the case of univalent binding we recover previous
thermodynamical results for the force, however with a finite
size correction. In section 4, we use the results from the
previous section in order to compute the mean velocity of the
polymer through the pore. For the case of sufficiently long stiff
polymers, simple results are obtained for both univalent and
multivalent binding. In section 5, we compare the effectiveness
of the chaperone-assisted translocation to electric field driven
translocation. Finally, in section 6 we give a summary and
outlook.

2. General framework and relevant timescales

In this section, we provide a general framework for describing
sufficiently slow translocation dynamics in terms of a
one-dimensional master equation. By estimating relevant
timescales we distinguish between three translocation regimes.

The geometry considered in this study is shown in figure 1:
a rod-like polymer is translocating through a narrow pore in
a membrane (the pore is usually a few nanometre in size,
corresponding to 10–15 nucleotides in the case of ssDNA and

σλA

σλB

x=m

side A side B

L–x=(M–m)σ σ

Figure 1. Translocation geometry in the presence of chaperones: a
stiff polymer of length L is translocating through a pore in a
membrane. The filled boxes of the two sides are chaperones. Each
chaperone on side A (side B) occupies a volume v0A (v0B), and
binds to the polymer with a binding energy εA (εB). The volume of
the compartment of side A (side B) is VA (VB). The size of a
binding site is σ and when a chaperone is attached to the polymer on
side A (side B) it occupies λA (λB) binding sites. The total number
of available binding sites is M = L/σ . The number of binding sites
on side B is m = x/σ , and the number of binding sites on side A is
M − m = (L − x)/σ .

RNA translocation through the α-hemolysin channel). On
each side of the membrane there are chaperones which can
bind to the polymer. We here use the binding site size σ (see
figure 1) as the basic unit of length; for the case of
polynucleotides σ may be the size of a base, and for unfolded
proteins σ may correspond to the size of an aminoacid. The
translocation process is then described by the variable m, which
is the number of binding sites on side B (the distance the
polymer has entered into side B is x = mσ ). The total number
of polymer binding sites is M = L/σ (L is the length of the
polymer) and therefore for a given m the number of binding
sites on side A is M − m. Denote by P(m, t) the probability
that the polymer has passed with m binding sites into side B at
time t. We assume that P(m, t) satisfies a master equation2:

∂

∂t
P (m, t) = t+(m − 1)P (m − 1, t)

+ t−(m + 1)P (m + 1, t) − (t+(m) + t−(m))P (m, t). (1)

Equation (1) is our starting point for studying the chaperone-
assisted translocation process. Transitions can occur only one
step in the forward or backward direction (i.e, m is increased
or decreased by one)3. The transition probability for forward
and backward motion is described by the transfer coefficients
t+(m) and t−(m), respectively. In order to have a complete

2 A general master equation has the form [27] ∂P (m, t)/∂t =∑
m′ (W(m|m′)P (m′, t) − W(m′|m)P (m, t)), where W(m|m′) are the

transition probabilities per unit time. Assuming that transitions can only
occur in unit steps, i.e., W(m|m′) = t+(m′)δm,m′+1 + t−(m′)δm,m′−1 we obtain
equation (1).
3 This assumption is reasonable in view of the fact that the nanopore only
allows a 1D array of monomers (aminoacids, nucleotides) and that the passage
is associated with a friction.
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description we must specify t+(m) and t−(m) in terms of
the fundamental parameters of the problem. We choose these
entities such that the Smoluchowski (Fokker–Planck) equation
is recovered in the limit σ → 0. This requires4

t+(m) = 1

τ0

(
1 +

F(m)

2F0

)
,

t−(m) = 1

τ0

(
1 − F(m)

2F0

)
,

(2)

with a characteristic time τ0 = σ 2/D and characteristic force
F0 = kBT/σ , where D is the diffusion constant for the polymer
and T is the temperature of the solvent (kB is the Boltzmann
constant). F(m) is the force acting on the polymer; in this
work the focus is on obtaining relevant expressions for F(m)

when both sides of the membrane contain a certain population
of binding particles (chaperones), which can bind reversibly
to the polymer, as is illustrated in figure 1. The chaperones
are larger than the pore size, so that there is no exchange
of chaperones between the two membrane sides. Typically
the translocation is driven by the binding of chaperones on
the exit side (side B). However, in vivo, chaperones are
often present on both membrane sides (possibly the role of
the chaperones on the entrance side is to unfold, or prevent
folding, proteins before translocation [22]), and we therefore
allow for the presence of chaperones in both compartments
in figure 1. For instance, protein import into mitochondria
requires the presence of chaperones both on the cytosolic
side (proteins belonging to the cytosolic hsp70 family) and
on the mitochondrial side (mitochondrial hsp70) [1]. The
use of a time-independent force in equation (2) relies on the
assumption that the chaperone dynamics is fast compared to
a characteristic translocation timescale (see below). For a
flexible polymer (not considered in detail in this study) a time-
independent force requires in addition that the relaxation time
of the polymer is small compared to relevant translocation
times.

Let us now investigate how fast a polymer translocates
through the pore, assuming, as in previous approaches, that
once in the pore the polymer is not allowed to fully retract
to the entrance side. Keeping in mind that the coordinate m
is then confined to the interval 0 � m � M , and that we
have a reflecting barrier at m = 0, and an absorbing state
at m = M + 1, the mean translocation time, for a process
described by the master equation (1), becomes [27]

τ = τ0

M∑
m=0

(
�(m)

m∑
m′=0

1

t+(m′)�(m′)

)
, (3)

with

�(m) =
m∏

u=1

t−(u)

t+(u)
. (4)

We have above assumed that at time t = 0 we start with an

4 In the continuum limit σ → 0, equations (1) and (2) satisfy the
following Smoluchowski (Fokker–Planck) equation [27] ∂P (x, t)/∂t =
D∂/∂x{−F(x)P (x, t)/kBT + ∂P (x, t)/∂x} where x = mσ is the distance
the polymer has entered into side B. In the equation above the Einstein relation
D = kBT/ξ (ξ is the friction constant for the polymer) is implicit.

initial condition at m = 0.5 For later reference we introduce
an average velocity

〈v〉 ≡ L

τ
= v0

τ0

τ
M, (5)

where we have defined a characteristic velocity v0 ≡ D/σ . It
is often more illustrative to use 〈v〉 when discussing the results
rather than the mean translocation time τ . For the case of a
constant force F(m) = F (so that the transition probabilities
are independent of m, t+(m) = t+ and t−(m) = t−) the mean
translocation time can straightforwardly be calculated using
equations (2) and (3), see appendix A. The corresponding
mean velocity, for large M (see equation (A.2)), becomes

〈v〉/v0 = t+ − t− = F/F0. (6)

Thus, for a constant force the mean velocity of a long polymer
through the pore is simply proportional to the force acting
on the polymer, i.e., the average motion is equivalent to
classical motion, as it should. As we will see in the subsequent
section the force due to the chaperones is such that it becomes
constant for m > m0, where m0 is some characteristic finite
size correction length. For a sufficiently long polymer the
finite size correction is negligible and the expression above can
be used to obtain the mean velocity. However, very frequently
the translocating chains are relatively short (for instance, small
proteins are ∼60 aminoacids long, see [1] pp 117–8; or
in vitro studies of single-stranded DNA translocation concern
chain lengths well below 100 bases [3]), and the finite size
corrections do come into play.

There are three relevant timescales associated with the
problem: the time τdiff needed for the polymer to diffuse a
distance of the order of the binding site length σ ; the typical
time τunocc a binding site stays unoccupied; and the
characteristic time τocc that a binding site remains occupied.
Let us estimate these different timescales, assuming that there
are no chaperones on the entrance side (side A) for simplicity:6

the time needed for the translocating polymer to diffuse a
distance σ is simply τdiff = τ0/2 = σ 2/2D. Taking σ � 1 nm
and D � 0.1 nm2 s−1 we find τdiff � 5 s.7 We now consider
τunocc and τocc. Denote by Dc the bulk diffusion constants for
the chaperones and by c0 the bulk concentration of chaperones.
The chaperones bind to the polymer site with a binding energy
ε (< 0). Clearly the probability that a binding site is occupied
depends on both the concentration and the binding energy,
and we will see in the next section (see also appendix B) that
we can form a dimensionless number κ = c0K

eq which is
a relevant measure of the binding strength, where we have
defined an equilibrium binding constant Keq = v0 exp(β|ε|)
(v0 is the typical size of the chaperones, β = 1/(kBT ), with
kB being the Boltzmann constant and T the temperature of

5 In the continuum limit equation (3) becomes [27] τ � ∫ L

0 dx ′′

exp(βG(x ′′))
∫ x′′

0 dx ′ exp(−βG(x ′))/D where L is the (contour) length of
the polymer, G(x) = − ∫ x

0 F(x ′) dx ′ and x = mσ .
6 We do not consider the characteristic time associated with one-dimensional
diffusion of binding proteins along the polymer. For instance, for non-
specific binding of DNA transcription factors this introduces yet another
timescale [28].
7 We here use the estimated effective diffusion constant D � 0.1 nm2 s−1

for protein import into mitochondria in [29], obtained by comparison to
experimental translocation times. Note that this value for the diffusion
constant is orders of magnitude smaller than that of a freely diffusing polymer
[29], probably due to polymer interactions with the pore.
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the solvent as before). Considering univalent binding for
simplicity, the equilibrium probability that a binding site is
occupied is (see appendix C) P

eq
occ = κ/(1 + κ), and the

probability that a binding site is unoccupied is therefore
P

eq
unocc = 1 − P

eq
occ = 1/(1 + κ). At equilibrium the ratio

of these probabilities is equal to the ratio between the times
τocc and τunocc, i.e. we have τocc/τunocc = κ . We now proceed
by obtaining τunocc, which then through the above relation also
determines τocc: consider a binding site, which initially is
vacant. If we assume that κ is not too small, then as soon as
one chaperone is at the binding site it becomes trapped and
the binding site occupied. The distance between chaperones
in solution is R ∼ c

−1/3
0 . It suffices for a chaperone to diffuse

a distance of the order R for any one chaperone to attach to
the binding site (provided κ is sufficiently large), this takes a
time τunocc ∼ R2/Dc ∼ 1/(c2/3Dc), which then determines
the characteristic time an initially vacant binding site stays
unoccupied (see [30] for a more thorough investigation of this
problem).8 Taking Dc � 106 nm2 s−1 and c0 � 10 µM, we
find τunocc � 1 ms. Thus typically the binding time is faster
than the time for the polymer to diffuse a distance of the order
one binding site. We note, however, that the above estimated
numerical values are very crude, and in particular that the
polymer diffusion constant D may deviate substantially from
the result given here (D depends on the nature of the polymer–
pore interaction). We found above that τocc = κτunocc, and
thus if the binding strength κ is large τocc can become large,
even if τunocc is small. The considerations above allow us to
distinguish between three different dynamical regimes:

(i) Diffusive regime, τdiff � τunocc, τocc. In this regime the
diffusion through the pore is so fast that the chaperones
do not have time to bind to the translocating polymer.
The force in equation (2) is then essentially zero, and
the mean translocation time equation (3) becomes simply
τ = τ0M

2/2. For realistic values of the binding constant,
this regime can always be reached by lowering the
concentration of chaperones sufficiently. The diffusive
regime corresponds to cases previously discussed (see for
instance [5, 7]) and will therefore not be considered further
in this investigation.

(ii) Irreversible binding regime, τunocc � τdiff � τocc. This
regime corresponds to a situation when the particles have
sufficient time to bind, however they do not unbind
from the polymer during the translocation. In this so-
called Brownian ratchet regime [5, 10, 22] the particles,
at sufficiently high concentrations and binding energies,
bind immediately as soon as the polymer has diffused a
distance equal to the size of a chaperone (or for univalent
binding, a distance equal to the distance between binding
sites). The binding of chaperones prohibits backward
diffusion through the pore, and the polymer can only
‘jump’ in the forward direction. This regime can formally
be obtained by letting F = 2F0 in equation (2); then
the backward transition probability is zero, t− = 0, the

8 Clearly, the depletion of chaperones due to binding to a neighbouring
binding site could affect the time for binding. The concentrations of
chaperones is expected to be sufficiently high so that this effect will not
be dominant for estimating the relevant binding time.

forward transition probability per unit time is t+ = 2/τ0,
and hence the master equation (1) becomes

∂

∂t
P (m, t) = 2

τ0
(P (m − 1, t) − P(m, t)). (7)

This equation gives a coarse-grained description of the
ratchet process, where only forward jumps are effectively
allowed. The same type of equation appears also in
the theoretical description of shot noise [27], and in the
continuum limit corresponds to the forward mode of the
wave equation [31]. The mean translocation time for
ratchet motion becomes τ = τ0M/2 and hence the mean
velocity (see equation (5)) is 〈v〉 = 2v0, which agrees
with the result of other studies [10, 22]. The ratchet
mechanism gives a decrease of the translocation time by
a factor σ/L = 1/M compared to the translocation time
in the diffusive regime described in (i) above.

(iii) Reversible binding regime, τunocc, τocc � τdiff . In this
regime the particles have time to bind and unbind many
times during the time it takes for the polymer to diffuse a
distance σ . The polymer thus has time to reach local
equilibrium, and as we will see we can then obtain
the force F(m) by the appropriate statistical mechanics
average of the chaperone states. We will in the rest of this
paper investigate this case of reversible (both univalent
and multivalent) binding more closely.

3. Force F (m) in the reversible binding regime

In this section, we investigate the force F(m) for reversible
binding of chaperones to the translocating polymer. The
chaperones are assumed to cover one binding site (univalent
binding) or many binding sites (multivalent binding), when
attached to the polymer.

3.1. General expression for the force F(m)

We start by deriving a general expression for the force F(m)

on the translocating polymer, arising from the interaction with
chaperones on the two sides of the membrane, in the reversible
binding regime.

Let us obtain a statistical mechanical expression for the
force on the translocating polymer. Denote by Z(m, nA, nB)

the Boltzmann-weighted number of configurations for a state
specified by m, nA and nB , where nA (nB) is the number of
attached chaperones on side A (side B). For two unconnected
compartments (see figure 1) this statistical weight can be
written as the product of the statistical weight on side A and
B respectively, i.e., Z(m, nA, nB) = ZA(m, nA)ZB(m, nB).
This is a natural decomposition, as the binding proteins
cannot cross the nanopore (at least not in the presence of
the translocating polymer). The force then decomposes in the
form

F(m) = FA(m) + FB(m), (8)

i.e., the total force has independent contributions from side
A and side B, respectively. Let us proceed by writing down
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the appropriate statistical mechanical expression for the force
originating from side γ (γ = A or B). We have (see [10])

Fγ (m)

F0
=

nmax
γ∑

nγ =0

β∂ ln Zγ (m, nγ )

∂m
ρeq

γ (m, nγ )

= 1

Zγ (m)

nmax
γ∑

nγ =0

∂

∂m
Zγ (m, nγ ), (9)

where ρ
eq
γ (m, nγ ) is the equilibrium probability density for a

state specified by m and nγ . We have above used the fact
that the explicit expression for the equilibrium distribution is
ρ

eq
γ (m, nγ ) = Zγ (m, nγ )/Zγ (m), where the partition function

Zγ (m) for side γ is obtained by summing the statistical weight
over all allowed values of nγ :

Zγ (m) =
nmax

γ∑
nγ =0

Zγ (m, nγ ), (10)

where nmax
γ is the maximum number of attached binding

particles on side γ . Note that this quantity depends on m.
As before, we take F0 = kBT/σ . The force, equation (9), is
given by weighting the derivatives, −∂ ln Zγ (m, nγ )/∂m, of
the free energy of state m, nγ by the equilibrium probability
density (compare to equation (C.1)). We note here that in
order for the derivative in the force expression to be well
defined, the equation for the free energy must be analytically
continuable to non-integer m (the expression for the free energy
considered here are expressible in terms of factorials, which
can be analytically continued through �-functions, see the
next subsection). We point out that the force Fγ (m) may in
general incorporate other effects, for instance, as caused by
electric fields or protein folding (see discussions in sections 5
and 6). If the polymer is flexible chain entropic effects
give an additional contribution to the force. Provided that
the chaperone binding is independent of the curvature of the
polymer, the binding force (as calculated in the next section)
and the entropic force are additive, and the entropic force
expression given in [5] can be used. For the sake of clarity,
we here neglect entropic effects, i.e., we assume a rod-like
polymer. This is not a strong restriction of the model, as in the
presence of a drift as exerted by the chaperones (see below),
the entropic effect is expected to be fairly negligible for most
chain lengths relevant to proteins, compare [6].

Let us finally rewrite the force in a form convenient for
obtaining F(m) in the thermodynamic limit (m → ∞ for side
B and M − m → ∞ for side A). We write

Fγ (m) = F̄ γ (m) − 
γ (m), (11)

with
F̄ γ (m)

F0
≡ ∂Zγ (m)/∂m

Zγ (m)
= ∂

∂m
ln Zγ (m), (12)

and


γ (m)

F0
≡

∂Zγ (m)/∂m − ∑nmax
γ

nγ =0 ∂Zγ (m, nγ )/∂m

Zγ (m)
, (13)

where the partition function Zγ (m) is given in equation (10).
The force (11) is composed of two terms. The first term,

explicitly given by equation (12), is the thermodynamic
expression for the force obtained by taking the derivative of
the logarithm of the partition function with respect to m. As
we will see in sections 3.3 and 3.4 this term is in general
independent of m, and is proportional to the chemical potential
difference across the membrane. The second term, given
in equation (13), is a correction term to this thermodynamic
result. We note that the presence of this correction term is due
to the fact that the upper limit nmax

γ in the sum in (13) depends
on m (if this were not the case we could move the derivative
in front of the sum and 
γ (m) would be identically zero). In
section 3.3 we show that 
γ (m) vanishes for large m for the
case of univalent binding. We will therefore henceforth call

γ (m) a finite size correction term. We note here that in order
to calculate the general force expression equation (9), we must
evaluate (complicated) sums involving the statistical weights
Zγ (m, nγ ). However, for obtaining the force equation (12)
in the thermodynamic limit (i.e., large protrusion distances), a
knowledge of the partition function Zγ (m) suffices (as we will
see in section 3.4, Zγ (m) can be straightforwardly calculated
using a transfer matrix approach).

3.2. Explicit expression for the force F(m)

In this subsection, we study in more detail the forces FA(m)

and FB(m) when the two compartments contain chaperones,
which bind reversibly to the translocating polymer. In
particular, we obtain the forces as a function of chaperone
effective binding strengths and sizes.

In order to obtain the force on the polymer we must have
an explicit expression for the statistical weights Zγ (m, nγ )

(see equation (9); γ = A or B). The details of the calculation
of Zγ (m, nγ ) are given in appendix B. There are two entropic
effects that must be taken into account: (i) as m increases the
number of available binding sites increases on side B and vice
versa; and (ii) as the number nγ of bound chaperones increases
the entropy of the surrounding ‘gas’ decreases. We neglect the
reduction of volume due to the presence of the translocating
polymer. We assume that the chaperones are equal in size
(univalent binding) or larger than (multivalent binding) the
size of a binding site, and cover an integer λγ (�1) number of
binding sites if bound to the polymer on side γ (for instance,
bacterial transcription factors cover ∼10–20 basepairs [28]).
The statistical weights then become (see equation (B.5))

Zγ (m, nγ ) = �bind
γ (m, nγ )κ

nγ

γ , (14)

where �bind
γ (m, nγ ) denotes the number of ways of arranging

nγ particles onto the m binding sites on side B or onto the
M − m binding sites on side A. For the case of dilute
solutions the effective binding strength κγ appearing above
can be written as

κγ = cγ Keq
γ , (15)

where cγ is the concentration of chaperones on side γ , and
K

eq
γ is the equilibrium binding constant, see equation (B.8).

Since the effective binding strength κγ is proportional to the
chaperone concentration, one can experimentally vary κγ by
changing the latter. We note that for λγ � 2 there exist
correlations between binding sites in the sense if one binding
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site is occupied, then at least one of the neighbouring binding
sites is occupied. In turn, a binding protein needing more
than one binding site to actually bind cannot bind between
already bound chaperones if their distance is less than λγ .
Thus, the binding characteristics for large and small (λγ = 1)

are different. Explicitly we have for side B [32, 33]

�bind
B (m, nB) =

(
m − (λB − 1)nB

nB

)
= (m − (λB − 1)nB)!

nB!(m − λBnB)!
,

(16)

and similarly for side A with the replacement m → M − m,
nB → nA and λB → λA. We note here that above we
have neglected cooperative effects (i.e., the effect that the
chaperones attached to the polymer may interact). Such effects
are usually incorporated into the theory through a cooperativity
parameter ωγ [32, 35, 36], where no cooperativity corresponds
to ωγ = 1. For ωγ > 1 (positive cooperativity) the chaperones
bound to the polymer interact attractively, whereas for 0 <

ωγ < 1 (negative cooperativity) the chaperones repel each
other. The (somewhat lengthy) relevant expressions for
Zγ (m, nγ ) with ωγ �= 1 can be found in [32]. In section 3.4,
we revisit the problem and show that the partition function
Zγ (m) for large m may be straightforwardly obtained
including cooperativity, allowing for a determination of the
force F(m) (see equation (12)) in the thermodynamic limit.

Equations (14), (15) and (16) for the statistical weight
Zγ (m, nγ ) completely determine the effective force Fγ (m)

(see equation (9)). Combining equations (9) and (14)
we straightforwardly obtain the force on the polymer from
side A:

FA(m)

F0
= −

nmax
A∑

nA=0

ρ
eq
A (m, nA){�(M − m − (λA − 1)nA + 1)

− �(M − m − λAnA + 1)}. (17)

Similarly the force from side B is

FB(m)

F0
=

nmax
B∑

nB=0

ρ
eq
B (m, nB){�(m − (λB − 1)nB + 1)

− �(m − λBnB + 1)}, (18)

where �(z) = d ln �(z)/dz = �′(z)/�(z) is the �-function
[34], and we have analytically continued the factorials
appearing in equation (16) using �-functions. The maximum
number of particles that can attach to the polymer on side B
is nmax

B = [m/λB], i.e., it is the largest integer smaller than or
equal to m/λB . Similarly for side A the maximum number of
attached chaperones is nmax

A = [(M − m)/λA]. We note that
the force from side B is zero, as it should, when the chain does
not protrude at that side, i.e., we have FB(m = 0) = 0. Also,
since �(z) is an increasing function with z, the force from
side B is positive FB(m) � 0, whereas the force from side A

is negative FA(m) � 0. Equations (17) and (18) are general
expressions for the force, and are convenient for numerical
computations. We point out that in general the force F(m)

depends on five dimensionless variables: the binding strengths
κA and κB , the relative sizes of the chaperones λA and λB , as
well as the effective length M = L/σ of the polymer. In the

next two subsections we derive simplified approximate results
for the cases: (i) univalent binding (λγ = 1), and (ii) general
multivalent binding and long polymers. In the latter subsection
we also revisit the problem of cooperative effects (ωγ �= 1).
In these two subsections we compare the results to the exact
expressions for the force, equations (17) and (18).

3.3. Univalent binding

In this subsection we consider the case of univalent binding,
λγ = 1, and obtain the force in the thermodynamic limit.
We also derive an approximate expression for the finite size
correction to the force.

For univalent binding λγ = 1 we have nmax
B = m

and nmax
A = M − m and therefore �bind

γ (m, nγ ) = nmax
γ !

/(
nγ !

(
nmax

γ −nγ

)
!
)

(see equation (16)). The partition functions
ZA(m) and ZB(m) can straightforwardly be calculated using
equation (14). We find

Zγ (m) =
nmax

γ∑
nγ =0

Zγ (m, nγ ) = (1 + κγ )n
max
γ , (19)

where we have used the binomial theorem [34]. This
equation is a standard result for the partition function for
univalent, non-cooperative binding to a polymer [37]. Note
that the dependence on the chaperone concentration and
the binding energies appear only through the quantity κγ (see
equation (15)). Let us now calculate the force F̄ γ (m) in the
thermodynamic limit. Using equations (12) and (19) we find

F̄ γ (m)

F0
= F̄ γ

F0
= ±ln(1 + κγ ), (20)

where the plus sign corresponds to side B, and the minus sign
corresponds to side A. We note that the thermodynamic force
is independent of m, and the expression above can be viewed as
a chemical potential difference across the membrane, compare
[10, 17, 26].

We proceed by considering the finite size correction to
the force, equation (13). Replacing the sum over nγ in
equation (13) by integration and using Leibniz’s theorem for
differentiation of an integral [34] as well as the fact that

Z(m, nmax
γ ) = κ

nmax
γ

γ we find (for side B)


B(m)

F0
≈

(
∂nmax

B

∂m

)
ZB(m, nmax

B )

ZB(m)

=
(

κB

1 + κB

)m

= exp(−m/m0B), (21)

where m0B = 1/ln ([1 + κB]/κB) = 1/ ln
(
f −1

B

)
in terms of

the filling fraction fB of the polymer on side B as contained in
equation (C.2). The finite size correction for side A,
A(m),
is obtained in an identical fashion. The finite size correction
is exponentially decreasing with increasing m, and vanishes
over distances larger than m0γ , where m0γ is determined by
the filling fractions on the two sides; for large (small) filling
fraction, i.e., large (small) κγ , the correction decays slowly
(rapidly) with m. Figure 2 shows the above expression for
the force (equations (11), (20) and (21)) together with the
exact result (equation (18)). Note that the result above, i.e. the
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Figure 2. The force F(m)/F0 in units of F0 = kBT/σ (T is the
temperature of the solvent, kB is the Boltzmann constant and σ is the
binding site size, see figure 1). The dashed lines correspond to
approximate results: For the cases of univalent binding λB = 1 the
upper dashed line is the analytic result as contained in equation (20).
For the case λB = 2 we have included a plot (middle dashed line) of
the approximate result contained in equation (25). For λB = 12, a
typical value for many DNA-binding proteins, the lower dashed line
corresponds to the result obtained through equations (23) and (24).
The remaining curves correspond to the results obtained through the
exact expression equation (18), for: λB = 1 (upper curve), λB = 2
(middle curve) and λB = 12 (lower curve). The binding strength
(see equation (15)) was taken to be κB = 1. No binding particles
were assumed to be present on side A. Note that for small m (and
λB � 2) the force ‘oscillates’ with a period λB . For large m the
force approaches a constant value. The onset of the force is where
m = λB , i.e., the force is zero unless there are sufficiently many
binding sites on side B to accommodate at least one chaperone. The
solid lines are only meant to guide the eye. For typical chaperone
sizes and translocating polymer lengths the finite size corrections
may become quite relevant.

expression of the force as given by equations (11), (20) and
(21), captures the decrease of the force with decreasing m, but
does not fully agree with the result from the general expression
for the force (18), due to the continuum approximation leading
to equation (21). We point out that a decrease of FB(m) for
decreasing m agrees with the molecular dynamics simulations
in [10]. The results obtained in this subsection show that for
a long (m > m0B) polymer the force can be calculated using
the thermodynamic expression F̄ γ (m)/F0 = ∂ ln Zγ (m)/∂m,
but for short polymers finite size corrections become relevant,
and one has to resort to the exact expressions for the force,
equations (17) and (18). In figure 2, this fact is demonstrated
for the case λB = 12, a typical value for binding proteins.

3.4. General case, large m

In this subsection we show that for large m the force Fγ (m)

can be obtained through the solution of an algebraic equation
for general λγ . The approach allows us to revisit the problem
of cooperativity (ωγ �= 1) in a straightforward manner.

In order to obtain the force for large m, a knowledge of the
partition function Zγ (m) suffices (see equation (12)). Rather

than using the combinatorial approach given in the previous
subsections the partition function can more conveniently be
obtained using the approach pursued in [35] (see also [39]): in
general the partition function Zγ (m) can be written as [35]

Zγ (m) =
λγ +1∑
j=1

αj�
m
j , (22)

where �j are the λ + 1 roots to the algebraic equation (γ = A

or B)

�λγ +1 − �λγ − ωγ κγ � + (ωγ − 1)κγ = 0. (23)

The prefactors αj are independent of m and are explicitly given
by αj = �j − λγ d�j/d ln κγ . Equation (23) is the secular
equation associated with the transfer matrix of the system
[35]. Equations (22) and (23) completely determine the
partition function of the system. Note that the above approach
incorporates cooperativity effects (through the cooperativity
parameter ωγ ) without substantially raising the level of
complexity. However, we point out that in the present
approach only the partition function Zγ (m), and not the
statistical weights Zγ (m, nγ ), can be calculated. Therefore,
the approach discussed in this subsection does not allow
computation of the exact expression for the force (see the
definition of the force, equation (9), and also equations (17)
and (18)).

Let us now calculate the force for large m. Denote by
�max

γ the largest root to the algebraic equation (23). Then for
large m the force equation (12) becomes

F̄ γ (m)

F0
= F̄ γ

F0
≈ ±ln �max

γ , (24)

where the plus sign corresponds to γ = B, and the minus
sign to γ = A. The force in the thermodynamic limit is
hence proportional to the logarithm of the largest root �max

γ .
Equation (23) can straightforwardly be solved on a computer,
and hence the determination of the force for large m is a simple
matter. For univalent, non-cooperative (ωγ = 1) binding
equation (23) becomes a first-order algebraic equation which
can be easily solved. The force as obtained from this solution
together with equation (24) agrees with equation (20) as it
should. In the previous subsection we showed that the force
in the thermodynamic limit is independent of m for the case of
univalent, non-cooperative binding. The result above proves
that the force, for large m, is independent of m for general
values of λγ and ωγ . We have in figure 2 plotted the force
for multivalent binding using the exact result, equation (18),
as well as the above result F̄ B(m). The agreement is good
for large m. Note that the exact result has an ‘oscillatory’
behaviour with a period λB for small m-values. We interpret
these oscillations in the following way: if m is equal to an
integer multiple of λB the polymer can, potentially (for large
binding strengths), fill the polymer and hence completely
restrict backward motion (perfect ‘ratcheting’). However,
when m is not an integer multiple of λB there must be vacant
spaces in between bound chaperones (for instance, for m = 5
the maximum number of bound chaperones is 2 for divalent
binding (λB = 2), and hence there must be at least one vacant
binding site, even for large binding strengths), and the ‘ratchet’
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effect is less pronounced. In [32] similar types of oscillations
were found in the filling fraction of a polymer as a function of
m, for the case of multivalent binding.

For divalent (λγ = 2), non-cooperative binding
equation (23) becomes a second-order algebraic equation,
which can straightforwardly be analytically solved, yielding
� = [1 ± (1 + 4κγ )1/2]/2. The corresponding force (for large
m) becomes

F̄ γ (m)

F0
= F̄ γ

F0
≈ ±ln

(
1 + (1 + 4κγ )1/2

2

)
, (25)

where the plus sign corresponds to γ = B, and the minus sign
to γ = A. We point out that the force for divalent binding as
given by equation (25) has a different functional dependence
on κγ compared to the case of univalent binding, see
equation (20).

Let us finally obtain the force for large m, univalent
binding (λγ = 1) and including cooperativity effects (arbitrary
ωγ ) using the approach above. For this case equation (23)
becomes a second-order algebraic equation with the roots:
� = (1 + ωγ κγ )/2 ± {(1 + ωγ κ)2/4 + (ωγ − 1)κγ }1/2. Hence
the force, equation (24), becomes

F̄ γ

F0
≈ ± ln


1 + ωγ κγ

2
+

((
1 + ωγ κγ

2

)2

+ (ωγ − 1)κγ

)1/2

,

(26)

where we have assumed that ωγ � W(κγ ) ≡ 3[2(2 + κγ )1/2/

3 − 1]/κγ so that the roots are real. We note that W(κγ )

has a maximum value 1/2; therefore equation (26) applies
whenever the cooperativity parameter satisfies ωγ � 1/2. In
addition, when κγ < 1/4 we find that W(κγ ) is negative.
Hence equation (26) is in fact even valid for any value of the
cooperativity parameter ωγ provided that κγ � 1/4. For no
cooperativity ωγ = 1 the above result reduces to previous
results (see equation (20)). Note that the force for the case
of positive cooperativity is larger than the force for negative
cooperative binding, as it should.

4. Mean velocity

In this section, we study the mean velocity for the polymer
translocation. In particular we find a simple form for the mean
velocity for long polymers.

The mean velocity is obtained on the basis of the
force obtained in the previous subsections together with
equations (3) and (5). For the general case (finite sized
polymers) the force expressions as contained in equations (17)
and (18) must be used. For sufficiently long polymers we
can ignore the finite size effect and use equation (6) together
with the thermodynamic expressions for the force derived in
the previous subsections. We point out that 〈v〉 then (for non-
cooperative binding) depends on four dimensionless variables:
κA = cAK

eq
A , κB = cBK

eq
B , λA, λB (cγ is the concentration

of chaperones on side γ and K
eq
γ is the equilibrium binding

constant for the chaperones on side γ, γ = A or B). We

can therefore for sufficiently long polymers write the mean
velocity according to

〈v〉 = v0

( |F̄B |
F0

− |F̄A|
F0

)
(27)

with v0 = D/σ and F0 = kBT/σ . The relevant expressions
for the forces F̄ A and F̄ B were given in the previous section: (i)
for the general case the forces follow equation (24) and the
problem is that of determining the largest root �max to the
algebraic equation (23). (ii) For univalent binding (λγ = 1)

we use the force expressions according to equation (26). For
the case of no cooperativity, ωγ = 1, this equation reduces
to the simple result given in equation (20). (iii) For divalent
binding (λγ = 2) and non-cooperative interactions (ωγ = 1)

the forces are given by equation (25). When the chaperone
baths on the two sides contain chaperones of identical binding
strengths κA = κB and sizes λA = λB the mean velocity
is zero, as it should. In general, however, the size of the
chaperones on side A and side B may differ λA �= λB , which
may lead to interesting behaviour of the mean velocity as
a function of κA and κB . In particular, we note that the
dependence on κγ differs between the cases of univalent
and divalent binding (see equations (20) and (25)) for non-
cooperative binding. The binding strength κγ is proportional
to the concentration of chaperones on the two sides. Thus by
measuring the mean velocity as a function of concentration of
chaperones, it should be possible to reveal the nature of the
binding on the two sides (i.e., the values of λγ and ωγ ). In
figure 3, we have plotted 〈v〉 as a function of κB for different λB ,
assuming no chaperones to be present on side A for simplicity.
The solid lines in figure 3 correspond to the mean velocity as
calculated using equations (3), (5) and the exact expression
for the force equation (18). The dotted lines correspond to
the approximate results obtained from equations (27), (20),
(25) and (24). We note that the deviation between the above
approximate results and the exact result for the mean velocity
is larger for larger values of κγ . This originates from the fact
that for large κγ the finite size correction to the force is more
pronounced (see equation (21)). For finite sized polymers the
finite size correction to the force found here thus plays a non-
negligible role in the translocation dynamics. However, as
we increase the length of the polymer the approximate results
(dashed lines) as given above, coincide with the exact result
(solid lines).

A few words on the experimental relevance of the finite
size effects are in order. From figure 2 we note that finite
size effects are prominent for the force for m-values up
to m < (3 − 4)λB for the κB-value chosen in the figure;
thus typically the larger the chaperones (larger λB) the more
pronounced the finite size effect for a given polymer length.
We note here that it might be possible to measure the finite
size effect of the force directly; for instance by attaching a
bead at one end of the polymer and trapping the bead in an
optical tweezer, one might directly probe the force on the
polymer due to the presence of chaperones, compare to the
experimental setup in [25]. The force is, however, not the usual
experimental observable. Instead, what is usually obtained
in experiments is the mean velocity (or mean translocation
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Figure 3. The mean velocity 〈v〉 for the translocation of a finite
sized polymer as a function of binding strength κB = cBK

eq
B , for

different relative chaperone sizes λB (cB is the concentration of
chaperones, and K

eq
B is the equilibrium binding constant). The solid

lines correspond to the mean velocities as calculated using
equations (3), (5) and the exact expression for the force as contained
in equation (18). The dashed curve in connection with the λB = 1
line, is the approximate result given in equations (27) together with
equation (20). The dashed curve with the λB = 2 line is the
approximate expression given in equations (27) and (25). For
λB = 12 the dashed line corresponds to the result obtained through
equations (23) and (24). No binding particles were present on side
A. The effective length of the polymer was taken to be M = 60.
The mean velocity increases monotonically with increasing binding
strength κB . Note that the deviations between the exact (solid
curves) and the approximate results (dashed curves) are more
pronounced for large values of κB .

time). As seen in figure 3 the finite size effects are effective
also for ‘long’ polymers (M > (3 − 4)λB). This is due
to the fact that the mean velocity, also for long polymers,
contains information about the dynamics in the small m-regime
(cumulative measure).

5. Comparison to electric field induced translocation

In this section, we compare the binding assisted translocation
to electric field induced translocation. As we have seen in
the previous sections the characteristic velocity due to binding
of chaperones along a polymer is v0 = D/σ , where D is
the polymer diffusion constant and σ is the distance between
binding sites. We now compare v0 to the velocity due to the
presence of an electrostatic voltage 
V across the membrane.
If we denote the linear charge density of the polymer (charge
per unit length) by ρ, the electric force on the translocating
polymer is Felec = ρ
V , and hence the velocity is

velec = Felec

ξ
= Dρ
V

kBT
, (28)

where ξ = kBT/D is the friction constant for the polymer.
Setting v0 = velec we find that we need a voltage across the
membrane


V = 
Vt = kBT

ρσ
(29)

in order to get a velocity from the electric field which equals
the velocity due to the chaperones. Let us estimate the voltage
for a (highly) negatively charged polymer such as DNA. We
then take ρ � 5 unit charges/nm, kBT � 26 meV (room
temperature) and σ � 1 nm, which gives 
Vt � 5 mV.
The typical (resting) potential across the eukaryotic cell
membranes is �70 mV. Thus for charged polymers such
as DNA it is ‘preferable’ to use electric fields for efficient
transport. In contrast, the linear charge density of a protein is
sensitive to the aminoacid sequence and the pH of the solution;
at high (low) pH a protein is typically negatively (positively)
charged. Therefore, non-specific protein transport cannot in
general rely on electric field induced translocation; this may
explain in part why nature has invented the chaperone-assisting
machinery.

6. Summary and outlook

We have in this work investigated the translocation of a stiff
polymer through a nanopore in a membrane, in the presence
of binding particles (chaperones) that bind to the polymer on
both sides of the membrane. Assuming that the diffusion of
chaperones is fast compared to the rate of translocation we
described the process by a one-dimensional master equation.
We thoroughly investigated the translocation dynamics for
the case of reversible binding to the polymer and found
that the dynamics depends on whether the chaperones bind
univalently or multivalently to the polymer. For the case of
univalent binding we derived an analytic finite size correction
to the force exerted on the polymer by the chaperones. In
general, the finite size corrections we quantified in this study
may be used to extract information on the nature of the
chaperones from experimental data. For long polymers a
simple expression for the mean velocity of the polymer through
the pore was found. We also discussed the problem of
irreversible binding to the translocating polymer, as well as
compared the effectiveness of binding assisted translocation
to electric field driven translocation.

We want to point out that the case of perfect thermal
ratchet translocation [22] (immediate irreversible binding)
cannot be obtained by simply taking the effective binding
strengths to be infinite in the results in this study. As discussed
in section 2, for irreversible binding the chaperones do not
have time to unbind during the translocation, rendering a
thermodynamic evaluation (as we have done here) of the force
inapplicable. However, we found that our master equation
approach allows us to formally describe the case of thermal
ratcheting. It will be interesting to see whether it is possible to
develop a theory that covers both the reversible and irreversible
binding regimes (i.e., arbitrary values of the binding strength).
Possible techniques and results from the class of the parking
lot models [40–42] could prove useful.

We have in this investigation not included entropic effects
due to polymer flexibility. As noted in the main text, provided
that the chaperone binding does not depend on the curvature
of the flexible polymer the binding force as calculated here
and the entropic force are additive. For not too long flexible
polymers the entropic effect could thus be included in a
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standard fashion (see e.g., [5]), but typically these effects in the
presence of the chaperone-generated drift will be negligible
for most systems relevant to this study [6]. For very long
polymers the dynamics changes qualitatively, and has to be
modelled by a dynamical equation with memory [9]. We have
also neglected the volume of the translocating polymer, which
should be a fair assumption for the relevant biological systems.

We have throughout the study assumed that the binding
energy for the chaperones is the same along the polymer.
However proteins, RNA and DNA in general consist of
heterogeneous sequences of aminoacids, bases or basepairs
respectively. It would therefore be interesting to investigate
how heterogeneity in the binding energies along the polymer
affects the translocation dynamics.

It has been suggested that in order for a protein to be able
to translocate it has to be unfolded on the entrance side [22].
The unfolding of a protein in general requires the presence
of chaperones on the entrance side; as we have seen in this
study the presence of such proteins always give an opposing
force compared to the translocation direction. Hence efficient
translocation requires that the amount of binding proteins on
the entrance side is large enough to allow unfolding, but small
enough not to cause a too large opposing force. It will be
interesting to see whether such an optimization concerning the
concentration of ‘unfolders’ is indeed used in nature. This
situation may be improved by additional protein channels
for the chaperones, by which the relative concentration on
both sides of the membrane may be actively regulated. The
possibility also exists that the translocation could be driven
by the refolding of the protein on the target side [22].
Alternatively, in cases where the protein is synthesized on the
entrance side a built-in additional sequence can inhibit folding.
This folding-preventing sequence then has to be removed
on the exit side and then the folding process may assist the
translocation. We note that effects similar to protein folding
can occur for RNA and single stranded DNA in the form of
secondary structure. In principle, protein translocation could
occur even for an unfolded protein, provided that the chemical
or electric bias is strong enough. The translocation dynamics
could in such case provide local information about the protein
structure, which could find biotechnological applications,
similar to RNA translocation [43].
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Appendix A. Mean translocation time for a
constant force

Let us consider the mean translocation time, as given by
equation (3). In the case of a constant force F(m) = F the
transfer coefficients, equation (2), become t+(m) = (1/τ0)(1+
F/2F0) = t+ and t−(m) = (1/τ0)(1 − F/2F0) = t−.
Equation (3) then becomes

τ = 1

τ +

M∑
y=0

(
t−

t+

)y y∑
z=0

(
t+

t−

)z

. (A.1)

If we now assume that t− < t+ and use the result for a
geometric series (valid for Q �= 1)

∑y

z=0 Qz = (1 − Qy+1)/

(1 − Q) we find the following expression for the mean
translocation time

τ = M

t+ − t−
− t+

(t+ − t−)2

{
1 −

(
t−

t+

)M+1
}

→ M

t+ − t−
= MF0

F
, (A.2)

where we in the last step have assumed that M  1. For large
M (and a constant force), the mean translocation time is thus
inversely proportional to the force, as it should.

Appendix B. Binding partition function

In this appendix, we obtain the binding statistical weight
Zγ (m, nγ ).

In order to obtain the force on the polymer we must have
explicit expressions for the statistical weights Zγ (m, nγ ) (see
equation (9)). This quantity is obtained by calculating the
statistically averaged number of ways to attach nγ particles
on side γ , divided by a reference statistical weight Zref

γ . We
choose Zref

γ as the number of states in the absence of the
polymer (note that the choice of Zref

γ is arbitrary, since it
vanishes in equation (9)). Let us first calculate Zref

γ . Denote by
VA the volume of compartment A and by VB the volume of
compartment B. Similarly, we assume a chaperone on side
A (side B) to occupy a volume v0A (v0B). There are hence
N tot

A = VA/v0A number of voxels to put the chaperones on
side A (see figure 1), and similarly N tot

B = VB/v0B number
of voxels to put the chaperones on side B. If we furthermore
assume that there are NA (NB) chaperones on side A (side B),
the number of ways of arranging these particles on the two
sides is

Zref
γ =

(
N tot

γ

Nγ

)
=

(
N tot

γ

)
!

Nγ !
(
N tot

γ − Nγ

)
!
, (B.1)

which then determine the reference statistical weight. Let
us proceed by calculating the statistical weights Zγ (m, nγ )

in the presence of the polymer, neglecting the reduction of
compartment volume due to the translocating polymer. As
before, on side B the polymer is divided into m segments such
that m = x/σ , where x is the protrusion distance on side B and
σ is the size of a binding site. Similarly, on side A there are
M − m = (L − x)/σ segments, where M = L/σ is the total
number of binding sites (L is the length of the polymer). We
assume that the chaperones cover an integer λγ (�1) number
of binding sites if bound to the polymer on side γ . The
total binding energy for an attached chaperone is denoted by
εγ (<0). The maximum number of particles that can attach
to the polymer on side B is then nmax

B = [m/λB], i.e., it is
the largest integer smaller than or equal to m/λB . Similarly
for side A the maximum number of attached chaperones is
nmax

A = [(M − m)/λA]. Denote by �bind
B (m, nB) the number

of ways of arranging nB particles onto the m binding sites
on side B

(
�bind

B (m, nγ

)
is explicitly given in the main text).

To obtain the binding statistical weight for side B we have
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to multiply �bind
B (m, nB) by the Boltzmann weight associated

with binding, i.e.,

Zbind
γ (m, nγ ) = �bind

γ (m, nγ ) exp(−βεγ nγ ). (B.2)

In order to obtain the full statistical weight for side B, we also
have to account for the fact that when nγ number of particles
are bound to the polymer there are only Nγ − nγ numbers
of molecules left in the ‘gas’ surrounding the polymer. The
number of states for the ‘gas’ (compare equation (B.1)) is

Zgas
γ (nγ ) = {(

N tot
γ

)
!
}/{

(Nγ − nγ )!
(
N tot

γ − (Nγ − nγ )
)
!
}
.

(B.3)

For large Nγ (see equation 6.1.47 in [34]) we have the
identity (N + a)!/(N + b)! = �(N + a + 1)/�(N + b + 1) ≈
Na−b(1 + (a − b)(a + b + 1)/(2N) + · · ·), where �(z) is the
�-function. Applying this result, we find that for the case when
a large number of chaperones are present at the two sides:

Zgas
γ (nγ ) = �

nγ

γ , (B.4)

where we have introduced the volume fraction on side γ as
�γ ≡ Nγ

/(
N tot

γ −Nγ

)
. Combining equations (B.2) and (B.4)

we find that the statistical weight for side γ is

Zγ (m, nγ ) = Zgas
γ (nγ )Zbind

γ (m, nγ ) = �bind
γ (m, nγ )κ

nγ

γ

,(B.5)

where we have defined an effective binding strength

κγ ≡ �γ exp(β|εγ |). (B.6)

For the case of dilute solutions
(
Nγ � N tot

γ

)
the effective

binding strength can be written in the common form:

κγ = cγ Keq
γ (B.7)

where cγ = Nγ /Vγ is the concentration of chaperones on side
γ (γ = A or B), and

Keq
γ = v0γ exp(β|εγ |) (B.8)

is the equilibrium binding constant [32]. Equation (B.5)
together with equation (B.7) defines the statistical weights
for the two sides.

Appendix C. Filling fraction

In this appendix, we consider the filling fraction of chaperones
bound to the translocating polymer for the cases univalent and
divalent of binding, respectively.

Since we assume that the motion of the chaperones is
fast compared to the rate of translocation through the pore,
the expected numbers 〈nA〉 and 〈nB〉 of bound chaperones on
the two sides for a given m are well-defined quantities, which
are simply obtained by calculating the expectation value with
respect to the equilibrium distribution, i.e.,

〈nγ 〉 =
nmax

γ∑
nγ =0

nγ ρeq
γ (m, nγ ) = ∂

∂ ln κγ

(ln Zγ (m)), (C.1)

where γ = A or B and the total expected number of bound
chaperones is 〈n〉 = 〈nA〉 + 〈nB〉.

Let us calculate the expected number of bound particles
on the two sides for the case of univalent λγ = 1 and non-
cooperative binding ωγ = 1. Using equations (19) and (C.1)
we find 〈nγ 〉 = nmax

γ fγ where the filling fractions are

fγ = κγ

1 + κγ

= 1 − (1 + κγ )−1. (C.2)

This finding is a standard result for univalent, non-cooperative
binding to a polymer [37]. We note that 0 � fγ � 1, and
that the chain becomes fully occupied, fγ → 1, if the binding
strength is very large κγ → ∞. When the binding strength is
zero κγ → 0 there are no chaperones bound, fγ → 0, as it
should. For positive binding energies εγ � 0 (repulsion) the
filling fraction loses its meaning. Since for univalent binding
(and no cooperativity) the binding sites are independent, the
equilibrium probability P

eq
occ that a binding site is occupied

equals the filling fraction, i.e. P
eq
occ = fγ .

We can also calculate fγ for the case of divalent binding
λγ = 2, and large protrusion distances. Using the results from
section 3.4 we find that

fγ ≈ 1 − (1 + 4κγ )−1/2, (C.3)

for divalent binding. We have that 0 � fγ � 1, f → 1 for
κγ → ∞, and fγ → 0 for κγ → 0 as it should. We note that
for divalent binding the polymer reaches its fully occupied
state fγ = 1 ‘slower’ with κγ than for the case of univalent
binding (see equation (C.2)).9 This is intuitively clear, as for
divalent binding those configurations have to be overcome in
which vacant spots of the size of one binding site have to
disappear in order to reach fγ = 1.
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